1
|
Chemistry and Function of Glycosaminoglycans in the Nervous System. ADVANCES IN NEUROBIOLOGY 2023; 29:117-162. [DOI: 10.1007/978-3-031-12390-0_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
2
|
Abad-Rodríguez J, Brocca ME, Higuero AM. Glycans and Carbohydrate-Binding/Transforming Proteins in Axon Physiology. ADVANCES IN NEUROBIOLOGY 2023; 29:185-217. [PMID: 36255676 DOI: 10.1007/978-3-031-12390-0_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The mature nervous system relies on the polarized morphology of neurons for a directed flow of information. These highly polarized cells use their somatodendritic domain to receive and integrate input signals while the axon is responsible for the propagation and transmission of the output signal. However, the axon must perform different functions throughout development before being fully functional for the transmission of information in the form of electrical signals. During the development of the nervous system, axons perform environmental sensing functions, which allow them to navigate through other regions until a final target is reached. Some axons must also establish a regulated contact with other cells before reaching maturity, such as with myelinating glial cells in the case of myelinated axons. Mature axons must then acquire the structural and functional characteristics that allow them to perform their role as part of the information processing and transmitting unit that is the neuron. Finally, in the event of an injury to the nervous system, damaged axons must try to reacquire some of their immature characteristics in a regeneration attempt, which is mostly successful in the PNS but fails in the CNS. Throughout all these steps, glycans perform functions of the outermost importance. Glycans expressed by the axon, as well as by their surrounding environment and contacting cells, encode key information, which is fine-tuned by glycan modifying enzymes and decoded by glycan binding proteins so that the development, guidance, myelination, and electrical transmission functions can be reliably performed. In this chapter, we will provide illustrative examples of how glycans and their binding/transforming proteins code and decode instructive information necessary for fundamental processes in axon physiology.
Collapse
Affiliation(s)
- José Abad-Rodríguez
- Membrane Biology and Axonal Repair Laboratory, Hospital Nacional de Parapléjicos (SESCAM), Toledo, Spain.
| | - María Elvira Brocca
- Membrane Biology and Axonal Repair Laboratory, Hospital Nacional de Parapléjicos (SESCAM), Toledo, Spain
| | - Alonso Miguel Higuero
- Membrane Biology and Axonal Repair Laboratory, Hospital Nacional de Parapléjicos (SESCAM), Toledo, Spain
| |
Collapse
|
3
|
Kumar A, Biswas A, Bojja SL, Kolathur KK, Volety SM. Emerging therapeutic role of chondroitinase (ChABC) in neurological disorders and cancer. CURRENT DRUG THERAPY 2022. [DOI: 10.2174/1574885517666220331151619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract:
Proteoglycans are essential biomacromolecules that participate in matrix structure and organization, cell proliferation and migration, and cell surface signal transduction. However, their roles in physiology, particularly in CNS remain incompletely deciphered. Numerous studies highlight the elevated levels of chondroitin sulphate proteoglycans (CSPGs) in various diseases like cancers and neurological disorders like spinal cord injury (SCI), traumatic brain damage, neurodegenerative diseases, and are mainly implicated to hinder tissue repair. In such a context, chondroitinase ABC (ChABC), a therapeutic enzyme has shown immense hope to treat these diseases in several preclinical studies, primarily attributed to the digestion of the side chains of the proteoglycan chondroitin sulphate (CS) molecule. Despite extensive research, the progress in evolving the concept of therapeutic targeting of proteoglycans is still in its infancy. This review thus provides fresh insights into the emerging therapeutic applications of ChABC in various diseases apart from SCI and the underlying mechanisms.
Collapse
Affiliation(s)
- Akshara Kumar
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Aishi Biswas
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Sree Lalitha Bojja
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Kiran Kumar Kolathur
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Subrahmanyam M Volety
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| |
Collapse
|
4
|
Mutalik SP, Gupton SL. Glycosylation in Axonal Guidance. Int J Mol Sci 2021; 22:ijms22105143. [PMID: 34068002 PMCID: PMC8152249 DOI: 10.3390/ijms22105143] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/01/2021] [Accepted: 05/08/2021] [Indexed: 12/15/2022] Open
Abstract
How millions of axons navigate accurately toward synaptic targets during development is a long-standing question. Over decades, multiple studies have enriched our understanding of axonal pathfinding with discoveries of guidance molecules and morphogens, their receptors, and downstream signalling mechanisms. Interestingly, classification of attractive and repulsive cues can be fluid, as single guidance cues can act as both. Similarly, guidance cues can be secreted, chemotactic cues or anchored, adhesive cues. How a limited set of guidance cues generate the diversity of axonal guidance responses is not completely understood. Differential expression and surface localization of receptors, as well as crosstalk and spatiotemporal patterning of guidance cues, are extensively studied mechanisms that diversify axon guidance pathways. Posttranslational modification is a common, yet understudied mechanism of diversifying protein functions. Many proteins in axonal guidance pathways are glycoproteins and how glycosylation modulates their function to regulate axonal motility and guidance is an emerging field. In this review, we discuss major classes of glycosylation and their functions in axonal pathfinding. The glycosylation of guidance cues and guidance receptors and their functional implications in axonal outgrowth and pathfinding are discussed. New insights into current challenges and future perspectives of glycosylation pathways in neuronal development are discussed.
Collapse
|
5
|
Loers G, Liao Y, Hu C, Xue W, Shen H, Zhao W, Schachner M. Identification and characterization of synthetic chondroitin-4-sulfate binding peptides in neuronal functions. Sci Rep 2019; 9:1064. [PMID: 30705359 PMCID: PMC6355858 DOI: 10.1038/s41598-018-37685-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 11/28/2018] [Indexed: 02/05/2023] Open
Abstract
Chondroitin sulfate proteoglycans (CSPGs), up-regulated in and around the glial scar after mammalian spinal cord injury, have been suggested to be key inhibitory molecules for functional recovery by impeding axonal regrowth/sprouting and synaptic rearrangements. CSPG-mediated inhibition is mainly associated with the glycosaminoglycan chains of CSPGs, and chondroitin-4-sulfate (C4S) is the predominant sulfated structure that regulates axonal guidance and growth in the adult nervous system. With the aim to find molecules that neutralize the inhibitory functions of C4S, we screened a phage display library for peptides binding to C4S. From the phage clones binding to C4S we selected three peptides for further analysis. We observed that these peptides bind to C4S, but not chondroitin-6-sulfate, heparin sulfate or dermatan sulfate, in a concentration-dependent and saturable manner, whereas the scrambled peptides showed highly reduced or no binding to C4S. The C4S-binding peptides, but not their scrambled counterparts, when added to cultures of mouse cerebellar neurons and human neuroblastoma cells, neutralized the inhibitory functions of the C4S- and CSPG-coated substrate on cell adhesion, neuronal migration and neurite outgrowth. These results indicate that the C4S-binding peptides neutralize several inhibitory functions of CSPGs, suggesting that they may be beneficial in repairing mammalian nervous system injuries.
Collapse
Affiliation(s)
- Gabriele Loers
- Center for Neuroscience, Shantou University Medical College, 22 Xin Ling Road, Shantou, Guangdong, 515041, People's Republic of China
- Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, Hamburg, 20246, Germany
| | - Yonghong Liao
- Center for Neuroscience, Shantou University Medical College, 22 Xin Ling Road, Shantou, Guangdong, 515041, People's Republic of China
| | - Chengliang Hu
- Center for Neuroscience, Shantou University Medical College, 22 Xin Ling Road, Shantou, Guangdong, 515041, People's Republic of China
| | - Weikang Xue
- Center for Neuroscience, Shantou University Medical College, 22 Xin Ling Road, Shantou, Guangdong, 515041, People's Republic of China
| | - Huifan Shen
- Center for Neuroscience, Shantou University Medical College, 22 Xin Ling Road, Shantou, Guangdong, 515041, People's Republic of China
| | - Weijiang Zhao
- Center for Neuroscience, Shantou University Medical College, 22 Xin Ling Road, Shantou, Guangdong, 515041, People's Republic of China.
| | - Melitta Schachner
- Center for Neuroscience, Shantou University Medical College, 22 Xin Ling Road, Shantou, Guangdong, 515041, People's Republic of China.
