1
|
Warren J, Kumar JP. Patterning of the Drosophila retina by the morphogenetic furrow. Front Cell Dev Biol 2023; 11:1151348. [PMID: 37091979 PMCID: PMC10117938 DOI: 10.3389/fcell.2023.1151348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/23/2023] [Indexed: 04/25/2023] Open
Abstract
Pattern formation is the process by which cells within a homogeneous epithelial sheet acquire distinctive fates depending upon their relative spatial position to each other. Several proposals, starting with Alan Turing's diffusion-reaction model, have been put forth over the last 70 years to describe how periodic patterns like those of vertebrate somites and skin hairs, mammalian molars, fish scales, and avian feather buds emerge during development. One of the best experimental systems for testing said models and identifying the gene regulatory networks that control pattern formation is the compound eye of the fruit fly, Drosophila melanogaster. Its cellular morphogenesis has been extensively studied for more than a century and hundreds of mutants that affect its development have been isolated. In this review we will focus on the morphogenetic furrow, a wave of differentiation that takes an initially homogeneous sheet of cells and converts it into an ordered array of unit eyes or ommatidia. Since the discovery of the furrow in 1976, positive and negative acting morphogens have been thought to be solely responsible for propagating the movement of the furrow across a motionless field of cells. However, a recent study has challenged this model and instead proposed that mechanical driven cell flow also contributes to retinal pattern formation. We will discuss both models and their impact on patterning.
Collapse
Affiliation(s)
| | - Justin P. Kumar
- Department of Biology, Indiana University, Bloomington, IN, United States
| |
Collapse
|
2
|
Mishra AK, Sprecher SG. Eye Development in Drosophila : From Photoreceptor Specification to Terminal Differentiation. Neurogenetics 2023. [DOI: 10.1007/978-3-031-07793-7_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
3
|
Weasner BP, Kumar JP. The early history of the eye-antennal disc of Drosophila melanogaster. Genetics 2022; 221:6573236. [PMID: 35460415 PMCID: PMC9071535 DOI: 10.1093/genetics/iyac041] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 03/04/2022] [Indexed: 12/15/2022] Open
Abstract
A pair of eye-antennal imaginal discs give rise to nearly all external structures of the adult Drosophila head including the compound eyes, ocelli, antennae, maxillary palps, head epidermis, and bristles. In the earliest days of Drosophila research, investigators would examine thousands of adult flies in search of viable mutants whose appearance deviated from the norm. The compound eyes are dispensable for viability and perturbations to their structure are easy to detect. As such, the adult compound eye and the developing eye-antennal disc emerged as focal points for studies of genetics and developmental biology. Since few tools were available at the time, early researchers put an enormous amount of thought into models that would explain their experimental observations-many of these hypotheses remain to be tested. However, these "ancient" studies have been lost to time and are no longer read or incorporated into today's literature despite the abundance of field-defining discoveries that are contained therein. In this FlyBook chapter, I will bring these forgotten classics together and draw connections between them and modern studies of tissue specification and patterning. In doing so, I hope to bring a larger appreciation of the contributions that the eye-antennal disc has made to our understanding of development as well as draw the readers' attention to the earliest studies of this important imaginal disc. Armed with the today's toolkit of sophisticated genetic and molecular methods and using the old papers as a guide, we can use the eye-antennal disc to unravel the mysteries of development.
Collapse
Affiliation(s)
- Brandon P Weasner
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Justin P Kumar
- Department of Biology, Indiana University, Bloomington, IN 47405, USA,Corresponding author: Department of Biology, Indiana University, Bloomington, IN 47405, USA.
| |
Collapse
|
4
|
Weasner BM, Kumar JP. The timing of cell fate decisions is crucial for initiating pattern formation in the Drosophila eye. Development 2022; 149:274084. [PMID: 35072208 PMCID: PMC8917411 DOI: 10.1242/dev.199634] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 12/09/2021] [Indexed: 01/26/2023]
Abstract
The eye-antennal disc of Drosophila is composed of three cell layers: a columnar epithelium called the disc proper (DP); an overlying sheet of squamous cells called the peripodial epithelium (PE); and a strip of cuboidal cells that joins the other two cellular sheets to each other and comprises the outer margin (M) of the disc. The M cells play an important role in patterning the eye because it is here that the Hedgehog (Hh), Decapentaplegic (Dpp) and JAK/STAT pathways function to initiate pattern formation. Dpp signaling is lost from the margin of eyes absent (eya) mutant discs and, as a result, the initiation of retinal patterning is blocked. Based on these observations, Eya has been proposed to control the initiation of the morphogenetic furrow via regulation of Dpp signaling within the M. We show that the failure in pattern formation surprisingly results from M cells prematurely adopting a head epidermis fate. This switch in fate normally takes place during pupal development after the eye has been patterned. Our results suggest that the timing of cell fate decisions is essential for correct eye development.
Collapse
|
5
|
Chen YC, Desplan C. Gene regulatory networks during the development of the Drosophila visual system. Curr Top Dev Biol 2020; 139:89-125. [PMID: 32450970 DOI: 10.1016/bs.ctdb.2020.02.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The Drosophila visual system integrates input from 800 ommatidia and extracts different features in stereotypically connected optic ganglia. The development of the Drosophila visual system is controlled by gene regulatory networks that control the number of precursor cells, generate neuronal diversity by integrating spatial and temporal information, coordinate the timing of retinal and optic lobe cell differentiation, and determine distinct synaptic targets of each cell type. In this chapter, we describe the known gene regulatory networks involved in the development of the different parts of the visual system and explore general components in these gene networks. Finally, we discuss the advantages of the fly visual system as a model for gene regulatory network discovery in the era of single-cell transcriptomics.
Collapse
Affiliation(s)
- Yen-Chung Chen
- Department of Biology, New York University, New York, NY, United States
| | - Claude Desplan
- Department of Biology, New York University, New York, NY, United States.
| |
Collapse
|
6
|
Drosophila Pax6 promotes development of the entire eye-antennal disc, thereby ensuring proper adult head formation. Proc Natl Acad Sci U S A 2018; 114:5846-5853. [PMID: 28584125 DOI: 10.1073/pnas.1610614114] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Paired box 6 (Pax6) is considered to be the master control gene for eye development in all seeing animals studied so far. In vertebrates, it is required not only for lens/retina formation but also for the development of the CNS, olfactory system, and pancreas. Although Pax6 plays important roles in cell differentiation, proliferation, and patterning during the development of these systems, the underlying mechanism remains poorly understood. In the fruit fly, Drosophila melanogaster, Pax6 also functions in a range of tissues, including the eye and brain. In this report, we describe the function of Pax6 in Drosophila eye-antennal disc development. Previous studies have suggested that the two fly Pax6 genes, eyeless (ey) and twin of eyeless (toy), initiate eye specification, whereas eyegone (eyg) and the Notch (N) pathway independently regulate cell proliferation. Here, we show that Pax6 controls eye progenitor cell survival and proliferation through the activation of teashirt (tsh) and eyg, thereby indicating that Pax6 initiates both eye specification and proliferation. Although simultaneous loss of ey and toy during early eye-antennal disc development disrupts the development of all head structures derived from the eye-antennal disc, overexpression of N or tsh in the absence of Pax6 rescues only antennal and head epidermis development. Furthermore, overexpression of tsh induces a homeotic transformation of the fly head into thoracic structures. Taking these data together, we demonstrate that Pax6 promotes development of the entire eye-antennal disc and that the retinal determination network works to repress alternative tissue fates, which ensures proper development of adult head structures.
