1
|
Li Y, Lu T, Dong P, Chen J, Zhao Q, Wang Y, Xiao T, Wu H, Zhao Q, Huang H. A single-cell atlas of Drosophila trachea reveals glycosylation-mediated Notch signaling in cell fate specification. Nat Commun 2024; 15:2019. [PMID: 38448482 PMCID: PMC10917797 DOI: 10.1038/s41467-024-46455-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 02/28/2024] [Indexed: 03/08/2024] Open
Abstract
The Drosophila tracheal system is a favorable model for investigating the program of tubular morphogenesis. This system is established in the embryo by post-mitotic cells, but also undergoes remodeling by adult stem cells. Here, we provide a comprehensive cell atlas of Drosophila trachea using the single-cell RNA-sequencing (scRNA-seq) technique. The atlas documents transcriptional profiles of tracheoblasts within the Drosophila airway, delineating 9 major subtypes. Further evidence gained from in silico as well as genetic investigations highlight a set of transcription factors characterized by their capacity to switch cell fate. Notably, the transcription factors Pebbled, Blistered, Knirps, Spalt and Cut are influenced by Notch signaling and determine tracheal cell identity. Moreover, Notch signaling orchestrates transcriptional activities essential for tracheoblast differentiation and responds to protein glycosylation that is induced by high sugar diet. Therefore, our study yields a single-cell transcriptomic atlas of tracheal development and regeneration, and suggests a glycosylation-responsive Notch signaling in cell fate determination.
Collapse
Affiliation(s)
- Yue Li
- Department of Cell Biology, and Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310058, China
- Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 311121, China
| | - Tianfeng Lu
- Department of Cell Biology, and Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310058, China
- Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 311121, China
| | - Pengzhen Dong
- Department of Cell Biology, and Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310058, China
- Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 311121, China
| | - Jian Chen
- Department of Cell Biology, and Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310058, China
- Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 311121, China
| | - Qiang Zhao
- Department of Cell Biology, and Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310058, China
- Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 311121, China
| | - Yuying Wang
- Department of Cell Biology, and Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310058, China
- Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 311121, China
| | - Tianheng Xiao
- Department of Cell Biology, and Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310058, China
- Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 311121, China
| | - Honggang Wu
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310058, China.
| | - Quanyi Zhao
- Division of Cardiovascular Medicine and Cardiovascular Institute, School of Medicine, Stanford University, 300 Pasteur Drive, Falk CVRC, Stanford, CA, 94305, USA.
| | - Hai Huang
- Department of Cell Biology, and Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310058, China.
- Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 311121, China.
| |
Collapse
|
2
|
Bosch JA, Keith N, Escobedo F, Fisher WW, LaGraff JT, Rabasco J, Wan KH, Weiszmann R, Hu Y, Kondo S, Brown JB, Perrimon N, Celniker SE. Molecular and functional characterization of the Drosophila melanogaster conserved smORFome. Cell Rep 2023; 42:113311. [PMID: 37889754 PMCID: PMC10843857 DOI: 10.1016/j.celrep.2023.113311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 08/24/2023] [Accepted: 10/04/2023] [Indexed: 10/29/2023] Open
Abstract
Short polypeptides encoded by small open reading frames (smORFs) are ubiquitously found in eukaryotic genomes and are important regulators of physiology, development, and mitochondrial processes. Here, we focus on a subset of 298 smORFs that are evolutionarily conserved between Drosophila melanogaster and humans. Many of these smORFs are conserved broadly in the bilaterian lineage, and ∼182 are conserved in plants. We observe remarkably heterogeneous spatial and temporal expression patterns of smORF transcripts-indicating wide-spread tissue-specific and stage-specific mitochondrial architectures. In addition, an analysis of annotated functional domains reveals a predicted enrichment of smORF polypeptides localizing to mitochondria. We conduct an embryonic ribosome profiling experiment and find support for translation of 137 of these smORFs during embryogenesis. We further embark on functional characterization using CRISPR knockout/activation, RNAi knockdown, and cDNA overexpression, revealing diverse phenotypes. This study underscores the importance of identifying smORF function in disease and phenotypic diversity.
Collapse
Affiliation(s)
- Justin A Bosch
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Nathan Keith
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Felipe Escobedo
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - William W Fisher
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - James Thai LaGraff
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Jorden Rabasco
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Kenneth H Wan
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Richard Weiszmann
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Yanhui Hu
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Shu Kondo
- Laboratory of Invertebrate Genetics, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - James B Brown
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | - Norbert Perrimon
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA.
| | - Susan E Celniker
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| |
Collapse
|
3
|
MicroSalmon: A Comprehensive, Searchable Resource of Predicted MicroRNA Targets and 3'UTR Cis-Regulatory Elements in the Full-Length Sequenced Atlantic Salmon Transcriptome. Noncoding RNA 2021; 7:ncrna7040061. [PMID: 34698276 PMCID: PMC8544657 DOI: 10.3390/ncrna7040061] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 12/20/2022] Open
Abstract
Complete 3′UTRs unambiguously assigned to specific mRNA isoforms from the Atlantic salmon full-length (FL) transcriptome were collected into a 3′UTRome. miRNA response elements (MREs) and other cis-regulatory motifs were subsequently predicted and assigned to 3′UTRs of all FL-transcripts. The MicroSalmon GitHub repository provides all results. RNAHybrid and sRNAtoolbox tools predicted the MREs. UTRscan and the Teiresias algorithm predicted other 3′UTR cis-acting motifs, both known vertebrate motifs and putative novel motifs. MicroSalmon provides search programs to retrieve all FL-transcripts targeted by a miRNA (median number 1487), all miRNAs targeting an FL-transcript (median number 27), and other cis-acting motifs. As thousands of FL-transcripts may be targets of each miRNA, additional experimental strategies are necessary to reduce the likely true and relevant targets to a number that may be functionally validated. Low-complexity motifs known to affect mRNA decay in vertebrates were over-represented. Many of these were enriched in the terminal end, while purine- or pyrimidine-rich motifs with unknown functions were enriched immediately downstream of the stop codon. Furthermore, several novel complex motifs were over-represented, indicating conservation and putative function. In conclusion, MicroSalmon is an extensive and useful, searchable resource for study of Atlantic salmon transcript regulation by miRNAs and cis-acting 3′UTR motifs.
Collapse
|
4
|
Dutta D, Sharma V, Mutsuddi M, Mukherjee A. Regulation of Notch signaling by E3 ubiquitin ligases. FEBS J 2021; 289:937-954. [PMID: 33644958 DOI: 10.1111/febs.15792] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 02/07/2021] [Accepted: 02/25/2021] [Indexed: 12/11/2022]
Abstract
Notch signaling is an evolutionarily conserved pathway that is widely used for multiple cellular events during development. Activation of the Notch pathway occurs when the ligand from a neighboring cell binds to the Notch receptor and induces cleavage of the intracellular domain of Notch, which further translocates into the nucleus to activate its downstream genes. The involvement of the Notch pathway in diverse biological events is possible due to the complexity in its regulation. In order to maintain tight spatiotemporal regulation, the Notch receptor, as well as its ligand, undergoes a series of physical and biochemical modifications that, in turn, helps in proper maintenance and fine-tuning of the signaling outcome. Ubiquitination is the post-translational addition of a ubiquitin molecule to a substrate protein, and the process is regulated by E3 ubiquitin ligases. The present review describes the involvement of different E3 ubiquitin ligases that play an important role in the regulation and maintenance of proper Notch signaling and how perturbation in ubiquitination results in abnormal Notch signaling leading to a number of human diseases.
Collapse
Affiliation(s)
- Debdeep Dutta
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Vartika Sharma
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Mousumi Mutsuddi
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Ashim Mukherjee
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
5
|
Bellec K, Pinot M, Gicquel I, Le Borgne R. The Clathrin adaptor AP-1 and Stratum act in parallel pathways to control Notch activation in Drosophila sensory organ precursors cells. Development 2021; 148:dev191437. [PMID: 33298463 PMCID: PMC7823167 DOI: 10.1242/dev.191437] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 11/24/2020] [Indexed: 11/20/2022]
Abstract
Drosophila sensory organ precursors divide asymmetrically to generate pIIa/pIIb cells, the identity of which relies on activation of Notch at cytokinesis. Although Notch is present apically and basally relative to the midbody at the pIIa-pIIb interface, the basal pool of Notch is reported to be the main contributor for Notch activation in the pIIa cell. Intra-lineage signalling requires appropriate apico-basal targeting of Notch, its ligand Delta and its trafficking partner Sanpodo. We have previously reported that AP-1 and Stratum regulate the trafficking of Notch and Sanpodo from the trans-Golgi network to the basolateral membrane. Loss of AP-1 or Stratum caused mild Notch gain-of-function phenotypes. Here, we report that their concomitant loss results in a penetrant Notch gain-of-function phenotype, indicating that they control parallel pathways. Although unequal partitioning of cell fate determinants and cell polarity were unaffected, we observed increased amounts of signalling-competent Notch as well as Delta and Sanpodo at the apical pIIa-pIIb interface, at the expense of the basal pool of Notch. We propose that AP-1 and Stratum operate in parallel pathways to localize Notch and control where receptor activation takes place.