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, NJ, 08854, USA.
| |
Collapse
|
6
|
Stryker C, Camperchioli DW, Mayer CA, Alilain WJ, Martin RJ, MacFarlane PM. Respiratory dysfunction following neonatal sustained hypoxia exposure during a critical window of brain stem extracellular matrix formation. Am J Physiol Regul Integr Comp Physiol 2018; 314:R216-R227. [PMID: 29046314 PMCID: PMC5867672 DOI: 10.1152/ajpregu.00199.2017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 10/05/2017] [Accepted: 10/08/2017] [Indexed: 01/02/2023]
Abstract
The extracellular matrix (ECM) modulates brain maturation and plays a major role in regulating neuronal plasticity during critical periods of development. We examined 1) whether there is a critical postnatal period of ECM expression in brain stem cardiorespiratory control regions and 2) whether the attenuated hypoxic ventilatory response (HVR) following neonatal sustained (5 days) hypoxia [SH (11% O2, 24 h/day)] exposure is associated with altered ECM formation. The nucleus tractus solitarius (nTS), dorsal motor nucleus of the vagus, hypoglossal motor nucleus, cuneate nucleus, and area postrema were immunofluorescently processed for aggrecan and Wisteria floribunda agglutinin (WFA), a key proteoglycan of the ECM and the perineuronal net. From postnatal day ( P) 5 ( P5), aggrecan and WFA expression increased postnatally in all regions. We observed an abrupt increase in aggrecan expression in the nTS, a region that integrates and receives afferent inputs from the carotid body, between P10 and P15 followed by a distinct and transient plateau between P15 and P20. WFA expression in the nTS exhibited an analogous transient plateau, but it occurred earlier (between P10 and P15). SH between P11 and P15 attenuated the HVR (assessed at P16) and increased aggrecan (but not WFA) expression in the nTS, dorsal motor nucleus of the vagus, and area postrema. An intracisternal microinjection of chondroitinase ABC, an enzyme that digests chondroitin sulfate proteoglycans, rescued the HVR and the increased aggrecan expression. These data indicate that important stages of ECM formation take place in key brain stem respiratory neural control regions and appear to be associated with a heightened vulnerability to hypoxia.
Collapse
Affiliation(s)
- C. Stryker
- Department of Pediatrics, Rainbow Babies & Children’s Hospital, Case Western Reserve University, Cleveland, Ohio
| | | | - C. A. Mayer
- Department of Pediatrics, Rainbow Babies & Children’s Hospital, Case Western Reserve University, Cleveland, Ohio
| | - W. J. Alilain
- Department of Neurosciences, MetroHealth Medical Center, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - R. J. Martin
- Department of Pediatrics, Rainbow Babies & Children’s Hospital, Case Western Reserve University, Cleveland, Ohio
| | - P. M. MacFarlane
- Department of Pediatrics, Rainbow Babies & Children’s Hospital, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
7
|
Saied-Santiago K, Bülow HE. Diverse roles for glycosaminoglycans in neural patterning. Dev Dyn 2018; 247:54-74. [PMID: 28736980 PMCID: PMC5866094 DOI: 10.1002/dvdy.24555] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 07/13/2017] [Accepted: 07/17/2017] [Indexed: 01/11/2023] Open
Abstract
The nervous system coordinates the functions of most multicellular organisms and their response to the surrounding environment. Its development involves concerted cellular interactions, including migration, axon guidance, and synapse formation. These processes depend on the molecular constituents and structure of the extracellular matrices (ECM). An essential component of ECMs are proteoglycans, i.e., proteins containing unbranched glycan chains known as glycosaminoglycans (GAGs). A defining characteristic of GAGs is their enormous molecular diversity, created by extensive modifications of the glycans during their biosynthesis. GAGs are widely expressed, and their loss can lead to catastrophic neuronal defects. Despite their importance, we are just beginning to understand the function and mechanisms of GAGs in neuronal development. In this review, we discuss recent evidence suggesting GAGs have specific roles in neuronal patterning and synaptogenesis. We examine the function played by the complex modifications present on GAG glycans and their roles in regulating different aspects of neuronal patterning. Moreover, the review considers the function of proteoglycan core proteins in these processes, stressing their likely role as co-receptors of different signaling pathways in a redundant and context-dependent manner. We conclude by discussing challenges and future directions toward a better understanding of these fascinating molecules during neuronal development. Developmental Dynamics 247:54-74, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - Hannes E. Bülow
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, 10461
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, 10461
| |
Collapse
|
8
|
Diao Y, Chen Y, Zhang P, Cui L, Zhang J. Molecular guidance cues in the development of visual pathway. Protein Cell 2017; 9:909-929. [PMID: 29181831 PMCID: PMC6208478 DOI: 10.1007/s13238-017-0490-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 10/30/2017] [Indexed: 01/23/2023] Open
Abstract
70%–80% of our sensory input comes from vision. Light hit the retina at the back of our eyes and the visual information is relayed into the dorsal lateral geniculate nuclei (dLGN) and primary visual cortex (V1) thereafter, constituting the image-forming visual circuit. Molecular cues are one of the key factors to guide the wiring and refinement of the image-forming visual circuit during pre- and post-embryonic stages. Distinct molecular cues are involved in different developmental stages and nucleus, suggesting diverse guidance mechanisms. In this review, we summarize molecular guidance cues throughout the image-forming visual circuit, including chiasm determination, eye-specific segregation and refinement in the dLGN, and at last the reciprocal connections between the dLGN and V1.
Collapse
Affiliation(s)
- Yupu Diao
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Yuqing Chen
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Peijun Zhang
- Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, 200031, China
| | - Liyuan Cui
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Jiayi Zhang
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
9
|
Wang L, Yu C, Wang J, Leung P, Ma D, Zhao H, Taylor JSH, Chan SO. Nogo-B is the major form of Nogo at the floor plate and likely mediates crossing of commissural axons in the mouse spinal cord. J Comp Neurol 2017; 525:2915-2928. [DOI: 10.1002/cne.24246] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 05/06/2017] [Accepted: 05/13/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Liqing Wang
- Department of Neurology; The Third Affiliated Hospital of Sun Yat-Sen University; Guangzhou Guangdong China
| | - Chao Yu
- Center of Health Examination, The Third Affiliated Hospital of Sun Yat-Sen University; Guangzhou Guangdong China
| | - Jun Wang
- Department of Anatomy and Embryology; School of Basic Medical Sciences, Peking University; Beijing China
| | - Peggy Leung
- School of Biomedical Sciences; The Chinese University of Hong Kong, Shatin, N.T.; Hong Kong China
| | - Ding Ma
- School of Biomedical Sciences; The Chinese University of Hong Kong, Shatin, N.T.; Hong Kong China
| | - Hui Zhao
- School of Biomedical Sciences; The Chinese University of Hong Kong, Shatin, N.T.; Hong Kong China
| | - Jeremy S. H. Taylor
- Department of Physiology; Anatomy and Genetics, University of Oxford; Oxford United Kingdom
| | - Sun-On Chan
- School of Biomedical Sciences; The Chinese University of Hong Kong, Shatin, N.T.; Hong Kong China
| |
Collapse
|
10
|
Chondroitin sulfates and their binding molecules in the central nervous system. Glycoconj J 2017; 34:363-376. [PMID: 28101734 PMCID: PMC5487772 DOI: 10.1007/s10719-017-9761-z] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 12/31/2016] [Accepted: 01/04/2017] [Indexed: 01/05/2023]
Abstract
Chondroitin sulfate (CS) is the most abundant glycosaminoglycan (GAG) in the central nervous system (CNS) matrix. Its sulfation and epimerization patterns give rise to different forms of CS, which enables it to interact specifically and with a significant affinity with various signalling molecules in the matrix including growth factors, receptors and guidance molecules. These interactions control numerous biological and pathological processes, during development and in adulthood. In this review, we describe the specific interactions of different families of proteins involved in various physiological and cognitive mechanisms with CSs in CNS matrix. A better understanding of these interactions could promote a development of inhibitors to treat neurodegenerative diseases.
Collapse
|
11
|
Smith PD, Coulson-Thomas VJ, Foscarin S, Kwok JCF, Fawcett JW. "GAG-ing with the neuron": The role of glycosaminoglycan patterning in the central nervous system. Exp Neurol 2015; 274:100-14. [PMID: 26277685 DOI: 10.1016/j.expneurol.2015.08.004] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 07/17/2015] [Accepted: 08/06/2015] [Indexed: 01/17/2023]
Abstract
Proteoglycans (PGs) are a diverse family of proteins that consist of one or more glycosaminoglycan (GAG) chains, covalently linked to a core protein. PGs are major components of the extracellular matrix (ECM) and play critical roles in development, normal function and damage-response of the central nervous system (CNS). GAGs are classified based on their disaccharide subunits, into the following major groups: chondroitin sulfate (CS), heparan sulfate (HS), heparin (HEP), dermatan sulfate (DS), keratan sulfate (KS) and hyaluronic acid (HA). All except HA are modified by sulfation, giving GAG chains specific charged structures and binding properties. While significant neuroscience research has focused on the role of one PG family member, chondroitin sulfate proteoglycan (CSPG), there is ample evidence in support of a role for the other PGs in regulating CNS function in normal and pathological conditions. This review discusses the role of all the identified PG family members (CS, HS, HEP, DS, KS and HA) in normal CNS function and in the context of pathology. Understanding the pleiotropic roles of these molecules in the CNS may open the door to novel therapeutic strategies for a number of neurological conditions.
