1
|
Liu J, Rayes D, Akbari OS. A Fluorescent Sex-Sorting Technique for Insects with the Demonstration in Drosophila melanogaster. GEN BIOTECHNOLOGY 2024; 3:35-44. [PMID: 38415050 PMCID: PMC10895710 DOI: 10.1089/genbio.2023.0041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 01/09/2024] [Indexed: 02/29/2024]
Abstract
Recent advances in insect genetic engineering offer alternative genetic biocontrol solutions to control populations of pests and disease vectors. While success has been achieved, sex-sorting remains problematic for scaling many genetic biocontrol interventions. Here, we describe the development of a genetically stable sex-sorting technique for female and male selection with a proof of concept in Drosophila melanogaster termed SEPARATOR (Sexing Element Produced by Alternative RNA-splicing of A Transgenic Observable Reporter). This elegant approach utilizes dominantly expressed fluorescent proteins and differentially spliced introns to ensure sex-specific expression. The system has the potential for adaptability to various insect species and application for high-throughput insect sex-sorting.
Collapse
Affiliation(s)
- Junru Liu
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, California, USA
| | - Danny Rayes
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, California, USA
| | - Omar S. Akbari
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
2
|
Liu J, Rayes D, Akbari OS. A fluorescent sex-sorting technique for insects with the demonstration in Drosophila melanogaster. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.11.553026. [PMID: 37645836 PMCID: PMC10462037 DOI: 10.1101/2023.08.11.553026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Recent advances in insect genetic engineering offer alternative genetic biocontrol solutions to control populations of pests and disease vectors. While success has been achieved, sex-sorting remains problematic for scaling many genetic biocontrol interventions. Here we describe the development of a sex-sorting technique for female and male selection with a proof-of-concept in D. melanogaster termed SEPARATOR (Sexing Element Produced by Alternative RNA-splicing of A Transgenic Observable Reporter). This approach utilizes dominant fluorescent proteins and differentially spliced introns to ensure sex-specific expression. The system has the potential for adaptability to various insect species and application for high-throughput insect sex-sorting.
Collapse
Affiliation(s)
- Junru Liu
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Danny Rayes
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Omar S. Akbari
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
3
|
Saccone G. A history of the genetic and molecular identification of genes and their functions controlling insect sex determination. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 151:103873. [PMID: 36400424 DOI: 10.1016/j.ibmb.2022.103873] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
The genetics of the sex determination regulatory cascade in Drosophila melanogaster has a fascinating history, interlinked with the foundation of the Genetics discipline itself. The discovery that alternative splicing rather than differential transcription is the molecular mechanism underlying the upstream control of sex differences in the Drosophila model system was surprising. This notion is now fully integrated into the scientific canon, appearing in many genetics textbooks and online education resources. In the last three decades, it was a key reference point for starting evolutionary studies in other insect species by using homology-based approaches. This review will introduce a very brief history of Drosophila genetics. It will describe the genetic and molecular approaches applied for the identifying and cloning key genes involved in sex determination in Drosophila and in many other insect species. These comparative analyses led to supporting the idea that sex-determining pathways have evolved mainly by recruiting different upstream signals/genes while maintaining widely conserved intermediate and downstream regulatory genes. The review also provides examples of the link between technological advances and research achievements, to stimulate reflections on how science is produced. It aims to hopefully strengthen the related historical and conceptual knowledge of general readers of other disciplines and of younger geneticists, often focused on the latest technical-molecular approaches.
Collapse
Affiliation(s)
- Giuseppe Saccone
- Department of Biology, University of Naples Federico II, Via Cinthia 26, 80126, Naples, Italy.
| |
Collapse
|
4
|
Wen L, Gong Q, Du Q, Yu X, Feng Q, Liu L. Lacking of sex-lethal gene lowers the fertility of male reproduction in Spodoptera litura (Lepidoptera). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 184:105087. [PMID: 35715034 DOI: 10.1016/j.pestbp.2022.105087] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 03/01/2022] [Accepted: 03/22/2022] [Indexed: 06/15/2023]
Abstract
Sex-lethal (Sxl) encodes an RNA-binding protein that acts as the switch of sex determination in Drosophila and influences the genitalia formation and gonadal development. However, its sex-determination roles are not conserved in all insects and its role in the gonadal development of Lepidoptera is not well documented. In this study, three splicing variants of Sxl mRNA were identified in Spodoptera litura and they highly expressed in gonads, particularly in the testis. The mRNA levels of SlSxl exhibited higher expression in the spermatid than the testis sheaths, and gradually increased with the spermiogenesis. Sex-lethal protein (SlSXL) is mainly distributed in the cytoplasm of spermatocytes and the head of spermatid. Knockout of SlSxl resulted in fewer eupyrene sperm bundles and apyrene sperm bundles in the testes of moth and a large number of undeveloped spermatocysts retained in the moth of mutant testis, and leading to the reduction of oviposition and hatch rate in the offsprings after mating with female. These results suggest that SlSxl is a critical player in the spermiogenesis of S. litura.
Collapse
Affiliation(s)
- Liang Wen
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Qian Gong
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Qian Du
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Xiaoqiang Yu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Qili Feng
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Lin Liu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
5
|
Noncanonical function of the Sex lethal gene controls the protogyny phenotype in Drosophila melanogaster. Sci Rep 2022; 12:1455. [PMID: 35087103 PMCID: PMC8795210 DOI: 10.1038/s41598-022-05147-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 12/31/2021] [Indexed: 12/01/2022] Open
Abstract
Drosophila melanogaster females eclose on average 4 h faster than males owing to sexual differences in the pupal period, referred to as the protogyny phenotype. Here, to elucidate the mechanism underlying the protogyny phenotype, we used our newly developed Drosophila Individual Activity Monitoring and Detecting System (DIAMonDS) that detects the precise timing of both pupariation and eclosion in individual flies. Although sex transformation induced by tra-2, tra alteration, or msl-2 knockdown-mediated disruption of dosage compensation showed no effect on the protogyny phenotype, stage-specific whole-body knockdown and mutation of the Drosophila master sex switch gene, Sxl, was found to disrupt the protogyny phenotype. Thus, Sxl establishes the protogyny phenotype through a noncanonical pathway in D. melanogaster.
Collapse
|
6
|
Zhuo JC, Zhang HH, Hu QL, Zhang JL, Lu JB, Li HJ, Xie YC, Wang WW, Zhang Y, Wang HQ, Huang HJ, Lu G, Chen JP, Li JM, Tu ZJ, Zhang CX. A feminizing switch in a hemimetabolous insect. SCIENCE ADVANCES 2021; 7:eabf9237. [PMID: 34826246 PMCID: PMC8626073 DOI: 10.1126/sciadv.abf9237] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Abstract
The mechanism of sex determination remains poorly understood in hemimetabolous insects. Here, in the brown planthopper (BPH), Nilaparvata lugens, a hemipteran rice pest, we identified a feminizing switch or a female determiner (Nlfmd) that encodes a serine/arginine-rich protein. Knockdown of Nlfmd in female nymphs resulted in masculinization of both the somatic morphology and doublesex splicing. The female-specific isoform of Nlfmd, Nlfmd-F, is maternally deposited and zygotically transcribed. Depletion of Nlfmd by maternal RNAi or CRISPR-Cas9 resulted in female-specific embryonic lethality. Knockdown of an hnRNP40 family gene named female determiner 2 (Nlfmd2) also conferred masculinization. In vitro experiments showed that an Nlfmd2 isoform, NlFMD2340, bound the RAAGAA repeat motif in the Nldsx pre-mRNA and formed a protein complex with NlFMD-F to modulate Nldsx splicing, suggesting that NlFMD2 may function as an RNA binding partner of the feminizing switch NlFMD. Our results provide novel insights into the diverse mechanisms of insect sex determination.
Collapse
Affiliation(s)
- Ji-Chong Zhuo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
- Institute of Insect Science, Zhejiang University, Hangzhou 310058, China
| | - Hou-Hong Zhang
- Institute of Insect Science, Zhejiang University, Hangzhou 310058, China
| | - Qing-Ling Hu
- Institute of Insect Science, Zhejiang University, Hangzhou 310058, China
| | - Jin-Li Zhang
- Institute of Insect Science, Zhejiang University, Hangzhou 310058, China
| | - Jia-Bao Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
- Institute of Insect Science, Zhejiang University, Hangzhou 310058, China
| | - Han-Jing Li
- Institute of Insect Science, Zhejiang University, Hangzhou 310058, China
| | - Yu-Cheng Xie
- Institute of Insect Science, Zhejiang University, Hangzhou 310058, China
| | - Wei-Wei Wang
- Institute of Biochemistry, Zhejiang University, Hangzhou 310058, China
| | - Yan Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Hai-Qiang Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Hai-Jian Huang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Gang Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Jian-Ping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Jun-Min Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Zhi-Jian Tu
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, USA
| | - Chuan-Xi Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
- Institute of Insect Science, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
7
|
Wang M, Xie X, Xu D, Wang Z, Yu G, Jin Z, Zhu D. Molecular characterization of the Sex-lethal gene in mud crab Scylla paramamosain and its potential role in sexual development. Comp Biochem Physiol B Biochem Mol Biol 2020; 250:110486. [DOI: 10.1016/j.cbpb.2020.110486] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/26/2020] [Accepted: 08/02/2020] [Indexed: 12/18/2022]
|
8
|
Petrella V, Aceto S, Colonna V, Saccone G, Sanges R, Polanska N, Volf P, Gradoni L, Bongiorno G, Salvemini M. Identification of sex determination genes and their evolution in Phlebotominae sand flies (Diptera, Nematocera). BMC Genomics 2019; 20:522. [PMID: 31238870 PMCID: PMC6593557 DOI: 10.1186/s12864-019-5898-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 06/11/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Phlebotomine sand flies (Diptera, Nematocera) are important vectors of several pathogens, including Leishmania parasites, causing serious diseases of humans and dogs. Despite their importance as disease vectors, most aspects of sand fly biology remain unknown including the molecular basis of their reproduction and sex determination, aspects also relevant for the development of novel vector control strategies. RESULTS Using comparative genomics/transcriptomics data mining and transcriptional profiling, we identified the sex determining genes in phlebotomine sand flies and proposed the first model for the sex determination cascade of these insects. For all the genes identified, we produced manually curated gene models, developmental gene expression profile and performed evolutionary molecular analysis. We identified and characterized, for the first time in a Nematocera species, the transformer (tra) homolog which exhibits both conserved and novel features. The analysis of the tra locus in sand flies and its expression pattern suggest that this gene is able to autoregulate its own splicing, as observed in the fruit fly Ceratitis capitata and several other insect species. CONCLUSIONS Our results permit to fill the gap about sex determination in sand flies, contribute to a better understanding of this developmental pathway in Nematocera and open the way for the identification of sex determining orthologs in other species of this important Diptera sub-order. Furthermore, the sex determination genes identified in our work also provide the opportunity of future biotechnological applications to control natural population of sand flies, reducing their impact on public health.