Collapse
Affiliation(s)
- Karen Bellec
- Université Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, F-35000 Rennes, France
| | - Mathieu Pinot
- Université Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, F-35000 Rennes, France
| | - Isabelle Gicquel
- Université Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, F-35000 Rennes, France
| | - Roland Le Borgne
- Université Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, F-35000 Rennes, France
| |
Collapse
|
6
|
Luo KL, Underwood RS, Greenwald I. Positive autoregulation of lag-1 in response to LIN-12 activation in cell fate decisions during C. elegans reproductive system development. Development 2020; 147:dev.193482. [PMID: 32839181 DOI: 10.1242/dev.193482] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 08/11/2020] [Indexed: 12/11/2022]
Abstract
During animal development, ligand binding releases the intracellular domain of LIN-12/Notch by proteolytic cleavage to translocate to the nucleus, where it associates with the DNA-binding protein LAG-1/CSL to activate target gene transcription. We investigated the spatiotemporal regulation of LAG-1/CSL expression in Caenorhabditis elegans and observed that an increase in endogenous LAG-1 levels correlates with LIN-12/Notch activation in different cell contexts during reproductive system development. We show that this increase is via transcriptional upregulation by creating a synthetic endogenous operon, and identified an enhancer region that contains multiple LAG-1 binding sites (LBSs) embedded in a more extensively conserved high occupancy target (HOT) region. We show that these LBSs are necessary for upregulation in response to LIN-12/Notch activity, indicating that lag-1 engages in direct positive autoregulation. Deletion of the HOT region from endogenous lag-1 reduced LAG-1 levels and abrogated positive autoregulation, but did not cause hallmark cell fate transformations associated with loss of lin-12/Notch or lag-1 activity. Instead, later somatic reproductive system defects suggest that proper transcriptional regulation of lag-1 confers robustness to somatic reproductive system development.
Collapse
Affiliation(s)
- Katherine Leisan Luo
- Integrated Program in Cellular, Molecular and Biophysical Studies, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Ryan S Underwood
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Iva Greenwald
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| |
Collapse
|
7
|
Regulation of Notch Signaling in Drosophila melanogaster: The Role of the Heterogeneous Nuclear Ribonucleoprotein Hrp48 and Deltex. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1227:95-105. [DOI: 10.1007/978-3-030-36422-9_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
8
|
Ariss MM, Islam ABMMK, Critcher M, Zappia MP, Frolov MV. Single cell RNA-sequencing identifies a metabolic aspect of apoptosis in Rbf mutant. Nat Commun 2018; 9:5024. [PMID: 30479347 PMCID: PMC6258665 DOI: 10.1038/s41467-018-07540-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 11/05/2018] [Indexed: 12/12/2022] Open
Abstract
The function of Retinoblastoma tumor suppressor (pRB) is greatly influenced by the cellular context, therefore the consequences of pRB inactivation are cell-type-specific. Here we employ single cell RNA-sequencing (scRNA-seq) to profile the impact of an Rbf mutation during Drosophila eye development. First, we build a catalogue of 11,500 wild type eye disc cells containing major known cell types. We find a transcriptional switch occurring in differentiating photoreceptors at the time of axonogenesis. Next, we map a cell landscape of Rbf mutant and identify a mutant-specific cell population that shows intracellular acidification due to increase in glycolytic activity. Genetic experiments demonstrate that such metabolic changes, restricted to this unique Rbf mutant population, sensitize cells to apoptosis and define the pattern of cell death in Rbf mutant eye disc. Thus, these results illustrate how scRNA-seq can be applied to dissect mutant phenotypes. The function of the Retinoblastoma (Rb) protein is regulated by its cellular environment. Here, the authors perform single cell RNA-sequencing during Drosophila eye development and identify the impact of an Rbf mutation, which sensitises specific cells to apoptosis by changing metabolism.
Collapse
Affiliation(s)
- Majd M Ariss
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, 900 S Ashland Avenue, Chicago, IL, 60607, USA
| | - Abul B M M K Islam
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Meg Critcher
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, 900 S Ashland Avenue, Chicago, IL, 60607, USA
| | - Maria Paula Zappia
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, 900 S Ashland Avenue, Chicago, IL, 60607, USA
| | - Maxim V Frolov
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, 900 S Ashland Avenue, Chicago, IL, 60607, USA.
| |
Collapse
|
9
|
Insight into Notch Signaling Steps That Involve pecanex from Dominant-Modifier Screens in Drosophila. Genetics 2018; 209:1099-1119. [PMID: 29853475 DOI: 10.1534/genetics.118.300935] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 05/22/2018] [Indexed: 12/14/2022] Open
Abstract
Notch signaling plays crucial roles in intercellular communications. In Drosophila, the pecanex (pcx) gene, which encodes an evolutionarily conserved multi-pass transmembrane protein, appears to be required to activate Notch signaling in some contexts, especially during neuroblast segregation in the neuroectoderm. Although Pcx has been suggested to contribute to endoplasmic reticulum homeostasis, its functions remain unknown. Here, to elucidate these roles, we performed genetic modifier screens of pcx We found that pcx heterozygotes lacking its maternal contribution exhibit cold-sensitive lethality, which is attributed to a reduction in Notch signaling at decreased temperatures. Using sets of deletions that uncover most of the second and third chromosomes, we identified four enhancers and two suppressors of the pcx cold-sensitive lethality. Among these, five genes encode known Notch-signaling components: big brain, Delta (Dl), neuralized (neur), Brother of Bearded A (BobA), a member of the Bearded (Brd) family, and N-ethylmaleimide-sensitive factor 2 (Nsf2). We showed that BobA suppresses Dl endocytosis during neuroblast segregation in the neuroectoderm, as Brd family genes reportedly do in the mesoderm for mesectoderm specification. Analyses of Nsf2, a key regulator of vesicular fusion, suggested a novel role in neuroblast segregation, which is distinct from Nsf2's previously reported role in imaginal tissues. Finally, jim lovell, which encodes a potential transcription factor, may play a role in Notch signaling during neuroblast segregation. These results reveal new research avenues for Pcx functions and Notch signaling.
Collapse
|
10
|
Perez-Mockus G, Mazouni K, Roca V, Corradi G, Conte V, Schweisguth F. Spatial regulation of contractility by Neuralized and Bearded during furrow invagination in Drosophila. Nat Commun 2017; 8:1594. [PMID: 29150614 PMCID: PMC5693868 DOI: 10.1038/s41467-017-01482-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 09/21/2017] [Indexed: 12/22/2022] Open
Abstract
Embryo-scale morphogenesis arises from patterned mechanical forces. During Drosophila gastrulation, actomyosin contractility drives apical constriction in ventral cells, leading to furrow formation and mesoderm invagination. It remains unclear whether and how mechanical properties of the ectoderm influence this process. Here, we show that Neuralized (Neur), an E3 ubiquitin ligase active in the mesoderm, regulates collective apical constriction and furrow formation. Conversely, the Bearded (Brd) proteins antagonize maternal Neur and lower medial-apical contractility in the ectoderm: in Brd-mutant embryos, the ventral furrow invaginates properly but rapidly unfolds as medial MyoII levels increase in the ectoderm. Increasing contractility in the ectoderm via activated Rho similarly triggers furrow unfolding whereas decreasing contractility restores furrow invagination in Brd-mutant embryos. Thus, the inhibition of Neur by Brd in the ectoderm differentiates the mechanics of the ectoderm from that of the mesoderm and patterns the activity of MyoII along the dorsal-ventral axis.
Collapse
Affiliation(s)
- Gantas Perez-Mockus
- Department of Developmental and Stem Cell Biology, Institut Pasteur, F-75015, Paris, France.,CNRS, UMR3738, F-75015, Paris, France.,Univ. Pierre et Marie Curie, Cellule Pasteur UPMC, F-75015, Paris, France
| | - Khalil Mazouni
- Department of Developmental and Stem Cell Biology, Institut Pasteur, F-75015, Paris, France.,CNRS, UMR3738, F-75015, Paris, France
| | - Vanessa Roca
- Department of Developmental and Stem Cell Biology, Institut Pasteur, F-75015, Paris, France.,CNRS, UMR3738, F-75015, Paris, France
| | - Giulia Corradi
- Department of Developmental and Stem Cell Biology, Institut Pasteur, F-75015, Paris, France.,CNRS, UMR3738, F-75015, Paris, France
| | - Vito Conte
- Institute for Bioengineering of Catalonia, Barcelona Institute of Science and Technology, 08028, Barcelona, Spain.
| | - François Schweisguth
- Department of Developmental and Stem Cell Biology, Institut Pasteur, F-75015, Paris, France. .,CNRS, UMR3738, F-75015, Paris, France.
| |
Collapse
|
11
|
Intra-lineage Fate Decisions Involve Activation of Notch Receptors Basal to the Midbody in Drosophila Sensory Organ Precursor Cells. Curr Biol 2017; 27:2239-2247.e3. [PMID: 28736165 DOI: 10.1016/j.cub.2017.06.030] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 06/07/2017] [Accepted: 06/12/2017] [Indexed: 01/27/2023]
Abstract
Notch receptors regulate cell fate decisions during embryogenesis and throughout adult life. In many cell lineages, binary fate decisions are mediated by directional Notch signaling between the two sister cells produced by cell division. How Notch signaling is restricted to sister cells after division to regulate intra-lineage decision is poorly understood. More generally, where ligand-dependent activation of Notch occurs at the cell surface is not known, as methods to detect receptor activation in vivo are lacking. In Drosophila pupae, Notch signals during cytokinesis to regulate the intra-lineage pIIa/pIIb decision in the sensory organ lineage. Here, we identify two pools of Notch along the pIIa-pIIb interface, apical and basal to the midbody. Analysis of the dynamics of Notch, Delta, and Neuralized distribution in living pupae suggests that ligand endocytosis and receptor activation occur basal to the midbody. Using selective photo-bleaching of GFP-tagged Notch and photo-tracking of photo-convertible Notch, we show that nuclear Notch is indeed produced by receptors located basal to the midbody. Thus, only a specific subset of receptors, located basal to the midbody, contributes to signaling in pIIa. This is the first in vivo characterization of the pool of Notch contributing to signaling. We propose a simple mechanism of cell fate decision based on intra-lineage signaling: ligands and receptors localize during cytokinesis to the new cell-cell interface, thereby ensuring signaling between sister cells, hence intra-lineage fate decision.