Collapse
Affiliation(s)
- Patrice D Smith
- John van Geest Centre for Brain Repair, University of Cambridge, Forvie Site, Robinson Way, Cambridge, UK; Department of Neuroscience, Carleton University, Ottawa, ON, Canada.
| | - Vivien J Coulson-Thomas
- John van Geest Centre for Brain Repair, University of Cambridge, Forvie Site, Robinson Way, Cambridge, UK
| | - Simona Foscarin
- John van Geest Centre for Brain Repair, University of Cambridge, Forvie Site, Robinson Way, Cambridge, UK
| | - Jessica C F Kwok
- John van Geest Centre for Brain Repair, University of Cambridge, Forvie Site, Robinson Way, Cambridge, UK
| | - James W Fawcett
- John van Geest Centre for Brain Repair, University of Cambridge, Forvie Site, Robinson Way, Cambridge, UK.
| |
Collapse
|
12
|
Abstract
The visual system is beautifully crafted to transmit information of the external world to visual processing and cognitive centers in the brain. For visual information to be relayed to the brain, a series of axon pathfinding events must take place to ensure that the axons of retinal ganglion cells, the only neuronal cell type in the retina that sends axons out of the retina, find their way out of the eye to connect with targets in the brain. In the past few decades, the power of molecular and genetic tools, including the generation of genetically manipulated mouse lines, have multiplied our knowledge about the molecular mechanisms involved in the sculpting of the visual system. Here, we review major advances in our understanding of the mechanisms controlling the differentiation of RGCs, guidance of their axons from the retina to the primary visual centers, and the refinement processes essential for the establishment of topographic maps and eye-specific axon segregation. Human disorders, such as albinism and achiasmia, that impair RGC axon growth and guidance and, thus, the establishment of a fully functioning visual system will also be discussed.
Collapse
Affiliation(s)
- Lynda Erskine
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Scotland, UK
| | - Eloisa Herrera
- Instituto de Neurosciencias de Alicante, CSIC-UMH, San Juan de Alicante, Spain
| |
Collapse
|
13
|
Wang L, Lam JSY, Zhao H, Wang J, Chan SO. Localization of protein kinase C isoforms in the optic pathway of mouse embryos and their role in axon routing at the optic chiasm. Brain Res 2014; 1575:22-32. [PMID: 24863469 DOI: 10.1016/j.brainres.2014.05.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 05/08/2014] [Accepted: 05/16/2014] [Indexed: 12/16/2022]
Abstract
Protein kinase C (PKC) plays a key role in many receptor-mediated signaling pathways that regulate cell growth and development. However, its roles in guiding axon growth and guidance in developing neural pathways are largely unknown. To investigate possible functions of PKC in the growth and guidance of axons in the optic chiasm, we first determined the localization of major PKC isoforms in the retinofugal pathway of mouse embryos, at the stage when axons navigate through the midline. Results showed that PKC was expressed in isoform specific patterns in the pathway. PKC-α immunoreactivity was detected in the chiasm and the optic tract. PKC-βΙΙ was strong in the optic stalk but was attenuated on axons in the diencephalon. Immunostaining for PKC-ε showed a colocalization in the chiasmatic neurons that express a surface antigen stage specific embryonic antigen-1 (SSEA-1). These chiasmatic neurons straddled the midline of the optic chiasm, and have been shown in earlier studies a role in regulation of axon growth and guidance. Expression levels of PKC-βΙ, -δ and -γ were barely detectable in the pathway. Blocking of PKC signaling with Ro-32-0432, an inhibitor specific for PKC-α and -β at nanomolar concentration, produced a dramatic reduction of ipsilateral axons from both nasal retina and temporal crescent. We conclude from these studies that PKC-α and -βΙΙ are the predominant forms in the developing optic pathway, whereas PKC-ε is the major form in the chiasmatic neurons. Furthermore, PKC-α and -βΙΙ are likely involved in signaling pathways triggered by inhibitory molecules at the midline that guide optic axons to the uncrossed pathway.
Collapse
Affiliation(s)
- Liqing Wang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China; Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China.
| | - Joyce Shi-Ying Lam
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China.
| | - Hui Zhao
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China.
| | - Jun Wang
- Department of Anatomy and Embryology, School of Basic Medical Sciences, Peking University, Beijing, China.
| | - Sun-On Chan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China.
| |
Collapse
|
14
|
Silver DJ, Silver J. Contributions of chondroitin sulfate proteoglycans to neurodevelopment, injury, and cancer. Curr Opin Neurobiol 2014; 27:171-8. [PMID: 24762654 DOI: 10.1016/j.conb.2014.03.016] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 03/25/2014] [Accepted: 03/25/2014] [Indexed: 01/09/2023]
Abstract
Chondroitin sulfate proteoglycans (CSPGs) are a diverse family of extracellular matrix (ECM) molecules that make significant contributions to the patterning and routing of migrating neural cells and extending axons. Three distinct modes of migration mediation result from the relative abundance and positioning of expressed CSPGs, the profile of CSPG receptors expressed by the motile cell types, and the overall way in which the CSPGs integrate into and stabilize the neural ECM. Here we discuss recent findings that help to clarify the molecular mechanisms that underlie these distinct migration-regulating properties as they pertain to neural development, CNS injury, and gliomagenesis.
Collapse
Affiliation(s)
- Daniel J Silver
- Human Biology Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Mailstop C3-168, Seattle, WA 98109, United States
| | - Jerry Silver
- Department of Neurosciences, Case Western Reserve University, 2109 Adelbert Road Rm E-658, Cleveland, OH 44106, United States.
| |
Collapse
|
15
|
Burnside ER, Bradbury EJ. Review: Manipulating the extracellular matrix and its role in brain and spinal cord plasticity and repair. Neuropathol Appl Neurobiol 2014; 40:26-59. [DOI: 10.1111/nan.12114] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 12/20/2013] [Indexed: 12/17/2022]
Affiliation(s)
- E. R. Burnside
- King's College London; Regeneration Group; The Wolfson Centre for Age-Related Diseases; Guy's Campus; London UK
| | - E. J. Bradbury
- King's College London; Regeneration Group; The Wolfson Centre for Age-Related Diseases; Guy's Campus; London UK
| |
Collapse
|
16
|
Prokosch V, Chiwitt C, Rose K, Thanos S. Deciphering proteins and their functions in the regenerating retina. Expert Rev Proteomics 2014; 7:775-95. [DOI: 10.1586/epr.10.47] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
17
|
Schwartz NB, Domowicz MS. Chemistry and Function of Glycosaminoglycans in the Nervous System. ADVANCES IN NEUROBIOLOGY 2014; 9:89-115. [DOI: 10.1007/978-1-4939-1154-7_5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
18
|
Application of Chondroitin Sulfate Derivatives for Understanding Axonal Guidance in the Nervous System during Development. Polymers (Basel) 2013. [DOI: 10.3390/polym5010254] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
19
|
Shimbo M, Ando S, Sugiura N, Kimata K, Ichijo H. Moderate repulsive effects of E-unit-containing chondroitin sulfate (CSE) on behavior of retinal growth cones. Brain Res 2013. [DOI: 10.1016/j.brainres.2012.11.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
Kwok JCF, Yuen YL, Lau WK, Zhang FX, Fawcett JW, Chan YS, Shum DKY. Chondroitin sulfates in the developing rat hindbrain confine commissural projections of vestibular nuclear neurons. Neural Dev 2012; 7:6. [PMID: 22305371 PMCID: PMC3295737 DOI: 10.1186/1749-8104-7-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2011] [Accepted: 02/03/2012] [Indexed: 11/23/2022] Open
Abstract
Background Establishing correct neuronal circuitry is crucial to proper function of the vertebrate nervous system. The abundance of chondroitin sulfate (CS) proteoglycans in embryonic neural environments suggests that matrix proteoglycans regulate axonal projections when fiber tracts have not yet formed. Among the early-born neurons, the vestibular nucleus (VN) neurons initiate commissural projections soon after generation at E12.5 and reach the contralateral target by E15.5 in the rat hindbrain. We therefore exploited 24-hour cultures (1 day in vitro (DIV)) of the rat embryos and chondroitinase ABC treatment of the hindbrain matrix to reveal the role of CS moieties in axonal initiation and projection in the early hindbrain. Results DiI tracing from the VN at E12.5(+1 DIV) showed contralaterally projecting fibers assuming fascicles that hardly reached the midline in the controls. In the enzyme-treated embryos, the majority of fibers were unfasciculated as they crossed the midline at 90°. At E13.5(+1 DIV), the commissural projections formed fascicles and crossed the midline in the controls. Enzyme treatment apparently did not affect the pioneer axons that had advanced as thick fascicles normal to the midline and beyond, towards the contralateral VN. Later projections, however, traversed the enzyme-treated matrix as unfasciculated fibers, deviated from the normal course crossing the midline at various angles and extending beyond the contralateral VN. This suggests that CSs also limit the course of the later projections, which otherwise would be attracted to alternative targets. Conclusions CS moieties in the early hindbrain therefore control the course and fasciculation of axonal projections and the timing of axonal arrival at the target.