Collapse
Affiliation(s)
- Valeria Petrella
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Serena Aceto
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Vincenza Colonna
- National Research Council, Institute of Genetics and Biophysics, Naples, Italy
| | - Giuseppe Saccone
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Remo Sanges
- Stazione Zoologica “Anton Dohrn”, Naples, Italy
- Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | - Nikola Polanska
- Department of Parasitology, Charles University, Prague, Czech Republic
| | - Petr Volf
- Department of Parasitology, Charles University, Prague, Czech Republic
| | - Luigi Gradoni
- Unit of Vector-borne Diseases, Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Gioia Bongiorno
- Unit of Vector-borne Diseases, Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Marco Salvemini
- Department of Biology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
9
|
Abstract
Sperm exhibit dramatic evolutionarily divergent morphologies in almost all taxa. Some sexually reproductive species show polymorphisms in the sperm produced by single males. Here, we focused on Sex-lethal (Sxl), which is the master sex-determination gene in Drosophila melanogaster, and investigated its function in the lepidopteran insect Bombyx mori. Our genetic analyses revealed that Sxl is essential for the formation of anucleate nonfertile parasperm. It is not expected that Sxl would be involved in sperm polymorphisms. Yet, whereas many morphological observations and ecological surveys have been conducted on sperm polymorphisms, this paper identifies the gene involved in sperm polymorphisms. Moreover, we clearly demonstrate that parasperm of B. mori is necessary for sperm migration in female organs. Sex is determined by diverse mechanisms and master sex-determination genes are highly divergent, even among closely related species. Therefore, it is possible that homologs of master sex-determination genes might have alternative functions in different species. Herein, we focused on Sex-lethal (Sxl), which is the master sex-determination gene in Drosophila melanogaster and is necessary for female germline development. It has been widely shown that the sex-determination function of Sxl in Drosophilidae species is not conserved in other insects of different orders. We investigated the function of Sxl in the lepidopteran insect Bombyx mori. In lepidopteran insects (moths and butterflies), spermatogenesis results in two different types of sperm: nucleated fertile eupyrene sperm and anucleate nonfertile parasperm, also known as apyrene sperm. Genetic analyses using Sxl mutants revealed that the gene is indispensable for proper morphogenesis of apyrene sperm. Similarly, our analyses using Sxl mutants clearly demonstrate that apyrene sperm are necessary for eupyrene sperm migration from the bursa copulatrix to the spermatheca. Therefore, apyrene sperm is necessary for successful fertilization of eupyrene sperm in B. mori. Although Sxl is essential for oogenesis in D. melanogaster, it also plays important roles in spermatogenesis in B. mori. Therefore, the ancestral function of Sxl might be related to germline development.
Collapse
|
10
|
López-Cuadros I, García-Gasca A, Gomez-Anduro G, Escobedo-Fregoso C, Llera-Herrera RA, Ibarra AM. Isolation of the sex-determining gene Sex-lethal (Sxl) in Penaeus (Litopenaeus) vannamei (Boone, 1931) and characterization of its embryogenic, gametogenic, and tissue-specific expression. Gene 2018; 668:33-47. [PMID: 29758296 DOI: 10.1016/j.gene.2018.05.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/03/2018] [Accepted: 05/07/2018] [Indexed: 12/11/2022]
Abstract
The Pacific white shrimp Penaeus vannamei is the most cultured shrimp species around the world. Because females grow larger than males, the culture of 'only females' is of great interest, but knowledge on sex determination and differentiation is required for producing only females. In an effort to obtain information associated with reproduction in P. vannamei, transcriptomic data from female gonads was generated, and partial sequences of a transcript were identified as Sex-lethal (Sxl). Its characterization indicated that, differently from other penaeids in which this gene has been isolated, there are six isoforms of the Sxl transcript in P. vannamei (PvanSxl 1-6). These isoforms result from alternative splicing at three splice sites (SS1, SS2, SS3). The first splice-site is unique to P. vannamei, as it has not been reported for other Arthropod species; the second splice-site (SS2) is common among crustaceans, and the third splice-site (SS3) is also unique to P. vannamei and when spliced-out, it is always together with SS2. All isoforms are expressed during embryogenesis as well as gametogenesis of both genders. The two shorter isoforms, PvanSxl-5 and PvanSxl-6, which result from the splicing of SS2 and SS3, were found mostly expressed in adult testis, but PvanSxl-6 was also expressed in oocytes during gametogenesis. During oogenesis, the second largest isoform, PvanSxl-2, which splices-out only SS1, and PvanSxl-4 that splices-out SS1 and SS2 were highly expressed. These two isoforms were also highly expressed during embryonic development. In situ hybridization allowed pinpointing more specifically the cells where the PvanSxl transcripts were expressed. During embryogenesis, hybridization was observed from the one-cell stage embryo to late gastrula. In the female gonad in previtellogenesis, hybridization occurred in the nucleus of oocytes, whereas in secondary vitellogenesis the transcript also hybridized cytoplasmic granules and cortical crypts. Finally, in situ hybridization corroborated the expression of PvanSxl also in the male gonad during spermatogenesis, mostly occurring in the cytoplasm from spermatogonia and spermatocytes.
Collapse
Affiliation(s)
- Itzia López-Cuadros
- Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR). Programa de Acuacultura, Av. Instituto Politécnico Nacional No. 195, Col. Playa Palo de Santa Rita, La Paz, Baja California Sur C.P. 23096, Mexico
| | - Alejandra García-Gasca
- Centro de Investigación en Alimentación y Desarrollo A.C., (CIAD) Unidad Mazatlán, Av. Sábalo-Cerritos S/N. Col. Estero del Yugo, C.P. 82000 Mazatlán, Sinaloa, Mexico
| | - Gracia Gomez-Anduro
- Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR). Programa de Acuacultura, Av. Instituto Politécnico Nacional No. 195, Col. Playa Palo de Santa Rita, La Paz, Baja California Sur C.P. 23096, Mexico
| | - Cristina Escobedo-Fregoso
- Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR). Programa de Acuacultura, Av. Instituto Politécnico Nacional No. 195, Col. Playa Palo de Santa Rita, La Paz, Baja California Sur C.P. 23096, Mexico; CONACYT, Consejo Nacional de Ciencia y Tecnología, Av. Insurgentes Sur 1582, Ciudad de México 03940, Mexico
| | - Raúl A Llera-Herrera
- Centro de Investigación en Alimentación y Desarrollo A.C., (CIAD) Unidad Mazatlán, Av. Sábalo-Cerritos S/N. Col. Estero del Yugo, C.P. 82000 Mazatlán, Sinaloa, Mexico; CONACYT, Consejo Nacional de Ciencia y Tecnología, Av. Insurgentes Sur 1582, Ciudad de México 03940, Mexico
| | - Ana M Ibarra
- Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR). Programa de Acuacultura, Av. Instituto Politécnico Nacional No. 195, Col. Playa Palo de Santa Rita, La Paz, Baja California Sur C.P. 23096, Mexico.
| |
Collapse
|
11
|
Sawanth SK, Gopinath G, Sambrani N, Arunkumar KP. The autoregulatory loop: A common mechanism of regulation of key sex determining genes in insects. J Biosci 2017; 41:283-94. [PMID: 27240989 DOI: 10.1007/s12038-016-9609-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Sex determination in most insects is structured as a gene cascade, wherein a primary signal is passed through a series of sex-determining genes, culminating in a downstream double-switch known as doublesex that decides the sexual fate of the embryo. From the literature available on sex determination cascades, it becomes apparent that sex determination mechanisms have evolved rapidly. The primary signal that provides the cue to determine the sex of the embryo varies remarkably, not only among taxa, but also within taxa. Furthermore, the upstream key gene in the cascade also varies between species and even among closely related species. The order Insecta alone provides examples of astoundingly complex diversity of upstream key genes in sex determination mechanisms. Besides, unlike key upstream genes, the downstream double-switch gene is alternatively spliced to form functional sex-specific isoforms. This sex-specific splicing is conserved across insect taxa. The genes involved in the sex determination cascade such as Sex-lethal (Sxl) in Drosophila melanogaster, transformer (tra) in many other dipterans, coleopterans and hymenopterans, Feminizer (fem) in Apis mellifera, and IGF-II mRNA-binding protein (Bmimp) in Bombyx mori are reported to be regulated by an autoregulatory positive feedback loop. In this review, by taking examples from various insects, we propose the hypothesis that autoregulatory loop mechanisms of sex determination might be a general strategy. We also discuss the possible reasons for the evolution of autoregulatory loops in sex determination cascades and their impact on binary developmental choices.
Collapse
Affiliation(s)
- Suresh Kumar Sawanth
- Centre of Excellence for Genetics and Genomics of Silkmoths, Laboratory of Molecular Genetics, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500 001, India
| | | | | | | |
Collapse
|
12
|
Luo Y, Zhao S, Li J, Li P, Yan R. Isolation and Molecular Characterization of the Transformer Gene From Bactrocera cucurbitae (Diptera: Tephritidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2017; 17:3755290. [PMID: 28931159 PMCID: PMC5469387 DOI: 10.1093/jisesa/iex031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Indexed: 05/13/2023]
Abstract
transformer (tra) is a switch gene of sex determination in many insects, particularly in Dipterans. However, the sex determination pathway in Bactrocera cucurbitae (Coquillett), a very destructive pest on earth, remains largely uncharacterized. In this study, we have isolated and characterized one female-specific and two male-specific transcripts of the tra gene (Bcutra) of B. cucurbitae. The genomic structure of Bcutra has been determined and the presence of multiple conserved Transformer (TRA)/TRA-2 binding sites in Bcutra has been found. BcuTRA is highly conservative with its homologues in other tephritid fruit flies. Gene expression analysis of Bcutra at different developmental stages demonstrates that the female transcript of Bcutra appears earlier than the male counterparts, indicating that the maternal TRA is inherited in eggs and might play a role in the regulation of TRA expression. The conservation of protein sequence and sex-specific splicing of Bcutra and its expression patterns during development suggest that Bcutra is probably the master gene of sex determination of B. cucurbitae. Isolation of Bcutra will facilitate the development of a genetic sexing strain for its biological control.