Collapse
|
12
|
Perez-Mockus G, Roca V, Mazouni K, Schweisguth F. Neuralized regulates Crumbs endocytosis and epithelium morphogenesis via specific Stardust isoforms. J Cell Biol 2017; 216:1405-1420. [PMID: 28400441 PMCID: PMC5412571 DOI: 10.1083/jcb.201611196] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 02/13/2017] [Accepted: 02/23/2017] [Indexed: 11/22/2022] Open
Abstract
The E3 ubiquitin ligase Neuralized is shown to interact with a subset of the Stardust isoforms to regulate the endocytosis of the apical protein Crumbs and thereby promote epithelial remodeling during Drosophila development. Crumbs (Crb) is a conserved determinant of apical membrane identity that regulates epithelial morphogenesis in many developmental contexts. In this study, we identify the Crb complex protein Stardust (Sdt) as a target of the E3 ubiquitin ligase Neuralized (Neur) in Drosophila melanogaster. Neur interacts with and down-regulates specific Sdt isoforms containing a Neur binding motif (NBM). Using a CRISPR (clustered regularly interspaced short palindromic repeats)-induced deletion of the NBM-encoding exon, we found that Sdt is a key Neur target and that Neur acts via Sdt to down-regulate Crb. We further show that Neur promotes the endocytosis of Crb via the NBM-containing isoforms of Sdt. Although the regulation of Crb by Neur is not strictly essential, it contributes to epithelium remodeling in the posterior midgut and thereby facilitates the trans-epithelial migration of the primordial germ cells in early embryos. Thus, our study uncovers a novel regulatory mechanism for the developmental control of Crb-mediated morphogenesis.
Collapse
Affiliation(s)
- Gantas Perez-Mockus
- Department of Developmental and Stem Cell Biology, Institut Pasteur, F-75015 Paris, France.,Centre National de la Recherché Scientifique, UMR3738, F-75015 Paris, France.,Cellule Pasteur, Université Pierre et Marie Curie, F-75015 Paris, France
| | - Vanessa Roca
- Department of Developmental and Stem Cell Biology, Institut Pasteur, F-75015 Paris, France.,Centre National de la Recherché Scientifique, UMR3738, F-75015 Paris, France
| | - Khalil Mazouni
- Department of Developmental and Stem Cell Biology, Institut Pasteur, F-75015 Paris, France.,Centre National de la Recherché Scientifique, UMR3738, F-75015 Paris, France
| | - François Schweisguth
- Department of Developmental and Stem Cell Biology, Institut Pasteur, F-75015 Paris, France .,Centre National de la Recherché Scientifique, UMR3738, F-75015 Paris, France
| |
Collapse
|
13
|
Dearden PK. Origin and evolution of the enhancer of split complex. BMC Genomics 2015; 16:712. [PMID: 26384649 PMCID: PMC4575448 DOI: 10.1186/s12864-015-1926-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 09/12/2015] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The Enhancer of split complex is an unusual gene complex found in Arthropod genomes. Where known this complex of genes is often regulated by Notch cell signalling and is critically important for neurogenesis. The Enhancer of split complex is made up of two different classes of genes, basic helix-loop-helix-orange domain transcription factors and bearded class genes. The association of these genes has been detected in the genomes of insects and crustaceans. RESULTS Tracing the evolution of the Enhancer of split complex in recently sequenced Arthropod genomes indicates that enhancer of split basic helix-loop-helix orange domain genes arose before the common ancestor of insects and Crustacea, and before the formation of the complex. Throughout insect and crustacean evolution, a four-gene cluster has been present with lineage specific gene losses and duplications. The complex can be found in the vast majority of genomes, but appears to be missing from the genomes of chalcid wasps, raising questions as to how they carry out neurogenesis in the absence of these crucial genes. CONCLUSIONS The enhancer of split complex arose in the common ancestor of Crustacea and insects, probably through the linkage of a basic helix-loop-helix orange domain gene and a bearded class gene. The complex has been maintained, with variations, throughout insect and crustacean evolution indicating some function of the complex, such as coordinate regulation, may maintain its structure through evolutionary time.
Collapse
Affiliation(s)
- Peter K Dearden
- Genetics Otago and Gravida (National Centre for Growth and Development), Biochemistry Department, University of Otago, Dunedin, Aotearoa, New Zealand.
| |
Collapse
|
14
|
Wurmbach E, Preiss A. Deletion mapping in the Enhancer of split complex. Hereditas 2015; 151:159-68. [PMID: 25588303 DOI: 10.1111/hrd2.00065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 09/26/2014] [Indexed: 11/30/2022] Open
Abstract
The Enhancer of split complex [E(spl)-C] comprises twelve genes of different classes. Seven genes encode proteins of with a basic-helix-loop-helix-orange (bHLH-O) domain that function as transcriptional repressors and serve as effectors of the Notch signalling pathway. They have been named E(spl)m8-, m7-, m5-, m3-, mβ-, mγ- and mδ-HLH. Four genes, E(spl)m6-, m4-, m2- and mα-BFM are intermingled and encode Notch repressor proteins of the Bearded-family (BFM). The complex is split by a single gene of unrelated function, encoding a Kazal-type protease inhibitor (Kaz-m1). All members within a family, bHLH-O or BFM, are very similar in structure and in function. In an attempt to generate specific mutants, we have mobilised P-element constructs residing next to E(spl)m7-HLH and E(spl)mγ-HLH, respectively. The resulting deletions were mapped molecularly and by cytology. Two small deletions affected only E(spl)m7-HLH and E(spl)mδ. The deficient flies were viable without apparent phenotype. Larger deletions, generated also by X-ray mutagenesis, uncover most of the E(spl)-C. The phenotypes of homozygous deficient embryos were analysed to characterize the respective loss of Notch signalling activity.
Collapse
Affiliation(s)
- Elisa Wurmbach
- Office of Chief Medical Examiner, Department of Forensic Biology, New York, NY, USA
| | | |
Collapse
|
15
|
|
16
|
Kux K, Kiparaki M, Delidakis C. The two Tribolium E(spl) genes show evolutionarily conserved expression and function during embryonic neurogenesis. Mech Dev 2013; 130:207-25. [PMID: 23485410 DOI: 10.1016/j.mod.2013.02.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 02/13/2013] [Accepted: 02/14/2013] [Indexed: 01/05/2023]
Abstract
Tribolium castaneum is a well-characterised model insect, whose short germ-band mode of embryonic development is characteristic of many insect species and differs from the exhaustively studied Drosophila. Mechanisms of early neurogenesis, however, show significant conservation with Drosophila, as a characteristic pattern of neuroblasts arises from neuroectoderm proneural clusters in response to the bHLH activator Ash, a homologue of Achaete-Scute. Here we study the expression and function of two other bHLH proteins, the bHLH-O repressors E(spl)1 and E(spl)3. Their Drosophila homologues are expressed in response to Notch signalling and antagonize the activity of Achaete-Scute proteins, thus restricting the number of nascent neuroblasts. E(spl)1 and 3 are the only E(spl) homologues in Tribolium and both show expression in the cephalic and ventral neuroectoderm during embryonic neurogenesis, as well as a dynamic pattern of expression in other tissues. Their expression starts early, soon after Ash expression and is dependent on both Ash and Notch activities. They act redundantly, since a double E(spl) knockdown (but not single knockdowns) results in neurogenesis defects similar to those caused by Notch loss-of-function. A number of other activities have been evolutionarily conserved, most notably their ability to interact with proneural proteins Scute and Daughterless.
Collapse
Affiliation(s)
- Kristina Kux
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas and Department of Biology, University of Crete, Heraklion, Crete, Greece
| | | | | |
Collapse
|
17
|
Role of architecture in the function and specificity of two Notch-regulated transcriptional enhancer modules. PLoS Genet 2012; 8:e1002796. [PMID: 22792075 PMCID: PMC3390367 DOI: 10.1371/journal.pgen.1002796] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 05/15/2012] [Indexed: 11/19/2022] Open
Abstract
In Drosophila melanogaster, cis-regulatory modules that are activated by the Notch cell-cell signaling pathway all contain two types of transcription factor binding sites: those for the pathway's transducing factor Suppressor of Hairless [Su(H)] and those for one or more tissue- or cell type-specific factors called "local activators." The use of different "Su(H) plus local activator" motif combinations, or codes, is critical to ensure that only the correct subset of the broadly utilized Notch pathway's target genes are activated in each developmental context. However, much less is known about the role of enhancer "architecture"--the number, order, spacing, and orientation of its component transcription factor binding motifs--in determining the module's specificity. Here we investigate the relationship between architecture and function for two Notch-regulated enhancers with spatially distinct activities, each of which includes five high-affinity Su(H) sites. We find that the first, which is active specifically in the socket cells of external sensory organs, is largely resistant to perturbations of its architecture. By contrast, the second enhancer, active in the "non-SOP" cells of the proneural clusters from which neural precursors arise, is sensitive to even simple rearrangements of its transcription factor binding sites, responding with both loss of normal specificity and striking ectopic activity. Thus, diverse cryptic specificities can be inherent in an enhancer's particular combination of transcription factor binding motifs. We propose that for certain types of enhancer, architecture plays an essential role in determining specificity, not only by permitting factor-factor synergies necessary to generate the desired activity, but also by preventing other activator synergies that would otherwise lead to unwanted specificities.
