1
|
Kong R, Zhao H, Li J, Ma Y, Li N, Shi L, Li Z. A regulatory loop of JAK/STAT signalling and its downstream targets represses cell fate conversion and maintains male germline stem cell niche homeostasis. Cell Prolif 2024; 57:e13648. [PMID: 38987866 PMCID: PMC11471429 DOI: 10.1111/cpr.13648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/03/2024] [Accepted: 04/11/2024] [Indexed: 07/12/2024] Open
Abstract
A specialised microenvironment, termed niche, provides extrinsic signals for the maintenance of residential stem cells. However, how residential stem cells maintain niche homeostasis and whether stromal niche cells could convert their fate into stem cells to replenish lost stem cells upon systemic stem cell loss remain largely unknown. Here, through systemic identification of JAK/STAT downstream targets in adult Drosophila testis, we show that Escargot (Esg), a member of the Snail family of transcriptional factors, is a putative JAK/STAT downstream target. esg is intrinsically required in cyst stem cells (CySCs) but not in germline stem cells (GSCs). esg depletion in CySCs results in CySC loss due to differentiation and non-cell autonomous GSC loss. Interestingly, hub cells are gradually lost by delaminating from the hub and converting into CySCs in esg-defective testes. Mechanistically, esg directly represses the expression of socs36E, the well-known downstream target and negative regulator of JAK/STAT signalling. Finally, further depletion of socs36E completely rescues the defects observed in esg-defective testes. Collectively, JAK/STAT target Esg suppresses SOCS36E to maintain CySC fate and repress niche cell conversion. Thus, our work uncovers a regulatory loop between JAK/STAT signalling and its downstream targets in controlling testicular niche homeostasis under physiological conditions.
Collapse
Affiliation(s)
- Ruiyan Kong
- Laboratory of Stem Cell Biology, College of Life SciencesCapital Normal UniversityBeijingChina
| | - Hang Zhao
- Laboratory of Stem Cell Biology, College of Life SciencesCapital Normal UniversityBeijingChina
| | - Juan Li
- Laboratory of Stem Cell Biology, College of Life SciencesCapital Normal UniversityBeijingChina
| | - Yankun Ma
- Laboratory of Stem Cell Biology, College of Life SciencesCapital Normal UniversityBeijingChina
| | - Ningfang Li
- Laboratory of Stem Cell Biology, College of Life SciencesCapital Normal UniversityBeijingChina
| | - Lin Shi
- Laboratory of Stem Cell Biology, College of Life SciencesCapital Normal UniversityBeijingChina
| | - Zhouhua Li
- Laboratory of Stem Cell Biology, College of Life SciencesCapital Normal UniversityBeijingChina
| |
Collapse
|
2
|
He Z, Fang Y, Zhang F, Liu Y, Cheng X, Wang J, Li D, Chen D, Wu F. Adenine nucleotide translocase 2 (Ant2) is required for individualization of spermatogenesis of Drosophila melanogaster. INSECT SCIENCE 2024; 31:1055-1072. [PMID: 38112480 DOI: 10.1111/1744-7917.13309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/12/2023] [Accepted: 11/16/2023] [Indexed: 12/21/2023]
Abstract
Successful completion of spermatogenesis is crucial for the perpetuation of the species. In Drosophila, spermatid individualization, a process involving changes in mitochondrial structure and function is critical to produce functional mature sperm. Ant2, encoding a mitochondrial adenine nucleotide translocase, is highly expressed in male testes and plays a role in energy metabolism in the mitochondria. However, its molecular function remains unclear. Here, we identified an important role of Ant2 in spermatid individualization. In Ant2 knockdown testes, spermatid individualization complexes composed of F-actin cones exhibited a diffuse distribution, and mature sperms were absent in the seminal vesicle, thus leading to male sterility. The most striking effects in Ant2-knockdown spermatids were decrease in tubulin polyglycylation and disruption of proper mitochondria derivatives function. Excessive apoptotic cells were also observed in Ant2-knockdown testes. To further investigate the phenotype of Ant2 knockdown in testes at the molecular level, complementary transcriptome and proteome analyses were performed. At the mRNA level, 868 differentially expressed genes were identified, of which 229 genes were upregulated and 639 were downregulated induced via Ant2 knockdown. iTRAQ-labeling proteome analysis revealed 350 differentially expressed proteins, of which 117 proteins were upregulated and 233 were downregulated. The expression of glutathione transferase (GstD5, GstE5, GstE8, and GstD3), proteins involved in reproduction were significantly regulated at both the mRNA and protein levels. These results indicate that Ant2 is crucial for spermatid maturation by affecting mitochondrial morphogenesis.
Collapse
Affiliation(s)
- Zhen He
- Industrial Crops Institute, Hubei Academy of Agriculture Sciences, Wuhan, China
| | - Yang Fang
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, Shandong Province, China
| | - Fengchao Zhang
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, Shandong Province, China
| | - Yang Liu
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, Shandong Province, China
| | - Xinkai Cheng
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, Shandong Province, China
| | - Jiajia Wang
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, Shandong Province, China
| | - Dechen Li
- Industrial Crops Institute, Hubei Academy of Agriculture Sciences, Wuhan, China
| | - Dengsong Chen
- Industrial Crops Institute, Hubei Academy of Agriculture Sciences, Wuhan, China
| | - Fan Wu
- Industrial Crops Institute, Hubei Academy of Agriculture Sciences, Wuhan, China
| |
Collapse
|
3
|
Kong R, Li J, Liu F, Ma Y, Zhao H, Zhao H, Ma M, Li Z. A feedforward loop between JAK/STAT downstream target p115 and STAT in germline stem cells. Stem Cell Reports 2023; 18:1940-1953. [PMID: 37683644 PMCID: PMC10656303 DOI: 10.1016/j.stemcr.2023.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 09/10/2023] Open
Abstract
The maintenance of germline stem cells (GSCs) is essential for tissue homeostasis. JAK/STAT signaling maintains GSC fate in Drosophila testis. However, how JAK/STAT signaling maintains male GSC fate through its downstream targets remains poorly understood. Here, we identify p115, a tER/cis-Golgi golgin protein, as a putative downstream target of JAK/STAT signaling. p115 maintains GSC fate independent of GM130 and GRASP65. p115 localizes in cytosol, the ER and Golgi apparatus in germline cells and is required for the morphology of the ER and Golgi apparatus. Furthermore, depletion of p115 in GSCs results in aberrant spindle orientation. Mechanistically, p115 associates with and stabilizes STAT. Finally, ectopic expression of STAT completely restores GSC loss caused by p115 depletion. Collectively, JAK/STAT signaling and p115 form a feedforward loop to maintain male GSC fate. Our work provides new insights into the regulatory mechanism of how stem cell maintenance is properly controlled by JAK/STAT signaling.
Collapse
Affiliation(s)
- Ruiyan Kong
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Juan Li
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Fuli Liu
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Yankun Ma
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Hang Zhao
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Hanfei Zhao
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Meifang Ma
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Zhouhua Li
- College of Life Sciences, Capital Normal University, Beijing 100048, China.
| |
Collapse
|
4
|
Raz AA, Vida GS, Stern SR, Mahadevaraju S, Fingerhut JM, Viveiros JM, Pal S, Grey JR, Grace MR, Berry CW, Li H, Janssens J, Saelens W, Shao Z, Hu C, Yamashita YM, Przytycka T, Oliver B, Brill JA, Krause H, Matunis EL, White-Cooper H, DiNardo S, Fuller MT. Emergent dynamics of adult stem cell lineages from single nucleus and single cell RNA-Seq of Drosophila testes. eLife 2023; 12:e82201. [PMID: 36795469 PMCID: PMC9934865 DOI: 10.7554/elife.82201] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 01/19/2023] [Indexed: 02/17/2023] Open
Abstract
Proper differentiation of sperm from germline stem cells, essential for production of the next generation, requires dramatic changes in gene expression that drive remodeling of almost all cellular components, from chromatin to organelles to cell shape itself. Here, we provide a single nucleus and single cell RNA-seq resource covering all of spermatogenesis in Drosophila starting from in-depth analysis of adult testis single nucleus RNA-seq (snRNA-seq) data from the Fly Cell Atlas (FCA) study. With over 44,000 nuclei and 6000 cells analyzed, the data provide identification of rare cell types, mapping of intermediate steps in differentiation, and the potential to identify new factors impacting fertility or controlling differentiation of germline and supporting somatic cells. We justify assignment of key germline and somatic cell types using combinations of known markers, in situ hybridization, and analysis of extant protein traps. Comparison of single cell and single nucleus datasets proved particularly revealing of dynamic developmental transitions in germline differentiation. To complement the web-based portals for data analysis hosted by the FCA, we provide datasets compatible with commonly used software such as Seurat and Monocle. The foundation provided here will enable communities studying spermatogenesis to interrogate the datasets to identify candidate genes to test for function in vivo.
Collapse
Affiliation(s)
- Amelie A Raz
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Howard Hughes Medical InstituteCambridgeUnited States
| | - Gabriela S Vida
- Department of Cell and Developmental Biology, The Perelman School of Medicine and The Penn Institute for Regenerative MedicinePhiladelphiaUnited States
| | - Sarah R Stern
- Department of Developmental Biology, Stanford University School of MedicineStanfordUnited States
| | - Sharvani Mahadevaraju
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of HealthBethesdaUnited States
| | - Jaclyn M Fingerhut
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Howard Hughes Medical InstituteCambridgeUnited States
| | - Jennifer M Viveiros
- Department of Cell Biology, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Soumitra Pal
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of HealthBethesdaUnited States
| | - Jasmine R Grey
- Department of Cell Biology, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Mara R Grace
- Department of Cell Biology, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Cameron W Berry
- Department of Developmental Biology, Stanford University School of MedicineStanfordUnited States
| | - Hongjie Li
- Huffington Center on Aging and Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
| | - Jasper Janssens
- JVIB Center for Brain & Disease Research, and the Department of Human Genetics, KU LeuvenLeuvenBelgium
| | - Wouter Saelens
- Data Mining and Modeling for Biomedicine, VIB Center for Inflammation Research, and Department of Applied Mathematics, Computer Science and Statistics, Ghent UniversityGhentBelgium
| | - Zhantao Shao
- Donnelly Centre for Cellular and Biomolecular Research, University of TorontoTorontoCanada
| | - Chun Hu
- Donnelly Centre for Cellular and Biomolecular Research, University of TorontoTorontoCanada
| | - Yukiko M Yamashita
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Howard Hughes Medical InstituteCambridgeUnited States
| | - Teresa Przytycka
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of HealthBethesdaUnited States
| | - Brian Oliver
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of HealthBethesdaUnited States
| | - Julie A Brill
- Cell Biology Program, The Hospital for Sick ChildrenTorontoCanada
- Department of Molecular Genetics, University of TorontoTorontoCanada
- Institute of Medical Science, University of TorontoTorontoCanada
| | - Henry Krause
- Donnelly Centre for Cellular and Biomolecular Research, University of TorontoTorontoCanada
- Department of Molecular Genetics, University of TorontoTorontoCanada
| | - Erika L Matunis
- Department of Cell Biology, Johns Hopkins University School of MedicineBaltimoreUnited States
| | | | - Stephen DiNardo
- Department of Cell and Developmental Biology, The Perelman School of Medicine and The Penn Institute for Regenerative MedicinePhiladelphiaUnited States
| | - Margaret T Fuller
- Department of Developmental Biology, Stanford University School of MedicineStanfordUnited States
- Department of Genetics, Stanford UniversityStanfordUnited States
| |
Collapse
|
5
|
Shi C, Liu L, Wei Z, Liu J, Li M, Yan Z, Gao D. Anthocyanin Accumulation and Molecular Analysis of Correlated Genes by Metabolomics and Transcriptomics in Sister Line Apple Cultivars. Life (Basel) 2022; 12:life12081246. [PMID: 36013425 PMCID: PMC9410521 DOI: 10.3390/life12081246] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/12/2022] [Accepted: 08/13/2022] [Indexed: 11/29/2022] Open
Abstract
Red coloration in apples, an important quality trait, is primarily attributed to the accumulation of anthocyanins. Centuries of breeding have produced a wide variety of apples with different levels of anthocyanins in response to genetic and environmental stimuli. The Huashuo apple shows a much darker red color than its sister line, Huarui. Thirteen different anthocyanins were detected in Huashuo and Huarui apples, of which ten were significantly more abundant in Huashuo apples, confirming that the color difference is indeed attributed to high anthocyanins accumulation rather than the types of anthocyanins. In particular, the contents of cyanidin 3-O-galactoside levels were highest among anthocyanins in both cultivars, reaching >5000 μg·g−1 at the last color transition stage in Huashuo apples, while only >3000 μg·g−1 in Huarui apples. Moreover, the expression of most structural genes, especially DFR, CHI, and 4CL associated with anthocyanin synthesis, were higher in Huashuo apples than in Huarui apples. Combined transcriptomics, metabolomics, and qRT-PCR analysis revealed that six transcription factors from the MYB and bZIP transcription factor families likely play key roles in the dark coloring of Huashuo apples. These results provide deeper insights into apple coloring and suggest a series of candidate genes for breeding anthocyanin-rich cultivars.