Collapse
Affiliation(s)
- Ya Luo
- Department of Plant Protection, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan Province, China (; ; ; ; )Corresponding author, e-mail: , and
| | - Santao Zhao
- Department of Plant Protection, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan Province, China (; ; ; ; )Corresponding author, e-mail: , and
| | - Jiahui Li
- Department of Plant Protection, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan Province, China (; ; ; ; )Corresponding author, e-mail: , and
| | - Peizheng Li
- Department of Plant Protection, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan Province, China (; ; ; ; )Corresponding author, e-mail: , and
| | - Rihui Yan
- Department of Plant Protection, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan Province, China (; ; ; ; )Corresponding author, e-mail: , and
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, Hainan University, Haikou, Hainan Province, China ()
| |
Collapse
|
13
|
Papanicolaou A, Schetelig MF, Arensburger P, Atkinson PW, Benoit JB, Bourtzis K, Castañera P, Cavanaugh JP, Chao H, Childers C, Curril I, Dinh H, Doddapaneni H, Dolan A, Dugan S, Friedrich M, Gasperi G, Geib S, Georgakilas G, Gibbs RA, Giers SD, Gomulski LM, González-Guzmán M, Guillem-Amat A, Han Y, Hatzigeorgiou AG, Hernández-Crespo P, Hughes DST, Jones JW, Karagkouni D, Koskinioti P, Lee SL, Malacrida AR, Manni M, Mathiopoulos K, Meccariello A, Munoz-Torres M, Murali SC, Murphy TD, Muzny DM, Oberhofer G, Ortego F, Paraskevopoulou MD, Poelchau M, Qu J, Reczko M, Robertson HM, Rosendale AJ, Rosselot AE, Saccone G, Salvemini M, Savini G, Schreiner P, Scolari F, Siciliano P, Sim SB, Tsiamis G, Ureña E, Vlachos IS, Werren JH, Wimmer EA, Worley KC, Zacharopoulou A, Richards S, Handler AM. The whole genome sequence of the Mediterranean fruit fly, Ceratitis capitata (Wiedemann), reveals insights into the biology and adaptive evolution of a highly invasive pest species. Genome Biol 2016; 17:192. [PMID: 27659211 PMCID: PMC5034548 DOI: 10.1186/s13059-016-1049-2] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 08/26/2016] [Indexed: 01/01/2023] Open
Abstract
Background The Mediterranean fruit fly (medfly), Ceratitis capitata, is a major destructive insect pest due to its broad host range, which includes hundreds of fruits and vegetables. It exhibits a unique ability to invade and adapt to ecological niches throughout tropical and subtropical regions of the world, though medfly infestations have been prevented and controlled by the sterile insect technique (SIT) as part of integrated pest management programs (IPMs). The genetic analysis and manipulation of medfly has been subject to intensive study in an effort to improve SIT efficacy and other aspects of IPM control. Results The 479 Mb medfly genome is sequenced from adult flies from lines inbred for 20 generations. A high-quality assembly is achieved having a contig N50 of 45.7 kb and scaffold N50 of 4.06 Mb. In-depth curation of more than 1800 messenger RNAs shows specific gene expansions that can be related to invasiveness and host adaptation, including gene families for chemoreception, toxin and insecticide metabolism, cuticle proteins, opsins, and aquaporins. We identify genes relevant to IPM control, including those required to improve SIT. Conclusions The medfly genome sequence provides critical insights into the biology of one of the most serious and widespread agricultural pests. This knowledge should significantly advance the means of controlling the size and invasive potential of medfly populations. Its close relationship to Drosophila, and other insect species important to agriculture and human health, will further comparative functional and structural studies of insect genomes that should broaden our understanding of gene family evolution. Electronic supplementary material The online version of this article (doi:10.1186/s13059-016-1049-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alexie Papanicolaou
- Hawkesbury Institute for the Environment, Western Sydney University, Sydney, Australia
| | - Marc F Schetelig
- Justus-Liebig-University Giessen, Institute for Insect Biotechnology, 35394, Giessen, Germany
| | - Peter Arensburger
- Department of Biological Sciences, Cal Poly Pomona, Pomona, CA, 91768, USA
| | - Peter W Atkinson
- Department of Entomology and Center for Disease Vector Research, University of California Riverside, Riverside, CA, 92521, USA.,Interdepartmental Graduate Program in Genetics, Genomics & Bioinformatics, University of California Riverside, Riverside, CA, 92521, USA
| | - Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Kostas Bourtzis
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, Seibersdorf, Vienna, Austria.,Department of Environmental and Natural Resources Management, University of Patras, Agrinio, Greece
| | - Pedro Castañera
- Department of Environmental Biology, Centro de Investigaciones Biológicas, CSIC, 28040, Madrid, Spain
| | - John P Cavanaugh
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Hsu Chao
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | | | - Ingrid Curril
- Georg-August-Universität Göttingen, Johann-Friedrich-Blumenbach-Institut für Zoologie und Anthropologie, 37077, Göttingen, Germany
| | - Huyen Dinh
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - HarshaVardhan Doddapaneni
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Amanda Dolan
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
| | - Shannon Dugan
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Markus Friedrich
- Department of Biological Sciences, Wayne State University, Detroit, MI, 48202, USA
| | - Giuliano Gasperi
- Department of Biology and Biotechnology, University of Pavia, 27100, Pavia, Italy
| | - Scott Geib
- USDA-ARS, Pacific Basin Agricultural Research Center, Hilo, HI, 96720, USA
| | - Georgios Georgakilas
- DIANA-Lab, Department of Electrical & Computer Engineering, University of Thessaly, 382 21 Volos, Greece and Hellenic Pasteur Institute, 11521, Athens, Greece
| | - Richard A Gibbs
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Sarah D Giers
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Ludvik M Gomulski
- Department of Biology and Biotechnology, University of Pavia, 27100, Pavia, Italy
| | - Miguel González-Guzmán
- Department of Environmental Biology, Centro de Investigaciones Biológicas, CSIC, 28040, Madrid, Spain
| | - Ana Guillem-Amat
- Department of Environmental Biology, Centro de Investigaciones Biológicas, CSIC, 28040, Madrid, Spain
| | - Yi Han
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Artemis G Hatzigeorgiou
- DIANA-Lab, Department of Electrical & Computer Engineering, University of Thessaly, 382 21 Volos, Greece and Hellenic Pasteur Institute, 11521, Athens, Greece
| | - Pedro Hernández-Crespo
- Department of Environmental Biology, Centro de Investigaciones Biológicas, CSIC, 28040, Madrid, Spain
| | - Daniel S T Hughes
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jeffery W Jones
- Department of Biological Sciences, Oakland University, Rochester, MI, 48309, USA
| | - Dimitra Karagkouni
- DIANA-Lab, Department of Electrical & Computer Engineering, University of Thessaly, 382 21 Volos, Greece and Hellenic Pasteur Institute, 11521, Athens, Greece
| | - Panagiota Koskinioti
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - Sandra L Lee
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Anna R Malacrida
- Department of Biology and Biotechnology, University of Pavia, 27100, Pavia, Italy
| | - Mosè Manni
- Department of Biology and Biotechnology, University of Pavia, 27100, Pavia, Italy
| | - Kostas Mathiopoulos
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - Angela Meccariello
- Department of Biology, University of Naples Federico II, 80126, Naples, Italy
| | | | - Shwetha C Murali
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Terence D Murphy
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Donna M Muzny
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Georg Oberhofer
- Georg-August-Universität Göttingen, Johann-Friedrich-Blumenbach-Institut für Zoologie und Anthropologie, 37077, Göttingen, Germany
| | - Félix Ortego
- Department of Environmental Biology, Centro de Investigaciones Biológicas, CSIC, 28040, Madrid, Spain
| | - Maria D Paraskevopoulou
- DIANA-Lab, Department of Electrical & Computer Engineering, University of Thessaly, 382 21 Volos, Greece and Hellenic Pasteur Institute, 11521, Athens, Greece
| | - Monica Poelchau
- National Agricultural Library, USDA, Beltsville, MD, 20705, USA
| | - Jiaxin Qu
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Martin Reczko
- Institute of Molecular Biology and Genetics, Biomedical Sciences Research Centre "Alexander Fleming", Vari, Greece
| | - Hugh M Robertson
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Andrew J Rosendale
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Andrew E Rosselot
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Giuseppe Saccone
- Department of Biology, University of Naples Federico II, 80126, Naples, Italy
| | - Marco Salvemini
- Department of Biology, University of Naples Federico II, 80126, Naples, Italy
| | - Grazia Savini
- Department of Biology and Biotechnology, University of Pavia, 27100, Pavia, Italy
| | - Patrick Schreiner
- Interdepartmental Graduate Program in Genetics, Genomics & Bioinformatics, University of California Riverside, Riverside, CA, 92521, USA
| | - Francesca Scolari
- Department of Biology and Biotechnology, University of Pavia, 27100, Pavia, Italy
| | - Paolo Siciliano
- Department of Biology and Biotechnology, University of Pavia, 27100, Pavia, Italy
| | - Sheina B Sim
- USDA-ARS, Pacific Basin Agricultural Research Center, Hilo, HI, 96720, USA
| | - George Tsiamis
- Department of Environmental and Natural Resources Management, University of Patras, Agrinio, Greece
| | - Enric Ureña
- Department of Environmental Biology, Centro de Investigaciones Biológicas, CSIC, 28040, Madrid, Spain
| | - Ioannis S Vlachos
- DIANA-Lab, Department of Electrical & Computer Engineering, University of Thessaly, 382 21 Volos, Greece and Hellenic Pasteur Institute, 11521, Athens, Greece
| | - John H Werren
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
| | - Ernst A Wimmer
- Georg-August-Universität Göttingen, Johann-Friedrich-Blumenbach-Institut für Zoologie und Anthropologie, 37077, Göttingen, Germany
| | - Kim C Worley
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | | | - Stephen Richards
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Alfred M Handler
- USDA-ARS, Center for Medical, Agricultural, and Veterinary Entomology, 1700 S.W. 23rd Drive, Gainesville, FL, 32608, USA.
| |
Collapse
|
14
|
Huang CY, Dai SM, Chang C. Introduction of the RTA-Bddsx gene induces female-specific lethal effects in transformed Bactrocera dorsalis (Hendel). PEST MANAGEMENT SCIENCE 2016; 72:1160-1167. [PMID: 26269247 DOI: 10.1002/ps.4094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 07/24/2015] [Accepted: 08/10/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND The oriental fruit fly, Bactrocera dorsalis (Hendel), can reduce fruit production and quality and is considered to be a major insect pest in many Asian countries. A system combining the toxicity of ricin and the alternative RNA splicing properties of doublesex (RTA-Bddsx) has been proposed that results in differential sexual processing in vitro. A transgenic approach was used in this study to confirm the existence of female-specific lethal effects in vivo. RESULTS The piggyBac-based vector PB-Acp-CF21-26, which carries the actin 5C promoter and RTA-Bddsx, was used to establish transgenic lines. Five surviving male flies (F1) demonstrated the presence of selection marker Ds-Red((+)) throughout their entire bodies following single-pair mating with wild-type females, indicating germline transmission. A high percentage of males (59.6-100%) were observed in transformed F3 offspring, and this skewed sex ratio indicated that the female-lethal effects of the RTA-Bddsx system were heritable and functioned well in B. dorsalis. Some transformed female flies were observed, and these unexpected results were attributed to the loss of the intact transgene after genomic PCR analyses. CONCLUSION This transgenic study provides direct evidence for the female-specific lethal effects of RTA-Bddsx in B. dorsalis and offers a novel and promising approach for the control of B. dorsalis in the future. © 2015 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chun-Yen Huang
- Biotechnology Centre, National Chung-Hsing University, Taichung, Taiwan
| | - Shu-Mei Dai
- Department of Entomology, National Chung-Hsing University, Taichung, Taiwan
| | - Cheng Chang
- Biotechnology Centre, National Chung-Hsing University, Taichung, Taiwan
| |
Collapse
|
15
|
Huang CY, Huang CC, Dai SM, Chang C. Establishment of an RTA-Bddsx hybrid system for female-specific splicing that can affect the sex ratio of Bactrocera dorsalis (Hendel) after embryonic injection. PEST MANAGEMENT SCIENCE 2016; 72:280-288. [PMID: 25656748 DOI: 10.1002/ps.3990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 02/02/2015] [Accepted: 02/02/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND The oriental fruit fly, Bactrocera dorsalis (Hendel), a very destructive insect pest in many areas of Asia, including Taiwan, can cause significant damage by ovipositing in and larval feeding on many kinds of fruit. A female lethal system, combining the splicing property of doublesex (dsx) with the toxicity of ricin A chain (RTA), has been developed. In this system, a modified RTA is separated by Bddsx intron 3; the expressed RNA can only be spliced in females, with toxic effects, whereas the immature RTA in males is harmless. RESULTS Two RTA-Bddsx constructs, clone BE 24-7 and clone CF 26-21, containing Bddsx intron 3 and its flanking exonic sequences, with four nucleotides at the 5'-end and five nucleotides at the 3'-end, correctly spliced in a sex-specific manner. Wild-type and modified RTAs expressed in an Escherichia coli system retained their ability to suppress protein synthesis: 90.4% for Ricin-WT, 71.3% for Ricin-LERQ and 58.0% for Ricin-FEGQ. Embryonic injection of Acp-CF26-21, the RTA-Bddsx gene driven by the actin 5C promoter, resulted in a significant increase in male percentage in the eclosed adults. CONCLUSION Our results indicate that the RTA-Bddsx hybrid system offers a novel and promising approach for oriental fruit fly control.