Collapse
|
7
|
Ling X, Huang Q, Xu Y, Jin Y, Feng Y, Shi W, Ye X, Lin Y, Hou L, Lin X. The deubiquitinating enzyme Usp5 regulates Notch and RTK signaling duringDrosophilaeye development. FEBS Lett 2017; 591:875-888. [PMID: 28140449 DOI: 10.1002/1873-3468.12580] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 01/24/2017] [Accepted: 01/25/2017] [Indexed: 12/16/2022]
Affiliation(s)
- Xuemei Ling
- School of Optometry and Ophthalmology and Eye Hospital; Wenzhou Medical University; Zhejiang China
| | - Qinzhu Huang
- Taizhou Hospital of Zhejiang Province; Wenzhou Medical University; Linhai Zhejiang China
| | - Yanqin Xu
- School of Optometry and Ophthalmology and Eye Hospital; Wenzhou Medical University; Zhejiang China
| | - Yuxiao Jin
- School of Optometry and Ophthalmology and Eye Hospital; Wenzhou Medical University; Zhejiang China
| | - Ying Feng
- School of Optometry and Ophthalmology and Eye Hospital; Wenzhou Medical University; Zhejiang China
| | - Weijie Shi
- School of Optometry and Ophthalmology and Eye Hospital; Wenzhou Medical University; Zhejiang China
| | - Xiaolei Ye
- School of Optometry and Ophthalmology and Eye Hospital; Wenzhou Medical University; Zhejiang China
| | - Yi Lin
- School of Optometry and Ophthalmology and Eye Hospital; Wenzhou Medical University; Zhejiang China
| | - Ling Hou
- School of Optometry and Ophthalmology and Eye Hospital; Wenzhou Medical University; Zhejiang China
| | - Xinhua Lin
- School of Optometry and Ophthalmology and Eye Hospital; Wenzhou Medical University; Zhejiang China
| |
Collapse
|
8
|
Martins T, Meghini F, Florio F, Kimata Y. The APC/C Coordinates Retinal Differentiation with G1 Arrest through the Nek2-Dependent Modulation of Wingless Signaling. Dev Cell 2016; 40:67-80. [PMID: 28041905 PMCID: PMC5225405 DOI: 10.1016/j.devcel.2016.12.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 10/20/2016] [Accepted: 12/02/2016] [Indexed: 12/19/2022]
Abstract
The cell cycle is coordinated with differentiation during animal development. Here we report a cell-cycle-independent developmental role for a master cell-cycle regulator, the anaphase-promoting complex or cyclosome (APC/C), in the regulation of cell fate through modulation of Wingless (Wg) signaling. The APC/C controls both cell-cycle progression and postmitotic processes through ubiquitin-dependent proteolysis. Through an RNAi screen in the developing Drosophila eye, we found that partial APC/C inactivation severely inhibits retinal differentiation independently of cell-cycle defects. The differentiation inhibition coincides with hyperactivation of Wg signaling caused by the accumulation of a Wg modulator, Drosophila Nek2 (dNek2). The APC/C degrades dNek2 upon synchronous G1 arrest prior to differentiation, which allows retinal differentiation through local suppression of Wg signaling. We also provide evidence that decapentaplegic signaling may posttranslationally regulate this APC/C function. Thus, the APC/C coordinates cell-fate determination with the cell cycle through the modulation of developmental signaling pathways. APC/C inactivation disrupts retinal differentiation in the Drosophila eye APC/C inactivation causes the ectopic activation of Wg signaling APC/CFzr downregulates a Wg modulator, dNek2, by proteolysis upon G1 arrest Local dNek2 degradation ensures the coordination of retinal differentiation
Collapse
Affiliation(s)
- Torcato Martins
- Cell Cycle Development Group, Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK.
| | - Francesco Meghini
- Cell Cycle Development Group, Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | - Francesca Florio
- Cell Cycle Development Group, Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | - Yuu Kimata
- Cell Cycle Development Group, Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK.
| |
Collapse
|
9
|
Malartre M. Regulatory mechanisms of EGFR signalling during Drosophila eye development. Cell Mol Life Sci 2016; 73:1825-43. [PMID: 26935860 PMCID: PMC11108404 DOI: 10.1007/s00018-016-2153-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 01/20/2016] [Accepted: 02/01/2016] [Indexed: 01/14/2023]
Abstract
EGFR signalling is a well-conserved signalling pathway playing major roles during development and cancers. This review explores what studying the EGFR pathway during Drosophila eye development has taught us in terms of the diversity of its regulatory mechanisms. This model system has allowed the identification of numerous positive and negative regulators acting at specific time and place, thus participating to the tight control of signalling. EGFR signalling regulation is achieved by a variety of mechanisms, including the control of ligand processing, the availability of the receptor itself and the transduction of the cascade in the cytoplasm. Ultimately, the transcriptional responses contribute to the establishment of positive and negative feedback loops. The combination of these multiple mechanisms employed to regulate the EGFR pathway leads to specific cellular outcomes involved in functions as diverse as the acquisition of cell fate, proliferation, survival, adherens junction remodelling and morphogenesis.
Collapse
Affiliation(s)
- Marianne Malartre
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette Cedex, France.
| |
Collapse
|
10
|
Spatiotemporal patterning of polyamines in Drosophila development. Amino Acids 2015; 47:2665-70. [PMID: 26386564 DOI: 10.1007/s00726-015-2093-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Accepted: 08/29/2015] [Indexed: 10/23/2022]
Abstract
While several studies have implicated polyamines (PAs) in development, little research has been done in genetically tractable model systems like Drosophila. Here, we integrate transcriptional and metabolic data across Drosophila development, and are the first to show temporal, stage-specific regulation of PA accumulation in embryonic trachea and eye discs using immunohistochemistry. Understanding the regulation driving this accumulation can provide insight into PA metabolism and transport. Our findings suggest that Drosophila has great potential for investigating PAs in developmental biology.
Collapse
|
11
|
Dally Proteoglycan Mediates the Autonomous and Nonautonomous Effects on Tissue Growth Caused by Activation of the PI3K and TOR Pathways. PLoS Biol 2015; 13:e1002239. [PMID: 26313758 PMCID: PMC4551486 DOI: 10.1371/journal.pbio.1002239] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 07/31/2015] [Indexed: 11/19/2022] Open
Abstract
How cells acquiring mutations in tumor suppressor genes outcompete neighboring wild-type cells is poorly understood. The phosphatidylinositol 3-kinase (PI3K)–phosphatase with tensin homology (PTEN) and tuberous sclerosis complex (TSC)-target of rapamycin (TOR) pathways are frequently activated in human cancer, and this activation is often causative of tumorigenesis. We utilized the Gal4-UAS system in Drosophila imaginal primordia, highly proliferative and growing tissues, to analyze the impact of restricted activation of these pathways on neighboring wild-type cell populations. Activation of these pathways leads to an autonomous induction of tissue overgrowth and to a remarkable nonautonomous reduction in growth and proliferation rates of adjacent cell populations. This nonautonomous response occurs independently of where these pathways are activated, is functional all throughout development, takes place across compartments, and is distinct from cell competition. The observed autonomous and nonautonomous effects on tissue growth rely on the up-regulation of the proteoglycan Dally, a major element involved in modulating the spreading, stability, and activity of the growth promoting Decapentaplegic (Dpp)/transforming growth factor β(TGF-β) signaling molecule. Our findings indicate that a reduction in the amount of available growth factors contributes to the outcompetition of wild-type cells by overgrowing cell populations. During normal development, the PI3K/PTEN and TSC/TOR pathways play a major role in sensing nutrient availability and modulating the final size of any developing organ. We present evidence that Dally also contributes to integrating nutrient sensing and organ scaling, the fitting of pattern to size. The loss of tumor suppressor genes induces a nonautonomous reduction of growth and proliferation rates in adjacent cell populations by competing for available growth factors; the proteoglycan Dally helps to mediate this effect. The final size of a developing organ is finely modulated by nutrient conditions through the activity of nutrient sensing pathways, and deregulation of these pathways is often causative of tumorigenesis. Besides the well-known roles of these pathways in inducing tissue and cell growth, here we identify a nonautonomous effect of activation of these pathways on growth and proliferation rates and on the final size of neighboring cell populations. We reveal that the observed autonomous and nonautonomous effects on tissue growth and proliferation rates rely on the up-regulation of the proteoglycan Dally, a major factor involved in modulating the spreading, stability, and activity of the growth promoting Decapentaplegic (Dpp)/transforming growth factor β(TGF-β) signaling molecule. Our data indicate that a reduction in the amount of available growth factors contributes to the outcompetition of wild-type cells by overgrowing cell populations. Whereas nutrient-sensing pathways modulate the final size of the adult structure according to nutrient availability to the feeding animal, Dpp plays an organ-intrinsic role in the coordination of growth and patterning. We identify the proteoglycan Dally as the rate-limiting factor that contributes to the tissue-autonomous and nonautonomous effects on growth caused by targeted activation of the nutrient-sensing pathways. Thus, our results unravel a role of Dally as a molecular bridge between the organ-intrinsic and organ-extrinsic mechanisms that regulate organ size.
Collapse
|
12
|
Fernandes VM, Pradhan-Sundd T, Blaquiere JA, Verheyen EM. Ras/MEK/MAPK-mediated regulation of heparin sulphate proteoglycans promotes retinal fate in the Drosophila eye-antennal disc. Dev Biol 2015; 402:109-18. [PMID: 25848695 DOI: 10.1016/j.ydbio.2015.03.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Revised: 01/22/2015] [Accepted: 03/25/2015] [Indexed: 12/29/2022]
Abstract
Generating cellular heterogeneity is crucial to the development of complex organs. Organ-fate selector genes and signalling pathways generate cellular diversity by subdividing and patterning naïve tissues to assign them regional identities. The Drosophila eye-antennal imaginal disc is a well-characterised system in which to study regional specification; it is first divided into antennal and eye fates and subsequently retinal differentiation occurs within only the eye field. During development, signalling pathways and selector genes compete with and mutually antagonise each other to subdivide the tissue. Wingless (Wg) signalling is the main inhibitor of retinal differentiation; it does so by promoting antennal/head-fate via selector factors and by antagonising Hedgehog (Hh), the principal differentiation-initiating signal. Wg signalling must be suppressed by JAK/STAT at the disc posterior in order to initiate retinal differentiation. Ras/MEK/MAPK signalling has also been implicated in initiating retinal differentiation but its mode of action is not known. We find that compromising Ras/MEK/MAPK signalling in the early larval disc results in expanded antennal/head cuticle at the expense of the compound eye. These phenotypes correspond both to perturbations in selector factor expression, and to de-repressed wg. Indeed, STAT activity is reduced due to decreased mobility of the ligand Unpaired (Upd) along with a corresponding loss in Dally-like protein (Dlp), a heparan sulphate proteoglycan (HSPG) that aids Upd diffusion. Strikingly, blocking HSPG biogenesis phenocopies compromised Ras/MEK/MAPK, while restoring HSPG expression rescues the adult phenotype significantly. This study identifies a novel mode by which the Ras/MEK/MAPK pathway regulates regional-fate specification via HSPGs during development.