Collapse
|
18
|
Regulation of epithelial polarity by the E3 ubiquitin ligase Neuralized and the Bearded inhibitors in Drosophila. Nat Cell Biol 2012; 14:467-76. [PMID: 22504274 DOI: 10.1038/ncb2481] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 03/14/2012] [Indexed: 12/17/2022]
Abstract
Understanding how epithelial polarity is established and regulated during tissue morphogenesis is a major issue. Here, we identify a regulatory mechanism important for mesoderm invagination, germ-band extension and transepithelial migration in the Drosophila melanogaster embryo. This mechanism involves the inhibition of the conserved E3 ubiquitin ligase Neuralized by proteins of the Bearded family. First, Bearded mutant embryos exhibited a loss of epithelial polarity associated with an early loss of the apical domain. Bearded regulated epithelial polarity by antagonizing neuralized. Second, repression of Bearded gene expression by Snail was required for the Snail-dependent disassembly of adherens junctions in the mesoderm. Third, neuralized was strictly required to promote the downregulation of the apical domain in the midgut epithelium and to facilitate the transepithelial migration of primordial germ cells across this epithelium. This function of Neuralized was independent of its known role in Notch signalling. Thus, Neuralized has two distinct functions in epithelial cell polarity and Notch signalling.
Collapse
|
19
|
Meier D, Schindler D. Fanconi anemia core complex gene promoters harbor conserved transcription regulatory elements. PLoS One 2011; 6:e22911. [PMID: 21826217 PMCID: PMC3149625 DOI: 10.1371/journal.pone.0022911] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Accepted: 07/01/2011] [Indexed: 11/19/2022] Open
Abstract
The Fanconi anemia (FA) gene family is a recent addition to the complex network of proteins that respond to and repair certain types of DNA damage in the human genome. Since little is known about the regulation of this novel group of genes at the DNA level, we characterized the promoters of the eight genes (FANCA, B, C, E, F, G, L and M) that compose the FA core complex. The promoters of these genes show the characteristic attributes of housekeeping genes, such as a high GC content and CpG islands, a lack of TATA boxes and a low conservation. The promoters functioned in a monodirectional way and were, in their most active regions, comparable in strength to the SV40 promoter in our reporter plasmids. They were also marked by a distinctive transcriptional start site (TSS). In the 5' region of each promoter, we identified a region that was able to negatively regulate the promoter activity in HeLa and HEK 293 cells in isolation. The central and 3' regions of the promoter sequences harbor binding sites for several common and rare transcription factors, including STAT, SMAD, E2F, AP1 and YY1, which indicates that there may be cross-connections to several established regulatory pathways. Electrophoretic mobility shift assays and siRNA experiments confirmed the shared regulatory responses between the prominent members of the TGF-β and JAK/STAT pathways and members of the FA core complex. Although the promoters are not well conserved, they share region and sequence specific regulatory motifs and transcription factor binding sites (TBFs), and we identified a bi-partite nature to these promoters. These results support a hypothesis based on the co-evolution of the FA core complex genes that was expanded to include their promoters.
Collapse
Affiliation(s)
- Daniel Meier
- Department of Human Genetics, University of Wurzburg, Wurzburg, Germany.
| | | |
Collapse
|
20
|
Insensitive is a corepressor for Suppressor of Hairless and regulates Notch signalling during neural development. EMBO J 2011; 30:3120-33. [PMID: 21765394 DOI: 10.1038/emboj.2011.218] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 06/08/2011] [Indexed: 11/08/2022] Open
Abstract
The Notch intracellular domain functions as a co-activator for the DNA-binding protein Suppressor of Hairless (Su(H)) to mediate myriad cell fate decisions. Notch pathway activity is balanced by transcriptional repression, mediated by Su(H) in concert with its Drosophila corepressor Hairless. We demonstrate that the Drosophila neural BEN-solo protein Insensitive (Insv) is a nuclear factor that inhibits Notch signalling during multiple peripheral nervous system cell fate decisions. Endogenous Insv was particularly critical when repressor activity of Su(H) was compromised. Reciprocally, ectopic Insv generated several Notch loss-of-function phenotypes, repressed most Notch targets in the E(spl)-C, and opposed Notch-mediated activation of an E(spl)m3-luc reporter. A direct role for Insv in transcriptional repression was indicated by binding of Insv to Su(H), and by strong chromatin immunoprecipitation of endogenous Insv to most E(spl)-C loci. Strikingly, ectopic Insv fully rescued sensory organ precursors in Hairless null clones, indicating that Insv can antagonize Notch independently of Hairless. These data shed first light on the in vivo function for a BEN-solo protein as an Su(H) corepressor in the Notch pathway regulating neural development.
Collapse
|
21
|
Duncan EJ, Dearden PK. Evolution of a genomic regulatory domain: the role of gene co-option and gene duplication in the Enhancer of split complex. Genome Res 2010; 20:917-28. [PMID: 20458100 DOI: 10.1101/gr.104794.109] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The Drosophila Enhancer of split complex [E(spl)-C] is a remarkable complex of genes many of which are effectors or modulators of Notch signaling. The complex contains different classes of genes including four bearded genes and seven basic helix-loop-helix (bHLH) genes. We examined the evolution of this unusual complex by identifying bearded and bHLH genes in the genome sequences of Arthropods. We find that a four-gene E(spl)-C, containing three bHLH genes and one bearded gene, is an ancient component of the genomes of Crustacea and Insects. The complex is well conserved in insects but is highly modified in Drosophila, where two of the ancestral genes of the complex are missing, and the remaining two have been duplicated multiple times. Through examining the expression of E(spl)-C genes in honeybees, aphids, and Drosophila, we determined that the complex ancestrally had a role in Notch signaling. The expression patterns of genes found inserted into the complex in some insects, or that of ancestral E(spl)-C genes that have moved out of the complex, imply that the E(spl)-C is a genomic domain regulated as a whole by Notch signaling. We hypothesize that the E(spl)-C is a Notch-regulated genomic domain conserved in Arthropod genomes for around 420 million years. We discuss the consequence of this conserved domain for the recruitment of novel genes into the Notch signaling cascade.
Collapse
Affiliation(s)
- Elizabeth J Duncan
- Laboratory for Evolution and Development, Genetics Otago and the National Research Centre for Growth and Development, Biochemistry Department, University of Otago, Dunedin 9054, New Zealand
| | | |
Collapse
|
22
|
Characterization of the gene BmEm4, a homologue of Drosophila E(spl)m4, from the silkworm, Bombyx mori. Comp Funct Genomics 2009:947490. [PMID: 19830255 PMCID: PMC2760746 DOI: 10.1155/2009/947490] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2009] [Revised: 07/18/2009] [Accepted: 07/22/2009] [Indexed: 11/18/2022] Open
Abstract
The Drosophila E(spl)m4 gene contains some highly conserved motifs (such as the Brd box, GY box, K box, and CAAC motif) in its 3′ untranslated region (3′ UTR). It was shown to be a microRNA target gene in Drosophila and to play an important role in the regulation of neurogenesis. We identified a homologue of the E(spl)m4 gene from Bombyx mori called BmEm4 and examined the expression patterns of BmEm4 mRNA and protein. There was a lack of correlation in the expression of the mRNA and protein between the different developmental stages, which raises the possibility of posttranscriptional regulation of the BmEm4 mRNA. Consistent with this idea is the finding that the 3′ UTR contains two putative binding sites for microRNAs. Moreover, given that the expression is the highest in the larval head, as confirmed by immunohistochemistry, we propose that BmEm4 may also be involved in the regulation of neurogenesis. Immunostaining indicated that BmEm4 is located primarily in the cytoplasm.
Collapse
|
23
|
He F, Saito K, Kobayashi N, Harada T, Watanabe S, Kigawa T, Güntert P, Ohara O, Tanaka A, Unzai S, Muto Y, Yokoyama S. Structural and Functional Characterization of the NHR1 Domain of the Drosophila Neuralized E3 Ligase in the Notch Signaling Pathway. J Mol Biol 2009; 393:478-95. [DOI: 10.1016/j.jmb.2009.08.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Revised: 08/03/2009] [Accepted: 08/10/2009] [Indexed: 01/05/2023]
|
24
|
Fontana JR, Posakony JW. Both inhibition and activation of Notch signaling rely on a conserved Neuralized-binding motif in Bearded proteins and the Notch ligand Delta. Dev Biol 2009; 333:373-85. [PMID: 19580805 DOI: 10.1016/j.ydbio.2009.06.039] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Revised: 06/20/2009] [Accepted: 06/27/2009] [Indexed: 11/16/2022]
Abstract
Lateral inhibition is one of the key functions of Notch signaling during animal development. In the proneural clusters that give rise to Drosophila mechanosensory bristles, Delta (Dl) ligand in the sensory organ precursor (SOP) cell is targeted for ubiquitination by the E3 ligase Neuralized (Neur), resulting in activation of Dl's capacity to signal to the Notch receptor on neighboring cells. The cells that receive this signal activate a genetic program that suppresses their SOP fate potential, insuring that only a single SOP develops within each cluster. Using multiple lines of investigation, we provide evidence that members of the Bearded family of proteins (BFMs) inhibit Dl activation in non-SOP cells by binding to Neur and preventing it from interacting with Dl. We show that this activity of BFMs is dependent on the conserved NXXN motif, and report the unexpected finding that several BFMs include multiple functional copies of this motif. We find that a conserved NXXN motif in the intracellular domain of Dl is responsible for its interaction with Neur, indicating direct competition between Dl and BFMs for binding to Neur, and we show that Neur-dependent endocytosis of Dl requires the integrity of its NXXN motif. Our results illuminate the mechanism of an important regulatory event in Notch signaling that appears to be conserved between insects and crustaceans.