Collapse
Affiliation(s)
- Chun-Yen Huang
- Biotechnology Centre, National Chung-Hsing University, Taichung, Taiwan
| | - Chia Chia Huang
- Biotechnology Centre, National Chung-Hsing University, Taichung, Taiwan
| | - Shu-Mei Dai
- Department of Entomology, National Chung-Hsing University, Taichung, Taiwan
| | - Cheng Chang
- Biotechnology Centre, National Chung-Hsing University, Taichung, Taiwan
| |
Collapse
|
16
|
Lee J, Kiuchi T, Kawamoto M, Shimada T, Katsuma S. Identification and functional analysis of a Masculinizer orthologue in Trilocha varians (Lepidoptera: Bombycidae). INSECT MOLECULAR BIOLOGY 2015; 24:561-569. [PMID: 26154510 DOI: 10.1111/imb.12181] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We recently showed that the Masculinizer gene (Masc) plays a primary role in sex determination in the lepidopteran model insect Bombyx mori. However, it remains unknown whether this Masc protein-dependent sex determination system is conserved amongst lepidopteran insects or within the family Bombycidae. Here we cloned and characterized a Masc homologue (TvMasc) in Trilocha varians (Lepidoptera: Bombycidae), a species closely related to B. mori. To elucidate the role of TvMasc in the sex determination cascade of T. varians, TvMasc expression was knocked down in early embryos by the injection of small interfering RNAs (siRNAs) that targeted TvMasc mRNAs. Both female- and male-type splice variants of Tvdsx, a doublesex (dsx) homologue in T. varians were observed in control siRNA-injected embryos. By contrast, only female-type splice variants were observed in TvMasc siRNA-injected embryos. These results indicate that the TvMasc protein directly or indirectly regulates the splicing patterns of Tvdsx. Furthermore, we found that male-type splice variants of B. mori dsx (Bmdsx) were produced in TvMasc-overexpressing BmN4 cells. The mRNA level of B. mori Imp, a gene whose product induces male-specific Bmdsx splicing also increased. These results suggest that Masc genes play similar roles in the sex-determination cascade in Bombycidae.
Collapse
Affiliation(s)
- J Lee
- Department of Agricultural and Environmental Biology Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - T Kiuchi
- Department of Agricultural and Environmental Biology Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - M Kawamoto
- Department of Agricultural and Environmental Biology Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - T Shimada
- Department of Agricultural and Environmental Biology Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - S Katsuma
- Department of Agricultural and Environmental Biology Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
17
|
Salvemini M, Arunkumar KP, Nagaraju J, Sanges R, Petrella V, Tomar A, Zhang H, Zheng W, Saccone G. De novo assembly and transcriptome analysis of the Mediterranean fruit fly Ceratitis capitata early embryos. PLoS One 2014; 9:e114191. [PMID: 25474564 PMCID: PMC4256415 DOI: 10.1371/journal.pone.0114191] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 11/05/2014] [Indexed: 01/04/2023] Open
Abstract
The agricultural pest Ceratitis capitata, also known as the Mediterranean fruit fly or Medfly, belongs to the Tephritidae family, which includes a large number of other damaging pest species. The Medfly has been the first non-drosophilid fly species which has been genetically transformed paving the way for designing genetic-based pest control strategies. Furthermore, it is an experimentally tractable model, in which transient and transgene-mediated RNAi have been successfully used. We applied Illumina sequencing to total RNA preparations of 8–10 hours old embryos of C. capitata, This developmental window corresponds to the blastoderm cellularization stage. In summary, we assembled 42,614 transcripts which cluster in 26,319 unique transcripts of which 11,045 correspond to protein coding genes; we identified several hundreds of long ncRNAs; we found an enrichment of transcripts encoding RNA binding proteins among the highly expressed transcripts, such as CcTRA-2, known to be necessary to establish and, most likely, to maintain female sex of C. capitata. Our study is the first de novo assembly performed for Ceratitis capitata based on Illumina NGS technology during embryogenesis and it adds novel data to the previously published C. capitata EST databases. We expect that it will be useful for a variety of applications such as gene cloning and phylogenetic analyses, as well as to advance genetic research and biotechnological applications in the Medfly and other related Tephritidae.
Collapse
Affiliation(s)
- Marco Salvemini
- Department of Biology, University of Naples Federico II, Naples, Italy
| | | | | | - Remo Sanges
- Stazione Zoologica "Anton Dohrn", Naples, Italy
| | - Valeria Petrella
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Archana Tomar
- Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| | - Hongyu Zhang
- State Key Laboratory of Agricultural Microbiology and Institute of Urban and Horticultural Pests, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Weiwei Zheng
- State Key Laboratory of Agricultural Microbiology and Institute of Urban and Horticultural Pests, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Giuseppe Saccone
- Department of Biology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
18
|
Morrow JL, Riegler M, Gilchrist AS, Shearman DCA, Frommer M. Comprehensive transcriptome analysis of early male and female Bactrocera jarvisi embryos. BMC Genet 2014; 15 Suppl 2:S7. [PMID: 25472807 PMCID: PMC4255828 DOI: 10.1186/1471-2156-15-s2-s7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Background Developing embryos are provided with maternal RNA transcripts and proteins, but transcription from the zygotic nuclei must be activated to control continuing embryonic development. Transcripts are generated at different stages of early development, and those involved in sex determination and cellularisation are some of the earliest to be activated. The male sex in tephritid fruit flies is determined by the presence of a Y chromosome, and it is believed that a transcript from the Y-chromosome sets in motion a cascade that determines male development, as part of the greater maternal to zygotic transition (MTZ). Here we investigate the poly(A+) transcriptome in early male and female embryos of the horticultural pest Bactrocera jarvisi (Diptera: Tephritidae). Results Bactrocera jarvisi embryos were collected over two pre-blastoderm time periods, 2-3h and 3-5h after egg laying. Embryos were individually sexed using a Y-chromosome marker, allowing the sex-specific poly(A+) transcriptome of single-sex embryo pools to be deep-sequenced and assembled de novo. Transcripts for sixteen sex-determination and two cellularisation gene homologues of Drosophila melanogaster (Diptera: Drosophilidae) were identified in early embryos of B. jarvisi, including transcripts highly upregulated prior to cellularisation. No strong candidates for transcripts derived solely from the Y chromosome were recovered from the poly(A+) fraction. Conclusions Bactrocera jarvisi provides an excellent model for embryonic studies due to available Y-chromosome markers and the compact time frame for zygotic transcription and the sex-determined state. Our data contribute fundamental information to sex-determination research, and provide candidates for the sourcing of gene promoters for transgenic pest-management strategies of tephritid fruit flies.
Collapse
|
19
|
Salvemini M, D'Amato R, Petrella V, Ippolito D, Ventre G, Zhang Y, Saccone G. Subtractive and differential hybridization molecular analyses of Ceratitis capitata XX/XY versus XX embryos to search for male-specific early transcribed genes. BMC Genet 2014; 15 Suppl 2:S5. [PMID: 25472628 PMCID: PMC4255797 DOI: 10.1186/1471-2156-15-s2-s5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The agricultural pest Ceratitis capitata, also known as the Mediterranean fruit fly or Medfly, is a fruit crop pest of very high economic relevance in different continents. The strategy to separate Ceratitis males from females (sexing) in mass rearing facilities is a useful step before the sterilization and release of male-only flies in Sterile Insect Technique control programs (SIT). The identification of genes having early embryonic male-specific expression, including Y-linked genes, such as the Maleness factor, could help to design novel and improved methods of sexing in combination with transgenesis, aiming to confer conditional female-specific lethality or female-to-male sexual reversal. We used a combination of Suppression Subtractive Hybrydization (SSH), Mirror Orientation Selection (MOS) and differential screening hybridization (DSH) techniques to approach the problem of isolating corresponding mRNAs expressed in XX/XY embryos versus XX-only embryos during a narrow developmental window (8-10 hours after egg laying, AEL ). Here we describe a novel strategy we have conceived to obtain relatively large amounts of XX-only embryos staged at 8-10 h AEL and so to extract few micrograms of polyA+ required to apply the complex technical procedure. The combination of these 3 techniques led to the identification of a Y-linked putative gene, CcGm2, sharing high sequence identity to a paralogous gene, CcGm1, localized either on an autosome or on the X chromosome. We propose that CcGm2 is a first interesting putative Y-linked gene which could play a role in sex determination. The function exterted by this gene should be investigated by novel genetic tools, such as CRISPR-CAS9, which will permit to target only the Y-linked paralogue, avoiding to interfere with the autosomal or X-linked paralogue function.
Collapse
|
20
|
Morrow JL, Riegler M, Frommer M, Shearman DCA. Expression patterns of sex-determination genes in single male and female embryos of two Bactrocera fruit fly species during early development. INSECT MOLECULAR BIOLOGY 2014; 23:754-767. [PMID: 25116961 DOI: 10.1111/imb.12123] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
In tephritids, the sex-determination pathway follows the sex-specific splicing of transformer (tra) mRNA, and the cooperation of tra and transformer-2 (tra-2) to effect the sex-specific splicing of doublesex (dsx), the genetic double-switch responsible for male or female somatic development. The Dominant Male Determiner (M) is the primary signal that controls this pathway. M, as yet uncharacterized, is Y-chromosome linked, expressed in the zygote and directly or indirectly diminishes active TRA protein in male embryos. Here we first demonstrated the high conservation of tra, tra-2 and dsx in two Australian tephritids, Bactrocera tryoni and Bactrocera jarvisi. We then used quantitative reverse transcription PCR on single, sexed embryos to examine expression of the key sex-determination genes during early embryogenesis. Individual embryos were sexed using molecular markers located on the B. jarvisi Y-chromosome that was also introgressed into a B. tryoni line. In B. jarvisi, sex-specific expression of tra transcripts occurred between 3 to 6 h after egg laying, and the dsx isoform was established by 7 h. These milestones were delayed in B. tryoni lines. The results provide a time frame for transcriptomic analyses to identify M and its direct targets, plus information on genes that may be targeted for the development of male-only lines for pest management.