Collapse
|
6
|
Berry CW, Olivares GH, Gallicchio L, Ramaswami G, Glavic A, Olguín P, Li JB, Fuller MT. Developmentally regulated alternate 3' end cleavage of nascent transcripts controls dynamic changes in protein expression in an adult stem cell lineage. Genes Dev 2022; 36:916-935. [PMID: 36175033 PMCID: PMC9575692 DOI: 10.1101/gad.349689.122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 09/12/2022] [Indexed: 02/03/2023]
Abstract
Alternative polyadenylation (APA) generates transcript isoforms that differ in the position of the 3' cleavage site, resulting in the production of mRNA isoforms with different length 3' UTRs. Although widespread, the role of APA in the biology of cells, tissues, and organisms has been controversial. We identified >500 Drosophila genes that express mRNA isoforms with a long 3' UTR in proliferating spermatogonia but a short 3' UTR in differentiating spermatocytes due to APA. We show that the stage-specific choice of the 3' end cleavage site can be regulated by the arrangement of a canonical polyadenylation signal (PAS) near the distal cleavage site but a variant or no recognizable PAS near the proximal cleavage site. The emergence of transcripts with shorter 3' UTRs in differentiating cells correlated with changes in expression of the encoded proteins, either from off in spermatogonia to on in spermatocytes or vice versa. Polysome gradient fractionation revealed >250 genes where the long 3' UTR versus short 3' UTR mRNA isoforms migrated differently, consistent with dramatic stage-specific changes in translation state. Thus, the developmentally regulated choice of an alternative site at which to make the 3' end cut that terminates nascent transcripts can profoundly affect the suite of proteins expressed as cells advance through sequential steps in a differentiation lineage.
Collapse
Affiliation(s)
- Cameron W Berry
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Gonzalo H Olivares
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California 94305, USA
- Center for Genome Regulation (CRG), Universidad de Chile, Santiago 7810000, Chile
- Drosophila Ring in Developmental Adaptations to Nutritional Stress (DRiDANS), Universidad de Chile, Santiago 7810000, Chile
- Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago 7810000, Chile
- Program of Human Genetics, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
- Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
- Escuela de Kinesiología, Facultad de Medicina y Ciencias de la Salud, Universidad Mayor, Huechuraba 8580745, Chile
- Center of Integrative Biology (CIB), Universidad Mayor, Huechuraba 8580745, Chile
| | - Lorenzo Gallicchio
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Gokul Ramaswami
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Alvaro Glavic
- Center for Genome Regulation (CRG), Universidad de Chile, Santiago 7810000, Chile
- Drosophila Ring in Developmental Adaptations to Nutritional Stress (DRiDANS), Universidad de Chile, Santiago 7810000, Chile
- Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago 7810000, Chile
| | - Patricio Olguín
- Drosophila Ring in Developmental Adaptations to Nutritional Stress (DRiDANS), Universidad de Chile, Santiago 7810000, Chile
- Program of Human Genetics, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
- Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
| | - Jin Billy Li
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Margaret T Fuller
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California 94305, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| |
Collapse
|
7
|
Ranjan R, Snedeker J, Wooten M, Chu C, Bracero S, Mouton T, Chen X. Differential condensation of sister chromatids acts with Cdc6 to ensure asynchronous S-phase entry in Drosophila male germline stem cell lineage. Dev Cell 2022; 57:1102-1118.e7. [PMID: 35483360 PMCID: PMC9134767 DOI: 10.1016/j.devcel.2022.04.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 01/16/2022] [Accepted: 04/05/2022] [Indexed: 01/06/2023]
Abstract
During Drosophila melanogaster male germline stem cell (GSC) asymmetric division, preexisting old versus newly synthesized histones H3 and H4 are asymmetrically inherited. However, the biological outcomes of this phenomenon have remained unclear. Here, we tracked old and new histones throughout the GSC cell cycle through the use of high spatial and temporal resolution microscopy. We found unique features that differ between old and new histone-enriched sister chromatids, including differences in nucleosome density, chromosomal condensation, and H3 Ser10 phosphorylation. These distinct chromosomal features lead to their differential association with Cdc6, a pre-replication complex component, and subsequent asynchronous DNA replication initiation in the resulting daughter cells. Disruption of asymmetric histone inheritance abolishes differential Cdc6 association and asynchronous S-phase entry, demonstrating that histone asymmetry acts upstream of these critical cell-cycle progression events. Furthermore, disruption of these GSC-specific chromatin features leads to GSC defects, indicating a connection between histone inheritance, cell-cycle progression, and cell fate determination.
Collapse
Affiliation(s)
- Rajesh Ranjan
- Howard Hughes Medical Institute, Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA; Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Jonathan Snedeker
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Matthew Wooten
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Carolina Chu
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Sabrina Bracero
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Taylar Mouton
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Xin Chen
- Howard Hughes Medical Institute, Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA; Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
8
|
Müller GA, Asthana A, Rubin SM. Structure and function of MuvB complexes. Oncogene 2022; 41:2909-2919. [PMID: 35468940 PMCID: PMC9201786 DOI: 10.1038/s41388-022-02321-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 11/08/2022]
Abstract
Proper progression through the cell-division cycle is critical to normal development and homeostasis and is necessarily misregulated in cancer. The key to cell-cycle regulation is the control of two waves of transcription that occur at the onset of DNA replication (S phase) and mitosis (M phase). MuvB complexes play a central role in the regulation of these genes. When cells are not actively dividing, the MuvB complex DREAM represses G1/S and G2/M genes. Remarkably, MuvB also forms activator complexes together with the oncogenic transcription factors B-MYB and FOXM1 that are required for the expression of the mitotic genes in G2/M. Despite this essential role in the control of cell division and the relationship to cancer, it has been unclear how MuvB complexes inhibit and stimulate gene expression. Here we review recent discoveries of MuvB structure and molecular interactions, including with nucleosomes and other chromatin-binding proteins, which have led to the first mechanistic models for the biochemical function of MuvB complexes.
Collapse
Affiliation(s)
- Gerd A Müller
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, 95064, USA.
| | - Anushweta Asthana
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, 95064, USA
| | - Seth M Rubin
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, 95064, USA.
| |
Collapse
|
9
|
Asthana A, Ramanan P, Hirschi A, Guiley KZ, Wijeratne TU, Shelansky R, Doody MJ, Narasimhan H, Boeger H, Tripathi S, Müller GA, Rubin SM. The MuvB complex binds and stabilizes nucleosomes downstream of the transcription start site of cell-cycle dependent genes. Nat Commun 2022; 13:526. [PMID: 35082292 PMCID: PMC8792015 DOI: 10.1038/s41467-022-28094-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 01/10/2022] [Indexed: 11/25/2022] Open
Abstract
The chromatin architecture in promoters is thought to regulate gene expression, but it remains uncertain how most transcription factors (TFs) impact nucleosome position. The MuvB TF complex regulates cell-cycle dependent gene-expression and is critical for differentiation and proliferation during development and cancer. MuvB can both positively and negatively regulate expression, but the structure of MuvB and its biochemical function are poorly understood. Here we determine the overall architecture of MuvB assembly and the crystal structure of a subcomplex critical for MuvB function in gene repression. We find that the MuvB subunits LIN9 and LIN37 function as scaffolding proteins that arrange the other subunits LIN52, LIN54 and RBAP48 for TF, DNA, and histone binding, respectively. Biochemical and structural data demonstrate that MuvB binds nucleosomes through an interface that is distinct from LIN54-DNA consensus site recognition and that MuvB increases nucleosome occupancy in a reconstituted promoter. We find in arrested cells that MuvB primarily associates with a tightly positioned +1 nucleosome near the transcription start site (TSS) of MuvB-regulated genes. These results support a model that MuvB binds and stabilizes nucleosomes just downstream of the TSS on its target promoters to repress gene expression. The MuvB protein complex regulates genes that are differentially expressed through the cell cycle, yet its precise molecular function has remained unclear. Here the authors reveal MuvB associates with the nucleosome adjacent to the transcription start site of cell-cycle genes and that the tight positioning of this nucleosome correlates with MuvB-dependent gene repression.
Collapse
Affiliation(s)
- Anushweta Asthana
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, 95064, USA
| | - Parameshwaran Ramanan
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, 95064, USA
| | - Alexander Hirschi
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, 95064, USA
| | - Keelan Z Guiley
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, 95064, USA
| | - Tilini U Wijeratne
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, 95064, USA
| | - Robert Shelansky
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, CA, 95064, USA
| | - Michael J Doody
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, CA, 95064, USA
| | - Haritha Narasimhan
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, 95064, USA
| | - Hinrich Boeger
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, CA, 95064, USA
| | - Sarvind Tripathi
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, 95064, USA
| | - Gerd A Müller
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, 95064, USA.
| | - Seth M Rubin
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, 95064, USA.
| |
Collapse
|
10
|
Ilyin AA, Kononkova AD, Golova AV, Shloma VV, Olenkina O, Nenasheva V, Abramov Y, Kotov AA, Maksimov D, Laktionov P, Pindyurin A, Galitsyna A, Ulianov S, Khrameeva E, Gelfand M, Belyakin S, Razin S, Shevelyov Y. OUP accepted manuscript. Nucleic Acids Res 2022; 50:3203-3225. [PMID: 35166842 PMCID: PMC8989536 DOI: 10.1093/nar/gkac109] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/19/2022] [Accepted: 02/03/2022] [Indexed: 11/14/2022] Open
Abstract
Eukaryotic chromosomes are spatially segregated into topologically associating domains (TADs). Some TADs are attached to the nuclear lamina (NL) through lamina-associated domains (LADs). Here, we identified LADs and TADs at two stages of Drosophila spermatogenesis – in bamΔ86 mutant testes which is the commonly used model of spermatogonia (SpG) and in larval testes mainly filled with spermatocytes (SpCs). We found that initiation of SpC-specific transcription correlates with promoters’ detachment from the NL and with local spatial insulation of adjacent regions. However, this insulation does not result in the partitioning of inactive TADs into sub-TADs. We also revealed an increased contact frequency between SpC-specific genes in SpCs implying their de novo gathering into transcription factories. In addition, we uncovered the specific X chromosome organization in the male germline. In SpG and SpCs, a single X chromosome is stronger associated with the NL than autosomes. Nevertheless, active chromatin regions in the X chromosome interact with each other more frequently than in autosomes. Moreover, despite the absence of dosage compensation complex in the male germline, randomly inserted SpG-specific reporter is expressed higher in the X chromosome than in autosomes, thus evidencing that non-canonical dosage compensation operates in SpG.