Collapse
Affiliation(s)
- Joseph R Fontana
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093, USA
| | | |
Collapse
|
25
|
Genome engineering-based analysis of Bearded family genes reveals both functional redundancy and a nonessential function in lateral inhibition in Drosophila. Genetics 2009; 182:1101-8. [PMID: 19528324 DOI: 10.1534/genetics.109.105023] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Lateral inhibition mediated by Notch receptor signaling regulates the determination of sensory organ precursor cells (SOPs) in Drosophila. The selection of SOPs from proneural cluster cells appears to rely on a negative feedback loop linking activation of the Notch receptor to downregulation of its ligand Delta within each cell. The molecular basis of this regulatory feedback mechanism is not known. Here, we have tested the role of the Bearded (Brd) family genes in this process. The Drosophila genome encodes eight Brd family members that interact with the E3 ubiquitin ligase Neuralized (Neur) and act as inhibitors of Neur-mediated Delta signaling. Genome engineering technologies were used to create specific deletions of all eight Brd family genes. We find that the Brd family genes malpha, m4, and m6 encoded by the Enhancer of split Complex (E(spl)-C) are dispensable for Drosophila development and that deletion of the five Brd family genes encoded by the Brd Complex only reduces viability. However, deletion of all Brd family genes results in embryonic lethality. Additionally, the malpha, m4, and m6 genes act redundantly with the other five Brd family genes to spatially restrict Notch activation in stage 5 embryos. These data reveal that the Brd family genes have an essential but redundant activity. While the activity of all eight Brd genes appears to be dispensable for SOP determination, clone border studies indicate that both the relative activity levels of Neur and Brd family members influence competition for the SOP fate during lateral inhibition. We propose that inhibition of Neur-Delta interaction by Brd family members is part of the feedback loop that underlies lateral inhibition in Drosophila.
Collapse
|
26
|
Sudandiradoss C, Sethumadhavan R. In silico investigations on functional and haplotype tag SNPs associated with congenital long QT syndromes (LQTSs). Genomic Med 2008; 2:55-67. [PMID: 19214780 PMCID: PMC2694858 DOI: 10.1007/s11568-009-9027-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2008] [Revised: 11/17/2008] [Accepted: 01/15/2009] [Indexed: 01/08/2023] Open
Abstract
Single-nucleotide polymorphisms (SNPs) play a major role in the understanding of the genetic basis of many complex human diseases. It is still a major challenge to identify the functional SNPs in disease-related genes. In this review, the genetic variation that can alter the expression and the function of the genes, namely KCNQ1, KCNH2, SCN5A, KCNE1 and KCNE2, with the potential role for the development of congenital long QT syndrome (LQTS) was analyzed. Of the total of 3,309 SNPs in all five genes, 27 non-synonymous SNPs (nsSNPs) in the coding region and 44 SNPs in the 5' and 3' un-translated regions (UTR) were identified as functionally significant. SIFT and PolyPhen programs were used to analyze the nsSNPs and FastSNP; UTR scan programs were used to compute SNPs in the 5' and 3' untranslated regions. Of the five selected genes, KCNQ1 has the highest number of 26 haplotype blocks and 6 tag SNPs with a complete linkage disequilibrium value. The gene SCN5A has ten haplotype blocks and four tag SNPs. Both KCNE1 and KCNE2 genes have only one haplotype block and four tag SNPs. Four haplotype blocks and two tag SNPs were obtained for KCNH2 gene. Also, this review reports the copy number variations (CNVs), expressed sequence tags (ESTs) and genome survey sequences (GSS) of the selected genes. These computational methods are in good agreement with experimental works reported earlier concerning LQTS.
Collapse
Affiliation(s)
- C. Sudandiradoss
- Bioinformatics Division, School of Biotechnology, Chemical and Biomedical Engineering, Vellore Institute of Technology, Vellore, TN 632014 India
| | - Rao Sethumadhavan
- Bioinformatics Division, School of Biotechnology, Chemical and Biomedical Engineering, Vellore Institute of Technology, Vellore, TN 632014 India
| |
Collapse
|
27
|
Pi H, Chien CT. Getting the edge: neural precursor selection. J Biomed Sci 2007; 14:467-73. [PMID: 17357812 DOI: 10.1007/s11373-007-9156-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2007] [Accepted: 02/09/2007] [Indexed: 01/08/2023] Open
Abstract
A key issue in development is how to specify single isolated precursor cells to adopt a distinct fate from a group of naive cells. Studies on the development of Drosophila external sensory (ES) organs have revealed multiple mechanisms to specify single sensory organ precursors (SOPs) from clusters of cells with equivalent neural potential. Initially single SOPs are selected in part through cell-cell competition from clusters of ectodermal cells that express proneural proteins. To reinforce the singularity, lateral inhibition through the Delta/Notch system and feedback regulations lead to exclusive expression of proneural proteins in SOPs. As transcriptional activators, proneural proteins execute a genetic program in SOP cells for the development of an eventually ES organ. In this article, we will summarize recent advances on how transcriptional regulation, protein degradation, endocytosis and gene silencing by microRNA participate in SOP specification.
Collapse
Affiliation(s)
- Haiwei Pi
- Department of Life Science, Chang-Gung University, 259 Wen-Hwa 1st Road, Kweishan, Tao-Yuan, 333, Taiwan
| | | |
Collapse
|
28
|
Bardin AJ, Schweisguth F. Bearded family members inhibit Neuralized-mediated endocytosis and signaling activity of Delta in Drosophila. Dev Cell 2006; 10:245-55. [PMID: 16459303 DOI: 10.1016/j.devcel.2005.12.017] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2005] [Revised: 12/16/2005] [Accepted: 12/28/2005] [Indexed: 11/26/2022]
Abstract
Endocytosis of Notch receptor ligands in signaling cells is essential for Notch receptor activation. In Drosophila, the E3 ubiquitin ligase Neuralized (Neur) promotes the endocytosis and signaling activity of the ligand Delta (Dl). In this study, we identify proteins of the Bearded (Brd) family as interactors of Neur. We show that Tom, a prototypic Brd family member, inhibits Neur-dependent Notch signaling. Overexpression of Tom inhibits the endocytosis of Dl and interferes with the interaction of Dl with Neur. Deletion of the Brd gene complex results in ectopic endocytosis of Dl in dorsal cells of stage 5 embryos. This defect in Dl trafficking is associated with ectopic expression of the single-minded gene, a direct Notch target gene that specifies the mesectoderm. We propose that inhibition of Neur by Brd proteins is important for precise spatial regulation of Dl signaling.
Collapse
Affiliation(s)
- Allison J Bardin
- CNRS UMR 8542, Ecole Normale Supérieure, 46, rue d'Ulm, 75230 Paris Cedex, France
| | | |
Collapse
|
29
|
De Renzis S, Yu J, Zinzen R, Wieschaus E. Dorsal-Ventral Pattern of Delta Trafficking Is Established by a Snail-Tom-Neuralized Pathway. Dev Cell 2006; 10:257-64. [PMID: 16459304 DOI: 10.1016/j.devcel.2006.01.011] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2005] [Revised: 01/06/2006] [Accepted: 01/10/2006] [Indexed: 11/16/2022]
Abstract
The intracellular trafficking of the Notch ligand Delta plays an important role in the activation of the Notch pathway. We have addressed the snail-dependent regulation of Delta trafficking during the plasma membrane growth of the mesoderm in the Drosophila embryo. We show that Delta is retained in endocytic vesicles in the mesoderm but expressed on the surface of the adjacent ectoderm. This trafficking pattern requires Neuralized. We developed a protocol based on chromosomal deletion and microarray analysis that led to the identification of tom as the target of snail regulating Delta trafficking. Snail represses Tom expression in the mesoderm and thereby activates Delta trafficking. Overexpression of Tom abolishes Delta trafficking and signaling to the adjacent mesoectoderm. Loss of Tom produces mesoderm-type Delta trafficking in the entire blastoderm epithelium and an expansion of mesoectoderm gene expression. We propose that Tom antagonizes the activity of Neuralized and thus establishes a sharp mesoderm-mesoectoderm boundary of Notch signaling.