Collapse
Affiliation(s)
- J L Morrow
- Hawkesbury Institute for the Environment, University of Western Sydney, Penrith, NSW, Australia
| | | | | | | |
Collapse
|
21
|
Zhang Z, Klein J, Nei M. Evolution of the sex-lethal gene in insects and origin of the sex-determination system in Drosophila. J Mol Evol 2013; 78:50-65. [PMID: 24271947 DOI: 10.1007/s00239-013-9599-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 11/12/2013] [Indexed: 12/13/2022]
Abstract
Sex-lethal (Sxl) functions as the switch gene for sex-determination in Drosophila melanogaster by engaging a regulatory cascade. Thus far the origin and evolution of both the regulatory system and SXL protein's sex-determination function have remained largely unknown. In this study, we explore systematically the Sxl homologs in a wide range of insects, including the 12 sequenced Drosophila species, medfly, blowflies, housefly, Megaselia scalaris, mosquitoes, butterfly, beetle, honeybee, ant, and aphid. We find that both the male-specific and embryo-specific exons exist in all Drosophila species. The homologous male-specific exon is also present in Scaptodrosophila lebanonensis, but it does not have in-frame stop codons, suggesting the exon's functional divergence between Drosophila and Scaptodrosophila after acquiring it in their common ancestor. Two motifs closely related to the exons' functions, the SXL binding site poly(U) and the transcription-activating motif TAGteam, surprisingly exhibit broader phylogenetic distributions than the exons. Some previously unknown motifs that are restricted to or more abundant in Drosophila and S. lebanonensis than in other insects are also identified. Finally, phylogenetic analysis suggests that the SXL's novel sex-determination function in Drosophila is more likely attributed to the changes in the N- and C-termini rather than in the RNA-binding region. Thus, our results provide a clearer picture of the phylogeny of the Sxl's cis-regulatory elements and protein sequence changes, and so lead to a better understanding of the origin of sex-determination in Drosophila and also raise some new questions regarding the evolution of Sxl.
Collapse
Affiliation(s)
- Zhenguo Zhang
- Institute of Molecular Evolutionary Genetics and Department of Biology, Pennsylvania State University, 328 Mueller Laboratory, University Park, State College, PA, 16802, USA,
| | | | | |
Collapse
|
22
|
Male-specific splicing of the silkworm Imp gene is maintained by an autoregulatory mechanism. Mech Dev 2013; 131:47-56. [PMID: 24231282 DOI: 10.1016/j.mod.2013.10.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Revised: 10/18/2013] [Accepted: 10/29/2013] [Indexed: 11/24/2022]
Abstract
Sexual differentiation in the silkworm Bombyx mori is controlled by sex-specific splicing of Bmdsx, in which exons 3 and 4 are skipped in males. B. mori insulin-like growth factor II mRNA-binding protein (Imp) is a factor involved in the male-specific splicing of Bmdsx. In this study, we found that the male-specific Imp mRNA is formed as a result of the inclusion of exon 8 and the promoter-distal poly(A) site choice, whereas non-sex-specific polyadenylation occurs at the promoter-proximal poly(A) site downstream of exon 7. Recent studies revealed that Drosophila Sxl, tra in several dipteran and hymenopteran insects, and fem in Apis mellifera, play a central role in sex determination and maintain their productive mode of expression via an autoregulatory function. To determine whether Imp protein is required for the maintenance of the male-specific splicing of its own pre-mRNA, we knocked down endogenous Imp in male cells and assessed the male-specific splicing of an exogenous Imp minigene. Knockdown of endogenous Imp inhibited the male-specific splicing of the Imp minigene transcript. In contrast, overexpression of Imp in female cells induced the male-specific splicing of the Imp minigene transcript. Moreover, deletion of adenine-rich (A-rich) sequences located downstream of the proximal poly(A) site repressed the male-specific splicing of the Imp minigene transcript. Finally, gel shift analysis demonstrated that Imp binds to the A-rich sequences. These data suggest that Imp binds to the A-rich sequences in its own pre-mRNA to induce the male-specific splicing of its pre-mRNA.
Collapse
|
23
|
Ruiz MF, Sarno F, Zorrilla S, Rivas G, Sánchez L. Biochemical and functional analysis of Drosophila-sciara chimeric sex-lethal proteins. PLoS One 2013; 8:e65171. [PMID: 23762307 PMCID: PMC3677924 DOI: 10.1371/journal.pone.0065171] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 04/21/2013] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The Drosophila SXL protein controls sex determination and dosage compensation. It is a sex-specific factor controlling splicing of its own Sxl pre-mRNA (auto-regulation), tra pre-mRNA (sex determination) and msl-2 pre-mRNA plus translation of msl-2 mRNA (dosage compensation). Outside the drosophilids, the same SXL protein has been found in both sexes so that, in the non-drosophilids, SXL does not appear to play the key discriminating role in sex determination and dosage compensation that it plays in Drosophila. Comparison of SXL proteins revealed that its spatial organisation is conserved, with the RNA-binding domains being highly conserved, whereas the N- and C-terminal domains showing significant variation. This manuscript focuses on the evolution of the SXL protein itself and not on regulation of its expression. METHODOLOGY Drosophila-Sciara chimeric SXL proteins were produced. Sciara SXL represents the non-sex-specific function of ancient SXL in the non-drosophilids from which presumably Drosophila SXL evolved. Two questions were addressed. Did the Drosophila SXL protein have affected their functions when their N- and C-terminal domains were replaced by the corresponding ones of Sciara? Did the Sciara SXL protein acquire Drosophila sex-specific functions when the Drosophila N- and C-terminal domains replaced those of Sciara? The chimeric SXL proteins were analysed in vitro to study their binding affinity and cooperative properties, and in vivo to analyse their effect on sex determination and dosage compensation by producing Drosophila flies that were transgenic for the chimeric SXL proteins. CONCLUSIONS The sex-specific properties of extant Drosophila SXL protein depend on its global structure rather than on a specific domain. This implies that the modifications, mainly in the N- and C-terminal domains, that occurred in the SXL protein during its evolution within the drosophilid lineage represent co-evolutionary changes that determine the appropriate folding of SXL to carry out its sex-specific functions.
Collapse
Affiliation(s)
- María Fernanda Ruiz
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Francesca Sarno
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Silvia Zorrilla
- Instituto de Química-Física “Rocasolano”, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Germán Rivas
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Lucas Sánchez
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| |
Collapse
|
24
|
Sobrinho IS, de Brito RA. Positive and purifying selection influence the evolution of doublesex in the Anastrepha fraterculus species group. PLoS One 2012; 7:e33446. [PMID: 22428050 PMCID: PMC3302808 DOI: 10.1371/journal.pone.0033446] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Accepted: 02/09/2012] [Indexed: 11/19/2022] Open
Abstract
The gene doublesex (dsx) is considered to be under strong selective constraint along its evolutionary history because of its central role in somatic sex differentiation in insects. However, previous studies of dsx used global estimates of evolutionary rates to investigate its molecular evolution, which potentially miss signals of adaptive changes in generally conserved genes. In this work, we investigated the molecular evolution of dsx in the Anastrepha fraterculus species group (Diptera, Tephritidae), and test the hypothesis that this gene evolved solely by purifying selection using divergence-based and population-based methods. In the first approach, we compared sequences from Anastrepha and other Tephritidae with other Muscomorpha species, analyzed variation in nonsynonymous to synonymous rate ratios (dN/dS) in the Tephritidae, and investigated radical and conservative changes in amino acid physicochemical properties. We show a general selective constraint on dsx, but with signs of positive selection mainly in the common region. Such changes were localized in alpha-helices previously reported to be involved in dimer formation in the OD2 domain and near the C-terminal of the OD1 domain. In the population-based approach, we amplified a region of 540 bp that spanned almost all of the region common to both sexes from 32 different sites in Brazil. We investigated patterns of selection using neutrality tests based on the frequency spectrum and locations of synonymous and nonsynonymous mutations in a haplotype network. As in the divergence-based approach, these analyses showed that dsx has evolved under an overall selective constraint, but with some events of positive selection. In contrast to previous studies, our analyses indicate that even though dsx has indeed evolved as a conserved gene, the common region of dsx has also experienced bouts of positive selection, perhaps driven by sexual selection, during its evolution.
Collapse
Affiliation(s)
- Iderval S Sobrinho
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil.
| | | |
Collapse
|
25
|
Mullon C, Pomiankowski A, Reuter M. Molecular evolution of Drosophila Sex-lethal and related sex determining genes. BMC Evol Biol 2012; 12:5. [PMID: 22244243 PMCID: PMC3292462 DOI: 10.1186/1471-2148-12-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 01/14/2012] [Indexed: 12/23/2022] Open
Abstract
Background Sex determining mechanisms are evolutionarily labile and related species often use different primary signals and gene regulatory networks. This is well illustrated by the sex determining cascade of Drosophila fruitflies, which have recruited Sex-lethal as the master switch and cellular memory of sexual identity, a role performed in other insects by the gene transformer. Here we investigate the evolutionary change in the coding sequences of sex determining genes associated with the recruitment of Sex-lethal. We analyze sequences of Sex-lethal itself, its Drosophila paralogue sister-or-Sex-lethal and downstream targets transformer and doublesex. Results We find that the recruitment of sister-or-Sex-lethal was associated with a number of adaptive amino acid substitutions, followed by a tightening of purifying selection within the Drosophila clade. Sequences of the paralogue sister-or-Sex-lethal, in contrast, show a signature of rampant positive selection and relaxation of purifying selection. The recruitment of Sex-lethal as top regulator and memory gene is associated with a significant release from purifying selection in transformer throughout the Drosophila clade. In addition, doublesex shows a signature of positive selection and relaxation of purifying selection in the Drosophila clade. A similar pattern is seen in sequences from the sister Tephritidae clade. Conclusions The pattern of molecular evolution we observe for Sex-lethal and its paralogue sister-or-Sex-lethal is not characteristic of a duplication followed by neo-functionalization. Rather, evidence suggests a sub-functionalization scenario achieved through the evolution of sophisticated splicing. As expected, we find that transformer evolves under relaxed purifying selection after the recruitment of Sex-lethal in Drosophila. Finally, the observation of doublesex adaptation in both Drosophila and Tephritidae suggests that these changes are due to ongoing adaptation of downstream sex-specific regulation, rather than being associated the recruitment of Sex-lethal and the resulting change in the topology of the sex determining cascade.