Collapse
Affiliation(s)
| | | | | | | | | | - Valentina V Nenasheva
- Institute of Molecular Genetics of National Research Centre “Kurchatov Institute”, Moscow 123182, Russia
| | - Yuri A Abramov
- Institute of Molecular Genetics of National Research Centre “Kurchatov Institute”, Moscow 123182, Russia
| | - Alexei A Kotov
- Institute of Molecular Genetics of National Research Centre “Kurchatov Institute”, Moscow 123182, Russia
| | - Daniil A Maksimov
- Institute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Petr P Laktionov
- Institute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
- Novosibirsk State University, Novosibirsk 630090, Russia
| | - Alexey V Pindyurin
- Institute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | | | - Sergey V Ulianov
- Institute of Gene Biology, Russian Academy of Sciences, Moscow119334, Russia
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow 119992, Russia
| | - Ekaterina E Khrameeva
- Correspondence may also be addressed to Ekaterina Khrameeva. Tel: +7 495 2801481; Fax: +7 495 2801481;
| | - Mikhail S Gelfand
- Skolkovo Institute of Science and Technology, Skolkovo 143026, Russia
- A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow 127051, Russia
| | - Stepan N Belyakin
- Institute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
- Novosibirsk State University, Novosibirsk 630090, Russia
| | - Sergey V Razin
- Institute of Gene Biology, Russian Academy of Sciences, Moscow119334, Russia
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow 119992, Russia
| | - Yuri Y Shevelyov
- To whom correspondence should be addressed. Tel: +7 499 1960809; Fax: +7 499 1960221;
| |
Collapse
|
11
|
Rapid Divergence of Key Spermatogenesis Genes in nasuta-Subgroup of Drosophila. J Mol Evol 2021; 90:2-16. [PMID: 34807291 DOI: 10.1007/s00239-021-10037-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 11/09/2021] [Indexed: 10/19/2022]
Abstract
The crosses between closely related Drosophila species usually produce sterile hybrid males with spermatogenesis disrupted at post-meiotic phase, especially in sperm individualization stage than the pre-meiotic stage. This is possibly due to the rapid interspecies divergence of male sex and reproduction-related genes. Here we annotated 11 key spermatogenesis genes in 35 strains of species belonging to nasuta-subgroup of Drosophila, where many interspecies crosses produce sterile males. We characterized the divergence and polymorphism in the protein coding regions by employing gene-wide, codon-wide, and lineage-specific selection analysis to test the mode and strength of selection acting on these genes. Our analysis showed signature of positive selection at bag of marbles (bam) and benign gonial cell neoplasma (bgcn) despite the selection constrains and the absence of endosymbiont infection which could potentially drive rapid divergence due to an arms race while roughex (rux) showed lineage-specific rapid divergence in frontal sheen complex of nasuta-subgroup. cookie monster (comr) showed rapid divergence consistent with the possibility of meiotic arrest observed in sterile hybrids of Drosophila species. Rapid divergence observed at don juan (dj) and Mst98Ca-like was consistent with fused sperm-tail abnormality observed in the hybrids of Drosophila nasuta and Drosophila albomicans. These findings highlight the potential role of rapid nucleotide divergence in bringing about hybrid incompatibility in the form of male sterility; however, additional genetic manipulation studies can widen our understanding of hybrid incompatibilities. Furthermore, our study emphasizes the importance of young species belonging to nasuta-subgroup of Drosophila in studying post-zygotic reproductive isolation mechanisms.
Collapse
|
12
|
Niikura M, Fukutomi T, Mitobe J, Kobayashi F. Roles and Cellular Localization of GBP2 and NAB2 During the Blood Stage of Malaria Parasites. Front Cell Infect Microbiol 2021; 11:737457. [PMID: 34604117 PMCID: PMC8479154 DOI: 10.3389/fcimb.2021.737457] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/24/2021] [Indexed: 12/03/2022] Open
Abstract
The quality control and export of mRNA by RNA-binding proteins are necessary for the survival of malaria parasites, which have complex life cycles. Nuclear poly(A) binding protein 2 (NAB2), THO complex subunit 4 (THO4), nucleolar protein 3 (NPL3), G-strand binding protein 2 (GBP2) and serine/arginine-rich splicing factor 1 (SR1) are involved in nuclear mRNA export in malaria parasites. However, their roles in asexual and sexual development, and in cellular localization, are not fully understood. In this study using the rodent malaria parasite, Plasmodium berghei, we found that NAB2 and SR1, but not THO4, NPL3 or GBP2, played essential roles in the asexual development of malaria parasites. By contrast, GBP2 but not NPL3 was involved in male and female gametocyte production. THO4 was involved in female gametocyte production, but had a lower impact than GBP2. In this study, we focused on GBP2 and NAB2, which play important roles in the sexual and asexual development of malaria parasites, respectively, and examined their cellular localization. GBP2 localized to both the nucleus and cytoplasm of malaria parasites. Using immunoprecipitation coupled to mass spectrometry (IP-MS), GBP2 interacted with the proteins ALBA4, DOZI, and CITH, which play roles in translational repression. IP-MS also revealed that phosphorylated adapter RNA export protein (PHAX) domain-containing protein, an adaptor protein for exportin-1, also interacted with GBP2, implying that mRNA export occurs via the PHAX domain-containing protein pathway in malaria parasites. Live-cell fluorescence imaging revealed that NAB2 localized at the nuclear periphery. Moreover, IP-MS indicated that NAB2 interacted with transportin. RNA immunoprecipitation coupled to RNA sequencing revealed that NAB2 bound directly to 143 mRNAs, including those encoding 40S and 60S ribosomal proteins. Our findings imply that malaria parasites use an evolutionarily ancient mechanism conserved throughout eukaryotic evolution.
Collapse
Affiliation(s)
- Mamoru Niikura
- Department of Infectious Diseases, Kyorin University School of Medicine, Tokyo, Japan
| | - Toshiyuki Fukutomi
- Department of Pharmacology and Toxicology, Kyorin University School of Medicine, Tokyo, Japan
| | - Jiro Mitobe
- Department of Infectious Diseases, Kyorin University School of Medicine, Tokyo, Japan
| | - Fumie Kobayashi
- Department of Environmental Science, School of Life and Environmental Science, Azabu University, Kanagawa, Japan
| |
Collapse
|
13
|
Yang Y, Kong R, Goh FG, Somers WG, Hime GR, Li Z, Cai Y. dRTEL1 is essential for the maintenance of Drosophila male germline stem cells. PLoS Genet 2021; 17:e1009834. [PMID: 34644293 PMCID: PMC8513875 DOI: 10.1371/journal.pgen.1009834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 09/23/2021] [Indexed: 11/19/2022] Open
Abstract
Stem cells have the potential to maintain undifferentiated state and differentiate into specialized cell types. Despite numerous progress has been achieved in understanding stem cell self-renewal and differentiation, many fundamental questions remain unanswered. In this study, we identify dRTEL1, the Drosophila homolog of Regulator of Telomere Elongation Helicase 1, as a novel regulator of male germline stem cells (GSCs). Our genome-wide transcriptome analysis and ChIP-Seq results suggest that dRTEL1 affects a set of candidate genes required for GSC maintenance, likely independent of its role in DNA repair. Furthermore, dRTEL1 prevents DNA damage-induced checkpoint activation in GSCs. Finally, dRTEL1 functions to sustain Stat92E protein levels, the key player in GSC maintenance. Together, our findings reveal an intrinsic role of the DNA helicase dRTEL1 in maintaining male GSC and provide insight into the function of dRTEL1.
Collapse
Affiliation(s)
- Ying Yang
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- Department of Pathology, Peking University Health Science Center, Beijing, China
| | - Ruiyan Kong
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Feng Guang Goh
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
| | - W. Gregory Somers
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Australia
| | - Gary R. Hime
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Australia
| | - Zhouhua Li
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Yu Cai
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| |
Collapse
|
14
|
Zhang L, Buhr S, Voigt A, Methner A. The Evolutionary Conserved Transmembrane BAX Inhibitor Motif (TMBIM) Containing Protein Family Members 5 and 6 Are Essential for the Development and Survival of Drosophila melanogaster. Front Cell Dev Biol 2021; 9:666484. [PMID: 34540824 PMCID: PMC8446389 DOI: 10.3389/fcell.2021.666484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 08/16/2021] [Indexed: 11/30/2022] Open
Abstract
The mammalian Transmembrane BAX Inhibitor Motif (TMBIM) protein family consists of six evolutionarily conserved hydrophobic proteins that affect programmed cell death and the regulation of intracellular calcium levels. The bacterial ortholog BsYetJ is a pH-dependent calcium channel. We here identified seven TMBIM family members in Drosophila melanogaster and describe their expression levels in diverse tissues and developmental stages. A phylogenetic analysis revealed that CG30379 represents the ortholog of human TMBIM4 although these two proteins are much less related than TMBIM5 (CG2076 and CG1287/Mics1) and TMBIM6 (CG7188/Bi-1) to their respective orthologs. For TMBIM1-3 the assignment is more dubious because the fly and the human proteins cluster together. We conducted a functional analysis based on expression levels and the availability of RNAi lines. This revealed that the ubiquitous knockdown of CG3798/Nmda1 and CG3814/Lfg had no effect on development while knockdown of CG2076/dTmbim5 resulted in death at the pupa stage and knockdown of CG7188/dTmbim6 in death at the embryonic stage. Ubiquitous knockdown of the second TMBIM5 paralog CG1287/Mics1 ensued in male sterility. Knockdown of dTmbim5 and 6 in muscle and neural tissue also greatly reduced lifespan through different mechanisms. Knockdown of the mitochondrial family member dTmbim5 resulted in reduced ATP production and a pro-apoptotic expression profile while knockdown of the ER protein dTmbim6 increased the ER calcium levels similar to findings in mammalian cells. Our data demonstrate that dTmbim5 and 6 are essential for fly development and survival but affect cell survival through different mechanisms.
Collapse
Affiliation(s)
- Li Zhang
- University Medical Center, Institute for Molecular Medicine, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Sebastian Buhr
- University Medical Center, Institute for Molecular Medicine, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Aaron Voigt
- Department of Neurology, RWTH Aachen University, Aachen, Germany.,Forschungszentrum Jülich GmbH, JARA-Institute Molecular Neuroscience and Neuroimaging, RWTH Aachen University, Aachen, Germany
| | - Axel Methner
- University Medical Center, Institute for Molecular Medicine, Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
15
|
Gonzalez LE, Tang X, Lin H. Maternal Piwi regulates primordial germ cell development to ensure the fertility of female progeny in Drosophila. Genetics 2021; 219:iyab091. [PMID: 34142134 PMCID: PMC8757300 DOI: 10.1093/genetics/iyab091] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/02/2021] [Indexed: 12/18/2022] Open
Abstract
In many animals, germline development is initiated by proteins and RNAs that are expressed maternally. PIWI proteins and their associated small noncoding PIWI-interacting RNAs (piRNAs), which guide PIWI to target RNAs by base-pairing, are among the maternal components deposited into the germline of the Drosophila early embryo. Piwi has been extensively studied in the adult ovary and testis, where it is required for transposon suppression, germline stem cell self-renewal, and fertility. Consequently, loss of Piwi in the adult ovary using piwi-null alleles or knockdown from early oogenesis results in complete sterility, limiting investigation into possible embryonic functions of maternal Piwi. In this study, we show that the maternal Piwi protein persists in the embryonic germline through gonad coalescence, suggesting that maternal Piwi can regulate germline development beyond early embryogenesis. Using a maternal knockdown strategy, we find that maternal Piwi is required for the fertility and normal gonad morphology of female, but not male, progeny. Following maternal piwi knockdown, transposons were mildly derepressed in the early embryo but were fully repressed in the ovaries of adult progeny. Furthermore, the maternal piRNA pool was diminished, reducing the capacity of the PIWI/piRNA complex to target zygotic genes during embryogenesis. Examination of embryonic germ cell proliferation and ovarian gene expression showed that the germline of female progeny was partially masculinized by maternal piwi knockdown. Our study reveals a novel role for maternal Piwi in the germline development of female progeny and suggests that the PIWI/piRNA pathway is involved in germline sex determination in Drosophila.