Collapse
Affiliation(s)
- Stefano De Renzis
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | | | | | | |
Collapse
|
30
|
Mukherjee T, Schäfer U, Zeidler MP. Identification of Drosophila genes modulating Janus kinase/signal transducer and activator of transcription signal transduction. Genetics 2005; 172:1683-97. [PMID: 16387886 PMCID: PMC1456271 DOI: 10.1534/genetics.105.046904] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The JAK/STAT pathway was first identified in mammals as a signaling mechanism central to hematopoiesis and has since been shown to exert a wide range of pleiotropic effects on multiple developmental processes. Its inappropriate activation is also implicated in the development of numerous human malignancies, especially those derived from hematopoietic lineages. The JAK/STAT signaling cascade has been conserved through evolution and although the pathway identified in Drosophila has been closely examined, the full complement of genes required to correctly transduce signaling in vivo remains to be identified. We have used a dosage-sensitive dominant eye overgrowth phenotype caused by ectopic activation of the JAK/STAT pathway to screen 2267 independent, newly generated mutagenic P-element insertions. After multiple rounds of retesting, 23 interacting loci that represent genes not previously known to interact with JAK/STAT signaling have been identified. Analysis of these genes has identified three signal transduction pathways, seven potential components of the pathway itself, and six putative downstream pathway target genes. The use of forward genetics to identify loci and reverse genetic approaches to characterize them has allowed us to assemble a collection of genes whose products represent novel components and regulators of this important signal transduction cascade.
Collapse
Affiliation(s)
- Tina Mukherjee
- Department of Molecular Developmental Biology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | | | | |
Collapse
|
31
|
Abstract
Five years into the 'small RNA revolution' it is hard not to share in the excitement about the rapidly unravelling biology of microRNAs. Since the discovery of the first microRNA gene, lin-4, in the nematode Caenorhabditis elegans, many more of these short regulatory RNA genes have been identified in flowering plants, worms, flies, fish, frogs and mammals. Currently, about 2% of the known human genes encode microRNAs. MicroRNAs are essential for development and this review will summarise our current knowledge of animal microRNA function. We will also discuss the emerging links of microRNA biology to stem cell research and human disease, in particular cancer.
Collapse
Affiliation(s)
- Ines Alvarez-Garcia
- The Wellcome Trust/Cancer Research UK Gurdon Institute and Department of Biochemistry, The Henry Wellcome Building of Cancer and Developmental Biology, University of Cambridge, Cambridge CB2 1QN, UK
| | | |
Collapse
|
32
|
Chan CS, Elemento O, Tavazoie S. Revealing posttranscriptional regulatory elements through network-level conservation. PLoS Comput Biol 2005; 1:e69. [PMID: 16355253 PMCID: PMC1309705 DOI: 10.1371/journal.pcbi.0010069] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2005] [Accepted: 11/02/2005] [Indexed: 01/09/2023] Open
Abstract
We used network-level conservation between pairs of fly (Drosophila melanogaster/D. pseudoobscura) and worm (Caenorhabditis elegans/C. briggsae) genomes to detect highly conserved mRNA motifs in 3' untranslated regions. Many of these elements are complementary to the 5' extremity of known microRNAs (miRNAs), and likely correspond to their target sites. We also identify known targets of RNA-binding proteins, and many novel sites not yet known to be functional. Coherent sets of genes with similar function often bear the same conserved elements, providing new insights into their cellular functions. We also show that target sites for distinct miRNAs are often simultaneously conserved, suggesting combinatorial regulation by multiple miRNAs. A genome-wide search for conserved stem-loops, containing complementary sequences to the novel sites, revealed many new candidate miRNAs that likely target them. We also provide evidence that posttranscriptional networks have undergone extensive rewiring across distant phyla, despite strong conservation of regulatory elements themselves.
Collapse
Affiliation(s)
- Chang S Chan
- Department of Molecular Biology and The Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| | - Olivier Elemento
- Department of Molecular Biology and The Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| | - Saeed Tavazoie
- Department of Molecular Biology and The Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
33
|
Macdonald SJ, Pastinen T, Long AD. The effect of polymorphisms in the enhancer of split gene complex on bristle number variation in a large wild-caught cohort of Drosophila melanogaster. Genetics 2005; 171:1741-56. [PMID: 16143618 PMCID: PMC1456100 DOI: 10.1534/genetics.105.045344] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Enhancer of split complex [E(spl)-C] in Drosophila encompasses a variety of functional elements controlling bristle patterning and on the basis of prior work is a strong candidate for harboring alleles having subtle effects on bristle number variation. Here we extend earlier studies identifying associations between complex phenotypes and polymorphisms segregating among inbred laboratory lines of Drosophila and test the influence of E(spl)-C on bristle number variation in a natural cohort. We describe results from an association mapping study using 203 polymorphisms spread throughout the E(spl)-C genotyped in 2000 wild-caught Drosophila melanogaster. Despite power to detect associations accounting for as little as 2% of segregating variation for bristle number, and saturating the region with single-nucleotide polymorphisms (SNPs), we identified no single SNP marker showing a significant (additive over loci) effect after correcting for multiple tests. Using a newly developed test we conservatively identify six regions of the E(spl)-C in which the insertion of transposable elements as a class contributes to variation in bristle number, apparently in a sex- or trait-limited fashion. Finally, we carry out all possible 20,503 two-way tests for epistasis and identify a slight excess of marginally significant interactions, although none survive multiple-testing correction. It may not be straightforward to extend the results of laboratory-based association studies to natural populations.
Collapse
Affiliation(s)
- Stuart J Macdonald
- Department of Ecology and Evolutionary Biology, University of California-Irvine, 321 Steinhaus Hall, Irvine, CA 92697-2525, USA.
| | | | | |
Collapse
|
34
|
Castro B, Barolo S, Bailey AM, Posakony JW. Lateral inhibition in proneural clusters: cis-regulatory logic and default repression by Suppressor of Hairless. Development 2005; 132:3333-44. [PMID: 15975935 DOI: 10.1242/dev.01920] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Lateral inhibition, wherein a single cell signals to its neighbors to prevent them from adopting its own fate, is the best-known setting for cell-cell communication via the Notch (N) pathway. During peripheral neurogenesis in Drosophila, sensory organ precursor (SOP) cells arise within proneural clusters (PNCs), small groups of cells endowed with SOP fate potential by their expression of proneural transcriptional activators. SOPs use N signaling to activate in neighboring PNC cells the expression of multiple genes that inhibit the SOP fate. These genes respond transcriptionally to direct regulation by both the proneural proteins and the N pathway transcription factor Suppressor of Hairless [Su(H)], and their activation is generally highly asymmetric; i.e. only in the inhibited(non-SOP) cells of the PNC, and not in SOPs. We show that the substantially higher proneural protein levels in the SOP put this cell at risk of inappropriately activating the SOP-inhibitory genes, even without input from N-activated Su(H). We demonstrate that this is prevented by direct `default'repression of these genes by Su(H), acting through the same binding sites it uses for activation in non-SOPs. We show that de-repression of even a single N pathway target gene in the SOP can extinguish the SOP cell fate. Finally, we define crucial roles for the adaptor protein Hairless and the co-repressors Groucho and CtBP in conferring repressive activity on Su(H) in the SOP. Our work elucidates the regulatory logic by which N signaling and the proneural proteins cooperate to create the neural precursor/epidermal cell fate distinction during lateral inhibition.
Collapse
Affiliation(s)
- Brian Castro
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093-0349, USA
| | | | | | | |
Collapse
|
35
|
Lai EC, Tam B, Rubin GM. Pervasive regulation of Drosophila Notch target genes by GY-box-, Brd-box-, and K-box-class microRNAs. Genes Dev 2005; 19:1067-80. [PMID: 15833912 PMCID: PMC1091741 DOI: 10.1101/gad.1291905] [Citation(s) in RCA: 229] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Although hundreds of distinct animal microRNAs (miRNAs) are known, the specific biological functions of only a handful are understood at present. Here, we demonstrate that three different families of Drosophila miRNAs directly regulate two large families of Notch target genes, including basic helix-loop-helix (bHLH) repressor and Bearded family genes. These miRNAs regulate Notch target gene activity via GY-box (GUCUUCC), Brd-box (AGCUUUA), and K-box (cUGUGAUa) motifs. These are conserved sites in target 3'-untranslated regions (3'-UTRs) that are complementary to the 5'-ends of miRNAs, or "seed" regions. Collectively, these motifs represent >40 miRNA-binding sites in Notch target genes, and we show all three classes of motif to be necessary and sufficient for miRNA-mediated regulation in vivo. Importantly, many of the validated miRNA-binding sites have limited pairing to miRNAs outside of the "box:seed" region. Consistent with this, we find that seed-related miRNAs that are otherwise quite divergent can regulate the same target sequences. Finally, we demonstrate that ectopic expression of several Notch-regulating miRNAs induces mutant phenotypes that are characteristic of Notch pathway loss of function, including loss of wing margin, thickened wing veins, increased bristle density, and tufted bristles. Collectively, these data establish insights into miRNA target recognition and demonstrate that the Notch signaling pathway is a major target of miRNA-mediated regulation in Drosophila.
Collapse
Affiliation(s)
- Eric C Lai
- Department of Molecular and Cell Biology/Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, CA 94720-3200, USA.
| | | | | |
Collapse
|
36
|
Powell LM, Zur Lage PI, Prentice DRA, Senthinathan B, Jarman AP. The proneural proteins Atonal and Scute regulate neural target genes through different E-box binding sites. Mol Cell Biol 2004; 24:9517-26. [PMID: 15485919 PMCID: PMC522279 DOI: 10.1128/mcb.24.21.9517-9526.2004] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
For a particular functional family of basic helix-loop-helix (bHLH) transcription factors, there is ample evidence that different factors regulate different target genes but little idea of how these different target genes are distinguished. We investigated the contribution of DNA binding site differences to the specificities of two functionally related proneural bHLH transcription factors required for the genesis of Drosophila sense organ precursors (Atonal and Scute). We show that the proneural target gene, Bearded, is regulated by both Scute and Atonal via distinct E-box consensus binding sites. By comparing with other Ato-dependent enhancer sequences, we define an Ato-specific binding consensus that differs from the previously defined Scute-specific E-box consensus, thereby defining distinct E(Ato) and E(Sc) sites. These E-box variants are crucial for function. First, tandem repeats of 20-bp sequences containing E(Ato) and E(Sc) sites are sufficient to confer Atonal- and Scute-specific expression patterns, respectively, on a reporter gene in vivo. Second, interchanging E(Ato) and E(Sc) sites within enhancers almost abolishes enhancer activity. While the latter finding shows that enhancer context is also important in defining how proneural proteins interact with these sites, it is clear that differential utilization of DNA binding sites underlies proneural protein specificity.