Collapse
Affiliation(s)
- Charles Mullon
- Department of Genetics, Environment and Evolution, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
| | | | | |
Collapse
|
26
|
Chandler CH, Chadderdon GE, Phillips PC, Dworkin I, Janzen FJ. Experimental evolution of the Caenorhabditis elegans sex determination pathway. Evolution 2011; 66:82-93. [PMID: 22220866 DOI: 10.1111/j.1558-5646.2011.01420.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Sex determination is a critical developmental decision with major ecological and evolutionary consequences, yet a large variety of sex determination mechanisms exist and we have a poor understanding of how they evolve. Theoretical and empirical work suggest that compensatory adaptations to mutations in genes involved in sex determination may play a role in the evolution of these pathways. Here, we directly address this problem using experimental evolution in Caenorhabditis elegans lines fixed for a pair of mutations in two key sex-determining genes that jointly render sex determination temperature-sensitive and cause intersexual (but still weakly to moderately fertile) phenotypes at intermediate temperatures. After 50 generations, evolved lines clearly recovered toward wild-type phenotypes. However, changes in transcript levels of key sex-determining genes in evolved lines cannot explain their partially (or in some cases, nearly completely) rescued phenotypes, implying that wild-type phenotypes can be restored independently of the transcriptional effects of these mutations. Our findings highlight the microevolutionary flexibility of sex determination pathways and suggest that compensatory adaptation to mutations can elicit novel and unpredictable evolutionary trajectories in these pathways, mirroring the phylogenetic diversity, and macroevolutionary dynamics of sex determination mechanisms.
Collapse
Affiliation(s)
- Christopher H Chandler
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa 50011, USA
| | | | | | | | | |
Collapse
|
27
|
Chen SL, Lu KH, Dai SM, Li CH, Shieh CJ, Chang C. Display female-specific doublesex RNA interference in early generations of transformed oriental fruit fly, Bactrocera dorsalis (Hendel). PEST MANAGEMENT SCIENCE 2011; 67:466-473. [PMID: 21394879 DOI: 10.1002/ps.2088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Revised: 10/10/2010] [Accepted: 10/11/2010] [Indexed: 05/30/2023]
Abstract
BACKGROUND The oriental fruit fly, Bactrocera dorsalis (Hendel), is one of the most destructive pests in many Asian countries. An effective strategy to reduce fly density in the field is urgently required. Recently, the doublesex of B. dorsalis (Bddsx(f) ) has been cloned, and RNA interference (RNAi) indicates that it can reduce the offspring in vitro. In this study, a piggyBac-based construct that generates short hairpin RNA (shRNA) against the female-specific region of Bddsx was introduced into the pest to test the RNAi effects on reproductive functions in vivo. RESULTS After embryonic injection and backcross, 21 transgenic lines with germline transformation were identified. Genomic DNA analysis showed that the exogenous transgene including short hairpin Bddsx(f) and a DsRed marker had integrated into the genomes of 11 transformed lines. Northern blot analysis indicated the presence of Bddsx(f) short interfering RNA (siRNA) under the control of a U6 promoter in transformed flies. As expected, the specific effects of RNAi led to the delay of egg maturation, and the offspring was significantly reduced. Reverse transcription real-time PCR further demonstrated that in vivo interference not only specifically inhibited the Bddsx(f) transcript but also repressed expression of the downstream yolk protein gene (Bdyp1). CONCLUSION The results clearly indicate that RNAi is heritable through the expression of specific siRNA in early generations of transformed oriental fruit fly. These results can broaden the understanding of sex-related developmental mechanisms in the fly, and also offer a possible molecular approach for pest control in the future.
Collapse
Affiliation(s)
- Shiu-Ling Chen
- Department of Entomology, National Chung-Hsing University, Taichung, Taiwan, ROC
| | | | | | | | | | | |
Collapse
|
28
|
Salvemini M, Polito C, Saccone G. Fruitless alternative splicing and sex behaviour in insects: an ancient and unforgettable love story? J Genet 2011; 89:287-99. [PMID: 20876995 DOI: 10.1007/s12041-010-0040-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Courtship behaviours are common features of animal species that reproduce sexually. Typically, males are involved in courting females. Insects display an astonishing variety of courtship strategies primarily based on innate stereotyped responses to various external stimuli. In Drosophila melanogaster, male courtship requires proteins encoded by the fruitless (fru) gene that are produced in different sex-specific isoforms via alternative splicing. Drosophila mutant flies with loss-of-function alleles of the fru gene exhibit blocked male courtship behaviour. However, various individual steps in the courtship ritual are disrupted in fly strains carrying different fru alleles. These findings suggest that fru is required for specific steps in courtship. In distantly related insect species, various fru paralogues were isolated, which shows conservation of sex-specific alternative splicing and protein expression in neural tissues and suggests an evolutionary functional conservation of fru in the control of male-specific courtship behaviour. In this review, we report the seminal findings regarding the fru gene, its splicing regulation and evolution in insects.
Collapse
Affiliation(s)
- Marco Salvemini
- Department of Biological Sciences, University of Naples Federico II, 80134, Naples, Italy
| | | | | |
Collapse
|
29
|
Isolation and characterization of Doublesex homologues in the Bactrocera species: B. dorsalis (Hendel) and B. correcta (Bezzi) and their putative promoter regulatory regions. Genetica 2010; 139:113-27. [DOI: 10.1007/s10709-010-9508-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Accepted: 10/12/2010] [Indexed: 11/26/2022]
|
30
|
The transformer gene of Ceratitis capitata: a paradigm for a conserved epigenetic master regulator of sex determination in insects. Genetica 2010; 139:99-111. [PMID: 20890720 DOI: 10.1007/s10709-010-9503-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Accepted: 09/18/2010] [Indexed: 12/21/2022]
Abstract
The transformer gene in Ceratitis capitata (Cctra(ep)) is the founding member of a family of related SR genes that appear to act as the master epigenetic switch in sex determination in insects. A functional protein seems to be produced only in individuals with a female XX karyotype where it is required to maintain the productive mode of expression through a positive feedback loop and to direct female development by instructing the downstream target genes accordingly. When zygotic activation of this loop is prevented, male development follows. Recently, tra(ep) orthologues were isolated in more distantly related dipteran species including Musca domestica, Glossina morsitans and Lucilia cuprina and in the Hymenopterans Apis mellifera and Nasonia vitripennis. All of these tra(ep) orthologues seem to act as binary switches that govern all aspects of sexual development. Transient silencing leads to complete masculinization of individuals with a female karyotype. Reciprocally, in some systems it has been shown that transient expression of the functional TRA product is sufficient to transactivate the endogenous gene and implement female development in individuals with a male karyotype. Hence, a mechanism based on tra(ep) epigenetic autoregulation seems to represent a common and presumably ancestral single principle of sex determination in Insecta. The results of these studies will not only be important for understanding divergent evolution of basic developmental processes but also for designing new strategies to improve genetic sexing in different insect species of economical or medical importance.
Collapse
|
31
|
Dafa’alla T, Fu G, Alphey L. Use of a regulatory mechanism of sex determination in pest insect control. J Genet 2010; 89:301-5. [DOI: 10.1007/s12041-010-0041-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
32
|
|
33
|
Olafson PU, Lohmeyer KH, Dowd SE. Analysis of expressed sequence tags from a significant livestock pest, the stable fly (Stomoxys calcitrans), identifies transcripts with a putative role in chemosensation and sex determination. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2010; 74:179-204. [PMID: 20572127 DOI: 10.1002/arch.20372] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The stable fly, Stomoxys calcitrans L. (Diptera: Muscidae), is one of the most significant pests of livestock in the United States. The identification of targets for the development of novel control for this pest species, focusing on those molecules that play a role in successful feeding and reproduction, is critical to mitigating its impact on confined and rangeland livestock. A database was developed representing genes expressed at the immature and adult life stages of the stable fly, comprising data obtained from pyrosequencing both immature and adult stages and from small-scale sequencing of an antennal/maxillary palp-expressed sequence tag library. The full-length sequence and expression of 21 transcripts that may have a role in chemosensation is presented, including 13 odorant-binding proteins, 6 chemosensory proteins, and 2 odorant receptors. Transcripts with potential roles in sex determination and reproductive behaviors are identified, including evidence for the sex-specific expression of stable fly doublesex- and transformer-like transcripts. The current database will be a valuable tool for target identification and for comparative studies with other Diptera.
Collapse
Affiliation(s)
- Pia Untalan Olafson
- USDA-ARS, Knipling-Bushland U.S. Livestock Insects Research Laboratory, Kerrville, Texas 78028, USA.
| | | | | |
Collapse
|
34
|
Chandler CH. Cryptic intraspecific variation in sex determination in Caenorhabditis elegans revealed by mutations. Heredity (Edinb) 2010; 105:473-82. [PMID: 20502478 DOI: 10.1038/hdy.2010.62] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Sex determination mechanisms (SDMs) show striking diversity and appear to evolve rapidly. Although interspecific comparisons and studies of ongoing major transitions in sex determination (such as the establishment of new sex chromosomes) have shed light on how SDMs evolve, comparatively little attention has been paid to intraspecific variation with less drastic effects. In this study, I used mutant strains carrying a temperature-sensitive sex determination mutation, along with a second null mutation, in different wild genetic backgrounds to uncover hidden variation in the SDM of the model nematode Caenorhabditis elegans. I then used quantitative trait locus (QTL) mapping to begin to investigate its genetic basis. I identified several QTLs, and although this variation apparently involved genotype-by-temperature interactions, QTL effects were generally consistent across temperatures. These QTLs collectively and individually explained a relatively large fraction of the variance in tail morphology (a sexually dimorphic trait), and two QTLs contained no genes known to be involved in somatic sex determination. These results show the existence of within-species variation in sex determination in this species, and underscore the potential for microevolutionary change in this important developmental pathway.
Collapse
Affiliation(s)
- C H Chandler
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA.
| |
Collapse
|
35
|
Sarno F, Ruiz MF, Eirín-López JM, Perondini ALP, Selivon D, Sánchez L. The gene transformer-2 of Anastrepha fruit flies (Diptera, Tephritidae) and its evolution in insects. BMC Evol Biol 2010; 10:140. [PMID: 20465812 PMCID: PMC2885393 DOI: 10.1186/1471-2148-10-140] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Accepted: 05/13/2010] [Indexed: 10/26/2022] Open
Abstract
BACKGROUND In the tephritids Ceratitis, Bactrocera and Anastrepha, the gene transformer provides the memory device for sex determination via its auto-regulation; only in females is functional Tra protein produced. To date, the isolation and characterisation of the gene transformer-2 in the tephritids has only been undertaken in Ceratitis, and it has been shown that its function is required for the female-specific splicing of doublesex and transformer pre-mRNA. It therefore participates in transformer auto-regulatory function. In this work, the characterisation of this gene in eleven tephritid species belonging to the less extensively analysed genus Anastrepha was undertaken in order to throw light on the evolution of transformer-2. RESULTS The gene transformer-2 produces a protein of 249 amino acids in both sexes, which shows the features of the SR protein family. No significant partially spliced mRNA isoform specific to the male germ line was detected, unlike in Drosophila. It is transcribed in both sexes during development and in adult life, in both the soma and germ line. The injection of Anastrepha transformer-2 dsRNA into Anastrepha embryos caused a change in the splicing pattern of the endogenous transformer and doublesex pre-mRNA of XX females from the female to the male mode. Consequently, these XX females were transformed into pseudomales. The comparison of the eleven Anastrepha Transformer-2 proteins among themselves, and with the Transformer-2 proteins of other insects, suggests the existence of negative selection acting at the protein level to maintain Transformer-2 structural features. CONCLUSIONS These results indicate that transformer-2 is required for sex determination in Anastrepha through its participation in the female-specific splicing of transformer and doublesex pre-mRNAs. It is therefore needed for the auto-regulation of the gene transformer. Thus, the transformer/transfomer-2 > doublesex elements at the bottom of the cascade, and their relationships, probably represent the ancestral state (which still exists in the Tephritidae, Calliphoridae and Muscidae lineages) of the extant cascade found in the Drosophilidae lineage (in which tra is just another component of the sex determination gene cascade regulated by Sex-lethal). In the phylogenetic lineage that gave rise to the drosophilids, evolution co-opted for Sex-lethal, modified it, and converted it into the key gene controlling sex determination.