Collapse
Affiliation(s)
- Lauren E Gonzalez
- Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06519, USA
- Department of Genetics, Yale School of Medicine, New Haven, CT 06519, USA
| | - Xiongzhuo Tang
- Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06519, USA
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06519, USA
| | - Haifan Lin
- Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06519, USA
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06519, USA
| |
Collapse
|
16
|
Yuzawa T, Matsuoka M, Sumitani M, Aoki F, Sezutsu H, Suzuki MG. Transgenic and knockout analyses of Masculinizer and doublesex illuminated the unique functions of doublesex in germ cell sexual development of the silkworm, Bombyx mori. BMC DEVELOPMENTAL BIOLOGY 2020; 20:19. [PMID: 32957956 PMCID: PMC7504827 DOI: 10.1186/s12861-020-00224-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/10/2020] [Indexed: 01/24/2023]
Abstract
Background Masculinizer (Masc) plays a pivotal role in male sex determination in the silkworm, Bombyx mori. Masc is required for male-specific splicing of B. mori doublesex (Bmdsx) transcripts. The male isoform of Bmdsx (BmdsxM) induces male differentiation in somatic cells, while females express the female isoform of Bmdsx (BmdsxF), which promotes female differentiation in somatic cells. Our previous findings suggest that Masc could direct the differentiation of genetically female (ZW) germ cells into sperms. However, it remains unclear whether Masc directly induces spermatogenesis or if it promotes male differentiation in germ cells indirectly by inducing the expression of BmdsxM. Results In this study, we performed genetic analyses using the transgenic line that expressed Masc, as well as various Bmdsx knockout lines. We found that Masc-expressing females with a homozygous mutation in BmdsxM showed normal development in ovaries. The formation of testis-like tissues was abolished in these females. On the other hand, Masc-expressing females carrying a homozygous mutation in BmdsxF exhibited almost complete male-specific development in gonads and germ cells. These results suggest that BmdsxM has an ability to induce male development in germ cells as well as internal genital organs, while BmdsxF inhibits BmdsxM activity and represses male differentiation. To investigate whether MASC directly controls male-specific splicing of Bmdsx and identify RNAs that form complexes with MASC in testes, we performed RNA immunoprecipitation (RIP) using an anti-MASC antibody. We found that MASC formed a complex with AS1 lncRNA, which is a testis-specific factor involved in the male-specific splicing of Bmdsx pre-mRNA. Conclusions Taken together, our findings suggest that Masc induces male differentiation in germ cells by enhancing the production of BmdsxM. Physical interaction between MASC and AS1 lncRNA may be important for the BmdsxM expression in the testis. Unlike in the Drosophila dsx, BmdsxM was able to induce spermatogenesis in genetically female (ZW) germ cells. To the best of our knowledge, this is the first report that the role of dsx in germ cell sexual development is different between insect species.
Collapse
Affiliation(s)
- Tomohisa Yuzawa
- AIR WATER INC, 4-9-4 Hatchobori, Chuo-ku, Tokyo, 104-0032, Japan.,Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba, 277-8562, Japan
| | - Misato Matsuoka
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba, 277-8562, Japan.,SHINYUSHA, 1-12 Kanda Jimbocho, Chiyoda-ku, Tokyo, 101-0051, Japan
| | - Megumi Sumitani
- Genetically Modified Organism Research Center, National Institute of Agrobiological Sciences, Owashi, Tsukuba, 305-8634, Japan
| | - Fugaku Aoki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba, 277-8562, Japan
| | - Hideki Sezutsu
- Genetically Modified Organism Research Center, National Institute of Agrobiological Sciences, Owashi, Tsukuba, 305-8634, Japan
| | - Masataka G Suzuki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba, 277-8562, Japan.
| |
Collapse
|
17
|
Vorster PJ, Goetsch P, Wijeratne TU, Guiley KZ, Andrejka L, Tripathi S, Larson BJ, Rubin SM, Strome S, Lipsick JS. A long lost key opens an ancient lock: Drosophila Myb causes a synthetic multivulval phenotype in nematodes. Biol Open 2020; 9:bio051508. [PMID: 32295830 PMCID: PMC7225089 DOI: 10.1242/bio.051508] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/05/2020] [Indexed: 01/14/2023] Open
Abstract
The five-protein MuvB core complex is highly conserved in animals. This nuclear complex interacts with RB-family tumor suppressor proteins and E2F-DP transcription factors to form DREAM complexes that repress genes that regulate cell cycle progression and cell fate. The MuvB core complex also interacts with Myb family oncoproteins to form the Myb-MuvB complexes that activate many of the same genes. We show that animal-type Myb genes are present in Bilateria, Cnidaria and Placozoa, the latter including the simplest known animal species. However, bilaterian nematode worms lost their animal-type Myb genes hundreds of millions of years ago. Nevertheless, amino acids in the LIN9 and LIN52 proteins that directly interact with the MuvB-binding domains of human B-Myb and Drosophila Myb are conserved in Caenorhabditiselegans Here, we show that, despite greater than 500 million years since their last common ancestor, the Drosophila melanogaster Myb protein can bind to the nematode LIN9-LIN52 proteins in vitro and can cause a synthetic multivulval (synMuv) phenotype in vivo This phenotype is similar to that caused by loss-of-function mutations in C. elegans synMuvB-class genes including those that encode homologs of the MuvB core, RB, E2F and DP. Furthermore, amino acid substitutions in the MuvB-binding domain of Drosophila Myb that disrupt its functions in vitro and in vivo also disrupt these activities in C. elegans We speculate that nematodes and other animals may contain another protein that can bind to LIN9 and LIN52 in order to activate transcription of genes repressed by DREAM complexes.
Collapse
Affiliation(s)
- Paul J Vorster
- Departments of Pathology, Genetics, and Biology, Stanford University, Stanford, CA 94305-5324, USA
| | - Paul Goetsch
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Tilini U Wijeratne
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Keelan Z Guiley
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Laura Andrejka
- Departments of Pathology, Genetics, and Biology, Stanford University, Stanford, CA 94305-5324, USA
| | - Sarvind Tripathi
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Braden J Larson
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Seth M Rubin
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Susan Strome
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Joseph S Lipsick
- Departments of Pathology, Genetics, and Biology, Stanford University, Stanford, CA 94305-5324, USA
| |
Collapse
|
18
|
Lu D, Sin HS, Lu C, Fuller MT. Developmental regulation of cell type-specific transcription by novel promoter-proximal sequence elements. Genes Dev 2020; 34:663-677. [PMID: 32217666 PMCID: PMC7197356 DOI: 10.1101/gad.335331.119] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 03/04/2020] [Indexed: 02/06/2023]
Abstract
Cell type-specific transcriptional programs that drive differentiation of specialized cell types are key players in development and tissue regeneration. One of the most dramatic changes in the transcription program in Drosophila occurs with the transition from proliferating spermatogonia to differentiating spermatocytes, with >3000 genes either newly expressed or expressed from new alternative promoters in spermatocytes. Here we show that opening of these promoters from their closed state in precursor cells requires function of the spermatocyte-specific tMAC complex, localized at the promoters. The spermatocyte-specific promoters lack the previously identified canonical core promoter elements except for the Inr. Instead, these promoters are enriched for the binding site for the TALE-class homeodomain transcription factors Achi/Vis and for a motif originally identified under tMAC ChIP-seq peaks. The tMAC motif resembles part of the previously identified 14-bp β2UE1 element critical for spermatocyte-specific expression. Analysis of downstream sequences relative to transcription start site usage suggested that ACA and CNAAATT motifs at specific positions can help promote efficient transcription initiation. Our results reveal how promoter-proximal sequence elements that recruit and are acted upon by cell type-specific chromatin binding complexes help establish a robust, cell type-specific transcription program for terminal differentiation.
Collapse
Affiliation(s)
- Dan Lu
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California 94305, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Ho-Su Sin
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California 94305, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Chenggang Lu
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California 94305, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Margaret T Fuller
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California 94305, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| |
Collapse
|
19
|
Shi Z, Lim C, Tran V, Cui K, Zhao K, Chen X. Single-cyst transcriptome analysis of Drosophila male germline stem cell lineage. Development 2020; 147:dev.184259. [PMID: 32122991 DOI: 10.1242/dev.184259] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 02/23/2020] [Indexed: 12/31/2022]
Abstract
The Drosophila male germline stem cell (GSC) lineage provides a great model to understand stem cell maintenance, proliferation, differentiation and dedifferentiation. Here, we use the Drosophila GSC lineage to systematically analyze the transcriptome of discrete but continuously differentiating germline cysts. We first isolated single cysts at each recognizable stage from wild-type testes, which were subsequently applied for RNA-seq analyses. Our data delineate a high-resolution transcriptome atlas in the entire male GSC lineage: the most dramatic switch occurs from early to late spermatocyte, followed by the change from the mitotic spermatogonia to early meiotic spermatocyte. By contrast, the transit-amplifying spermatogonia cysts display similar transcriptomes, suggesting common molecular features among these stages, which may underlie their similar behavior during both differentiation and dedifferentiation processes. Finally, distinct differentiating germ cell cyst samples do not exhibit obvious dosage compensation of X-chromosomal genes, even considering the paucity of X-chromosomal gene expression during meiosis, which is different from somatic cells. Together, our single cyst-resolution, genome-wide transcriptional profile analyses provide an unprecedented resource to understand many questions in both germ cell biology and stem cell biology fields.
Collapse
Affiliation(s)
- Zhen Shi
- Department of Biology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | - Cindy Lim
- Department of Biology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | - Vuong Tran
- Department of Biology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | - Kairong Cui
- Systems Biology Center (SBC), Division of Intramural Research (DIR), National Heart, Lung and Blood Institute, National Institutes of Health, 10 Center Drive, MSC 1674, Building 10, Room 7B05, Bethesda, MD 20892, USA
| | - Keji Zhao
- Systems Biology Center (SBC), Division of Intramural Research (DIR), National Heart, Lung and Blood Institute, National Institutes of Health, 10 Center Drive, MSC 1674, Building 10, Room 7B05, Bethesda, MD 20892, USA
| | - Xin Chen
- Department of Biology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| |
Collapse
|
20
|
Abstract
Gametogenesis represents the most dramatic cellular differentiation pathways in both female and male flies. At the genome level, meiosis ensures that diploid germ cells become haploid gametes. At the epigenome level, extensive changes are required to turn on and shut off gene expression in a precise spatiotemporally controlled manner. Research applying conventional molecular genetics and cell biology, in combination with rapidly advancing genomic tools have helped us to investigate (1) how germ cells maintain lineage specificity throughout their adult reproductive lifetime; (2) what molecular mechanisms ensure proper oogenesis and spermatogenesis, as well as protect genome integrity of the germline; (3) how signaling pathways contribute to germline-soma communication; and (4) if such communication is important. In this chapter, we highlight recent discoveries that have improved our understanding of these questions. On the other hand, restarting a new life cycle upon fertilization is a unique challenge faced by gametes, raising questions that involve intergenerational and transgenerational epigenetic inheritance. Therefore, we also discuss new developments that link changes during gametogenesis to early embryonic development-a rapidly growing field that promises to bring more understanding to some fundamental questions regarding metazoan development.