Collapse
Affiliation(s)
- Lynn M Powell
- Division of Biomedical Sciences, University of Edinburgh, George Square, Edinburgh EH8 9XD, United Kingdom
| | | | | | | | | |
Collapse
|
37
|
Macdonald SJ, Long AD. Identifying signatures of selection at the enhancer of split neurogenic gene complex in Drosophila. Mol Biol Evol 2004; 22:607-19. [PMID: 15537803 DOI: 10.1093/molbev/msi046] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The Enhancer of split gene complex (E(spl)-C) is one of the more highly annotated gene regions in Drosophila, and the 12 genes within the complex help determine the spacing and patterning of adult bristles. Any E(spl)-C coding, transcribed, or cis-regulatory regions experiencing nonneutral evolution are strong candidates to harbor polymorphisms contributing to naturally occurring variation in bristle number. We confirm that the E(spl)-C is strongly conserved and show that 74% of regulatory elements previously identified in D. melanogaster are conserved in D. pseudoobscura. Regulatory elements in enhancer regions show lower nucleotide diversity and more rare polymorphisms compared with adjacent nonregulatory DNA, suggesting they are under purifying selection, and these effects are particularly pronounced when considering only conserved regulatory elements. The ratio of polymorphism to divergence was significantly different between binding sites and nonbinding sites for transcription factors within enhancer regions, suggesting the action of some form of selection. Too few polymorphisms in regions of the 3' UTR harboring regulatory motifs prevents adequate comparison of diversity and the polymorphism frequency spectrum between 3' UTR motif and nonmotif sequence. We identified at least two broad regions of the gene complex showing strong population subdivision among four populations, which is suggestive of local adaptation or background selection. Finally, two regions of the E(spl)-C exhibit low nucleotide diversity, a high level of rare polymorphisms, and an increase in linkage disequilibrium, which together suggest the action of positive selection. Notably, the gene m2 shows a significant deviation from neutrality by the McDonald-Kreitman test and resides in one of the two regions putatively experiencing a selective sweep. All sites in regions apparently visible to various selective forces are candidates for future work to determine their phenotypic effects.
Collapse
Affiliation(s)
- Stuart J Macdonald
- Department of Ecology and Evolutionary Biology, University of California, Irvine, USA.
| | | |
Collapse
|
38
|
Barolo S, Castro B, Posakony JW. New Drosophila transgenic reporters: insulated P-element vectors expressing fast-maturing RFP. Biotechniques 2004; 36:436-40, 442. [PMID: 15038159 DOI: 10.2144/04363st03] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
In vivo green fluorescent protein (GFP)/red fluorescent protein (RFP) double-labeling studies have been hampered by several inconvenient properties of DsRed, the first described RFP. These disadvantages include a very slow (> 24 h) maturation time, emission of contaminating green light, and low solubility. A recently developed variant of DsRed, called DsRed.T4, has a much shorter maturation time, no significant green emission, and improved solubility. We have constructed Drosophila P-element transformation vectors encoding DsRed.T4 for promoter/enhancer analysis, labeling of living cells, or RFP tagging of proteins. These new vectors have all of the features of the widely used Pelican/Stinger GFP vectors, including insulator sequences to reduce position effects, an extensive polylinker, and both cytoplasmic and nuclear-localized forms of the reporter. We have also constructed an upstream activating sequence (UAS)-DsRed.T4 vector, for GAL4 activation of the reporter. We find that DsRed.T4 is very easily detected in transgenic flies without contamination of the GFP signal and that it matures to its fluorescent form nearly simultaneously with GFP. This advance in Drosophila reporter technology makes timed double-labeling experiments in developing transgenic animals possible for the first time.
Collapse
Affiliation(s)
- Scott Barolo
- University of California San Diego, La Jolla, CA, USA
| | | | | |
Collapse
|
39
|
Pirot P, van Grunsven LA, Marine JC, Huylebroeck D, Bellefroid EJ. Direct regulation of the Nrarp gene promoter by the Notch signaling pathway. Biochem Biophys Res Commun 2004; 322:526-34. [PMID: 15325262 DOI: 10.1016/j.bbrc.2004.07.157] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2004] [Indexed: 11/24/2022]
Abstract
Nrarp encodes for an evolutionarily conserved small ankyrin repeat-containing protein that functions as a negative regulator of Notch signaling. Interestingly, increased Nrarp transcription was observed following induction of Notch signaling, suggesting the existence of a negative feedback loop. We show here that both mouse and human promoter regions of Nrarp share two conserved regions located approximately 2 and approximately 3 kb upstream of the transcription start site each containing a perfect putative binding site for the Notch-dependent transcription factor Su(H). A 4.4 kb genomic fragment of the mouse Nrarp locus containing those conserved regions and fused to a luciferase reporter gene showed basal promoter activity in 293T cells and this activity was strongly increased by the intracellular domain of Notch, NICD. NICD-dependent stimulation was attenuated by a dominant negative mutant of Su(H), Su(H)DBM, and was not observed in Su(H)-deficient cells (OT-11). Promoter bashing and gel shift assays revealed that the most distal putative Su(H) binding site located within the -3 kb conserved element plays a crucial role in this induction. Collectively, these results provide definitive support for direct regulation of the Nrarp gene by the Notch pathway.
Collapse
Affiliation(s)
- Pierre Pirot
- Laboratoire d'Embryologie Moléculaire, Université Libre de Bruxelles, Institut de Biologie et de Médecine Moléculaires, rue des Profs. Jeener et Brachet 12, B-6041 Gosselies, Belgium
| | | | | | | | | |
Collapse
|
40
|
Lai EC, Wiel C, Rubin GM. Complementary miRNA pairs suggest a regulatory role for miRNA:miRNA duplexes. RNA (NEW YORK, N.Y.) 2004; 10:171-5. [PMID: 14730015 PMCID: PMC1370528 DOI: 10.1261/rna.5191904] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2003] [Accepted: 11/04/2003] [Indexed: 05/21/2023]
Abstract
microRNAs (miRNAs) are 21-22-nucleotide noncoding RNAs that are widely believed to regulate complementary mRNA targets. However, due to the modest amount of pairing involved, only a few out of the hundreds of known animal miRNAs have thus far been connected to mRNA targets. Here, we considered the possibility that miRNAs might regulate non-mRNA targets, namely other miRNAs. To do so, we conducted a systematic assessment of the nearly complete catalogs of animal miRNAs for potential miRNA:miRNA complements. Our analysis uncovered several compelling examples that strongly suggest a function for miRNA duplexes, thus adding a potential layer of regulatory sophistication to the small RNA world. Interestingly, the most striking examples involve miRNAs complementary to members of the K-box family and Brd-box family, two classes of miRNAs previously implicated in regulation of Notch target genes. We emphasize that patterns of nucleotide constraint indicate that miRNA complementarity is not a simple consequence of miRNA:miRNA* complementarity; however, our findings do suggest that the potential regulatory consequences of the latter also deserve investigation.
Collapse
Affiliation(s)
- Eric C Lai
- Howard Hughes Medical Institute, University of California, Berkeley, Department of Molecular and Cell Biology, Berkeley, California 94720-3200, USA.
| | | | | |
Collapse
|
41
|
Koelzer S, Klein T. A Notch-independent function of Suppressor of Hairless during the development of the bristle sensory organ precursor cell of Drosophila. Development 2003; 130:1973-88. [PMID: 12642500 DOI: 10.1242/dev.00426] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Su(H)/CBF1 is a key component of the evolutionary conserved Notch signalling pathway. It is a transcription factor that acts as a repressor in the absence of the Notch signal. If Notch signalling is activated, it associates with the released intracellular domain of the Notch receptor and acts as an activator of transcription. During the development of the mechanosensory bristles of Drosophila, a selection process called lateral inhibition assures that only a few cells are selected out of a group to become sensory organ precursors (SOP). During this process, the SOP cell is thought to suppress the same fate in its surrounding neighbours via the activation of the Notch/Su(H) pathway in these cells. We show that, although Su(H) is required to prevent the SOP fate during lateral inhibition, it is also required to promote the further development of the SOP once it is selected. Importantly, in this situation Su(H) appears to act independently of the Notch signalling pathway. We find that loss of Su(H) function leads to an arrest of SOP development because of the loss of sens expression in the SOP. Our results suggest that Su(H) acts as a repressor that suppresses the activity of one or more negative regulator(s) of sens expression. We show that this repressor activity is encoded by one or several genes of the E(spl)-complex. Our results further suggest that the position of the SOP in a proneural cluster is determined by very precise positional cues, which render the SOP insensitive to Dl.