Collapse
Affiliation(s)
- Francesca Sarno
- Centro de Investigaciones Biológicas (C.S.I.C.), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - María F Ruiz
- Centro de Investigaciones Biológicas (C.S.I.C.), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - José M Eirín-López
- CHROMEVOL-XENOMAR Group, Departamento de Biología Celular y Molecular, Universidade da Coruña, 15071 A Coruña, Spain
| | - André LP Perondini
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, 05508-0900 Sao Paulo, Brazil
| | - Denise Selivon
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, 05508-0900 Sao Paulo, Brazil
| | - Lucas Sánchez
- Centro de Investigaciones Biológicas (C.S.I.C.), Ramiro de Maeztu 9, 28040 Madrid, Spain
| |
Collapse
|
36
|
Papathanos PA, Bossin HC, Benedict MQ, Catteruccia F, Malcolm CA, Alphey L, Crisanti A. Sex separation strategies: past experience and new approaches. Malar J 2009; 8 Suppl 2:S5. [PMID: 19917075 PMCID: PMC2777327 DOI: 10.1186/1475-2875-8-s2-s5] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The success of the sterile insect technique (SIT) and other genetic strategies designed to eliminate large populations of insects relies on the efficient inundative releases of competitive, sterile males into the natural habitat of the target species. As released sterile females do not contribute to the sterility in the field population, systems for the efficient mass production and separation of males from females are needed. For vector species like mosquitoes, in which only females bite and transmit diseases, the thorough removal of females before release while leaving males competent to mate is a stringent prerequisite. Biological, genetic and transgenic approaches have been developed that permit efficient male-female separation for some species considered for SIT. However, most sex separation methods have drawbacks and many of these methods are not directly transferable to mosquitoes. Unlike genetic and transgenic systems, biological methods that rely on sexually dimorphic characters, such as size or development rate, are subject to natural variation, requiring regular adjustment and re-calibration of the sorting systems used. The yield can be improved with the optimization of rearing, but the scale of mass production places practical limits on what is achievable, resulting in a poor rearing to output ratio. High throughput separation is best achieved with scalable genetic or transgenic approaches.
Collapse
Affiliation(s)
- Philippos A Papathanos
- Imperial College London, Department of Biological Sciences, Imperial College Road, London SW7 2AZ, UK.
| | | | | | | | | | | | | |
Collapse
|
37
|
Molecular characterization of the key switch F provides a basis for understanding the rapid divergence of the sex-determining pathway in the housefly. Genetics 2009; 184:155-70. [PMID: 19841093 DOI: 10.1534/genetics.109.109249] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The housefly, Musca domestica, is an excellent model system to study the diversification of the pathway that specifies the sexual fate. A number of different mechanisms have been described in the housefly, which reflects in part the broad diversity of sex-determining strategies used in insects. In this study we present the molecular identification and characterization of F, which acts as the master switch in the housefly pathway. We provide evidence that F corresponds to the transformer ortholog in Musca (Mdtra), which, as a result of alternative processing, expresses functional products only in individuals committed to the female fate. We demonstrate that, once activated, a self-sustaining feedback loop will maintain the female-promoting functions of Mdtra. Absence of Mdtra transcripts in eggs of Arrhenogenic (Ag) mutant females suggests that maternally deployed Mdtra activity initiates this self-sustaining loop in the zygote. When an M factor is paternally transmitted to the zygote, the establishment of the loop is prevented at an early stage before cellularization and splicing of Mdtra shifts irreversibly to the male nonproductive mode. On the basis of the analysis of two mutant alleles we can explain the different sex-determining systems in the housefly largely as deviations at the level of Mdtra regulation. This plasticity in the housefly pathway may provide a suitable framework to understand the evolution of sex-determining mechanisms in other insect species. For instance, while sex determination in a close relative, the tsetse fly Glossina morsitans, differs at the level of the instructive signal, we find that its tra ortholog, Gmtra, is regulated in a mode similar to that of Mdtra.
Collapse
|
38
|
Sexual development in Lucilia cuprina (Diptera, Calliphoridae) is controlled by the transformer gene. Genetics 2009; 182:785-98. [PMID: 19433631 DOI: 10.1534/genetics.109.100982] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Insects use an amazing variety of genetic systems to control sexual development. A Y-linked male determining gene (M) controls sex in the Australian sheep blowfly Lucilia cuprina, an important pest insect. In this study, we isolated the L. cuprina transformer (Lctra) and transformer2 (Lctra2) genes, which are potential targets of M. The LCTRA and LCTRA2 proteins are significantly more similar to homologs from tephritid insects than Drosophila. The Lctra transcript is alternatively spliced such that only females make a full-length protein and the presence of six TRA/TRA2 binding sites in the female first intron suggest that Lctra splicing is autoregulated as in tephritids. LCTRA is essential for female development as RNAi knockdown of Lctra mRNA leads to the development of male genitalia in XX adults. Analysis of Lctra expression during development shows that early and midstage male and female embryos express the female form of Lctra and males express only the male form by the first instar larval stage. Our results suggest that an autoregulatory loop sustains female development and that expression of M inhibits Lctra autoregulation, switching its splicing to the male form. The conservation of tra function and regulation in a Calliphorid insect shows that this sex determination system is not confined to Tephritidae. Isolation of these genes is an important step toward the development of a strain of L. cuprina suitable for a genetic control program.
Collapse
|
39
|
Sexual back talk with evolutionary implications: stimulation of the Drosophila sex-determination gene sex-lethal by its target transformer. Genetics 2008; 180:1963-81. [PMID: 18845845 DOI: 10.1534/genetics.108.093898] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
We describe a surprising new regulatory relationship between two key genes of the Drosophila sex-determination gene hierarchy, Sex-lethal (Sxl) and transformer (tra). A positive autoregulatory feedback loop for Sxl was known to maintain somatic cell female identity by producing SXL-F protein to continually instruct the target gene transformer (tra) to make its feminizing product, TRA-F. We discovered the reciprocal regulatory effect by studying genetically sensitized females: TRA-F from either maternal or zygotic tra expression stimulates Sxl-positive autoregulation. We found female-specific tra mRNA in eggs as predicted by this tra maternal effect, but not predicted by the prevailing view that tra has no germline function. TRA-F stimulation of Sxl seems to be direct at some point, since Sxl harbors highly conserved predicted TRA-F binding sites. Nevertheless, TRA-F stimulation of Sxl autoregulation in the gonadal soma also appears to have a cell-nonautonomous aspect, unprecedented for somatic Sxl regulation. This tra-Sxl retrograde regulatory circuit has evolutionary implications. In some Diptera, tra occupies Sxl's position as the gene that epigenetically maintains female identity through direct positive feedback on pre-mRNA splicing. The tra-mediated Sxl feedback in Drosophila may be a vestige of regulatory redundancy that facilitated the evolutionary transition from tra to Sxl as the master sex switch.
Collapse
|
40
|
Abstract
The origin of novel traits is what draws many to evolutionary biology, yet our understanding of the mechanisms that underlie the genesis of novelty remains limited. Here I review definitions of novelty including its relationship to homology. I then discuss how ontogenetic perspectives may allow us to move beyond current roadblocks in our understanding of the mechanics of innovation. Specifically, I explore the roles of canalization, plasticity and threshold responses during development in generating a reservoir of cryptic genetic variation free to drift and accumulate in natural populations. Environmental or genetic perturbations that exceed the buffering capacity of development can then release this variation, and, through evolution by genetic accommodation, result in rapid diversification, recurrence of lost phenotypes as well as the origins of novel features. I conclude that, in our quest to understand the nature of innovation, the nature of development deserves to take center stage.
Collapse
Affiliation(s)
- Armin P Moczek
- Department of Biology, Indiana University, 915 E. Third Street, Myers Hall 150, Bloomington IN 47405-7107, USA.
| |
Collapse
|
41
|
Chen SL, Dai SM, Lu KH, Chang C. Female-specific doublesex dsRNA interrupts yolk protein gene expression and reproductive ability in oriental fruit fly, Bactrocera dorsalis (Hendel). INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2008; 38:155-165. [PMID: 18207077 DOI: 10.1016/j.ibmb.2007.10.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Revised: 10/08/2007] [Accepted: 10/09/2007] [Indexed: 05/25/2023]
Abstract
A homologue of the doublesex gene (Bddsx) has been cloned from the oriental fruit fly, Bactrocera dorsalis (Hendel). Northern analysis indicates a differential expression of Bddsx in male and female flies, as reported for other dsx genes. A structural conservation of DNA binding domain/oligomerization domain 1 and oligomerization domain 2 suggests that the doublesex protein (BdDSX) of this fruit fly serves as a transcriptional factor for downstream sex-specific gene expression. The putative transformer/transformer-2 protein binding sequence in female-specific transcript suggests that a preserved alternative splicing process found in other flies mediates the synthesis of Bddsx transcript. RNA interference (RNAi) data from adult abdominal dsRNA injection assays indicate that female-specific dsx dsRNA reduces specifically its own transcript, inhibits selectively expression of the yolk protein gene (Bdyp1), and delays ovary development. The number of matured eggs is significant reduced after RNAi treatment, but the sex ratio of offspring is not biased. Moreover, 27% of female progeny with RNAi show deformed ovipositor, but male flies are not affected. Although this is a transient treatment, the specific Bddsx(f) interference offers a promising and novel approach to oriental fruit fly control in the future.
Collapse
Affiliation(s)
- Shiu-Ling Chen
- Department of Entomology, National Chung-Hsing University, Taichung 40227, Taiwan, ROC
| | | | | | | |
Collapse
|
42
|
Sex-specific splicing of the honeybee doublesex gene reveals 300 million years of evolution at the bottom of the insect sex-determination pathway. Genetics 2007; 177:1733-41. [PMID: 17947419 DOI: 10.1534/genetics.107.078980] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sex-determination mechanisms vary greatly among taxa. It has been proposed that genetic sex-determination pathways evolve in reverse order from the final step in the pathway to the first step. Consistent with this hypothesis, doublesex (dsx), the most downstream gene in the Drosophila sex-determination cascade that determines most sexual phenotypes also determines sex in other dipterans and the silk moth, while the upstream genes vary among these species. However, it is unknown when dsx was recruited to the sex-determination pathway during insect evolution. Furthermore, sex-specific splicing of dsx, by which dsx determines sex, is different in pattern and mechanism between the moth and the fly, raising an interesting question of how these insects have kept the executor of sex determination while allowing flexibility in the means of execution. To address these questions, here we study the dsx gene of the honeybee Apis mellifera, a member of the most basal lineage of holometabolous insects. We report that honeybee dsx is sex-specifically spliced and that it produces both the fly-type and moth-type splicing forms, indicating that the use of different splicing forms of Dsx in controlling sexual differentiation was present in the common ancestor of holometabolous insects. Our data suggest that in ancestral holometabolous insects the female Dsx form is the default and the male form is generated by suppressing the splicing of the female form. Thus, it is likely that the dsx splicing activator system in flies, where the male form is the default, arose during early dipteran evolution.