Collapse
Affiliation(s)
- Vilaiwan M Fernandes
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
| | - Tirthadipa Pradhan-Sundd
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
| | - Jessica A Blaquiere
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
| | - Esther M Verheyen
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6.
| |
Collapse
|
13
|
Roy M, King TW. Epidermal growth factor regulates NIKS keratinocyte proliferation through Notch signaling. J Surg Res 2013; 185:6-11. [DOI: 10.1016/j.jss.2013.06.046] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 06/13/2013] [Accepted: 06/20/2013] [Indexed: 10/26/2022]
|
14
|
Shen W, Chen X, Cormier O, Cheng DCP, Reed B, Harden N. Modulation of morphogenesis by Egfr during dorsal closure in Drosophila. PLoS One 2013; 8:e60180. [PMID: 23579691 PMCID: PMC3620322 DOI: 10.1371/journal.pone.0060180] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 02/23/2013] [Indexed: 01/12/2023] Open
Abstract
During Drosophila embryogenesis the process of dorsal closure (DC) results in continuity of the embryonic epidermis, and DC is well recognized as a model system for the analysis of epithelial morphogenesis as well as wound healing. During DC the flanking lateral epidermal sheets stretch, align, and fuse along the dorsal midline, thereby sealing a hole in the epidermis occupied by an extra-embryonic tissue known as the amnioserosa (AS). Successful DC requires the regulation of cell shape change via actomyosin contractility in both the epidermis and the AS, and this involves bidirectional communication between these two tissues. We previously demonstrated that transcriptional regulation of myosin from the zipper (zip) locus in both the epidermis and the AS involves the expression of Ack family tyrosine kinases in the AS in conjunction with Dpp secreted from the epidermis. A major function of Ack in other species, however, involves the negative regulation of Egfr. We have, therefore, asked what role Egfr might play in the regulation of DC. Our studies demonstrate that Egfr is required to negatively regulate epidermal expression of dpp during DC. Interestingly, we also find that Egfr signaling in the AS is required to repress zip expression in both the AS and the epidermis, and this may be generally restrictive to the progression of morphogenesis in these tissues. Consistent with this theme of restricting morphogenesis, it has previously been shown that programmed cell death of the AS is essential for proper DC, and we show that Egfr signaling also functions to inhibit or delay AS programmed cell death. Finally, we present evidence that Ack regulates zip expression by promoting the endocytosis of Egfr in the AS. We propose that the general role of Egfr signaling during DC is that of a braking mechanism on the overall progression of DC.
Collapse
Affiliation(s)
- Weiping Shen
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Xi Chen
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Olga Cormier
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - David Chung-Pei Cheng
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Bruce Reed
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - Nicholas Harden
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|
15
|
Spratford CM, Kumar JP. Extramacrochaetae imposes order on the Drosophila eye by refining the activity of the Hedgehog signaling gradient. Development 2013; 140:1994-2004. [PMID: 23536565 DOI: 10.1242/dev.088963] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The compound eye of Drosophila melanogaster is configured by a differentiating wave, the morphogenetic furrow, that sweeps across the eye imaginal disc and transforms thousands of undifferentiated cells into a precisely ordered repetitive array of 800 ommatidia. The initiation of the furrow at the posterior margin of the epithelium and its subsequent movement across the eye field is controlled by the activity of the Hedgehog (Hh) signaling pathway. Differentiating photoreceptors that lie behind the furrow produce and secrete the Hh morphogen, which is captured by cells within the furrow itself. This leads to the stabilization of the full-length form of the zinc-finger transcription factor Cubitus interruptus (Ci(155)), the main effector of Hh signaling. Ci(155) functions as a transcriptional activator of a number of downstream targets, including decapentaplegic (dpp), a TGFβ homolog. In this report, we describe a mechanism that is in place within the fly retina to limit Hh pathway activity within and ahead of the furrow. We demonstrate that the helix-loop-helix (HLH) protein Extramacrochaetae (Emc) regulates Ci(155) levels. Loss of emc leads to an increase in Ci(155) levels, nuclear migration, apical cell constriction and an acceleration of the furrow. We find that these roles are distinct from the bHLH protein Hairy (H), which we show restricts atonal (ato) expression ahead of the furrow. Secondary furrow initiation along the dorsal and ventral margins is blocked by the activity of the Wingless (Wg) pathway. We also show that Emc regulates and cooperates with Wg signaling to inhibit lateral furrow initiation.
Collapse
|
16
|
Jeon M, Scott MP, Zinn K. Interactions between Type III receptor tyrosine phosphatases and growth factor receptor tyrosine kinases regulate tracheal tube formation in Drosophila. Biol Open 2012; 1:548-58. [PMID: 23213447 PMCID: PMC3509443 DOI: 10.1242/bio.2012471] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The respiratory (tracheal) system of the Drosophila melanogaster larva is an intricate branched network of air-filled tubes. Its developmental logic is similar in some ways to that of the vertebrate vascular system. We previously described a unique embryonic tracheal tubulogenesis phenotype caused by loss of both of the Type III receptor tyrosine phosphatases (RPTPs), Ptp4E and Ptp10D. In Ptp4E Ptp10D double mutants, the linear tubes in unicellular and terminal tracheal branches are converted into bubble-like cysts that incorporate apical cell surface markers. This tube geometry phenotype is modulated by changes in the activity or expression of the epidermal growth factor receptor (Egfr) tyrosine kinase (TK). Ptp10D physically interacts with Egfr. Here we demonstrate that the Ptp4E Ptp10D phenotype is the consequence of the loss of negative regulation by the RPTPs of three growth factor receptor TKs: Egfr, Breathless and Pvr. Reducing the activity of any of the three kinases by tracheal expression of dominant-negative mutants suppresses cyst formation. By competing dominant-negative and constitutively active kinase mutants against each other, we show that the three RTKs have partially interchangeable activities, so that increasing the activity of one kinase can compensate for the effects of reducing the activity of another. This implies that SH2-domain downstream effectors that are required for the phenotype are likely to be able to interact with phosphotyrosine sites on all three receptor TKs. We also show that the phenotype involves increases in signaling through the MAP kinase and Rho GTPase pathways.
Collapse
Affiliation(s)
- Mili Jeon
- Division of Biology 114-96, California Institute of Technology , 1200 East California Boulevard, Pasadena, CA 91125 , USA ; Departments of Developmental Biology, Genetics, and Bioengineering, Howard Hughes Medical Institute, 318 Campus Drive, Stanford University School of Medicine , Palo Alto, CA 94305 , USA
| | | | | |
Collapse
|
17
|
Quan XJ, Ramaekers A, Hassan BA. Transcriptional control of cell fate specification: lessons from the fly retina. Curr Top Dev Biol 2012; 98:259-76. [PMID: 22305166 DOI: 10.1016/b978-0-12-386499-4.00010-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
It is now widely recognized that as cells of developing tissues transition through successive states of decreasing pluripotency into a state of terminal differentiation, they undergo significant changes in their gene expression profiles. Interestingly, these successive states of increasing differentiation are marked by the spatially and temporally restricted expression of sets of transcription factors. Each wave of transcription factors not only signals the arrival of a given stage in cellular differentiation, but it is also necessary for the activation of the next set of transcription factors, creating the appearance of a smooth, directed, and deterministic genetic program of cellular differentiation. Until recently, however, it was largely unknown which genes, besides each other, these transcription factors were activating. Thus, the molecular definition of any given step of differentiation, and how it gave rise to the following step remained unclear. Recent advances in transcriptomics, bioinformatics, and molecular genetics resulted in the identification of numerous transcription factor target genes (TGs). These advances have opened the door to using similar approaches in developmental biology to understand what the transcriptional cascades of cellular differentiation might be. Using the development of the Drosophila eye as a model system, we discuss the role of transcription factors and their TGs in cell fate specification and terminal differentiation.
Collapse
Affiliation(s)
- Xiao-jiang Quan
- Laboratory of Neurogenetics, VIB Center for the Biology of Disease, VIB, KU Leuven School of Medicine, Leuven, Belgium
| | | | | |
Collapse
|
18
|
Chan CC, Epstein D, Hiesinger PR. Intracellular trafficking in Drosophila visual system development: a basis for pattern formation through simple mechanisms. Dev Neurobiol 2012; 71:1227-45. [PMID: 21714102 DOI: 10.1002/dneu.20940] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Intracellular trafficking underlies cellular functions ranging from membrane remodeling to receptor activation. During multicellular organ development, these basic cell biological functions are required as both passive machinery and active signaling regulators. Exocytosis, endocytosis, and recycling of several key signaling receptors have long been known to actively regulate morphogenesis and pattern formation during Drosophila eye development. Hence, intracellular membrane trafficking not only sets the cell biological stage for receptor-mediated signaling but also actively controls signaling through spatiotemporally regulated receptor localization. In contrast to eye development, the role of intracellular trafficking for the establishment of the eye-to-brain connectivity map has only recently received more attention. It is still poorly understood how guidance receptors are spatiotemporally regulated to serve as meaningful synapse formation signals. Yet, the Drosophila visual system provides some of the most striking examples for the regulatory role of intracellular trafficking during multicellular organ development. In this review we will first highlight the experimental and conceptual advances that motivate the study of intracellular trafficking during Drosophila visual system development. We will then illuminate the development of the eye, the eye-to-brain connectivity map and the optic lobe from the perspective of cell biological dynamics. Finally, we provide a conceptual framework that seeks to explain how the interplay of simple genetically encoded intracellular trafficking events governs the seemingly complex cellular behaviors, which in turn determine the developmental product.