Collapse
|
21
|
Phatarphekar A, Su Q, Eun SH, Chen X, Rokita SE. The importance of a halotyrosine dehalogenase for Drosophila fertility. J Biol Chem 2018; 293:10314-10321. [PMID: 29764939 DOI: 10.1074/jbc.ra118.003364] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 05/11/2018] [Indexed: 12/18/2022] Open
Abstract
The ability of iodotyrosine deiodinase to salvage iodide from iodotyrosine has long been recognized as critical for iodide homeostasis and proper thyroid function in vertebrates. The significance of its additional ability to dehalogenate bromo- and chlorotyrosine is less apparent, and none of these functions could have been anticipated in invertebrates until recently. Drosophila, as most arthropods, contains a deiodinase homolog encoded by CG6279, now named condet (cdt), with a similar catalytic specificity. However, its physiological role cannot be equivalent because Drosophila lacks a thyroid and its associated hormones, and no requirement for iodide or halotyrosines has been reported for this species. We have now applied CRISPR/Cas9 technology to generate Drosophila strains in which the cdt gene has been either deleted or mutated to identify its biological function. As previously shown in larvae, expression of cdt is primarily limited to the fat body, and we now report that loss of cdt function does not enhance sensitivity of the larvae to the toxic effects of iodotyrosine. In adult flies by contrast, expression is known to occur in testes and is detected at very high levels in this tissue. The importance of cdt is most evident in the decrease in fertility observed when either males or females carry a deletion or mutation of cdt Therefore, dehalogenation of a halotyrosine appears essential for efficient reproduction in Drosophila and likely contributes to a new pathway for controlling viability in arthropods.
Collapse
Affiliation(s)
| | - Qi Su
- From the Departments of Chemistry and
| | - Suk Ho Eun
- Biology, Johns Hopkins University, Baltimore, Maryland 21218
| | - Xin Chen
- Biology, Johns Hopkins University, Baltimore, Maryland 21218
| | | |
Collapse
|
22
|
Jiang M, Gao Z, Wang J, Nurminsky DI. Evidence for a hierarchical transcriptional circuit in Drosophila male germline involving testis-specific TAF and two gene-specific transcription factors, Mod and Acj6. FEBS Lett 2017; 592:46-59. [PMID: 29235675 DOI: 10.1002/1873-3468.12937] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 11/30/2017] [Accepted: 12/05/2017] [Indexed: 01/04/2023]
Abstract
To analyze transcription factors involved in gene regulation by testis-specific TAF (tTAF), tTAF-dependent promoters were mapped and analyzed in silico. Core promoters show decreased AT content, paucity of classical promoter motifs, and enrichment with translation control element CAAAATTY. Scanning of putative regulatory regions for known position frequency matrices identified 19 transcription regulators possibly contributing to tTAF-driven gene expression. Decreased male fertility associated with mutation in one of the regulators, Acj6, indicates its involvement in male reproduction. Transcriptome study of testes from male mutants for tTAF, Acj6, and previously characterized tTAF-interacting factor Modulo implies the existence of a regulatory hierarchy of tTAF, Modulo and Acj6, in which Modulo and/or Acj6 regulate one-third of tTAF-dependent genes.
Collapse
Affiliation(s)
- Mei Jiang
- Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Zhengliang Gao
- Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Advanced Institute of Translational Medicine, Tongji University School of Medicine, Shanghai, China
| | - Jian Wang
- Key Laboratory of Aquaculture Resources and Utilization, Ministry of Education, College of Fisheries and Life Science, Shanghai Ocean University, China
| | - Dmitry I Nurminsky
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland, Baltimore, MD, USA
| |
Collapse
|
23
|
Trost M, Blattner AC, Leo S, Lehner CF. Drosophila dany is essential for transcriptional control and nuclear architecture in spermatocytes. Development 2017; 143:2664-76. [PMID: 27436041 DOI: 10.1242/dev.134759] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 06/03/2016] [Indexed: 01/14/2023]
Abstract
The terminal differentiation of adult stem cell progeny depends on transcriptional control. A dramatic change in gene expression programs accompanies the transition from proliferating spermatogonia to postmitotic spermatocytes, which prepare for meiosis and subsequent spermiogenesis. More than a thousand spermatocyte-specific genes are transcriptionally activated in early Drosophila spermatocytes. Here we describe the identification and initial characterization of dany, a gene required in spermatocytes for the large-scale change in gene expression. Similar to tMAC and tTAFs, the known major activators of spermatocyte-specific genes, dany has a recent evolutionary origin, but it functions independently. Like dan and danr, its primordial relatives with functions in somatic tissues, dany encodes a nuclear Psq domain protein. Dany associates preferentially with euchromatic genome regions. In dany mutant spermatocytes, activation of spermatocyte-specific genes and silencing of non-spermatocyte-specific genes are severely compromised and the chromatin no longer associates intimately with the nuclear envelope. Therefore, as suggested recently for Dan/Danr, we propose that Dany is essential for the coordination of change in cell type-specific expression programs and large-scale spatial chromatin reorganization.
Collapse
Affiliation(s)
- Martina Trost
- Institute of Molecular Life Sciences (IMLS), University of Zurich, Zurich 8057, Switzerland
| | - Ariane C Blattner
- Institute of Molecular Life Sciences (IMLS), University of Zurich, Zurich 8057, Switzerland
| | - Stefano Leo
- Institute of Molecular Life Sciences (IMLS), University of Zurich, Zurich 8057, Switzerland
| | - Christian F Lehner
- Institute of Molecular Life Sciences (IMLS), University of Zurich, Zurich 8057, Switzerland
| |
Collapse
|
24
|
Kim J, Lu C, Srinivasan S, Awe S, Brehm A, Fuller MT. Blocking promiscuous activation at cryptic promoters directs cell type-specific gene expression. Science 2017; 356:717-721. [PMID: 28522526 PMCID: PMC5572561 DOI: 10.1126/science.aal3096] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 04/13/2017] [Indexed: 12/18/2022]
Abstract
To selectively express cell type-specific transcripts during development, it is critical to maintain genes required for other lineages in a silent state. Here, we show in the Drosophila male germline stem cell lineage that a spermatocyte-specific zinc finger protein, Kumgang (Kmg), working with the chromatin remodeler dMi-2 prevents transcription of genes normally expressed only in somatic lineages. By blocking transcription from normally cryptic promoters, Kmg restricts activation by Aly, a component of the testis-meiotic arrest complex, to transcripts for male germ cell differentiation. Our results suggest that as new regions of the genome become open for transcription during terminal differentiation, blocking the action of a promiscuous activator on cryptic promoters is a critical mechanism for specifying precise gene activation.
Collapse
Affiliation(s)
- Jongmin Kim
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305-5329, USA
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305-5329, USA
| | - Chenggang Lu
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305-5329, USA
| | - Shrividhya Srinivasan
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305-5329, USA
| | - Stephan Awe
- Institut für Molekularbiologie und Tumorforschung, Philipps-Universität Marburg, Marburg, Germany
| | - Alexander Brehm
- Institut für Molekularbiologie und Tumorforschung, Philipps-Universität Marburg, Marburg, Germany
| | - Margaret T Fuller
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305-5329, USA.
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305-5329, USA
| |
Collapse
|
25
|
Cruz-Becerra G, Juárez M, Valadez-Graham V, Zurita M. Analysis of Drosophila p8 and p52 mutants reveals distinct roles for the maintenance of TFIIH stability and male germ cell differentiation. Open Biol 2016; 6:rsob.160222. [PMID: 27805905 PMCID: PMC5090060 DOI: 10.1098/rsob.160222] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 09/18/2016] [Indexed: 11/17/2022] Open
Abstract
Eukaryotic gene expression is activated by factors that interact within complex machinery to initiate transcription. An important component of this machinery is the DNA repair/transcription factor TFIIH. Mutations in TFIIH result in three human syndromes: xeroderma pigmentosum, Cockayne syndrome and trichothiodystrophy. Transcription and DNA repair defects have been linked to some clinical features of these syndromes. However, how mutations in TFIIH affect specific developmental programmes, allowing organisms to develop with particular phenotypes, is not well understood. Here, we show that mutations in the p52 and p8 subunits of TFIIH have a moderate effect on the gene expression programme in the Drosophila testis, causing germ cell differentiation arrest in meiosis, but no Polycomb enrichment at the promoter of the affected differentiation genes, supporting recent data that disagree with the current Polycomb-mediated repression model for regulating gene expression in the testis. Moreover, we found that TFIIH stability is not compromised in p8 subunit-depleted testes that show transcriptional defects, highlighting the role of p8 in transcription. Therefore, this study reveals how defects in TFIIH affect a specific cell differentiation programme and contributes to understanding the specific syndrome manifestations in TFIIH-afflicted patients.
Collapse
Affiliation(s)
- Grisel Cruz-Becerra
- Departamento de Genética del Desarrollo, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av Universidad 2001, Cuernavaca Morelos 62250, Mexico
| | - Mandy Juárez
- Departamento de Genética del Desarrollo, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av Universidad 2001, Cuernavaca Morelos 62250, Mexico
| | - Viviana Valadez-Graham
- Departamento de Genética del Desarrollo, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av Universidad 2001, Cuernavaca Morelos 62250, Mexico
| | - Mario Zurita
- Departamento de Genética del Desarrollo, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av Universidad 2001, Cuernavaca Morelos 62250, Mexico
| |
Collapse
|
26
|
Fuller MT. Differentiation in Stem Cell Lineages and in Life: Explorations in the Male Germ Line Stem Cell Lineage. Curr Top Dev Biol 2016; 116:375-90. [PMID: 26970629 DOI: 10.1016/bs.ctdb.2015.11.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
I have been privileged to work on cellular differentiation during a great surge of discovery that has revealed the molecular mechanisms and genetic regulatory circuitry that control embryonic development and adult tissue maintenance and repair. Studying the regulation of proliferation and differentiation in the male germ line stem cell lineage has allowed us investigate how the developmental program imposes layers of additional controls on fundamental cellular processes like cell cycle progression and gene expression to give rise to the huge variety of specialized cell types in our bodies. We are beginning to understand how local signals from somatic support cells specify self-renewal versus differentiation in the stem cell niche at the apical tip of the testis. We are discovering the molecular events that block cell proliferation and initiate terminal differentiation at the switch from mitosis to meiosis-a signature event of the germ cell program. Our work is beginning to reveal how the developmental program that sets up the dramatic new cell type-specific transcription program that prepares germ cells for meiotic division and spermatid differentiation is turned on when cells become spermatocytes. I have had the privilege of working with incredible students, postdocs, and colleagues who have discovered, brainstormed, challenged, and refined our science and our ideas of how developmental pathways and cellular mechanisms work together to drive differentiation.
Collapse
Affiliation(s)
- Margaret T Fuller
- Departments of Developmental Biology and Genetics, Stanford University School of Medicine, Stanford, California, USA.
| |
Collapse
|
27
|
Lu C, Fuller MT. Recruitment of Mediator Complex by Cell Type and Stage-Specific Factors Required for Tissue-Specific TAF Dependent Gene Activation in an Adult Stem Cell Lineage. PLoS Genet 2015; 11:e1005701. [PMID: 26624996 PMCID: PMC4666660 DOI: 10.1371/journal.pgen.1005701] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 11/04/2015] [Indexed: 01/08/2023] Open
Abstract
Onset of terminal differentiation in adult stem cell lineages is commonly marked by robust activation of new transcriptional programs required to make the appropriate differentiated cell type(s). In the Drosophila male germ line stem cell lineage, the switch from proliferating spermatogonia to spermatocyte is accompanied by one of the most dramatic transcriptional changes in the fly, as over 1000 new transcripts turn on in preparation for meiosis and spermatid differentiation. Here we show that function of the coactivator complex Mediator is required for activation of hundreds of new transcripts in the spermatocyte program. Mediator appears to act in a sequential hierarchy, with the testis activating Complex (tMAC), a cell type specific form of the Mip/dREAM general repressor, required to recruit Mediator subunits to the chromatin, and Mediator function required to recruit the testis TAFs (tTAFs), spermatocyte specific homologs of subunits of TFIID. Mediator, tMAC and the tTAFs co-regulate expression of a major set of spermatid differentiation genes. The Mediator subunit Med22 binds the tMAC component Topi when the two are coexpressed in S2 cells, suggesting direct recruitment. Loss of Med22 function in spermatocytes causes meiosis I maturation arrest male infertility, similar to loss of function of the tMAC subunits or the tTAFs. Our results illuminate how cell type specific versions of the Mip/dREAM complex and the general transcription machinery cooperate to drive selective gene activation during differentiation in stem cell lineages. Selective gene expression is crucial to making different cell types over the course of the development of an organism. In stem cell lineages, precursor cells terminally differentiate into defined cell types, with onset of terminal differentiation associated with activation of stage- and cell type-specific transcriptional programs. When spermatogonia initiate differentiation and become spermatocytes in the Drosophila male germ line, they undergo the most dramatic transcriptional changes that occur in the fly, as over 1000 new transcripts turn on in preparation for meiosis and the striking morphological changes that produce sperm. This robust spermatocyte transcription program requires cooperative action of a testis-specific protein complex, tMAC and the testis-specific basal transcription machinery TFIID. Here we show that the transcriptional co-activator complex, Mediator is key in connecting the two classes of players. We found that Mediator is recruited to spermatocyte chromatin through the interaction of its subunit, Med22 and a putative transcription activator in tMAC. Recruitment of Mediator is then required for proper localization and function of the testis-specific TFIID complex to initiate gene transcription for spermatid differentiation, illuminating how transcription factors and cell type-specific versions of the general transcription machinery cooperate to drive gene activation during differentiation in adult stem cell lineages.