Collapse
Affiliation(s)
- Jessica C F Kwok
- Department of Biochemistry, LKS Faculty of Medicine, The University of Hong Kong, Sassoon Road, Hong Kong, China
| | | | | | | | | | | | | |
Collapse
|
21
|
Lin R, Rosahl TW, Whiting PJ, Fawcett JW, Kwok JCF. 6-Sulphated chondroitins have a positive influence on axonal regeneration. PLoS One 2011; 6:e21499. [PMID: 21747937 PMCID: PMC3128591 DOI: 10.1371/journal.pone.0021499] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 05/30/2011] [Indexed: 11/23/2022] Open
Abstract
Chondroitin sulphate proteoglycans (CSPGs) upregulated in the glial scar inhibit axon regeneration via their sulphated glycosaminoglycans (GAGs). Chondroitin 6-sulphotransferase-1 (C6ST-1) is upregulated after injury leading to an increase in 6-sulphated GAG. In this study, we ask if this increase in 6-sulphated GAG is responsible for the increased inhibition within the glial scar, or whether it represents a partial reversion to the permissive embryonic state dominated by 6-sulphated glycosaminoglycans (GAGs). Using C6ST-1 knockout mice (KO), we studied post-injury changes in chondroitin sulphotransferase (CSST) expression and the effect of chondroitin 6-sulphates on both central and peripheral axon regeneration. After CNS injury, wild-type animals (WT) showed an increase in mRNA for C6ST-1, C6ST-2 and C4ST-1, but KO did not upregulate any CSSTs. After PNS injury, while WT upregulated C6ST-1, KO showed an upregulation of C6ST-2. We examined regeneration of nigrostriatal axons, which demonstrate mild spontaneous axon regeneration in the WT. KO showed many fewer regenerating axons and more axonal retraction than WT. However, in the PNS, repair of the median and ulnar nerves led to similar and normal levels of axon regeneration in both WT and KO. Functional tests on plasticity after the repair also showed no evidence of enhanced plasticity in the KO. Our results suggest that the upregulation of 6-sulphated GAG after injury makes the extracellular matrix more permissive for axon regeneration, and that the balance of different CSs in the microenvironment around the lesion site is an important factor in determining the outcome of nervous system injury.
Collapse
Affiliation(s)
- Rachel Lin
- Department of Clinical Neurosciences, Cambridge Centre for Brain Repair, University of Cambridge, Cambridge, United Kingdom
| | - Thomas W. Rosahl
- The Neuroscience Research Centre, Merck, Sharpe and Dohme, Harlow, United Kingdom
| | - Paul J. Whiting
- The Neuroscience Research Centre, Merck, Sharpe and Dohme, Harlow, United Kingdom
| | - James W. Fawcett
- Department of Clinical Neurosciences, Cambridge Centre for Brain Repair, University of Cambridge, Cambridge, United Kingdom
| | - Jessica C. F. Kwok
- Department of Clinical Neurosciences, Cambridge Centre for Brain Repair, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
22
|
Kunzevitzky NJ, Almeida MV, Duan Y, Li S, Xiang M, Goldberg JL. Foxn4 is required for retinal ganglion cell distal axon patterning. Mol Cell Neurosci 2011; 46:731-41. [PMID: 21334440 DOI: 10.1016/j.mcn.2011.02.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Revised: 01/10/2011] [Accepted: 02/10/2011] [Indexed: 10/18/2022] Open
Abstract
The regulation of retinal ganglion cell (RGC) axon growth and patterning in vivo is thought to be largely dependent on interactions with visual pathway and target cells. Here we address the hypothesis that amacrine cells, RGCs' presynaptic partners, regulate RGC axon growth or targeting. We asked whether amacrine cells play a role in RGC axon growth in vivo using Foxn4(-/-) mice, which have fewer amacrine cells, but a normal complement of RGCs. We found that Foxn4(-/-) mice have a similar reduction in most subtypes of amacrine cells examined. Remarkably, spontaneous retinal waves were not affected by the reduction of amacrine cells in the Foxn4(-/-) mice. There was, however, a developmental delay in the distribution of RGC projections to the superior colliculus. Furthermore, RGC axons failed to penetrate into the retinorecipient layers in the Foxn4(-/-) mice. Foxn4 is not expressed by RGCs and was not detectable in the superior colliculus itself. These findings suggest that amacrine cells are critical for proper RGC axon growth in vivo, and support the hypothesis that the amacrine cell-RGC interaction may contribute to the regulation of distal projections and axon patterning.
Collapse
Affiliation(s)
- Noelia J Kunzevitzky
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | | | | | | | | | | |
Collapse
|
23
|
Kwok JC, Tan CL, Wang D, Heller J, Fawcett JW. Chondroitin Sulfates in Axon Regeneration and Plasticity. TRENDS GLYCOSCI GLYC 2011. [DOI: 10.4052/tigg.23.201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Jessica C.F. Kwok
- Cambridge Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Forvie Site, Robinson Way, Cambridge CB2 0PY, United Kingdom
| | - Chin Lik Tan
- Cambridge Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Forvie Site, Robinson Way, Cambridge CB2 0PY, United Kingdom
| | - Difei Wang
- Cambridge Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Forvie Site, Robinson Way, Cambridge CB2 0PY, United Kingdom
| | - Janosch Heller
- Cambridge Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Forvie Site, Robinson Way, Cambridge CB2 0PY, United Kingdom
| | - James W. Fawcett
- Cambridge Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Forvie Site, Robinson Way, Cambridge CB2 0PY, United Kingdom
| |
Collapse
|
24
|
Tham M, Ramasamy S, Gan HT, Ramachandran A, Poonepalli A, Yu YH, Ahmed S. CSPG is a secreted factor that stimulates neural stem cell survival possibly by enhanced EGFR signaling. PLoS One 2010; 5:e15341. [PMID: 21179491 PMCID: PMC3001889 DOI: 10.1371/journal.pone.0015341] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2010] [Accepted: 11/09/2010] [Indexed: 11/18/2022] Open
Abstract
Understanding how autocrine/paracrine factors regulate neural stem cell (NSC) survival and growth is fundamental to the utilization of these cells for therapeutic applications and as cellular models for the brain. In vitro, NSCs can be propagated along with neural progenitors (NPs) as neurospheres (nsphs). The nsph conditioned medium (nsph-CM) contains cell-secreted factors that can regulate NSC behavior. However, the identity and exact function of these factors within the nsph-CM has remained elusive. We analyzed the nsph-CM by mass spectrometry and identified DSD-1-proteoglycan, a chondroitin sulfate proteoglycan (CSPG), apolipoprotein E (ApoE) and cystatin C as components of the nsph-CM. Using clonal assays we show that CSPG and ApoE are responsible for the ability of the nsph-CM to stimulate nsph formation whereas cystatin C is not involved. Clonal nsphs generated in the presence of CSPG show more than four-fold increase in NSCs. Thus CSPG specifically enhances the survival of NSCs. CSPG also stimulates the survival of embryonic stem cell (ESC)-derived NSCs, and thus may be involved in the developmental transition of ESCs to NSCs. In addition to its role in NSC survival, CSPG maintains the three dimensional structure of nsphs. Lastly, CSPG's effects on NSC survival may be mediated by enhanced signaling via EGFR, JAK/STAT3 and PI3K/Akt pathways.