Collapse
Affiliation(s)
- Chih-Chiang Chan
- Department of Physiology and Green Center for Systems Biology, UT Southwestern Medical Center, Dallas, Texas, USA
| | | | | |
Collapse
|
19
|
Abstract
The compound eye of the fruit fly, Drosophila melanogaster, has for decades been used extensively to study a number of critical developmental processes including tissue development, pattern formation, cell fate specification, and planar cell polarity. To a lesser degree it has been used to examine the cell cycle and tissue proliferation. Discovering the mechanisms that balance tissue growth and cell death in developing epithelia has traditionally been the realm of those using the wing disc. However, over the last decade a series of observations has demonstrated that the eye is a suitable and maybe even preferable tissue for studying tissue growth. This review will focus on how growth of the retina is controlled by the genes and pathways that govern the specification of tissue fate, the division of the epithelium into dorsal-ventral compartments, the initiation, and progression of the morphogenetic furrow and the second mitotic wave.
Collapse
Affiliation(s)
- Justin P Kumar
- Department of Biology, Indiana University, Bloomington, USA.
| |
Collapse
|
20
|
O'Farrell PH. Quiescence: early evolutionary origins and universality do not imply uniformity. Philos Trans R Soc Lond B Biol Sci 2012; 366:3498-507. [PMID: 22084377 PMCID: PMC3203459 DOI: 10.1098/rstb.2011.0079] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Cell cycle investigations have focused on relentless exponential proliferation of cells, an unsustainable situation in nature. Proliferation of cells, whether microbial or metazoan, is interrupted by periods of quiescence. The vast majority of cells in an adult metazoan lie quiescent. As disruptions in this quiescence are at the foundation of cancer, it will be important for the field to turn its attention to the mechanisms regulating quiescence. While often presented as a single topic, there are multiple forms of quiescence each with complex inputs, some of which are tied to conceptually challenging aspects of metazoan regulation such as size control. In an effort to expose the enormity of the challenge, I describe the differing biological purposes of quiescence, and the coupling of quiescence in metazoans to growth and to the structuring of tissues during development. I emphasize studies in the organism rather than in tissue culture, because these expose the diversity of regulation. While quiescence is likely to be a primitive biological process, it appears that in adapting quiescence to its many distinct biological settings, evolution has diversified it. Consideration of quiescence in different models gives us an overview of this diversity.
Collapse
Affiliation(s)
- Patrick H O'Farrell
- Department of Biochemistry, University of California, San Francisco, CA 94158-2200, USA.
| |
Collapse
|
21
|
de Bivort BL, Guo HF, Zhong Y. Notch signaling is required for activity-dependent synaptic plasticity at the Drosophila neuromuscular junction. J Neurogenet 2012; 23:395-404. [PMID: 19863270 DOI: 10.3109/01677060902878481] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The cell-surface-signaling protein Notch, is required for numerous developmental processes and typically specifies which of two adjacent cells will adopt a non-neuronal developmental fate. It has recently been implicated in long-term memory formation in mammals and Drosophila. Here, we investigated whether activity-dependent synaptic plasticity at the neuromuscular junctions (NMJs) of third instar Drosophila larvae depends on Notch signaling. The length and number of axonal branches and number of presynaptic sites (boutons) in NMJ vary with the level of synaptic activity, so we increased activity at the NMJ by two complementary methods: increasing the chronic growth temperature of third instar larvae from 18 to 28 degrees C and using the double-mutant ether-a-gogo,Shaker (eagSh), both of which increase NMJ size and bouton count. Animals homozygous for the functionally null, temperature-sensitive Notch alleles, N(ts1) and N(ts2), displayed no activity-dependent increase in NMJ complexity when reared at the restrictive temperature. Dominant-negative Notch transgenic expression also blocked activity-dependent plasticity. Ectopic expression of wild-type Notch and constitutively active truncated Notch transgenes also reduced activity-dependent plasticity, suggesting that there is a "happy medium" level of Notch activity in mediating NMJ outgrowth. Last, we show that endogenous Notch is primarily expressed in the presynaptic cell bodies where its expression level is positively correlated with motor neuron activity.
Collapse
|
22
|
Zaghloul NA, Yan B, Moody SA. Step-wise specification of retinal stem cells during normal embryogenesis. Biol Cell 2012; 97:321-37. [PMID: 15836431 DOI: 10.1042/bc20040521] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The specification of embryonic cells to produce the retina begins at early embryonic stages as a multi-step process that gradually restricts fate potentials. First, a subset of embryonic cells becomes competent to form retina by their lack of expression of endo-mesoderm-specifying genes. From these cells, a more restricted subset is biased to form retina by virtue of their close proximity to sources of bone morphogenetic protein antagonists during neural induction. During gastrulation, the definitive RSCs (retinal stem cells) are specified as the eye field by interactions with underlying mesoderm and the expression of a network of retina-specifying genes. As the eye field is transformed into the optic vesicle and optic cup, a heterogeneous population of RPCs (retinal progenitor cells) forms to give rise to the different domains of the retina: the optic stalk, retinal pigmented epithelium and neural retina. Further diversity of RPCs appears to occur under the influences of cell-cell interactions, cytokines and combinations of regulatory genes, leading to the differentiation of a multitude of different retinal cell types. This review examines what is known about each sequential step in retinal specification during normal vertebrate development, and how that knowledge will be important to understand how RSCs might be manipulated for regenerative therapies to treat retinal diseases.
Collapse
Affiliation(s)
- Norann A Zaghloul
- Department of Anatomy and Cell Biology, The George Washington University, 2300 Eye Street, NW, Washington, DC 20037, USA
| | | | | |
Collapse
|
23
|
Abstract
This Presentation focuses on how morphogen signaling proteins disperse across developmental fields. Although the steady-state distributions of morphogen signaling proteins have been described well in a number of contexts, the mechanisms that generate these distributions have remained uncertain. Results presented here show that these proteins transfer from producing to target cells at points of direct contact, even when the producing and target cells are not immediate neighbors.
Collapse
Affiliation(s)
- Sougata Roy
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA
| | | |
Collapse
|
24
|
Tsachaki M, Sprecher SG. Genetic and developmental mechanisms underlying the formation of theDrosophilacompound eye. Dev Dyn 2011; 241:40-56. [DOI: 10.1002/dvdy.22738] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2011] [Indexed: 01/15/2023] Open
|
25
|
Aguirre A, Rubio ME, Gallo V. Notch and EGFR pathway interaction regulates neural stem cell number and self-renewal. Nature 2010; 467:323-7. [PMID: 20844536 PMCID: PMC2941915 DOI: 10.1038/nature09347] [Citation(s) in RCA: 351] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Accepted: 07/13/2010] [Indexed: 12/17/2022]
Abstract
Specialized cellular microenvironments, or “niches,” modulate stem cell properties, including cell number, self-renewal and fate decisions1,2. In the adult brain, niches that maintain a source of neural stem cells (NSCs) and neural progenitor cells (NPCs) are the subventricular zone (SVZ) of the lateral ventricle and the dentate gyrus of the hippocampus3–5. The size of the NSC population of the SVZ at any time is the result of several ongoing processes, including self-renewal, cell differentiation, and cell death. Maintaining the balance between NSC and NPCs in the SVZ niche is critical to supply the brain with specific neural populations, both under normal conditions or after injury. A fundamental question relevant to both normal development and to cell-based repair strategies in the central nervous system is how the balance of different NSC and NPC populations is maintained in the niche. EGFR and Notch signaling pathways play fundamental roles during development of multicellular organisms6. In Drosophila and in C. elegans these pathways may have either cooperative or antagonistic functions7–9. In the SVZ, Notch regulates NSC identity and self-renewal, whereas EGFR specifically affects NPC proliferation and migration10–13. This suggests that interplay of these two pathways may maintain the balance between NSC and NPC numbers. Here we show that functional cell-cell interaction between NPCs and NSCs through epidermal growth factor receptor (EGFR) and Notch signaling plays a crucial role in maintaining the balance between these cell populations in the SVZ. Enhanced EGFR signaling in vivo results in the expansion of the NPC pool, and reduces NSC number and self-renewal. This occurs through a non-cell-autonomous mechanism involving EGFR-mediated regulation of Notch signaling. Our findings define a novel interaction between EGFR and Notch pathways in the adult SVZ, and thus provide a mechanism for NSC and NPC pool maintenance.