Collapse
Affiliation(s)
- Stefan Koelzer
- Institute für Genetik, Universitaet zu Koeln, Weyertal 121, 50931 Koeln, Germany
| | | |
Collapse
|
42
|
Abstract
Tufted is a classical Drosophila mutant characterized by a large number of ectopic mechanosensory bristles on the dorsal mesothorax. Unlike other ectopic bristle mutants, Tufted is epistatic to achaete and scute, the proneural genes that normally control the development of these sensory organs. In this report, I present genetic and molecular evidence that Tufted is a gain-of-function allele of the proneural gene amos that ectopically activates mechanosensory neurogenesis. I also systematically examine the ability of the various proneural bHLH proteins to cross-activate each other and find that their ability to do so is in general relatively limited, despite their common ability to induce the formation of mechanosensory bristles. This phenomenon seems instead to be related to their shared ability to activate Asense and Senseless.
Collapse
Affiliation(s)
- Eric C Lai
- Howard Hughes Medical Institute, Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA.
| |
Collapse
|
43
|
Affiliation(s)
- Joanna B Grabarek
- Polgen/Cyclacel, Ltd, Babraham Bioincubators, Babraham, CB2 4AT, UK.
| |
Collapse
|
44
|
Portin P. General outlines of the molecular genetics of the Notch signalling pathway in Drosophila melanogaster: a review. Hereditas 2002; 136:89-96. [PMID: 12369105 DOI: 10.1034/j.1601-5223.2002.1360201.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The Notch signalling pathway appears to be ubiquitous in virtually all cell-cell contacts in all metazoan animals, and is best known and most throughout studied in Drosophila melanogaster. In this species the Notch signalling pathway regulates, with both positive and negative signals, the differentiation of at least central and peripheral nervous system and eye, wing disc, oogenesis, segmental appendages such as antennae and legs, and muscles, through lateral inhibition or induction. In general, the pathway works as follows: Notch is most likely a dimeric transmembrane receptor at the cell surface, where it is activated by its ligands Serrate and or Delta from the neighbouring cell Fringe, discriminating between the two ligands. Then, the receptor is cleaved by a proteolytic mechanism in which Presenilin plays an important role, and the intracellular domain is transferred to the nucleus, where it, together with the Suppressor of Hairless protein, constitutes a transcription factor which activates the Notch target genes, mainly located in the Enhancer of split complex. These target genes then encode repressor proteins.
Collapse
Affiliation(s)
- Petter Portin
- Laboratory of Genetics, Department of Biology, University of Turku, FIN-20014 Turku, Finland.
| |
Collapse
|
45
|
Rebeiz M, Reeves NL, Posakony JW. SCORE: a computational approach to the identification of cis-regulatory modules and target genes in whole-genome sequence data. Site clustering over random expectation. Proc Natl Acad Sci U S A 2002; 99:9888-93. [PMID: 12107285 PMCID: PMC125053 DOI: 10.1073/pnas.152320899] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2002] [Accepted: 05/23/2002] [Indexed: 11/18/2022] Open
Abstract
A large fraction of the information content of metazoan genomes resides in the transcriptional and posttranscriptional cis-regulatory elements that collectively provide the blueprint for using the protein-coding capacity of the DNA, thus guiding the development and physiology of the entire organism. As successive whole-genome sequencing projects--including those of mice and humans--are completed, we have full access to the regulatory genome of yet another species. But our ability to decipher the cis-regulatory code, and hence to link genes into regulatory networks on a global scale, is currently very limited. Here we describe SCORE (Site Clustering Over Random Expectation), a computational method for identifying transcriptional cis-regulatory modules based on the fact that they often contain, in statistically improbable concentrations, multiple binding sites for the same transcription factor. We have carried out a Drosophila genomewide inventory of predicted binding sites for the Notch-regulated transcription factor Suppressor of Hairless [Su(H)] and found that the fly genome contains highly nonrandom clusterings of Su(H) sites over a broad range of sequence intervals. We found that the most statistically significant clusters are very heavily enriched in both known and logical targets of Su(H) binding and regulation. The utility of the SCORE approach was validated by in vivo experiments showing that proper expression of the novel gene Him in adult muscle precursor cells depends both on Su(H) gene activity and sequences that include a previously unstudied cluster of four Su(H) sites, indicating that Him is a likely direct target of Su(H).
Collapse
Affiliation(s)
- Mark Rebeiz
- Division of Biological Sciences, Cell and Developmental Biology, University of California at San Diego, La Jolla, CA 92093-0349, USA
| | | | | |
Collapse
|
46
|
Lai EC. Micro RNAs are complementary to 3' UTR sequence motifs that mediate negative post-transcriptional regulation. Nat Genet 2002; 30:363-4. [PMID: 11896390 DOI: 10.1038/ng865] [Citation(s) in RCA: 1096] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Micro RNAs are a large family of noncoding RNAs of 21-22 nucleotides whose functions are generally unknown. Here a large subset of Drosophila micro RNAs is shown to be perfectly complementary to several classes of sequence motif previously demonstrated to mediate negative post-transcriptional regulation. These findings suggest a more general role for micro RNAs in gene regulation through the formation of RNA duplexes.
Collapse
Affiliation(s)
- Eric C Lai
- University of California at Berkeley, Department of Molecular and Cell Biology, 545 Life Sciences Addition #3200, Berkeley, California 94720-3200, USA.
| |
Collapse
|
47
|
Lahaye K, Kricha S, Bellefroid EJ. XNAP, a conserved ankyrin repeat-containing protein with a role in the Notch pathway during Xenopus primary neurogenesis. Mech Dev 2002; 110:113-24. [PMID: 11744373 DOI: 10.1016/s0925-4773(01)00570-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The Notch signaling pathway plays an important role in many cell-fate decisions during development. Here we investigate the regulation and function of the conserved gene XNAP, which is a member of the Delta-Notch synexpression group in Xenopus. XNAP encodes a small protein with two C-terminal tandem ankyrin repeats which is expressed in the neurectoderm and in the presomitic mesoderm in a pattern that resembles that of other component of the Notch pathway. When a myc-tag form of XNAP is overexpressed in Xenopus or Hela cells, XNAP protein is detected both in the nucleus and the cytoplasm. In embryos and in animal cap assays, XNAP expression is activated, perhaps directly, by the Notch pathway and this activation appears to be Su(H) dependent. Overexpression of XNAP in embryos decreases Notch signaling, which leads to an increase in the number of primary neurons that form within the domains of the neural plate where neurogenesis normally occurs. In culture Hela cells, XNAP overexpression interferes with ICD activation of a Notch regulated reporter gene. Together, these data indicate that XNAP is a novel target of the Notch pathway that may, in a feedback loop, modulate its activity.
Collapse
Affiliation(s)
- Katia Lahaye
- Université Libre de Bruxelles, IBMM, Rue des Professeurs Jeener et Brachet 12, B-6041 Gosselies, Belgium
| | | | | |
Collapse
|
48
|
Nagel AC, Apidianakis Y, Wech I, Maier D, Delidakis C, Preiss A. Neural hyperplasia induced by RNA interference with m4/malpha gene activity. Mech Dev 2000; 98:19-28. [PMID: 11044604 DOI: 10.1016/s0925-4773(00)00446-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The E(spl) complex (E(spl)-C) contains three different classes of genes that are downstream of Notch signaling. The bHLH genes mediate the Notch signal by repressing proneural gene activity, for example during the singularization of mechanosensory organ precursor cells (SOPs). Genes of the second class, the E(spl) m4/malpha family, antagonize this process if overexpressed. Here we show that this is based on dominant-negative effects since RNA interference gives neurogenic phenotypes indistinguishable from E(spl)-C mutations. Furthermore, a third member of the m4/malpha gene family, named bbu/tom, behaves differently with respect to RNA expression patterns, its regulation by Notch signaling and loss of function phenotypes.
Collapse
Affiliation(s)
- A C Nagel
- Universität Hohenheim, Institut für Genetik (240), D-70593, Stuttgart, Germany
| | | | | | | | | | | |
Collapse
|
49
|
Mas C, Bourgeois F, Bulfone A, Levacher B, Mugnier C, Simonneau M. Cloning and expression analysis of a novel gene, RP42, mapping to an autism susceptibility locus on 6q16. Genomics 2000; 65:70-4. [PMID: 10777668 DOI: 10.1006/geno.2000.6126] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We isolated a novel mouse gene, RP42, in a systematic search for genes expressed in proliferating neuroblasts whose human orthologs map to susceptibility loci for autism. This gene is intronless and encodes a putative 259-amino-acid protein that exhibits 30-36% overall sequence identity to a fission yeast and a nematode protein (GenPept Accession Nos. CAA17006 and CAB54261). Nevertheless, no homology to any known gene was found. RP42 has developmentally regulated expression, particularly in proliferating neuroblasts from which neocortical neurons originate. Its human ortholog is located in a cluster of embryonic neuronally expressed genes on the 6q16 chromosome, making it a positional candidate susceptibility gene for autism.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Autistic Disorder/genetics
- Blotting, Northern
- Chromosome Mapping
- Chromosomes, Human, Pair 6/genetics
- Cloning, Molecular
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- Embryo, Mammalian/metabolism
- Female
- Gene Expression
- Gene Expression Regulation, Developmental
- Genetic Predisposition to Disease
- Humans
- Intracellular Signaling Peptides and Proteins
- Male
- Mice
- Molecular Sequence Data
- Proteins/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Tissue Distribution
Collapse
Affiliation(s)
- C Mas
- Neurogénétique, INSERM E9935, Hôpital Robert Debré, 48 Boulevard Sérurier, Paris, 75019, France
| | | | | | | | | | | |
Collapse
|