Collapse
Affiliation(s)
- Muly Tham
- Neural Stem Cell Laboratory, Institute of Medical Biology, Singapore, Singapore
| | - Srinivas Ramasamy
- Neural Stem Cell Laboratory, Institute of Medical Biology, Singapore, Singapore
| | - Hui Theng Gan
- Neural Stem Cell Laboratory, Institute of Medical Biology, Singapore, Singapore
| | - Ashray Ramachandran
- Neural Stem Cell Laboratory, Institute of Medical Biology, Singapore, Singapore
| | - Anuradha Poonepalli
- Neural Stem Cell Laboratory, Institute of Medical Biology, Singapore, Singapore
| | - Yuan Hong Yu
- Neural Stem Cell Laboratory, Institute of Medical Biology, Singapore, Singapore
| | - Sohail Ahmed
- Neural Stem Cell Laboratory, Institute of Medical Biology, Singapore, Singapore
- * E-mail:
| |
Collapse
|
25
|
Klausmeyer A, Conrad R, Faissner A, Wiese S. Influence of glial-derived matrix molecules, especially chondroitin sulfates, on neurite growth and survival of cultured mouse embryonic motoneurons. J Neurosci Res 2010; 89:127-41. [PMID: 21162121 DOI: 10.1002/jnr.22531] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 09/02/2010] [Accepted: 09/08/2010] [Indexed: 12/24/2022]
Abstract
Mechanisms controlling neuronal survival and regeneration play an important role during development, after birth, and under lesion conditions. Isolated embryonic mouse motoneurons have been a useful tool for studying such basic mechanisms. These cultured motoneurons depend on extracellular matrix (ECM) molecules, which are potent mediators of survival and axonal growth and guidance in the CNS and in vitro, exhibiting either attractive or repellent guidance cues. Additionally, ECM proteoglycans and glycoproteins are components of the glial scar acting as a growth barrier for regenerating axons. Compared with CNS axon outgrowth, less is known about the cues that guide motoneurons toward their peripheral targets. Because we are interested in the effects of glial-derived chondroitin sulfate proteoglycans (CSPGs), we have worked out a model system for investigating the influences of glial-derived matrix molecules on motoneuron outgrowth and survival. We used cultured embryonic mouse motoneurons to investigate axon growth effects of matrix molecules produced by the glial-derived cell lines A7, Neu7, and Oli-neu primary astrocytes as well as the immortalized Schwann cell line IMS32. The results indicate that molecules of the ECM, especially chondroitin sulfates, play an important role as axon growth-promoting cues. We could demonstrate a modifying effect of the matrix components on motoneuron survival and caspase3-induced apoptosis.
Collapse
Affiliation(s)
- Alice Klausmeyer
- Department of Cellmorphology and Molecular Neurobiology, Laboratory of Molecular Cellbiology, Faculty of Biology and Biotechnology, Ruhr-University-Bochum, Bochum, Germany
| | | | | | | |
Collapse
|
26
|
Maeda N, Ishii M, Nishimura K, Kamimura K. Functions of chondroitin sulfate and heparan sulfate in the developing brain. Neurochem Res 2010; 36:1228-40. [PMID: 21110089 DOI: 10.1007/s11064-010-0324-y] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2010] [Indexed: 02/08/2023]
Abstract
Chondroitin sulfate and heparan sulfate proteoglycans are major components of the cell surface and extracellular matrix in the brain. Both chondroitin sulfate and heparan sulfate are unbranched highly sulfated polysaccharides composed of repeating disaccharide units of glucuronic acid and N-acetylgalactosamine, and glucuronic acid and N-acetylglucosamine, respectively. During their biosynthesis in the Golgi apparatus, these glycosaminoglycans are highly modified by sulfation and C5 epimerization of glucuronic acid, leading to diverse heterogeneity in structure. Their structures are strictly regulated in a cell type-specific manner during development partly by the expression control of various glycosaminoglycan-modifying enzymes. It has been considered that specific combinations of glycosaminoglycan-modifying enzymes generate specific functional microdomains in the glycosaminoglycan chains, which bind selectively with various growth factors, morphogens, axon guidance molecules and extracellular matrix proteins. Recent studies have begun to reveal that the molecular interactions mediated by such glycosaminoglycan microdomains play critical roles in the various signaling pathways essential for the development of the brain.
Collapse
Affiliation(s)
- N Maeda
- Department of Developmental Neuroscience, Tokyo Metropolitan Institute for Neuroscience, 2-6 Musashidai, Fuchu, Tokyo, 183-8526, Japan.
| | | | | | | |
Collapse
|
27
|
Ali SAM, Hosaka YZ, Uehara M. Spatiotemporal distribution of chondroitin sulfate proteoglycans in the developing mouse retina and optic nerve. J Vet Med Sci 2010; 73:13-8. [PMID: 20716860 DOI: 10.1292/jvms.10-0201] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The aim of the present study was to determine the distribution of chondroitin sulfate proteoglycans in the mouse retina and optic nerve of the prenatal and postnatal mouse by immunohistochemistry. At embryonic day (E) 18, chondroitin-4-sulfate (C4S), chondroitin-6-sulfate (C6S) and biglycan were detected in the retina and optic nerve. However, aggrecan was seen in the retina but not in the optic nerve. At postnatal day (P) 7, aggrecan and biglycan were clearly observed in the optic nerve, inner nuclear layer and ganglion cell layer and diffuse in the outer retina. C4S diffusely distributed in the retina and optic nerve, but C6S was mainly confined to the photoreceptor layer and optic nerve sheath. At P42, biglycan showed diffuse distribution in the retina and optic nerve with intense staining in nerve-fiber rich layers. Aggrecan showed weak staining at the inner plexiform layer with higher density in the outer and inner nuclear layers, outer plexiform layer and ganglion cell layer. Both C4S and C6S were detected in the optic nerve and retina, but C6S showed strong immunostaining in the photoreceptor layer. The distributions of these proteoglycans with respect of time course during development of the retina and optic nerve suggest that they may have unique or overlapping roles in development and maintenance of the retina and optic nerve.
Collapse
Affiliation(s)
- Safwat Ali Mohamed Ali
- Laboratory of Basic Veterinary Science, United Graduate School of Veterinary Science, Yamaguchi University, Japan
| | | | | |
Collapse
|
28
|
Yuan X. Axon guidance and neuronal migration research in China. SCIENCE CHINA-LIFE SCIENCES 2010; 53:304-314. [PMID: 20596924 DOI: 10.1007/s11427-010-0068-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2009] [Accepted: 01/19/2010] [Indexed: 01/21/2023]
Abstract
Proper migration of neuronal somas and axonal growth cones to designated locations in the developing brain is essential for the assembly of functional neuronal circuits. Rapid progress in research of axon guidance and neuronal migration has been made in the last twenty years. Chinese researchers began their exploration in this field ten years ago and have made significant contributions in clarifying the signal transduction of axon guidance and neuronal migration. Several unique experimental approaches, including the migration assay of single isolated neurons in response to locally delivered guidance cues, have been developed by Chinese neuroscientists to investigate the molecular machinery underlying these guidance events.
Collapse
Affiliation(s)
- XiaoBing Yuan
- Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
29
|
Influences of retinal axons on the cultural substrate containing biotin-conjugated chondroitin sulfate in vitro. Anat Sci Int 2010; 85:189-93. [DOI: 10.1007/s12565-010-0076-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Accepted: 01/26/2010] [Indexed: 01/19/2023]
|
30
|
Zimmer G, Schanuel SM, Bürger S, Weth F, Steinecke A, Bolz J, Lent R. Chondroitin sulfate acts in concert with semaphorin 3A to guide tangential migration of cortical interneurons in the ventral telencephalon. ACTA ACUST UNITED AC 2010; 20:2411-22. [PMID: 20071458 DOI: 10.1093/cercor/bhp309] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Chondroitin sulfate (CS) carrying proteoglycans (PGs) are widely expressed in the nervous system, and there is increasing evidence that they regulate developmental mechanisms like neurite outgrowth, axonal guidance and neuronal migration. Moreover, they can also act indirectly by organizing and/or modulating growth factors and guidance molecules. We found that chondroitin-4-sulfate is coexpressed with semaphorin 3A (Sema 3A) in the striatal mantle zone (SMZ), a nontarget region of neuropilin (Nrp)-1-expressing cortical interneurons flanking their migratory route in the subpallium. Using in vitro assays, we showed that CS PGs exert a repulsive effect on cortical interneurons, independently of Sema 3A, due to the CS side chains. We further showed that extracellular Sema 3A binds to CS. Disrupting Sema 3A-Nrp-1 signaling led migrating medial ganglionic eminence neurons to inappropriately invade the SMZ and even more so after removal of the CS side chains. Moreover, we found that soluble Sema 3A enhances the CS-induced repulsion in vitro. We concluded that CS acts as a repellent for cortical interneurons and that, in addition, CS restricts secreted Sema 3A within SMZ. Thus, both molecules act in concert to repel cortical interneurons from the SMZ during tangential migration toward the cerebral cortex.
Collapse
Affiliation(s)
- Geraldine Zimmer
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, CEP 21941-902, Brazil.
| | | | | | | | | | | | | |
Collapse
|
31
|
Wang J, Chan CK, Taylor JSH, Chan SO. The growth-inhibitory protein Nogo is involved in midline routing of axons in the mouse optic chiasm. J Neurosci Res 2009; 86:2581-90. [PMID: 18478548 DOI: 10.1002/jnr.21717] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
We have investigated the role of Nogo, a protein that inhibits regenerating axons in the adult central nervous system, on axon guidance in the developing optic chiasm of mouse embryos. Nogo protein is expressed by radial glia in the midline within the optic chiasm where uncrossed axons turn, and the Nogo receptor (NgR) is expressed on retinal neurites and growth cones. In vitro neurite outgrowth from both dorsonasal and ventrotemporal retina was inhibited by Nogo protein, and this inhibition was abolished by blocking NgR activity. In slice cultures of the optic pathway, blocking NgR with a peptide antagonist produced significant reduction in the uncrossed projection but had no effect on the crossing axons. This result was confirmed by treating cultures with an anti-Nogo functional blocking antibody. In vitro coculture assays of retina and optic chiasm showed that NgR was selectively reduced on neurites and growth cones from dorsonasal retina when they contacted chiasm cells, but not on those from ventrotemporal retina. These findings provide evidence that Nogo signaling is involved in directing the growth of axons in the mouse optic chiasm and that this process relies on a differential regulation of NgR on axons from the dorsonasal and ventrotemporal retina.