Collapse
Affiliation(s)
- Adan Aguirre
- Center for Neuroscience Research, Children's National Medical Center, Washington, District of Columbia 20010, USA
| | | | | |
Collapse
|
26
|
Yu L, Lee T, Lin N, Wolf MJ. Affecting Rhomboid-3 function causes a dilated heart in adult Drosophila. PLoS Genet 2010; 6:e1000969. [PMID: 20523889 PMCID: PMC2877733 DOI: 10.1371/journal.pgen.1000969] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Accepted: 04/23/2010] [Indexed: 11/18/2022] Open
Abstract
Drosophila is a well recognized model of several human diseases, and recent investigations have demonstrated that Drosophila can be used as a model of human heart failure. Previously, we described that optical coherence tomography (OCT) can be used to rapidly examine the cardiac function in adult, awake flies. This technique provides images that are similar to echocardiography in humans, and therefore we postulated that this approach could be combined with the vast resources that are available in the fly community to identify new mutants that have abnormal heart function, a hallmark of certain cardiovascular diseases. Using OCT to examine the cardiac function in adult Drosophila from a set of molecularly-defined genomic deficiencies from the DrosDel and Exelixis collections, we identified an abnormally enlarged cardiac chamber in a series of deficiency mutants spanning the rhomboid 3 locus. Rhomboid 3 is a member of a highly conserved family of intramembrane serine proteases and processes Spitz, an epidermal growth factor (EGF)-like ligand. Using multiple approaches based on the examination of deficiency stocks, a series of mutants in the rhomboid-Spitz-EGF receptor pathway, and cardiac-specific transgenic rescue or dominant-negative repression of EGFR, we demonstrate that rhomboid 3 mediated activation of the EGF receptor pathway is necessary for proper adult cardiac function. The importance of EGF receptor signaling in the adult Drosophila heart underscores the concept that evolutionarily conserved signaling mechanisms are required to maintain normal myocardial function. Interestingly, prior work showing the inhibition of ErbB2, a member of the EGF receptor family, in transgenic knock-out mice or individuals that received herceptin chemotherapy is associated with the development of dilated cardiomyopathy. Our results, in conjunction with the demonstration that altered ErbB2 signaling underlies certain forms of mammalian cardiomyopathy, suggest that an evolutionarily conserved signaling mechanism may be necessary to maintain post-developmental cardiac function.
Collapse
Affiliation(s)
- Lin Yu
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Teresa Lee
- Department of Cell Biology, Duke University, Durham, North Carolina, United States of America
| | - Na Lin
- Institute of Molecular Medicine, Peking University, Beijing, China
| | - Matthew J. Wolf
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
27
|
Dong Y, Friedrich M. Enforcing biphasic eye development in a directly developing insect by transient knockdown of single eye selector genes. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2010; 314:104-14. [PMID: 19637278 DOI: 10.1002/jez.b.21313] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The visual system of indirectly developing insects such as Drosophila passes through two phases of development. Larval eyes form in the embryo, whereas the adult compound eyes form during metamorphosis. Comparative evidence implies that this biphasic mode of visual system development evolved from the continuously developing eye of directly developing insects. We investigated the developmental basis of this evolutionary transformation in a directly developing insect taking advantage of the time-limited nature of systemic RNAi in the grasshopper Schistocerca americana. Transient knockdown of the homologs of the early retinal genes eyes absent (eya) or sine oculis (so) both induced long-term arrest of eye development in grasshopper nymphs. Eye development, however, resumed after knockdown expiry. This finding sheds first light on the molecular regulation of postembryonic eye development in directly developing insects and unravels an inherent capacity of the underlying gene regulatory network to accommodate for partitioning visual system development into discrete phases, as in indirectly developing insects.
Collapse
Affiliation(s)
- Ying Dong
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | |
Collapse
|
28
|
Mironova E, Stockand JD. Activation of a latent nuclear localization signal in the NH2 terminus of γ-ENaC initiates feedback regulation of channel activity. Am J Physiol Renal Physiol 2010; 298:F1188-96. [PMID: 20147367 DOI: 10.1152/ajprenal.00600.2009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Proteolytic enzymes cleave the epithelial Na(+) channel (ENaC) at several positions releasing, in part, the NH(2) terminus of the γ-subunit. Cleavage increases ENaC activity by increasing open probability; however, the role of polypeptides cleaved from the channel core remains unclear. We find that the cytosolic NH(2) terminus of γ-ENaC unexpectedly targets to the nucleus being particularly strong in nucleoli. In contrast, the cytosolic COOH terminus targets to the cytoplasm and plasma membrane in a manner similar to full-length subunits. Targeting of the cytosolic NH(2) terminus of γ-ENaC to the nucleus has functional consequences for coexpression of eGFP-fusion proteins containing this segment of the channel, but not the COOH terminus, decrease ENaC activity in a dose-dependent manner. The mechanism of this negative regulation is associated with a decrease in the functional half-life of ENaC at the plasma membrane. Inspection of the primary amino acid sequence of γ-ENaC reveals possible nuclear localization signals (NLS) conserved at the extreme NH(2) terminus and just preceding the first transmembrane domain. Disruption of the putative NLS preceding the first transmembrane domain in γ-ENaC but not that at the extreme NH(2) terminus abolishes both targeting to the nucleus and negative regulation of ENaC activity. These findings are consistent with the release of the NH(2) terminus of γ-ENaC following cleavage being functionally important for signaling to the nucleus in a manner similar to Notch signaling and release of the cytosolic COOH-terminal tail of polycystin-1.
Collapse
Affiliation(s)
- Elena Mironova
- Department of Physiology, University of Texas Health Science Center, San Antonio, Texas 78229-3900, USA
| | | |
Collapse
|
29
|
Abstract
Cells are sequentially recruited during formation of the Drosophila compound eye. A few simple rules are reiteratively utilized to control successive steps of eye assembly. Two themes emerge: the interplay between cell signaling and competence determines diversity of cell types and selective cell adhesion determines spatial patterns of cells. Cell signaling through competence creates signaling relays, which sequentially trigger differentiation of all cell types. Selective cell adhesion, on the other hand, provides forces to drive cells into energy-favored spatial configurations. Organ formation is nevertheless a complex process. The complexity lies in the spatial, temporal, and quantitative precision of gene expression. Many challenging questions remain.
Collapse
Affiliation(s)
- Sujin Bao
- Department of Pediatrics, Mount Sinai School of Medicine, New York, USA
| |
Collapse
|
30
|
Parks AL, Shalaby NA, Muskavitch MAT. Notch and suppressor of Hairless regulate levels but not patterns of Delta expression in Drosophila. Genesis 2008; 46:265-75. [PMID: 18442047 DOI: 10.1002/dvg.20391] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The Notch signal transduction pathway is highly conserved and governs many developmental decisions in metazoans. The ligand Delta, and its receptor Notch, are often expressed in complementary patterns during Drosophila postembryonic development. Notch signaling is thought to play a role in generation of these complementary patterns through feedback mechanisms that regulate Delta and Notch expression. We have examined Delta expression during postembryonic development, following global alteration of Notch-dependent or Su(H)-dependent transcriptional regulation. We find that Notch and Su(H) regulate Delta expression in a manner that varies by context. Surprisingly, we find that wild type Delta expression levels are influenced by Su(H)-dependent mechanisms only in regions of high Delta/low Notch expression. In contrast, Delta expression levels in regions of low Delta/high Notch expression appear to be unaffected by Su(H)-mediated regulation. We conclude that Notch pathway feedback regulation is unlikely to contribute to the generation of complementary patterns in the contexts examined.
Collapse
Affiliation(s)
- Annette L Parks
- Department of Biology, Boston College, Chestnut Hill, Massachusetts, USA
| | | | | |
Collapse
|
31
|
Scardigli R, Gargioli C, Tosoni D, Borello U, Sampaolesi M, Sciorati C, Cannata S, Clementi E, Brunelli S, Cossu G. Binding of sFRP-3 to EGF in the extra-cellular space affects proliferation, differentiation and morphogenetic events regulated by the two molecules. PLoS One 2008; 3:e2471. [PMID: 18560570 PMCID: PMC2424011 DOI: 10.1371/journal.pone.0002471] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2007] [Accepted: 05/13/2008] [Indexed: 12/05/2022] Open
Abstract
Background sFRP-3 is a soluble antagonist of Wnts, widely expressed in developing embryos. The Wnt gene family comprises cysteine-rich secreted ligands that regulate cell proliferation, differentiation, organogenesis and oncogenesis of different organisms ranging from worms to mammals. In the canonical signal transduction pathway Wnt proteins bind to the extracellular domain of Frizzled receptors and consequently recruit Dishevelled (Dsh) to the cell membrane. In addition to Wnt membrane receptors belonging to the Frizzled family, several other molecules have been described which share homology in the CRD domain and lack the putative trans-membrane domain, such as sFRP molecules (soluble Frizzled Related Protein). Among them, sFRP-3 was originally isolated from bovine articular cartilage and also as a component of the Spemann organizer. sFRP-3 blocks Wnt-8 induced axis duplication in Xenopus embryos and binds to the surface of cells expressing a membrane-anchored form of Wnt-1. Injection of sFRP-3 mRNA blocks expression of XMyoD mRNA and leads to embryos with enlarged heads and shortened trunks. Methodology/Principal Findings Here we report that sFRP-3 specifically blocks EGF-induced fibroblast proliferation and foci formation. Over-expression of sFRP-3 reverts EGF-mediated inhibition of hair follicle development in the mouse ectoderm while its ablation in Xenopus maintains EGF-mediated inhibition of ectoderm differentiation. Conversely, over-expression of EGF reverts the inhibition of somitic myogenesis and axis truncation in Xenopus and mouse embryos caused by sFRP-3. In vitro experiments demonstrated a direct binding of EGF to sFRP-3 both on heparin and on the surface of CHO cells where the molecule had been membrane anchored. Conclusions/Significance sFRP-3 and EGF reciprocally inhibit their effects on cell proliferation, differentiation and morphogenesis and indeed are expressed in contiguous domains of the embryo, suggesting that in addition to their canonical ligands (Wnt and EGF receptor, respectively) these molecules bind to each other and regulate their activities during embryogenesis.