Collapse
Affiliation(s)
- Chenggang Lu
- Departments of Developmental Biology and of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Margaret T. Fuller
- Departments of Developmental Biology and of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
28
|
White-Cooper H. Tissue, cell type and stage-specific ectopic gene expression and RNAi induction in the Drosophila testis. SPERMATOGENESIS 2014; 2:11-22. [PMID: 22553486 PMCID: PMC3341242 DOI: 10.4161/spmg.19088] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The Drosophila testis has numerous advantages for the study of basic cellular processes, as production of sperm requires a highly orchestrated and complex combination of morphological changes and developmentally regulated transitions. Experimental genetics using Drosophila melanogaster has advanced dramatically with the advent of systems for ectopic expression of genetic elements in specific cells. However the genetic tools used in Drosophila research have rarely been generated with the testes in mind, and the utility of relatively few systems has been documented for this tissue. Here I will summarize ectopic expression systems that are known to work for the testis, and provide advice for selection of the most appropriate expression system in specific experimental situations.
Collapse
|
29
|
Lim C, Tarayrah L, Chen X. Transcriptional regulation during Drosophila spermatogenesis. SPERMATOGENESIS 2014; 2:158-166. [PMID: 23087835 PMCID: PMC3469439 DOI: 10.4161/spmg.21775] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Drosophila spermatogenesis has become a paradigmatic system for the study of mechanisms that regulate adult stem cell maintenance, proliferation and differentiation. The dramatic cellular differentiation process from germline stem cell (GSC) to mature sperm is accompanied by dynamic changes in gene expression, which are regulated at transcriptional, post-transcriptional (including translational) and post-translational levels. Post-transcriptional regulation has been proposed as a unique feature of germ cells. However, recent studies have provided new insights into transcriptional regulation during Drosophila spermatogenesis. Both signaling pathways and epigenetic mechanisms act to orchestrate the transcriptional regulation of distinct genes at different germ cell differentiation stages. Many of the regulatory pathways that control male gamete differentiation in Drosophila are conserved in mammals. Therefore, studies using Drosophila spermatogenesis will provide insight into the molecular mechanisms that regulate mammalian germ cell differentiation pathways.
Collapse
Affiliation(s)
- Cindy Lim
- Department of Biology; The Johns Hopkins University; Baltimore, MD USA
| | | | | |
Collapse
|
30
|
Radhika PN, Ramachandra NB. Divergence of the gene aly in experimentally evolved cytoraces, the members of the nasuta-albomicans complex of Drosophila. INSECT MOLECULAR BIOLOGY 2014; 23:435-443. [PMID: 24645631 DOI: 10.1111/imb.12091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We generated cytoraces by crossing the chromosomal races (Drosophila nasuta nasuta and Drosophila nasuta albomicans) of the nasuta subgroup of Drosophila and maintained the offspring over many generations through sibling mating. These cytoraces, along with their parents, are members of the nasuta-albomicans complex of Drosophila. The gene always early (aly) is one of the rapidly evolving genes in the genus Drosophila and plays a central role in regulating meiosis. Here we examined the rate of molecular evolution of aly in cytoraces of Drosophila and demonstrated that the rate of substitutions amongst cytoraces is around eight times greater than their parents and even amongst species of subgenera. Thus, the presence of positive selection in the laboratory-derived cytoraces based on the analysis of the synonymous and nonsynonymous substitution rates of aly suggests the rapid evolution in cytoraces.
Collapse
Affiliation(s)
- P N Radhika
- Drosophila Stock Centre, Unit on Evolution and Genetics, Department of Studies in Zoology, University of Mysore, Mysore, India
| | | |
Collapse
|
31
|
Eun SH, Shi Z, Cui K, Zhao K, Chen X. A non-cell autonomous role of E(z) to prevent germ cells from turning on a somatic cell marker. Science 2014; 343:1513-6. [PMID: 24675960 PMCID: PMC4040133 DOI: 10.1126/science.1246514] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In many metazoans, germ cells are separated from somatic lineages early in development and maintain their identity throughout life. Here, we show that a Polycomb group (PcG) component, Enhancer of Zeste [E(z)], a histone transferase that generates trimethylation at lysine 27 of histone H3, maintains germline identity in Drosophila adult testes. We find excessive early-stage somatic gonadal cells in E(z) mutant testes, which originate from both overproliferative cyst stem cells and germ cells turning on an early-stage somatic cell marker. Using complementary lineage-tracing experiments in E(z) mutant testes, a portion of excessive early-stage somatic gonadal cells are found to originate from early-stage germ cells, including germline stem cells. Moreover, knocking down E(z) specifically in somatic cells caused this change, which suggests a non-cell autonomous role of E(z) to antagonize somatic identity in germ cells.
Collapse
Affiliation(s)
- Suk Ho Eun
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218
| | - Zhen Shi
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218
| | - Kairong Cui
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Keji Zhao
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Xin Chen
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218
| |
Collapse
|
32
|
Laktionov PP, White-Cooper H, Maksimov DA, Belyakin SN. Transcription factor Comr acts as a direct activator in the genetic program controlling spermatogenesis in D. melanogaster. Mol Biol 2014. [DOI: 10.1134/s0026893314010087] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
33
|
Zhang P, Zhong J, Cao G, Xue R, Gong C. BmAly is an important factor in meiotic progression and spermatid differentiation in Bombyx mori (Lepidoptera: Bombycidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2014; 14:188. [PMID: 25480974 PMCID: PMC5633954 DOI: 10.1093/jisesa/ieu050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Accepted: 05/29/2013] [Indexed: 06/04/2023]
Abstract
The Drosophila melanogaster "always early" gene (Dmaly), which is required for G2/M cell-cycle control and spermatid differentiation, is one of the meiotic arrest genes. To study the Bombyx mori aly gene (Bmaly), the cDNA of Bmaly was cloned and sequenced, and the results showed that the open reading frame of Bmaly is 1,713 bp in length, encoding 570 amino acid residues, in which a domain in an Rb-related pathway was found. Phylogenetic analysis based on the amino acid sequence of conserved regions showed that Aly from different insects gathered together, except for DmAly and Culex quinquefasciatus Aly, which were not clustered to a subgroup according to insect order. The Bmaly gene was inserted into expression vector pGS-21a(+) and then the recombinant protein was expressed in Escherichia coli and used to immunize mice to prepare the antibody against BmAly. Immunofluorescence examination showed that BmAly was distributed in both the cytoplasm and nucleus of BmN cell. The Bmaly gene expression could not be detected in the silk gland, malpighian tubule, fat body, or midgut of the silkworm. Expression levels of the Bmaly gene were detected in the gonadal tissues, where the levels in the testes were 10 times higher than that in the ovaries. Moreover, Bmaly expression was detected by quantitative polymerase chain reaction at different stages of B. mori testis development, at which fifth instar was relatively grossly expressed. The result suggested Bmaly was abundantly expressed in primary spermatocytes and prespermatids. To further explore the function of Bmaly, Bmaly siRNA was injected into third and fourth instar silkworm larvae, which markedly inhibited the development of sperm cells. These results together suggest that Bmaly is a meiotic arrest gene that plays an important role in spermatogenesis.
Collapse
Affiliation(s)
- Pengjie Zhang
- School of Biology and Basic Medical Science, Soochow University, Suzhou 215123, China
| | - Jinfeng Zhong
- School of Biology and Basic Medical Science, Soochow University, Suzhou 215123, China
| | - Guangli Cao
- School of Biology and Basic Medical Science, Soochow University, Suzhou 215123, China National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, People's Republic of China
| | - Renyu Xue
- School of Biology and Basic Medical Science, Soochow University, Suzhou 215123, China National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, People's Republic of China
| | - Chengliang Gong
- School of Biology and Basic Medical Science, Soochow University, Suzhou 215123, China National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, People's Republic of China
| |
Collapse
|
34
|
El-Sharnouby S, Redhouse J, White RAH. Genome-wide and cell-specific epigenetic analysis challenges the role of polycomb in Drosophila spermatogenesis. PLoS Genet 2013; 9:e1003842. [PMID: 24146626 PMCID: PMC3798269 DOI: 10.1371/journal.pgen.1003842] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Accepted: 08/15/2013] [Indexed: 11/19/2022] Open
Abstract
The Drosophila spermatogenesis cell differentiation pathway involves the activation of a large set of genes in primary spermatocytes. Most of these genes are activated by testis-specific TATA-binding protein associated factors (tTAFs). In the current model for the activation mechanism, Polycomb plays a key role silencing these genes in the germline precursors, and tTAF-dependent activation in primary spermatocytes involves the displacement of Polycomb from gene promoters. We investigated the genome-wide binding of Polycomb in wild type and tTAF mutant testes. According to the model we expected to see a clear enhancement in Polycomb binding at tTAF-dependent spermatogenesis genes in tTAF mutant testes. However, we find little evidence for such an enhancement in tTAF mutant testes compared to wild type. To avoid problems arising from cellular heterogeneity in whole testis analysis, we further tested the model by analysing Polycomb binding in purified germline precursors, representing cells before tTAF-dependent gene activation. Although we find Polycomb associated with its canonical targets, we find little or no evidence of Polycomb at spermatogenesis genes. The lack of Polycomb at tTAF-dependent spermatogenesis genes in precursor cells argues against a model where Polycomb displacement is the mechanism of spermatogenesis gene activation.
Collapse
Affiliation(s)
- Sherif El-Sharnouby
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Juliet Redhouse
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Robert A. H. White
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
35
|
Lu C, Kim J, Fuller MT. The polyubiquitin gene Ubi-p63E is essential for male meiotic cell cycle progression and germ cell differentiation in Drosophila. Development 2013; 140:3522-31. [PMID: 23884444 DOI: 10.1242/dev.098947] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The ubiquitin proteasome system (UPS) regulates many biological pathways by post-translationally ubiquitylating proteins for degradation. Although maintaining a dynamic balance between free ubiquitin and ubiquitylated proteins is key to UPS function, the mechanisms that regulate ubiquitin homeostasis in different tissues through development are not clear. Here we show, via analysis of the magellan (magn) complementation group, that loss of function of the Drosophila polyubiquitin Ubi-p63E results specifically in meiotic arrest sterility in males. Ubi-p63E contributes predominantly to maintaining the free ubiquitin pool in testes. The function of Ubi-p63E is required cell-autonomously for proper meiotic chromatin condensation, cell cycle progression and spermatid differentiation. magn mutant germ cells develop normally to the spermatocyte stage but arrest at the G2/M transition of meiosis I, with lack of protein expression of the key meiotic cell cycle regulators Boule and Cyclin B. Loss of Ubi-p63E function did not strongly affect the spermatocyte transcription program regulated by the testis TBP-associated factor (tTAF) or meiosis arrest complex (tMAC) genes. Knocking down proteasome function specifically in spermatocytes caused a different meiotic arrest phenotype, suggesting that the magn phenotype might not result from general defects in protein degradation. Our results suggest a conserved role of polyubiquitin genes in male meiosis and a potential mechanism leading to meiosis I maturation arrest.