Collapse
Affiliation(s)
- Jun Wang
- Department of Anatomy, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
| | | | | | | |
Collapse
|
32
|
Tian NM, Pratt T, Price DJ. Foxg1 regulates retinal axon pathfinding by repressing an ipsilateral program in nasal retina and by causing optic chiasm cells to exert a net axonal growth-promoting activity. Development 2008; 135:4081-9. [PMID: 19004857 PMCID: PMC6207343 DOI: 10.1242/dev.023572] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mammalian binocular vision relies on the divergence of retinal ganglion cell axons at the optic chiasm, with strictly controlled numbers projecting contralaterally and ipsilaterally. In mouse, contralateral projections arise from the entire retina, whereas ipsilateral projections arise from ventrotemporal retina. We investigate how development of these patterns of projection is regulated by the contralateral determinant Foxg1, a forkhead box transcription factor expressed in nasal retina and at the chiasm. In nasal retina, loss of Foxg1 causes increased numbers of ipsilateral projections and ectopic expression of the ipsilateral determinants Zic2, Ephb1 and Foxd1, indicating that nasal retina is competent to express an ipsilateral program that is normally suppressed by Foxg1. Using co-cultures that combine Foxg1-expressing with Foxg1-null retinal explants and chiasm cells, we provide functional evidence that Foxg1 promotes contralateral projections through actions in nasal retina, and that in chiasm cells, Foxg1 is required for the generation of a hitherto unrecognized activity supporting RGC axon growth.
Collapse
Affiliation(s)
- Natasha M. Tian
- Centre for Integrative Physiology, The University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - Thomas Pratt
- Centre for Integrative Physiology, The University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - David J. Price
- Centre for Integrative Physiology, The University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| |
Collapse
|
33
|
Brachmann I, Jakubick VC, Shakèd M, Unsicker K, Tucker KL. A simple slice culture system for the imaging of nerve development in embryonic mouse. Dev Dyn 2008; 236:3514-23. [PMID: 18000984 DOI: 10.1002/dvdy.21386] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Newborn neurons elaborate an axon that undertakes a complicated journey to find its ultimate target in the brain or periphery. Although major progress in the study of this process has been made by analysis of dissociated neurons in vitro, one would like to observe and manipulate axonal outgrowth and pathfinding as it occurs in situ, as fasciculated nerves growing within the tissue itself. Here, we present a simple technique to do this, through cultivation of embryonic mouse slices expressing enhanced green fluorescent protein (EGFP) specifically in newborn neurons. This system allows for imaging of outgrowth of peripheral nerves into structures such as the developing limb. We demonstrate a reproduction of normal innervation patterns by spinal nerves derived from spinal cord motor neurons and sensory neurons of the dorsal root ganglia. The slices can be manipulated pharmacologically as well as genetically, by crossing the EGFP-expressing line with lines containing targeted mutations in genes of interest.
Collapse
Affiliation(s)
- Isabel Brachmann
- Interdisciplinary Center for Neurosciences, Department of Neuroanatomy, University of Heidelberg, Heidelberg, Germany
| | | | | | | | | |
Collapse
|
34
|
Lam JSY, Wang L, Lin L, Chan SO. Role of protein kinase C in selective inhibition of mouse retinal neurites during contacts with chondroitin sulfates. Neurosci Lett 2008; 434:150-4. [PMID: 18313852 DOI: 10.1016/j.neulet.2008.01.064] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2007] [Revised: 01/12/2008] [Accepted: 01/22/2008] [Indexed: 11/29/2022]
Abstract
Chondroitin sulfate proteoglycans elicit a selective inhibition to neurite growth from ventrotemporal (VT) but not dorsonasal (DN) retina, potentiating the bilateral routing of axons in the mouse optic chiasm. We examined whether this selective response is mediated by a difference in protein kinase C (PKC) expression. Effects of suppressing PKC activity in explant preparations of embryonic day 14 retinae with inhibitor Gö6976 or Ro-32-0432 abolished the chondroitin sulfate inhibition to the VT neurites but had no effect to the DN neurites. Whether these responses rely on a difference in expression of PKC in the growth cones was examined using antibodies against six isozymes of PKC. Among these the alpha, betaI and epsilon isozymes were expressed prominently in the retinal growth cones; whilst the betaII, delta and gamma isozymes were barely detected. Moreover, while the alpha and epsilon isozymes were abundant in the filopodial and lamellipodial processes, the betaI isozyme was restricted largely in the core region of the growth cones. Despite these subtype specific localization, there was no significant difference in expression of any of these PKC isozymes between growth cones from VT and DN retina, indicating that the selective response to chondroitin sulfates is not likely generated by a regulation of PKC expression, but by expression of surface molecules that interact with chondroitin sulfate proteoglycans.
Collapse
Affiliation(s)
- Joyce Shi-Ying Lam
- Department of Anatomy, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | | | | | | |
Collapse
|
35
|
Wang J, Chan CK, Taylor JS, Chan SO. Localization of Nogo and its receptor in the optic pathway of mouse embryos. J Neurosci Res 2008; 86:1721-33. [DOI: 10.1002/jnr.21626] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
36
|
Chan CK, Wang J, Lin L, Hao Y, Chan SO. Enzymatic removal of hyaluronan affects routing of axons in the mouse optic chiasm. Neuroreport 2007; 18:1533-8. [PMID: 17885596 DOI: 10.1097/wnr.0b013e3282efa065] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Perturbations of interaction of hyaluronan (HA) with its receptor CD44 cause multiple errors in axon routing at the mouse optic chiasm. To investigate this interaction further on the chiasm routing, we studied the axon routing after enzymatic removal of HA from slice preparations of the optic pathway. Hyaluronidase treatment produced an obvious reduction in midline crossing of the first generated axons in E13 chiasms, but had no influence on routing ofthe uncrossed axons in E15 and E16 slices. These findings support a direct role of HA, acting probably through CD44, on axon decussation during early phase of chiasm development, but argue against a direct function of HA on the turning of uncrossed axons in the mouse optic chiasm.
Collapse
Affiliation(s)
- Chung-Kit Chan
- Department of Anatomy, The Chinese University of Hong Kong, Shatin, Hong Kong
| | | | | | | | | |
Collapse
|
37
|
Tester NJ, Howland DR. Chondroitinase ABC improves basic and skilled locomotion in spinal cord injured cats. Exp Neurol 2007; 209:483-96. [PMID: 17936753 DOI: 10.1016/j.expneurol.2007.07.019] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2007] [Revised: 07/21/2007] [Accepted: 07/25/2007] [Indexed: 01/08/2023]
Abstract
Chondroitin sulfate proteoglycans (CSPGs) are upregulated in the central nervous system following injury. Chondroitin sulfate glycosaminoglycan (CS GAG) side chains substituted on this family of molecules contribute to the limited functional recovery following injury by restricting axonal growth and synaptic plasticity. In the current study, the effects of degrading CS GAGs with Chondroitinase ABC (Ch'ase ABC) in the injured spinal cords of adult cats were assessed. Three groups were evaluated for 5 months following T10 hemisections: lesion-only, lesion+control, and lesion+Ch'ase ABC. Intraspinal control and Ch'ase ABC treatments to the lesion site began immediately after injury and continued every other day, for a total of 15 treatments, using an injectable port system. Delivery and in vivo cleavage were verified anatomically in a subset of cats across the treatment period. Recovery of skilled locomotion (ladder, peg, and beam) was significantly accelerated, on average, by >3 weeks in Ch'ase ABC-treated cats compared to controls. Ch'ase ABC-treated cats also showed greater recovery of specific skilled locomotor features including intralimb movement patterns and significantly greater paw placement onto pegs. Although recovery of basic locomotion (bipedal treadmill and overground) was not accelerated, intralimb movement patterns were more normal in the Ch'ase ABC-treated cats. Qualitative assessment of serotonergic immunoreactivity also suggested that Ch'ase ABC treatment enhanced plasticity. Finally, analyses using fluorophore-assisted carbohydrate electrophoresis (FACE) indicate CS GAG content is similar in cat and human. These findings show, for the first time, that intraspinal cleavage of CS GAGs can enhance recovery of function following spinal cord injury in large animals with sophisticated motor behaviors and axonal growth requirements similar to those encountered in humans.