Collapse
Affiliation(s)
- Raffaella Scardigli
- Department of Developmental Biology, Institute of Cell Biology and Tissue Engineering, San Raffaele Biomedical Science Park of Rome, Rome, Italy
- Department of Histology and Medical Embryology, II° Medical School, University of Rome “La Sapienza”, Rome, Italy
| | - Cesare Gargioli
- Department of Developmental Biology, Institute of Cell Biology and Tissue Engineering, San Raffaele Biomedical Science Park of Rome, Rome, Italy
- Department of Histology and Medical Embryology, II° Medical School, University of Rome “La Sapienza”, Rome, Italy
| | - Daniela Tosoni
- Department of Histology and Medical Embryology, II° Medical School, University of Rome “La Sapienza”, Rome, Italy
| | - Ugo Borello
- Department of Histology and Medical Embryology, II° Medical School, University of Rome “La Sapienza”, Rome, Italy
- Stem Cell Research Institute, H. “S. Raffaele”, Milan, Italy
| | - Maurilio Sampaolesi
- Department of Experimental Medicine, University of Pavia, Pavia, Italy
- Interdepartemental Stem Cell Research Institute, University Hospital Gasthuisberg, Leuven, Belgium
| | - Clara Sciorati
- Stem Cell Research Institute, H. “S. Raffaele”, Milan, Italy
| | - Stefano Cannata
- Department of Biology, University of Tor Vergata, Rome, Italy
| | - Emilio Clementi
- Stem Cell Research Institute, H. “S. Raffaele”, Milan, Italy
- Department of Preclinical Sciences, University of Milan, and E. Medea Scientific Institute, Milan, Italy
| | - Silvia Brunelli
- Stem Cell Research Institute, H. “S. Raffaele”, Milan, Italy
- Department of Experimental Medicine, University of Milan-Bicocca, Monza (Milan), Italy
| | - Giulio Cossu
- Department of Developmental Biology, Institute of Cell Biology and Tissue Engineering, San Raffaele Biomedical Science Park of Rome, Rome, Italy
- Stem Cell Research Institute, H. “S. Raffaele”, Milan, Italy
- Department of Biology, University of Milan, Milan, Italy
- * E-mail:
| |
Collapse
|
32
|
Pontoriero GF, Deschamps P, Ashery-Padan R, Wong R, Yang Y, Zavadil J, Cvekl A, Sullivan S, Williams T, West-Mays JA. Cell autonomous roles for AP-2alpha in lens vesicle separation and maintenance of the lens epithelial cell phenotype. Dev Dyn 2008; 237:602-17. [PMID: 18224708 DOI: 10.1002/dvdy.21445] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
In this study, we have created a conditional deletion of AP-2alpha in the developing mouse lens (Le-AP-2alpha mutants) to determine the cell-autonomous requirement(s) for AP-2alpha in lens development. Embryonic and adult Le-AP-2alpha mutants exhibited defects confined to lens placode derivatives, including a persistent adhesion of the lens to the overlying corneal epithelium (or lens stalk). Expression of known regulators of lens vesicle separation, including Pax6, Pitx3, and Foxe3 was observed in the Le-AP-2alpha mutant lens demonstrating that these genes do not lie directly downstream of AP-2alpha. Unlike germ-line mutants, Le-AP-2alpha mutants did not exhibit defects in the optic cup, further defining the tissue specific role(s) for AP-2alpha in eye development. Finally, comparative microarray analysis of lenses from the Le-AP-2alpha mutants vs. wild-type littermates revealed differential expression of 415 mRNAs, including reduced expression of genes important for maintaining the lens epithelial cell phenotype, such as E-cadherin.
Collapse
Affiliation(s)
- Giuseppe F Pontoriero
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Tsai YC, Yao JG, Chen PH, Posakony JW, Barolo S, Kim J, Sun YH. Upd/Jak/STAT signaling represses wg transcription to allow initiation of morphogenetic furrow in Drosophila eye development. Dev Biol 2007; 306:760-71. [PMID: 17498684 DOI: 10.1016/j.ydbio.2007.04.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2007] [Revised: 04/08/2007] [Accepted: 04/11/2007] [Indexed: 12/23/2022]
Abstract
The initiation of retinal development in Drosophila begins at the posterior center (PC) of the eye disc margin. The front of the differentiation wave, recognized as a morphogenetic furrow (MF), moves from posterior to anterior. What determines MF initiates from the specific PC site is still unclear. The unpaired (upd) gene is expressed at PC at early third instar, just before the time of MF initiation. Therefore, upd is expressed at the appropriate time and location for a specific role in defining the site of MF initiation. upd encodes a ligand for the Jak/STAT signaling pathway. In this report, we showed that the Upd/Jak/STAT signaling is required and sufficient to determine MF initiation. This is primarily achieved by repressing the transcription of wingless (wg), which is known to block MF initiation.
Collapse
Affiliation(s)
- Yu-Chen Tsai
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei, Taiwan, Republic of China
| | | | | | | | | | | | | |
Collapse
|
34
|
Doroquez DB, Rebay I. Signal integration during development: mechanisms of EGFR and Notch pathway function and cross-talk. Crit Rev Biochem Mol Biol 2007; 41:339-85. [PMID: 17092823 DOI: 10.1080/10409230600914344] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Metazoan development relies on a highly regulated network of interactions between conserved signal transduction pathways to coordinate all aspects of cell fate specification, differentiation, and growth. In this review, we discuss the intricate interplay between the epidermal growth factor receptor (EGFR; Drosophila EGFR/DER) and the Notch signaling pathways as a paradigm for signal integration during development. First, we describe the current state of understanding of the molecular architecture of the EGFR and Notch signaling pathways that has resulted from synergistic studies in vertebrate, invertebrate, and cultured cell model systems. Then, focusing specifically on the Drosophila eye, we discuss how cooperative, sequential, and antagonistic relationships between these pathways mediate the spatially and temporally regulated processes that generate this sensory organ. The common themes underlying the coordination of the EGFR and Notch pathways appear to be broadly conserved and should, therefore, be directly applicable to elucidating mechanisms of information integration and signaling specificity in vertebrate systems.
Collapse
Affiliation(s)
- David B Doroquez
- Department of Biology, Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | |
Collapse
|
35
|
Pellock BJ, Buff E, White K, Hariharan IK. The Drosophila tumor suppressors Expanded and Merlin differentially regulate cell cycle exit, apoptosis, and Wingless signaling. Dev Biol 2006; 304:102-15. [PMID: 17258190 PMCID: PMC1924969 DOI: 10.1016/j.ydbio.2006.12.021] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2006] [Revised: 12/05/2006] [Accepted: 12/10/2006] [Indexed: 12/19/2022]
Abstract
Mutations that inactivate either merlin (mer) or expanded (ex) result in increased cell growth and proliferation in Drosophila. Both Mer and Ex are members of the Band 4.1 protein superfamily, and, based on analyses of mer ex double mutants, they are proposed to function together in at least a partially redundant manner upstream of the Hippo (Hpo) and Warts (Wts) proteins to regulate cell growth and division. By individually analyzing ex and mer mutant phenotypes, we have found important qualitative and quantitative differences in the ways Mer and Ex function to regulate cell proliferation and cell survival. Though both mer and ex restrict cell and tissue growth, ex clones exhibit delayed cell cycle exit in the developing eye, while mer clones do not. Conversely, loss of mer substantially compromises normal developmental apoptosis in the pupal retina, while loss of ex has only mild effects. Finally, ex has a role in regulating Wingless protein levels in the eye that is not obviously shared by either mer or hpo. Taken together, our data suggest that Mer and Ex differentially regulate multiple downstream pathways.
Collapse
Affiliation(s)
- Brett J. Pellock
- Massachusetts General Hospital Cutaneous Biology Research Center
- Massachusetts General Hospital Cancer Center
| | - Eugene Buff
- Massachusetts General Hospital Cancer Center
| | - Kristin White
- Massachusetts General Hospital Cutaneous Biology Research Center
| | - Iswar K. Hariharan
- Massachusetts General Hospital Cancer Center
- University of California, Berkeley Department of Molecular and Cell Biology
- *Corresponding author: Iswar K. Hariharan, University of California, Berkeley, Department of Molecular and Cell Biology, 361 LSA, Berkeley, CA 94720, , phone: 510 643 7438, fax: 510 643 7448
| |
Collapse
|
36
|
Friedrich M. Ancient mechanisms of visual sense organ development based on comparison of the gene networks controlling larval eye, ocellus, and compound eye specification in Drosophila. ARTHROPOD STRUCTURE & DEVELOPMENT 2006; 35:357-378. [PMID: 18089081 DOI: 10.1016/j.asd.2006.08.010] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2006] [Accepted: 08/10/2006] [Indexed: 05/25/2023]
Abstract
Key mechanisms of development are strongly constrained, and hence often shared in the formation of highly diversified homologous organs. This diagnostic is applied to uncovering ancient gene activities in the control of visual sense organ development by comparing the gene networks, which regulate larval eye, ocellus and compound eye specification in Drosophila. The comparison reveals a suite of shared aspects that are likely to predate the diversification of arthropod visual sense organs and, consistent with this, have notable similarities in the developing vertebrate visual system: (I) Pax-6 genes participate in the patterning of primordia of complex visual organs. (II) Primordium determination and differentiation depends on formation of a transcription factor complex that contains the products of the selector genes Eyes absent and Sine oculis. (III) The TGF-beta signaling factor Decapentaplegic exerts transcriptional activation of eyes absent and sine oculis. (IV) Canonical Wnt signaling contributes to primordium patterning by repression of eyes absent and sine oculis. (V) Initiation of determination and differentiation is controlled by hedgehog signaling. (VI) Egfr signaling drives retinal cell fate specification. (VII) The proneural transcription factor atonal regulates photoreceptor specification. (VII) The zinc finger gene glass regulates photoreceptor specification and differentiation.