Collapse
Affiliation(s)
- Chenggang Lu
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305-5329, USA
| | | | | |
Collapse
|
36
|
Caporilli S, Yu Y, Jiang J, White-Cooper H. The RNA export factor, Nxt1, is required for tissue specific transcriptional regulation. PLoS Genet 2013; 9:e1003526. [PMID: 23754955 PMCID: PMC3674997 DOI: 10.1371/journal.pgen.1003526] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 04/08/2013] [Indexed: 01/19/2023] Open
Abstract
The highly conserved, Nxf/Nxt (TAP/p15) RNA nuclear export pathway is important for export of most mRNAs from the nucleus, by interacting with mRNAs and promoting their passage through nuclear pores. Nxt1 is essential for viability; using a partial loss of function allele, we reveal a role for this gene in tissue specific transcription. We show that many Drosophila melanogaster testis-specific mRNAs require Nxt1 for their accumulation. The transcripts that require Nxt1 also depend on a testis-specific transcription complex, tMAC. We show that loss of Nxt1 leads to reduced transcription of tMAC targets. A reporter transcript from a tMAC-dependent promoter is under-expressed in Nxt1 mutants, however the same transcript accumulates in mutants if driven by a tMAC-independent promoter. Thus, in Drosophila primary spermatocytes, the transcription factor used to activate expression of a transcript, rather than the RNA sequence itself or the core transcription machinery, determines whether this expression requires Nxt1. We additionally find that transcripts from intron-less genes are more sensitive to loss of Nxt1 function than those from intron-containing genes and propose a mechanism in which transcript processing feeds back to increase activity of a tissue specific transcription complex.
Collapse
Affiliation(s)
- Simona Caporilli
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Yachuan Yu
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Jianqiao Jiang
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | | |
Collapse
|
37
|
White-Cooper H, Caporilli S. Transcriptional and post-transcriptional regulation of Drosophila germline stem cells and their differentiating progeny. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 786:47-61. [PMID: 23696351 DOI: 10.1007/978-94-007-6621-1_4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In this chapter we will concentrate on the transcriptional and translational regulations that govern the development and differentiation of male germline cells. Our focus will be on the processes that occur during differentiation, that distinguish the differentiating population of cells from their stem cell parents. We discuss how these defining features are established as cells transit from a stem cell character to that of a fully committed differentiating cell. The focus will be on how GSCs differentiate, via spermatogonia, to spermatocytes. We will achieve this by first describing the transcriptional activity in the differentiating spermatocytes, cataloguing the known transcriptional regulators in these cells and then investigating how the transcription programme is set up by processes in the progentior cells. This process is particularly interesting to study from a stem cell perspective as the male GSCs are unipotent, so lineage decisions in differentiating progeny of stem cells, which occurs in many other stem cell systems, do not impinge on the behaviour of these cells.
Collapse
|
38
|
Davies EL, Lim JGY, Joo WJ, Tam CH, Fuller MT. The transcriptional regulator lola is required for stem cell maintenance and germ cell differentiation in the Drosophila testis. Dev Biol 2012; 373:310-21. [PMID: 23159836 DOI: 10.1016/j.ydbio.2012.11.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 10/28/2012] [Accepted: 11/05/2012] [Indexed: 01/28/2023]
Abstract
Stem cell behavior is regulated by extrinsic signals from specialized microenvironments, or niches, and intrinsic factors required for execution of context-appropriate responses to niche signals. Here we show that function of the transcriptional regulator longitudinals lacking (lola) is required cell autonomously for germline stem cell and somatic cyst stem cell maintenance in the Drosophila testis. In addition, lola is also required for proper execution of key developmental transitions during male germ cell differentiation, including the switch from transit amplifying progenitor to spermatocyte growth and differentiation, as well as meiotic cell cycle progression and spermiogenesis. Different lola isoforms, each having unique C-termini and zinc finger domains, may control different aspects of proliferation and differentiation in the male germline and somatic cyst stem cell lineages.
Collapse
Affiliation(s)
- Erin L Davies
- Department of Developmental Biology, Stanford University School of Medicine, 279 Campus Drive, Beckman Center B300, Stanford, CA 94305-5329, USA
| | | | | | | | | |
Collapse
|
39
|
Zhang P, Cao G, Sheng J, Xue R, Gong C. BmTGIF, a Bombyx mori homolog of Drosophila DmTGIF, regulates progression of spermatogenesis. PLoS One 2012; 7:e47861. [PMID: 23152760 PMCID: PMC3494694 DOI: 10.1371/journal.pone.0047861] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 09/20/2012] [Indexed: 11/19/2022] Open
Abstract
TG-interacting factor (TGIF) in Drosophila consists of two tandemly-repeated genes, achintya (Dmachi) and vismay (Dmvis), which act as transcriptional activators in Drosophila spermatogenesis. In contrast, TGIF in humans is a transcriptional repressor that binds directly to DNA or interacts with corepressors to repress the transcription of target genes. In this study, we investigated the characteristics and functions of BmTGIF, a Bombyx mori homolog of DmTGIF. Like DmTGIF, BmTGIF is predominantly expressed in the testes and ovaries. Four alternatively spliced isoforms could be isolated from testes, and two isoforms from ovaries. Quantitative polymerase chain reaction indicated BmTGIF was abundantly expressed in the testis of 3rd instar larvae, when the testis is almost full of primary spermatocytes. The results of luciferase assays indicated that BmTGIF contains two adjacent acidic domains that activate the transcription of reporter genes. Immunofluorescence assay in BmN cells showed that the BmTGIF protein was located mainly in the nucleus, and paraffin sections of testis showed BmTGIF was grossly expressed in primary spermatocytes and mature sperms. Consistent with the role of DmVis in Drosophila development, BmTGIF significantly affected spermatid differentiation, as indicated by hematoxylin-eosin staining of paraffin sections of testis from BmTGIF-small interfering RNA (siRNA)-injected male silkworms. Co-immunoprecipitation experiments suggested that BmTGIF interacted with BmAly, and that they may recruit other factors to form a complex to regulate the genes required for meiotic divisions and spermatid differentiation. The results of this analysis of BmTGIF will improve our understanding of the mechanism of spermatid differentiation in B. mori, with potential applications for pest control.
Collapse
Affiliation(s)
- Pengjie Zhang
- School of Biology and Basic Medical Science, Soochow University, Suzhou, People’s Republic of China
| | - Guangli Cao
- School of Biology and Basic Medical Science, Soochow University, Suzhou, People’s Republic of China
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, People’s Republic of China
| | - Jie Sheng
- School of Biology and Basic Medical Science, Soochow University, Suzhou, People’s Republic of China
| | - Renyu Xue
- School of Biology and Basic Medical Science, Soochow University, Suzhou, People’s Republic of China
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, People’s Republic of China
| | - Chengliang Gong
- School of Biology and Basic Medical Science, Soochow University, Suzhou, People’s Republic of China
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, People’s Republic of China
- * E-mail:
| |
Collapse
|
40
|
Drosophila lin-52 acts in opposition to repressive components of the Myb-MuvB/dREAM complex. Mol Cell Biol 2012; 32:3218-27. [PMID: 22688510 DOI: 10.1128/mcb.00432-12] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Drosophila melanogaster Myb-MuvB/dREAM complex (MMB/dREAM) participates in both the activation and repression of developmentally regulated genes and origins of DNA replication. Mutants in MMB subunits exhibit diverse phenotypes, including lethality, eye defects, reduced fecundity, and sterility. Here, we used P-element excision to generate mutations in lin-52, which encodes the smallest subunit of the MMB/dREAM complex. lin-52 is required for viability, as null mutants die prior to pupariation. The generation of somatic and germ line mutant clones indicates that lin-52 is required for adult eye development and for early embryogenesis via maternal effects. Interestingly, the maternal-effect embryonic lethality, larval lethality, and adult eye defects could be suppressed by mutations in other subunits of the MMB/dREAM complex. These results suggest that a partial MMB/dREAM complex is responsible for the lethality and eye defects of lin-52 mutants. Furthermore, these findings support a model in which the Lin-52 and Myb proteins counteract the repressive activities of the other members of the MMB/dREAM complex at specific genomic loci in a developmentally controlled manner.
Collapse
|
41
|
Leser K, Awe S, Barckmann B, Renkawitz-Pohl R, Rathke C. The bromodomain-containing protein tBRD-1 is specifically expressed in spermatocytes and is essential for male fertility. Biol Open 2012; 1:597-606. [PMID: 23213453 PMCID: PMC3509448 DOI: 10.1242/bio.20121255] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
By a conserved cellular differentiation process, spermatogenesis leads to formation of haploid sperm for successful reproduction. In Drosophila and in mammals, post-meiotic spermatid differentiation depends on several translationally repressed and stored mRNAs that are often expressed exclusively in the testis through a cell type specific transcriptional program. In Drosophila, the mRNAs of proteins required for post-meiotic chromatin reorganisation, like ProtB and Mst77F, are transcribed in meiotic spermatocytes and subjected to translational repression for days. Transcription of many of these translationally repressed mRNAs depends on testis-specific homologs of TATA box binding protein-associated factors (tTAFs). Here, we identified the testis-specific bromodomain protein, tBRD-1, that is only expressed in primary spermatocytes. Bromodomain proteins are able to recognise and bind acetylated histones and non-histone proteins. We generated tbrd-1 mutant flies and observed that function of tBRD-1 is required for male fertility. tBRD-1 partially colocalised with tTAFs, TAF1 and Polycomb to a Fibrillarin-deficient region within the spermatocyte nucleolus. The nucleolar localisation of tBRD-1 depended on tTAF function but not the other way round. Further, we could show that ectopically expressed tBRD-1-eGFP is able to bind to the interbands of polytene chromosomes. By inhibitor treatment of cultured testis we observed that sub-cellular localisation of tBRD-1 may depend on the acetylation status of primary spermatocytes.
Collapse
Affiliation(s)
- Katja Leser
- Philipps-Universität Marburg, Fachbereich Biologie, Entwicklungsbiologie , Karl-von-Frisch Strasse 8, 35043 Marburg , Germany
| | | | | | | | | |
Collapse
|
42
|
Moon S, Cho B, Min SH, Lee D, Chung YD. The THO complex is required for nucleolar integrity in Drosophila spermatocytes. Development 2011; 138:3835-45. [PMID: 21828100 DOI: 10.1242/dev.056945] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The THO complex is a conserved multisubunit protein complex that functions in the formation of export-competent messenger ribonucleoprotein (mRNP). Although the complex has been studied extensively at the single-cell level, its exact role at the multicellular organism level has been poorly understood. Here, we isolated a novel Drosophila male sterile mutant, garmcho (garm). Positional cloning indicated that garm encodes a subunit of the Drosophila THO complex, THOC5. Flies lacking THOC5 showed a meiotic arrest phenotype with severe nucleolar disruption in primary spermatocytes. A functional GFP-tagged fusion protein, THOC5-GFP, revealed a unique pattern of THOC5 localization near the nucleolus. The nucleolar distribution of a testis-specific TATA binding protein (TBP)-associated factor (tTAF), SA, which is required for the expression of genes responsible for sperm differentiation, was severely disrupted in mutant testes lacking THOC5. But THOC5 appeared to be largely dispensable for the expression and nuclear export of either tTAF target mRNAs or tTAF-independent mRNAs. Taken together, our study suggests that the Drosophila THO complex is necessary for proper spermatogenesis by contribution to the establishment or maintenance of nucleolar integrity rather than by nuclear mRNA export in spermatocytes.