Collapse
Affiliation(s)
- Nicole J Tester
- Malcom Randall Veterans Affairs Medical Center, Gainesville, FL 32608, USA
| | | |
Collapse
|
38
|
Lin L, Wang J, Chan CK, Chan SO. Effects of exogenous hyaluronan on midline crossing and axon divergence in the optic chiasm of mouse embryos. Eur J Neurosci 2007; 26:1-11. [PMID: 17581255 DOI: 10.1111/j.1460-9568.2007.05642.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Perturbation of the transmembrane glycoprotein, CD44, has been shown to cause multiple errors in axon routing in the mouse optic chiasm. In a recent report we have shown that the major CD44 ligand, hyaluronan (HA), is colocalized with CD44 at the midline of the chiasm, suggesting a possible contribution to the control of axon routing in the chiasm. We examined this issue by investigating the effects of exogenous HA on routing of axons in the chiasm in slice preparations of the optic pathway. In preparations of the E13 optic pathway, administration of exogenous HA produced a dose-dependent failure in midline crossing of the first generated optic axons. In E15 slices, when the adult pattern of axon divergence develops in the chiasm, anterograde filling of the optic axons showed an obvious reduction in the uncrossed pathway after HA treatment. This reduction was confirmed by retrograde filling of the ganglion cells in E15 slices, and later in E16 pathways where the uncrossed projection is better developed. Furthermore, we have demonstrated in explant cultures of the retina that HA, when presented in soluble or substrate-bound form, does not affect outgrowth and extension of retinal neurites. These findings together indicate the crucial functions of this matrix molecule in regulating midline crossing and axon divergence, probably through interactions with guidance molecules including CD44, at the midline of the chiasm.
Collapse
Affiliation(s)
- Ling Lin
- Department of Anatomy, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR
| | | | | | | |
Collapse
|
39
|
Abstract
CD44 has been shown to be involved in midline crossing and the generation of ipsilateral projections in the mouse optic chiasm. To determine whether these functions involve hyaluronan, the major ligand of CD44, we examined localization of hyaluronan in the mouse optic pathway. Hyaluronan was deposited mainly in vitreal regions of the retina and the optic disk. In ventral diencephalon, it was localized largely on the chiasmatic neurons that project processes to the chiasmatic midline and the optic tract. Colocalization of hyaluronan and CD44 was observed only in the midline but not lateral domains of the chiasmatic neurons, suggesting a hyaluronan/CD44-mediated mechanism that controls axon routing at the midline but not at the optic tract and the retina.
Collapse
Affiliation(s)
- Ling Lin
- Department of Anatomy, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
| | | | | | | |
Collapse
|
40
|
Erskine L, Herrera E. The retinal ganglion cell axon's journey: insights into molecular mechanisms of axon guidance. Dev Biol 2007; 308:1-14. [PMID: 17560562 DOI: 10.1016/j.ydbio.2007.05.013] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2007] [Revised: 05/02/2007] [Accepted: 05/10/2007] [Indexed: 02/02/2023]
Abstract
The developing visual system has proven to be one of the most informative models for studying axon guidance decisions. The pathway is composed of the axons of a single neuronal cell type, the retinal ganglion cell (RGC), that navigate through a series of intermediate targets on route to their final destination. The molecular basis of optic pathway development is beginning to be elucidated with cues such as netrins, Slits and ephrins playing a key role. Other factors best characterised for their role as morphogens in patterning developing tissues, such as sonic hedgehog (Shh) and Wnts, also act directly on RGC axons to influence guidance decisions. The transcriptional basis of the spatial-temporal expression of guidance cues and their cognate receptors within the developing optic pathway as well as mechanisms underlying the plasticity of guidance responses also are starting to be understood. This review will focus on our current understanding of the molecular mechanisms directing the early development of functional connections in the developing visual system and the insights these studies have provided into general mechanisms of axon guidance.
Collapse
Affiliation(s)
- Lynda Erskine
- Division of Visual Science, Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK.
| | | |
Collapse
|
41
|
Li HP, Homma A, Sango K, Kawamura K, Raisman G, Kawano H. Regeneration of nigrostriatal dopaminergic axons by degradation of chondroitin sulfate is accompanied by elimination of the fibrotic scar and glia limitans in the lesion site. J Neurosci Res 2007; 85:536-47. [PMID: 17154415 DOI: 10.1002/jnr.21141] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Chondroitin sulfate increases around a lesion site after central nervous system injury and is believed to be an impediment to axonal regeneration, because administration of chondroitinase ABC, a chondroitin sulfate-degrading enzyme, promotes axonal regeneration of central neurons. To examine the physiological role of chondroitin sulfate up-regulation after injury, the nigrostriatal dopaminergic axons were unilaterally transected in mice, and chondroitinase ABC was then injected into the lesion site. In mice transected only, tyrosine hydroxylase-immunoreactive axons did not extend across the lesion at 1 or 2 weeks after the transection. Immunoreactivities of chondroitin sulfate side chains and core protein of NG2 proteoglycan increased in and around the lesion site, and a fibrotic scar containing type IV collagen deposits developed in the lesion center. In contrast, in mice transected and treated with chondroitinase ABC, numerous tyrosine hydroxylase-immunoreactive axons were regenerated across the lesion at 1 and 2 weeks after the transection. In these animals, chondroitin sulfate immunoreactivity remarkably decreased, and immunoreactivity of 2B6 antibody, which recognizes the stub of degraded chondroitin sulfate side chains, was enhanced. Furthermore, the formation of a fibrotic scar and a glia limitans that surrounds the former was completely prevented, although type IV collagen immunoreactivity remained in newly formed blood capillaries around the lesion site. We discuss the question of whether the chondroitin sulfate is acting as a direct inhibitor of axonal regeneration or whether the observed changes are due to a prevention of the fibrotic scar formation and a rearrangement of astrocytic membranes.
Collapse
Affiliation(s)
- Hong-Peng Li
- Department of Developmental Morphology, Tokyo Metropolitan Institute for Neuroscience, Fuchu, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
42
|
Faissner A, Heck N, Dobbertin A, Garwood J. DSD-1-Proteoglycan/Phosphacan and Receptor Protein Tyrosine Phosphatase-Beta Isoforms during Development and Regeneration of Neural Tissues. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 557:25-53. [PMID: 16955703 DOI: 10.1007/0-387-30128-3_3] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Interactions between neurons and glial cells play important roles in regulating key events of development and regeneration of the CNS. Thus, migrating neurons are partly guided by radial glia to their target, and glial scaffolds direct the growth and directional choice of advancing axons, e.g., at the midline. In the adult, reactive astrocytes and myelin components play a pivotal role in the inhibition of regeneration. The past years have shown that astrocytic functions are mediated on the molecular level by extracellular matrix components, which include various glycoproteins and proteoglycans. One important, developmentally regulated chondroitin sulfate proteoglycan is DSD-1-PG/phosphacan, a glial derived proteoglycan which represents a splice variant of the receptor protein tyrosine phosphatase (RPTP)-beta (also known as PTP-zeta). Current evidence suggests that this proteoglycan influences axon growth in development and regeneration, displaying inhibitory or stimulatory effects dependent on the mode of presentation, and the neuronal lineage. These effects seem to be mediated by neuronal receptors of the Ig-CAM superfamily.
Collapse
Affiliation(s)
- Andreas Faissner
- Department of Cell Morphology and Molecular Neurobiology, Ruhr-University, Bochum, Germany
| | | | | | | |
Collapse
|
43
|
de Wit J, Verhaagen J. Proteoglycans as modulators of axon guidance cue function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 600:73-89. [PMID: 17607948 DOI: 10.1007/978-0-387-70956-7_7] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Organizing a functional neuronal network requires the precise wiring of neuronal connections. In order to find their correct targets, growth cones navigate through the extracellular matrix guided by secreted and membrane-bound molecules of the slit, netrin, ephrin and semaphorin families. Although many of these axon guidance molecules are able to bind to heparan sulfate proteoglycans, the role of proteoglycans in regulating axon guidance cue function is only now beginning to be understood. Recent developmental studies in a wide range of model organisms have revealed a crucial role for heparan sulfate proteoglycans as modulators of key signaling pathways in axon guidance. In addition, emerging evidence indicates an essential role for chondroitin sulfate proteoglycans in modifying the guidance function of semaphorins. It is becoming increasingly clear that extracellular matrix molecules, rather than just constituting a structural scaffold, can critically influence axon guidance cue function in development, and may continue to do so in the injured adult nervous system.