Collapse
|
43
|
Lagos D, Koukidou M, Savakis C, Komitopoulou K. The transformer gene in Bactrocera oleae: the genetic switch that determines its sex fate. INSECT MOLECULAR BIOLOGY 2007; 16:221-30. [PMID: 17298554 DOI: 10.1111/j.1365-2583.2006.00717.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Transformer (tra) is the second gene of a regulatory cascade based on RNA splicing that determines sex in Drosophila melanogaster. Splicing of tra transcripts is regulated by the master gene Sex lethal and tra itself regulates splicing of the transcriptional regulator doublesex (dsx). We present the isolation and characterization of Botra, the olive fruit fly Bactrocera oleae orthologue to the Drosophila gene transformer. As in Drosophila, Botra transcripts are spliced in a sex-specific manner so that only females encode a functional polypeptide of 422 amino acids, whereas males encode presumably nonfunctional peptide(s). The identification of multiple TRA/TRA-2 binding sites within the Botra male-specific exons, suggests an autoregulation mechanism of tra, through TRA/TRA2 activities. The fundamental role of the TRA protein in sex determination of Bactrocera was investigated by RNA interference, where the introduction of Botra dsRNA into embryos resulted in complete transformation of XX flies into fertile males.
Collapse
Affiliation(s)
- D Lagos
- Division of Genetics and Biotechnology, Department of Biology, University of Athens, Panepistimiopolis, Kouponia, Athens, Greece
| | | | | | | |
Collapse
|
44
|
Nigro RG, Campos MCC, Perondini ALP. Temperature and the progeny sex-ratio in Sciara ocellaris (Diptera, Sciaridae). Genet Mol Biol 2007. [DOI: 10.1590/s1415-47572007000100026] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
45
|
Niimi T, Sahara K, Oshima H, Yasukochi Y, Ikeo K, Traut W. Molecular cloning and chromosomal localization of the Bombyx Sex-lethal gene. Genome 2006; 49:263-8. [PMID: 16604109 DOI: 10.1139/g05-108] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We cloned Bm-Sxl, an orthologue of the Drosophila melanogaster Sex-lethal (Sxl) gene from embryos of Bombyx mori. The full-length cDNAs were of 2 sizes, 1528 and 1339 bp, and were named Bm-Sxl-L and Bm-Sxl-S, respectively. Bm-Sxl-L consists of 8 exons and spans more than 20 kb of genomic DNA. The open reading frame (ORF) codes for a protein 336 amino acids in length. Bm-Sxl-S is a splice variant that lacks the second exon. This creates a new translation start 138 nucleotides downstream and an ORF that codes for 46 amino acids fewer at the N-terminus. Linkage analysis using an F2 panel mapped Bm-Sxl to linkage group 16 at 69.8 cM. We isolated 2 BACs that include the Bm-Sxl gene. With BAC-FISH we located Bm-Sxl cytogenetically on the chromosome corresponding to linkage group 16 (LG16) at position >68.8 cM.
Collapse
Affiliation(s)
- Teruyuki Niimi
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | | | | | | | | | | |
Collapse
|
46
|
Traut W, Niimi T, Ikeo K, Sahara K. Phylogeny of the sex-determining gene Sex-lethal in insects. Genome 2006; 49:254-62. [PMID: 16604108 DOI: 10.1139/g05-107] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Sex-lethal (SXL) protein belongs to the family of RNA-binding proteins and is involved in the regulation of pre-mRNA splicing. SXL has undergone an obvious change of function during the evolution of the insect clade. The gene has acquired a pivotal role in the sex-determining pathway of Drosophila, although it does not act as a sex determiner in non-drosophilids. We collected SXL sequences of insect species ranging from the pea aphid (Acyrtho siphom pisum) to Drosophila melanogaster by searching published articles, sequencing cDNAs, and exploiting homology searches in public EST and whole-genome databases. The SXL protein has moderately conserved N- and C-terminal regions and a well-conserved central region including 2 RNA recognition motifs. Our phylogenetic analysis shows that a single orthologue of the Drosophila Sex-lethal (Sxl) gene is present in the genomes of the malaria mosquito Anopheles gambiae, the honeybee Apis mellifera, the silkworm Bombyx mori, and the red flour beetle Tribolium castaneum. The D. melanogaster, D. erecta, and D. pseudoobscura genomes, however, contain 2 paralogous genes, Sxl and CG3056, which are orthologous to the Anopheles, Apis, Bombyx, and Tribolium Sxl. Hence, a duplication in the fly clade generated Sxl and CG3056. Our hypothesis maintains that one of the genes, Sxl, adopted the new function of sex determiner in Drosophila, whereas the other, CG3056, continued to serve some or all of the yet-unknown ancestral functions.
Collapse
Affiliation(s)
- Walther Traut
- Institut für Biologie, Universität zu Lübeck, Ratzeburger Allee 160, D-23538 Lübeck, Germany.
| | | | | | | |
Collapse
|
47
|
Gailey DA, Billeter JC, Liu JH, Bauzon F, Allendorfer JB, Goodwin SF. Functional conservation of the fruitless male sex-determination gene across 250 Myr of insect evolution. Mol Biol Evol 2005; 23:633-43. [PMID: 16319090 DOI: 10.1093/molbev/msj070] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Male sexual behavior in the fruit fly Drosophila melanogaster is regulated by fruitless (fru), a sex-determination gene specifying the synthesis of BTB-Zn finger proteins that likely function as male-specific transcriptional regulators. Expression of fru in the nervous system specifies male sexual behavior and the muscle of Lawrence (MOL), an abdominal muscle that develops in males but not in females. We have isolated the fru ortholog from the malaria mosquito Anopheles gambiae and show the gene's conserved genomic structure. We demonstrate that male-specific mosquito fru protein isoforms arise by conserved mechanisms of sex-specifically activated and alternative exon splicing. A male-determining function of mosquito fru is revealed by ectopic expression of the male mosquito isoform FRUMC in fruit flies; this results in MOL development in both fru-mutant males and fru+ females who otherwise develop no MOL. In parallel, we provide evidence of a unique feature of muscle differentiation within the fifth abdominal segment of male mosquitoes that strongly resembles the fruit fly MOL. Given these conserved features within the context of 250 Myr of evolutionary divergence between Drosophila and Anopheles, we hypothesize that fru is the prototypic gene of male sexual behavior among dipteran insects.
Collapse
Affiliation(s)
- Donald A Gailey
- Department of Biological Sciences, California State University East Bay, Hayward, USA
| | | | | | | | | | | |
Collapse
|
48
|
Wilkins AS. Recasting developmental evolution in terms of genetic pathway and network evolution … and the implications for comparative biology. Brain Res Bull 2005; 66:495-509. [PMID: 16144639 DOI: 10.1016/j.brainresbull.2005.04.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The morphological features of complex organisms are the outcomes of developmental processes. Developmental processes, in turn, reflect the genetic networks that underlie them. Differences in morphology must ultimately, therefore, reflect differences in the underlying genetic networks. A mutation that affects a developmental process does so by affecting either a gene whose product acts as an upstream controlling element, an intermediary connecting link, or as a downstream output of the network that governs the trait's development. Although the immense diversity of gene networks in the animal and plant kingdoms would seem to preclude any general "rules" of network evolution, the material discussed here suggests that the patterns of genetic pathway and network evolution actually fall into a number of discrete modes. The potential utility of this conceptual framework in reconstructing instances of developmental evolution and for comparative neurobiology will be discussed.
Collapse
|
49
|
Pane A, De Simone A, Saccone G, Polito C. Evolutionary conservation of Ceratitis capitata transformer gene function. Genetics 2005; 171:615-24. [PMID: 15998727 PMCID: PMC1456775 DOI: 10.1534/genetics.105.041004] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Transformer functions as a binary switch gene in the sex determination and sexual differentiation of Drosophila melanogaster and Ceratitis capitata, two insect species that separated nearly 100 million years ago. The TRA protein is required for female differentiation of XX individuals, while XY individuals express smaller, presumably nonfunctional TRA peptides and consequently develop into adult males. In both species, tra confers female sexual identity through a well-conserved double-sex gene. However, unlike Drosophila tra, which is regulated by the upstream Sex-lethal gene, Ceratitis tra itself is likely to control a feedback loop that ensures the maintenance of the female sexual state. The putative CcTRA protein shares a very low degree of sequence identity with the TRA proteins from Drosophila species. However, in this study we show that a female-specific Ceratitis Cctra cDNA encoding the putative full-length CcTRA protein is able to support the female somatic and germline sexual differentiation of D. melanogaster XX; tra mutant adults. Although highly divergent, CcTRA can functionally substitute for DmTRA and induce the female-specific expression of both Dmdsx and Dmfru genes. These data demonstrate the unusual plasticity of the TRA protein that retains a conserved function despite the high evolutionary rate. We suggest that transformer plays an important role in providing a molecular basis for the variety of sex-determining systems seen among insects.
Collapse
Affiliation(s)
- Attilio Pane
- Dipartimento di Genetica, Biologia Generale e Molecolare, Università degli Studi di Napoli Federico II, Naples, Italy
| | | | | | | |
Collapse
|
50
|
Serna E, Gorab E, Ruiz MF, Goday C, Eirín-López JM, Sánchez L. The gene Sex-lethal of the Sciaridae family (order Diptera, suborder Nematocera) and its phylogeny in dipteran insects. Genetics 2005; 168:907-21. [PMID: 15514063 PMCID: PMC1448812 DOI: 10.1534/genetics.104.031278] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
This article reports the cloning and characterization of the gene homologous to Sex-lethal (Sxl) of Drosophila melanogaster from Sciara coprophila, Rhynchosciara americana, and Trichosia pubescens. This gene plays the key role in controlling sex determination and dosage compensation in D. melanogaster. The Sxl gene of the three species studied produces a single transcript encoding a single protein in both males and females. Comparison of the Sxl proteins of these Nematocera insects with those of the Brachycera showed their two RNA-binding domains (RBD) to be highly conserved, whereas significant variation was observed in both the N- and C-terminal domains. The great majority of nucleotide changes in the RBDs were synonymous, indicating that purifying selection is acting on them. In both sexes of the three Nematocera insects, the Sxl protein colocalized with transcription-active regions dependent on RNA polymerase II but not on RNA polymerase I. Together, these results indicate that Sxl does not appear to play a discriminatory role in the control of sex determination and dosage compensation in nematocerans. Thus, in the phylogenetic lineage that gave rise to the drosophilids, evolution coopted for the Sxl gene, modified it, and converted it into the key gene controlling sex determination and dosage compensation. At the same time, however, certain properties of the recruited ancestral Sxl gene were beneficial, and these are maintained in the evolved Sxl gene, allowing it to exert its sex-determining and dose compensation functions in Drosophila.
Collapse
Affiliation(s)
- Esther Serna
- Centro de Investigaciones Biológicas, 28040 Madrid, Spain
| | | | | | | | | | | |
Collapse
|