Collapse
Affiliation(s)
- Markus Friedrich
- Department of Biological Sciences, Wayne State University, 5047 Gullen Mall, Detroit, MI 48202, USA
| |
Collapse
|
37
|
Brown KE, Baonza A, Freeman M. Epithelial cell adhesion in the developing Drosophila retina is regulated by Atonal and the EGF receptor pathway. Dev Biol 2006; 300:710-21. [PMID: 16963016 DOI: 10.1016/j.ydbio.2006.08.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2006] [Revised: 07/31/2006] [Accepted: 08/01/2006] [Indexed: 11/27/2022]
Abstract
In the Drosophila retina, photoreceptor differentiation is preceded by significant cell shape rearrangements within and immediately behind the morphogenetic furrow. Groups of cells become clustered into arcs and rosettes in the plane of the epithelium, from which the neurons subsequently emerge. These cell clusters also have differential adhesive properties: adherens junction components are upregulated relative to surrounding cells. Little is known about how these morphological changes are orchestrated and what their relevance is for subsequent neuronal differentiation. Here, we report that the transcription factor Atonal and the canonical EGF receptor signalling cascade are both required for this clustering and for the accompanying changes in cellular adhesion. In the absence of either component, no arcs are formed behind the furrow, and all cells show low Armadillo and DE-cadherin levels, although in the case of EGFR pathway mutants, single, presumptive R8 cells with high levels of adherens junction components can be seen. Atonal regulates DE-cadherin transcriptionally, whereas the EGFR pathway, acting through the transcription factor Pointed, exerts its effects on adherens junctions indirectly, at a post-transcriptional level. These observations define a new function for EGFR signalling in eye development and illustrate a mechanism for the control of epithelial morphology by developmental signals.
Collapse
Affiliation(s)
- Katherine E Brown
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK
| | | | | |
Collapse
|
38
|
Maitra S, Kulikauskas RM, Gavilan H, Fehon RG. The tumor suppressors Merlin and Expanded function cooperatively to modulate receptor endocytosis and signaling. Curr Biol 2006; 16:702-9. [PMID: 16581517 DOI: 10.1016/j.cub.2006.02.063] [Citation(s) in RCA: 175] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2005] [Revised: 01/31/2006] [Accepted: 02/15/2006] [Indexed: 11/23/2022]
Abstract
The precise coordination of signals that control proliferation is a key feature of growth regulation in developing tissues . While much has been learned about the basic components of signal transduction pathways, less is known about how receptor localization, compartmentalization, and trafficking affect signaling in developing tissues. Here we examine the mechanism by which the Drosophila Neurofibromatosis 2 (NF2) tumor suppressor ortholog Merlin (Mer) and the related tumor suppressor expanded (ex) regulate proliferation and differentiation in imaginal epithelia. Merlin and Expanded are members of the FERM (Four-point one, Ezrin, Radixin, Moesin) domain superfamily, which consists of membrane-associated cytoplasmic proteins that interact with transmembrane proteins and may function as adapters that link to protein complexes and/or the cytoskeleton . We demonstrate that Merlin and Expanded function to regulate the steady-state levels of signaling and adhesion receptors and that loss of these proteins can cause hyperactivation of associated signaling pathways. In addition, pulse-chase labeling of Notch in living tissues indicates that receptor levels are upregulated at the plasma membrane in Mer; ex double mutant cells due to a defect in receptor clearance from the cell surface. We propose that these proteins control proliferation by regulating the abundance, localization, and turnover of cell-surface receptors and that misregulation of these processes may be a key component of tumorigenesis.
Collapse
Affiliation(s)
- Sushmita Maitra
- Department of Molecular Genetics and Cell Biology, University of Chicago, Illinois 60637, USA
| | | | | | | |
Collapse
|
39
|
Bose A, Kahali B, Zhang S, Lin JM, Allada R, Karandikar U, Bidwai AP. Drosophila CK2 regulates lateral-inhibition during eye and bristle development. Mech Dev 2006; 123:649-64. [PMID: 16930955 DOI: 10.1016/j.mod.2006.07.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2006] [Revised: 06/29/2006] [Accepted: 07/11/2006] [Indexed: 11/27/2022]
Abstract
Lateral inhibition is critical for cell fate determination and involves the functions of Notch (N) and its effectors, the Enhancer of Split Complex, E(spl)C repressors. Although E(spl) proteins mediate the repressive effects of N in diverse contexts, the role of phosphorylation was unclear. The studies we describe implicate a common role for the highly conserved Ser/Thr protein kinase CK2 during eye and bristle development. Compromising the functions of the catalytic (alpha) subunit of CK2 elicits a rough eye and defects in the interommatidial bristles (IOBs). These phenotypes are exacerbated by mutations in CK2 and suppressed by an increase in the dosage of this protein kinase. The appearance of the rough eye correlates, in time and space, to the specification and refinement of the 'founding' R8 photoreceptor. Consistent with this observation, compromising CK2 elicits supernumerary R8's at the posterior margin of the morphogenetic furrow (MF), a phenotype characteristic of loss of E(spl)C and impaired lateral inhibition. We also show that compromising CK2 elicits ectopic and split bristles. The former reflects the specification of excess bristle SOPs, while the latter suggests roles during asymmetric divisions that drive morphogenesis of this sensory organ. In addition, these phenotypes are exacerbated by mutations in CK2 or E(spl), indicating genetic interactions between these two loci. Given the centrality of E(spl) to the repressive effects of N, our studies suggest conserved roles for this protein kinase during lateral inhibition. Candidates for this regulation are the E(spl) repressors, the terminal effectors of this pathway.
Collapse
Affiliation(s)
- Anasua Bose
- Department of Biology, Life Sciences Building, 53 Campus Drive, West Virginia University Morgantown, WV 26506, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Tsuda L, Kaido M, Lim YM, Kato K, Aigaki T, Hayashi S. An NRSF/REST-like repressor downstream of Ebi/SMRTER/Su(H) regulates eye development in Drosophila. EMBO J 2006; 25:3191-202. [PMID: 16763555 PMCID: PMC1500973 DOI: 10.1038/sj.emboj.7601179] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2005] [Accepted: 05/15/2006] [Indexed: 11/09/2022] Open
Abstract
The corepressor complex that includes Ebi and SMRTER is a target of epidermal growth factor (EGF) and Notch signaling pathways and regulates Delta (Dl)-mediated induction of support cells adjacent to photoreceptor neurons of the Drosophila eye. We describe a mechanism by which the Ebi/SMRTER corepressor complex maintains Dl expression. We identified a gene, charlatan (chn), which encodes a C2H2-type zinc-finger protein resembling human neuronal restricted silencing factor/repressor element RE-1 silencing transcription factor (NRSF/REST). The Ebi/SMRTER corepressor complex represses chn transcription by competing with the activation complex that includes the Notch intracellular domain (NICD). Chn represses Dl expression and is critical for the initiation of eye development. Thus, under EGF signaling, double negative regulation mediated by the Ebi/SMRTER corepressor complex and an NRSF/REST-like factor, Chn, maintains inductive activity in developing photoreceptor cells by promoting Dl expression.
Collapse
Affiliation(s)
- Leo Tsuda
- Morphogenetic Signaling Group, Riken Center for Developmental Biology, Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo, Japan
- Present address: Department of Mechanism of Aging, National Institute for Longevity Sciences, Obu, Aichi 474-8522, Japan
| | - Masako Kaido
- Morphogenetic Signaling Group, Riken Center for Developmental Biology, Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo, Japan
| | - Young-Mi Lim
- Morphogenetic Signaling Group, Riken Center for Developmental Biology, Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo, Japan
- Present address: Department of Mechanism of Aging, National Institute for Longevity Sciences, Obu, Aichi 474-8522, Japan
| | - Kagayaki Kato
- Morphogenetic Signaling Group, Riken Center for Developmental Biology, Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo, Japan
| | - Toshiro Aigaki
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji-shi, Tokyo, Japan
| | - Shigeo Hayashi
- Morphogenetic Signaling Group, Riken Center for Developmental Biology, Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo, Japan
- Department of Life Science, Kobe University Graduate School of Science and Technology, Kobe, Japan
| |
Collapse
|
41
|
Mahoney MB, Parks AL, Ruddy DA, Tiong SYK, Esengil H, Phan AC, Philandrinos P, Winter CG, Chatterjee R, Huppert K, Fisher WW, L'Archeveque L, Mapa FA, Woo W, Ellis MC, Curtis D. Presenilin-based genetic screens in Drosophila melanogaster identify novel notch pathway modifiers. Genetics 2006; 172:2309-24. [PMID: 16415372 PMCID: PMC1456381 DOI: 10.1534/genetics.104.035170] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Presenilin is the enzymatic component of gamma-secretase, a multisubunit intramembrane protease that processes several transmembrane receptors, such as the amyloid precursor protein (APP). Mutations in human Presenilins lead to altered APP cleavage and early-onset Alzheimer's disease. Presenilins also play an essential role in Notch receptor cleavage and signaling. The Notch pathway is a highly conserved signaling pathway that functions during the development of multicellular organisms, including vertebrates, Drosophila, and C. elegans. Recent studies have shown that Notch signaling is sensitive to perturbations in subcellular trafficking, although the specific mechanisms are largely unknown. To identify genes that regulate Notch pathway function, we have performed two genetic screens in Drosophila for modifiers of Presenilin-dependent Notch phenotypes. We describe here the cloning and identification of 19 modifiers, including nicastrin and several genes with previously undescribed involvement in Notch biology. The predicted functions of these newly identified genes are consistent with extracellular matrix and vesicular trafficking mechanisms in Presenilin and Notch pathway regulation and suggest a novel role for gamma-tubulin in the pathway.