Collapse
Affiliation(s)
- Joris de Wit
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, De Boelelaan 1087, 1081 HV Amsterdam, The Netherlands.
| | | |
Collapse
|
44
|
Hidalgo-Sánchez M, Francisco-Morcillo J, Navascués J, Martín-Partido G. Early development of the optic nerve in the turtle Mauremys leprosa. Brain Res 2006; 1137:35-49. [PMID: 17258694 DOI: 10.1016/j.brainres.2006.12.046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2006] [Revised: 11/30/2006] [Accepted: 12/14/2006] [Indexed: 02/05/2023]
Abstract
We show the distribution of the neural and non-neural elements in the early development of the optic nerve in the freshwater turtle, Mauremys leprosa, using light and electron microscopy. The first optic axons invaded the ventral periphery of the optic stalk in close relationship to the radial neuroepithelial processes. Growth cones were thus exclusively located in the ventral margin. As development progressed, growth cones were present in ventral and dorsal regions, including the dorsal periphery, where they intermingled with mature axons. However, growth cones predominated in the ventral part and axonal profiles dorsally, reflecting a dorsal to ventral gradient of maturation. The size and morphology of growth cones depended on the developmental stage and the region of the optic nerve. At early stages, most growth cones were of irregular shape, showing abundant lamellipodia. At the following stages, they tended to be larger and more complex in the ventral third than in intermediate and dorsal portions, suggesting a differential behavior of the growth cones along the ventro-dorsal axis. The arrival of optic axons at the optic stalk involved the progressive transformation of neuroepithelial cells into glial cells. Simultaneously with the fiber invasion, an important number of cells died by apoptosis in the dorsal wall of the optic nerve. These findings are discussed in relation to the results described in the developing optic nerve of other vertebrates.
Collapse
Affiliation(s)
- Matías Hidalgo-Sánchez
- Departamento de Biología Celular, Facultad de Ciencias, Universidad de Extremadura, Avda. de Elvas s/n, 06071 Badajoz, Spain
| | | | | | | |
Collapse
|
45
|
Abstract
Proteoglycans (PGs), molecules in which glycosaminoglycans (GAGs) are covalently linked to a protein core, are components of the extracellular matrix of all multicellular organisms. Sugar moieties in GAGs are often extensively modified, which make these molecules enormously complex. We discuss here the role of PGs during animal development, emphasizing the in vivo significance of sugar modifications. We explore a model in which the modification patterns of GAG chains may provide a specific code that contributes to the correct development of a multicellular organism.
Collapse
Affiliation(s)
- Hannes E Bülow
- Department of Molecular Genetics, Albert Einstein College of Medicine, Bronx, New York 10461, USA.
| | | |
Collapse
|
46
|
Sasisekharan R, Raman R, Prabhakar V. GLYCOMICS APPROACH TO STRUCTURE-FUNCTION RELATIONSHIPS OF GLYCOSAMINOGLYCANS. Annu Rev Biomed Eng 2006; 8:181-231. [PMID: 16834555 DOI: 10.1146/annurev.bioeng.8.061505.095745] [Citation(s) in RCA: 230] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Extracellular modulation of phenotype is an emerging paradigm in this current postgenomics age of molecular and cell biology. Glycosaminoglycans (GAGs) are primary components of the cell surface and the cell-extracellular matrix (ECM) interface. Advances in the technology to analyze GAGs and in whole-organism genetics have led to a dramatic increase in the known important biological role of these complex polysaccharides. Owing to their ubiquitous distribution at the cell-ECM interface, GAGs interact with numerous proteins and modulate their activity, thus impinging on fundamental biological processes such as cell growth and development. Many recent reviews have captured important aspects of GAG structure and biosynthesis, GAG-protein interactions, and GAG biology. GAG research is currently at a stage where there is a need for an integrated systems or glycomics approach, which involves an integration of all of the above concepts to define their structure-function relationships. Focusing on heparin/heparan (HSGAGs) and chondroitin/dermatan sulfate (CSGAGs), this review highlights the important aspects of GAGs and summarizes these aspects in the context of taking a glycomics approach that integrates the different technologies to define structure-function relationships of GAGs.
Collapse
Affiliation(s)
- Ram Sasisekharan
- Biological Engineering Division, Center for Biomedical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
| | | | | |
Collapse
|
47
|
Ichijo H. Restricted distribution of D-unit-rich chondroitin sulfate carbohydrate chains in the neuropil encircling the optic tract and on a subset of retinal axons in chick embryos. J Comp Neurol 2006; 495:470-9. [PMID: 16485291 DOI: 10.1002/cne.20892] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
To obtain basic information about the structural diversity and functional specificity of chondroitin sulfates (CSs) in the formation of the retinotectal pathway in chick embryos, the distribution of CSs around the optic tract was investigated by using anti-CS monoclonal antibodies with different specificities. The CSs are unbranched polymers composed of repeating disaccharide units of glucuronic acid (GlcA) and N-acetylgalactosamine (GalNAc). The disaccharide units are classified into O-, A-, C-, D-, and E-units based on the position(s) of the added sulfate group(s). The MO-225 monoclonal antibody recognizes CSs that are rich in the D-unit [GlcA(2S)beta1-3GalNAc(6S)]; the MO-225 epitopes were distributed in the diencephalotelencephalic boundary and the neuropil encircling the optic tract. In addition, they were distributed on membrane surfaces of the retinal axons running in an interface layer in contact with the neuropil encircling the optic tract. The results suggest that D-unit-rich CSs are involved in delimiting the border of the optic tract and in the chronological sorting of the retinal axons.
Collapse
Affiliation(s)
- Hiroyuki Ichijo
- Department of Anatomy and Embryology, Institute of Basic Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki 305-8575, Japan.
| |
Collapse
|
48
|
Rauch U, Kappler J. Chondroitin/Dermatan Sulfates in the Central Nervous System: Their Structures and Functions in Health and Disease. CHONDROITIN SULFATE: STRUCTURE, ROLE AND PHARMACOLOGICAL ACTIVITY 2006; 53:337-56. [PMID: 17239774 DOI: 10.1016/s1054-3589(05)53016-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Uwe Rauch
- Department of Experimental Pathology, Universitet Lund, Lund, Sweden
| | | |
Collapse
|
49
|
Abstract
At the vertebrate optic chiasm there is major change in fibre order and, in many animals, a separation of fibres destined for different hemispheres of the brain. However, the structure of this region is not uniform among all species but rather shows marked variations both in terms of its gross architecture and the pathways taken by different fibres. There also are striking differences in the developmental mechanisms sculpting this region even between closely related animals. In spite of this, recent studies have provided strong evidence for a remarkable degree of conservation in the molecular nature of the guidance signals and regulatory genes driving chiasmatic development. Here differences and similarities in chiasmatic organisation and development between separate groups of animals will be reviewed. While it may not be possible to ascribe a single set of factors that are universal components of the vertebrate chiasm, there are both strikingly similar elements as well as diverse features to the development, organisation and architecture of this region. This review aims to highlight key issues in the organisation and development of the vertebrate optic chiasm with a focus on comparing and contrasting the data that has been gleaned to date from different vertebrate groups.
Collapse
Affiliation(s)
- Glen Jeffery
- Institute of Ophthalmology, University College London, Bath Street, London EC1V 9EL, UK.
| | | |
Collapse
|
50
|
Inatani M. Molecular mechanisms of optic axon guidance. Naturwissenschaften 2005; 92:549-61. [PMID: 16220285 DOI: 10.1007/s00114-005-0042-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2005] [Accepted: 08/03/2005] [Indexed: 01/17/2023]
Abstract
Axon guidance is one of the critical processes during vertebrate central nervous system (CNS) development. The optic nerve, which contains the axons of retinal ganglion cells, has been used as a powerful model to elucidate some of the mechanisms underlying axon guidance because it is easily manipulated experimentally, and its function is well understood. Recent molecular biology studies have revealed that numerous guidance molecules control the development of the visual pathway. This review introduces the molecular mechanisms involved in each critical step during optic axon guidance. Axonal projections to the optic disc are thought to depend on adhesion molecules and inhibitory extracellular matrices such as chondroitin sulfate. The formation of the head of the optic nerve and the optic chiasm require ligand-receptor interactions between netrin-1 and the deleted in colorectal cancer receptor, and Slit proteins and Robo receptors, respectively. The gradient distributions of ephrin ligands and Eph receptors are essential for correct ipsilateral projections at the optic chiasm and the topographic mapping of axons in the superior colliculus/optic tectum. The precise gradient is regulated by transcription factors determining the retinal dorso-ventral and nasal-temporal polarities. Moreover, the axon guidance activities by Slit and semaphorin 5A require the existence of heparan sulfate, which binds to numerous guidance molecules. Recent discoveries about the molecular mechanisms underlying optic nerve guidance will facilitate progress in CNS developmental biology and axon-regeneration therapy.
Collapse
Affiliation(s)
- Masaru Inatani
- Department of Ophthalmology and Visual Science, Kumamoto University Graduate School of Medical Sciences, 1-1-1 Honjo, Kumamoto 860-8556, Japan.
| |
Collapse
|