Collapse
Affiliation(s)
- Sungjin Moon
- Department of Life Sciences, University of Seoul, Seoul, 130-743, Korea
| | | | | | | | | |
Collapse
|
43
|
Chen X, Lu C, Morillo Prado JR, Eun SH, Fuller MT. Sequential changes at differentiation gene promoters as they become active in a stem cell lineage. Development 2011; 138:2441-50. [PMID: 21610025 DOI: 10.1242/dev.056572] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Transcriptional silencing of terminal differentiation genes by the Polycomb group (PcG) machinery is emerging as a key feature of precursor cells in stem cell lineages. How, then, is this epigenetic silencing reversed for proper cellular differentiation? Here, we investigate how the developmental program reverses local PcG action to allow expression of terminal differentiation genes in the Drosophila male germline stem cell (GSC) lineage. We find that the silenced state, set up in precursor cells, is relieved through developmentally regulated sequential events at promoters once cells commit to spermatocyte differentiation. The programmed events include global downregulation of Polycomb repressive complex 2 (PRC2) components, recruitment of hypophosphorylated RNA polymerase II (Pol II) to promoters, as well as the expression and action of testis-specific homologs of TATA-binding protein-associated factors (tTAFs). In addition, action of the testis-specific meiotic arrest complex (tMAC), a tissue-specific version of the MIP/dREAM complex, is required both for recruitment of tTAFs to target differentiation genes and for proper cell type-specific localization of PRC1 components and tTAFs within the spermatocyte nucleolus. Together, the action of the tMAC and tTAF cell type-specific chromatin and transcription machinery leads to loss of Polycomb and release of stalled Pol II from the terminal differentiation gene promoters, allowing robust transcription.
Collapse
Affiliation(s)
- Xin Chen
- Department of Biology, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218-2685, USA.
| | | | | | | | | |
Collapse
|
44
|
Wake-up-call, a lin-52 paralogue, and Always early, a lin-9 homologue physically interact, but have opposing functions in regulating testis-specific gene expression. Dev Biol 2011; 355:381-93. [PMID: 21570388 PMCID: PMC3123737 DOI: 10.1016/j.ydbio.2011.04.030] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Revised: 04/21/2011] [Accepted: 04/26/2011] [Indexed: 12/01/2022]
Abstract
A conserved multi-subunit complex (MybMuvB, MMB), regulates transcriptional activity of many different target genes in Drosophila somatic cells. A paralogous complex, tMAC, controls expression of at least 1500 genes in the male germline, and is essential for sperm production. The roles of specific subunits of tMAC, MMB or orthologous complexes in regulating target gene expression are not understood. MMB and orthologous complexes have Lin-52 as a subunit, but Lin-52 did not co-purify with tMAC. We identified wake-up-call (wuc), a lin-52 paralogue, via a physical interaction with the tMAC lin-9-related subunit Aly, and find that Wuc co-localises with known tMAC subunits. We show that wuc, like aly, is required for spermatogenesis. However, despite phenotypic similarities, the role of wuc is very different from that of previously characterised tMAC mutants. Unlike aly, loss of wuc results in only relatively mild defects in testis-specific gene expression. Strikingly, wuc loss of function partially rescues expression of target genes in aly mutant testes. We propose that wuc represses testis-specific gene expression, that this repression is counteracted by aly, and that aly and a testis-specific TFIID complex work together to promote high transcriptional activity of spermiogenic genes specifically in primary spermatocytes.
Collapse
|
45
|
Insect population control by homing endonuclease-based gene drive: an evaluation in Drosophila melanogaster. Genetics 2011; 188:33-44. [PMID: 21368273 DOI: 10.1534/genetics.111.127506] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Insects play a major role as vectors of human disease as well as causing significant agricultural losses. Harnessing the activity of customized homing endonuclease genes (HEGs) has been proposed as a method for spreading deleterious mutations through populations with a view to controlling disease vectors. Here, we demonstrate the feasibility of this method in Drosophila melanogaster, utilizing the well-characterized HEG, I-SceI. In particular, we show that high rates of homing can be achieved within spermatogonia and in the female germline. We show that homed constructs continue to exhibit HEG activity in the subsequent generation and that the ectopic homing events required for initiating the strategy occur at an acceptable rate. We conclude that the requirements for successful deployment of a HEG-based gene drive strategy can be satisfied in a model dipteran and that there is a reasonable prospect of the method working in other dipterans. In characterizing the system we measured repair outcomes at the spermatogonial, spermatocyte, and spermatid stages of spermatogenesis. We show that homologous recombination is restricted to spermatogonia and that it immediately ceases when they become primary spermatocytes, indicating that the choice of DNA repair pathway in the Drosophila testis can switch abruptly during differentiation.
Collapse
|
46
|
Male sex interspecies divergence and down regulation of expression of spermatogenesis genes in Drosophila sterile hybrids. J Mol Evol 2010; 72:80-9. [PMID: 21079940 DOI: 10.1007/s00239-010-9404-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Accepted: 10/25/2010] [Indexed: 12/23/2022]
Abstract
Male sex genes have shown a pattern of rapid interspecies divergence at both the coding and gene expression level. A common outcome from crosses between closely-related species is hybrid male sterility. Phenotypic and genetic studies in Drosophila sterile hybrid males have shown that spermatogenesis arrest is postmeiotic with few exceptions, and that most misregulated genes are involved in late stages of spermatogenesis. Comparative studies of gene regulation in sterile hybrids and parental species have mainly used microarrays providing a whole genome representation of regulatory problems in sterile hybrids. Real-time PCR studies can reject or reveal differences not observed in microarray assays. Moreover, differences in gene expression between samples can be dependant on the source of RNA (e.g., whole body vs. tissue). Here we survey expression in D. simulans, D. mauritiana and both intra and interspecies hybrids using a real-time PCR approach for eight genes expressed at the four main stages of sperm development. We find that all genes show a trend toward under expression in the testes of sterile hybrids relative to parental species with only the two proliferation genes (bam and bgcn) and the two meiotic class genes (can and sa) showing significant down regulation. The observed pattern of down regulation for the genes tested can not fully explain hybrid male sterility. We discuss the down regulation of spermatogenesis genes in hybrids between closely-related species within the contest of rapid divergence experienced by the male genome, hybrid sterility and possible allometric changes due to subtle testes-specific developmental abnormalities.
Collapse
|
47
|
White-Cooper H. Molecular mechanisms of gene regulation during Drosophila spermatogenesis. Reproduction 2010; 139:11-21. [PMID: 19755484 DOI: 10.1530/rep-09-0083] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The differentiation of sperm from morphologically unremarkable cells into highly specialised free-living, motile cells requires the co-ordinated action of a very large number of gene products. The expression of these products must be regulated in a developmental context to ensure normal cellular differentiation. Many genes essential for spermatogenesis are not used elsewhere in the animal, or are expressed elsewhere, but using a different transcription regulation module. Spermatogenesis is thus a good system for elucidating the principles of tissue-specific gene expression, as well as being interesting in its own right. Here, I discuss the regulation of gene expression during spermatogenesis in Drosophila, focussing on the processes underlying the expression of testis-specific genes in the male germline.
Collapse
Affiliation(s)
- Helen White-Cooper
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK.
| |
Collapse
|
48
|
Zhao J, Klyne G, Benson E, Gudmannsdottir E, White-Cooper H, Shotton D. FlyTED: the Drosophila Testis Gene Expression Database. Nucleic Acids Res 2010; 38:D710-5. [PMID: 19934263 PMCID: PMC2808924 DOI: 10.1093/nar/gkp1006] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Revised: 10/16/2009] [Accepted: 10/16/2009] [Indexed: 11/23/2022] Open
Abstract
FlyTED, the Drosophila Testis Gene Expression Database, is a biological research database for gene expression images from the testis of the fruit fly Drosophila melanogaster. It currently contains 2762 mRNA in situ hybridization images and ancillary metadata revealing the patterns of gene expression of 817 Drosophila genes in testes of wild type flies and of seven meiotic arrest mutant strains in which spermatogenesis is defective. This database has been built by adapting a widely used digital library repository software system, EPrints (http://eprints.org/software/), and provides both web-based search and browse interfaces, and programmatic access via an SQL dump, OAI-PMH and SPARQL. FlyTED is available at http://www.fly-ted.org/.
Collapse
Affiliation(s)
- Jun Zhao
- Image Bioinformatics Research Group and Drosophila Spermatogenesis Research Group, Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | - Graham Klyne
- Image Bioinformatics Research Group and Drosophila Spermatogenesis Research Group, Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | - Elizabeth Benson
- Image Bioinformatics Research Group and Drosophila Spermatogenesis Research Group, Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | - Elin Gudmannsdottir
- Image Bioinformatics Research Group and Drosophila Spermatogenesis Research Group, Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | - Helen White-Cooper
- Image Bioinformatics Research Group and Drosophila Spermatogenesis Research Group, Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | - David Shotton
- Image Bioinformatics Research Group and Drosophila Spermatogenesis Research Group, Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| |
Collapse
|
49
|
Li JY, Chen X, Hosseini Moghaddam SH, Chen M, Wei H, Zhong BX. Shotgun proteomics approach to characterizing the embryonic proteome of the silkworm, Bombyx mori, at labrum appearance stage. INSECT MOLECULAR BIOLOGY 2009; 18:649-660. [PMID: 19754742 DOI: 10.1111/j.1365-2583.2009.00903.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The shotgun approach has gained considerable acknowledgement in recent years as a dominant strategy in proteomics. We observed a dramatic increase of specific protein spots in two-dimensional electrophoresis (2-DE) gels of the silkworm (Bombyx mori) embryo at labrum appearance, a characteristic stage during embryonic development of silkworm which is involved with temperature increase by silkworm raiser. We employed shotgun liquid chromatography tandem mass spectrometry (LC-MS/MS) technology to analyse the proteome of B. mori embryos at this stage. A total of 2168 proteins were identified with an in-house database. Approximately 47% of them had isoelectric point (pI) values distributed theoretically in the range pI 5-7 and approximately 60% of them had molecular weights of 15-45 kDa. Furthermore, 111 proteins had an pI greater than 10 and were difficult to separate by 2-DE. Many important functional proteins related to embryonic development, stress response, DNA transcription/translation, cell growth, proliferation and differentiation, organogenesis and reproduction were identified. Among them proteins related to nervous system development were noticeable. All known heat shock proteins (HSPs) were detected in this developmental stage of B. mori embryo. In addition, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed energetic metabolism at this stage. These results were expected to provide more information for proteomic monitoring of the insect embryo and better understanding of the spatiotemporal expression of genes during embryonic developmental processes.
Collapse
Affiliation(s)
- J-Y Li
- College of Animal Sciences, Zhejiang University, Hangzhou 310029, P. R. China
| | | | | | | | | | | |
Collapse
|
50
|
Catron DJ, Noor MAF. Gene expression disruptions of organism versus organ in Drosophila species hybrids. PLoS One 2008; 3:e3009. [PMID: 18714377 PMCID: PMC2500191 DOI: 10.1371/journal.pone.0003009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2008] [Accepted: 07/31/2008] [Indexed: 01/18/2023] Open
Abstract
Hybrid dysfunctions, such as sterility, may result in part from disruptions in the regulation of gene expression. Studies of hybrids within the Drosophila simulans clade have reported genes expressed above or below the expression observed in their parent species, and such misexpression is associated with male sterility in multigenerational backcross hybrids. However, these studies often examined whole bodies rather than testes or had limited replication using less-sensitive but global techniques. Here, we use a new RNA isolation technique to re-examine hybrid gene expression disruptions in both testes and whole bodies from single Drosophila males by real-time quantitative RT-PCR. We find two early-spermatogenesis transcripts are underexpressed in hybrid whole-bodies but not in assays of testes alone, while two late-spermatogenesis transcripts seem to be underexpressed in both whole-bodies and testes alone. Although the number of transcripts surveyed is limited, these results provide some support for a previous hypothesis that the spermatogenesis pathway in these sterile hybrids may be disrupted sometime after the expression of the early meiotic arrest genes.
Collapse
Affiliation(s)
- Daniel J Catron
- Biology Department, Duke University, Durham, North Carolina, United States of America
| | | |
Collapse
|