Collapse
|
42
|
Singh A, Chan J, Chern JJ, Choi KW. Genetic interaction of Lobe with its modifiers in dorsoventral patterning and growth of the Drosophila eye. Genetics 2005; 171:169-83. [PMID: 15976174 PMCID: PMC1456509 DOI: 10.1534/genetics.105.044180] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2005] [Accepted: 06/03/2005] [Indexed: 12/29/2022] Open
Abstract
Dorsoventral (DV) patterning is essential for growth of the Drosophila eye. Recent studies suggest that ventral is the default state of the early eye, which depends on Lobe (L) function, and that the dorsal fate is established later by the expression of the dorsal selector gene pannier (pnr). However, the mechanisms of regulatory interactions between L and dorsal genes are not well understood. For studying the mechanisms of DV patterning in the early eye disc, we performed a dominant modifier screen to identify additional genes that interact with L. The criterion of the dominant interaction was either enhancement or suppression of the L ventral eye loss phenotype. We identified 48 modifiers that correspond to 16 genes, which include fringe (fng), a gene involved in ventral eye patterning, and members of both Hedgehog (Hh) and Decapentaplegic (Dpp) signaling pathways, which promote L function in the ventral eye. Interestingly, 29% of the modifiers (6 enhancers and 9 suppressors) identified either are known to interact genetically with pnr or are members of the Wingless (Wg) pathway, which acts downstream from pnr. The detailed analysis of genetic interactions revealed that pnr and L mutually antagonize each other during second instar of larval development to restrict their functional domains in the eye. This time window coincides with the emergence of pnr expression in the eye. Our results suggest that L function is regulated by multiple signaling pathways and that the mutual antagonism between L and dorsal genes is crucial for balanced eye growth.
Collapse
Affiliation(s)
- Amit Singh
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
43
|
Armstrong JA, Sperling AS, Deuring R, Manning L, Moseley SL, Papoulas O, Piatek CI, Doe CQ, Tamkun JW. Genetic screens for enhancers of brahma reveal functional interactions between the BRM chromatin-remodeling complex and the delta-notch signal transduction pathway in Drosophila. Genetics 2005; 170:1761-74. [PMID: 15944353 PMCID: PMC1449748 DOI: 10.1534/genetics.105.041327] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The Drosophila trithorax group gene brahma (brm) encodes the ATPase subunit of a 2-MDa chromatin-remodeling complex. brm was identified in a screen for transcriptional activators of homeotic genes and subsequently shown to play a global role in transcription by RNA polymerase II. To gain insight into the targeting, function, and regulation of the BRM complex, we screened for mutations that genetically interact with a dominant-negative allele of brm (brm(K804R)). We first screened for dominant mutations that are lethal in combination with a brm(K804R) transgene under control of the brm promoter. In a distinct but related screen, we identified dominant mutations that modify eye defects resulting from expression of brm(K804R) in the eye-antennal imaginal disc. Mutations in three classes of genes were identified in our screens: genes encoding subunits of the BRM complex (brm, moira, and osa), other proteins directly involved in transcription (zerknullt and RpII140), and signaling molecules (Delta and vein). Expression of brm(K804R) in the adult sense organ precursor lineage causes phenotypes similar to those resulting from impaired Delta-Notch signaling. Our results suggest that signaling pathways may regulate the transcription of target genes by regulating the activity of the BRM complex.
Collapse
Affiliation(s)
- Jennifer A Armstrong
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, California 95064, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Dong Y, Friedrich M. Comparative analysis of Wingless patterning in the embryonic grasshopper eye. Dev Genes Evol 2005; 215:177-97. [PMID: 15747130 DOI: 10.1007/s00427-004-0465-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2004] [Accepted: 12/13/2004] [Indexed: 10/25/2022]
Abstract
The signaling factor Wingless regulates multiple steps during the postembryonic development of the Drosophila eye. To obtain insight into the molecular regulation of embryonic eye development in primitive insects, we studied the expression of wg and genes projected to interact with wg in the grasshopper Schistocerca americana. We find that the dynamic and complex expression of wg in the early grasshopper procephalon results in three paired expression domains with relevance to eye primordium development. By comparison with Drosophila, these domains are compatible with a conserved function of wg during anteroposterior and dorsoventral axis formation by repression of retinal differentiation and stimulation of tissue proliferation. This is further supported by the expression of grasshopper orthologs of the retina determination genes sine oculis and eyes absent, and by inhibition of retina differentiation in grasshopper eye primordia cultured with LiCl. Surprisingly, the expression of wg and the grasshopper orthologs of pannier, fringe, Delta, and Iroquois complex is inconsistent with induction of midline centered Notch signaling activity, which is essential for Drosophila retina development. Similarly substantial evolutionary divergence is found concerning the control of retina versus head epidermis specification. The transcription factor Extradenticle (Exd), which cooperates with wg in specifying the Drosophila head epidermis, is not detected outside the labral and antennal primordia in the embryonic grasshopper head. Our results, which provide the first insight into the molecular control of eye primordium formation in primitive insects, suggest substantial modification of this process during the evolution of the Drosophila mode of postembryonic eye development.
Collapse
Affiliation(s)
- Ying Dong
- Department of Biological Sciences, Wayne State University, 5047 Gullen Mall, Detroit, MI 48202, USA
| | | |
Collapse
|
45
|
Roederer K, Cozy L, Anderson J, Kumar JP. Novel dominant-negative mutation within the six domain of the conserved eye specification gene sine oculis inhibits eye development in Drosophila. Dev Dyn 2005; 232:753-66. [PMID: 15704100 PMCID: PMC2737192 DOI: 10.1002/dvdy.20316] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The development of the compound eye of Drosophila is controlled, in part, by the concerted actions of several nuclear proteins that form an intricate regulatory system. One member of this network is sine oculis (so), the founding member of the Six gene family. Mutations within so affect the entire visual system, including the compound eye. The vertebrate homologs Six3 and Six6 also appear to play crucial roles in retinal formation. Mutations in Six3 inhibit retinal formation in chickens and fish, whereas those in Six6 are the underlying cause of bilateral anophthalmia in humans. Together, these phenotypes suggest a conserved role for the Six genes in eye development. In this report, we describe the effects of a dominant-negative mutation of sine oculis on the development of the compound eye of Drosophila. The mutation resides within the Six domain and may have implications for eye development and disease.
Collapse
Affiliation(s)
| | - Loralyn Cozy
- Department of Biology, Indiana University, Bloomington, Indiana
| | - Jason Anderson
- Department of Biology, Indiana University, Bloomington, Indiana
| | - Justin P. Kumar
- Department of Biology, Indiana University, Bloomington, Indiana
| |
Collapse
|
46
|
Streit A. Early development of the cranial sensory nervous system: from a common field to individual placodes. Dev Biol 2005; 276:1-15. [PMID: 15531360 DOI: 10.1016/j.ydbio.2004.08.037] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2004] [Revised: 08/20/2004] [Accepted: 08/23/2004] [Indexed: 01/12/2023]
Abstract
Sensory placodes are unique columnar epithelia with neurogenic potential that develop in the vertebrate head ectoderm next to the neural tube. They contribute to the paired sensory organs and the cranial sensory ganglia generating a wide variety of cell types ranging from lens fibres to sensory receptor cells and neurons. Although progress has been made in recent years to identify the molecular players that mediate placode specification, induction and patterning, the processes that initiate placode development are not well understood. One hypothesis suggests that all placode precursors arise from a common territory, the pre-placodal region, which is then subdivided to generate placodes of specific character. This model implies that their induction begins through molecular and cellular mechanisms common to all placodes. Embryological and molecular evidence suggests that placode induction is a multi-step process and that the molecular networks establishing the pre-placodal domain as well as the acquisition of placodal identity are surprisingly similar to those used in Drosophila to specify sensory structures.
Collapse
Affiliation(s)
- Andrea Streit
- Department of Craniofacial Development, King's College London, Guy's Campus, London SE1 9RT, UK.
| |
Collapse
|
47
|
Qiu G, Seiler MJ, Arai S, Aramant RB, Sadda SR. Alternative culture conditions for isolation and expansion of retinal progenitor cells. Curr Eye Res 2004; 28:327-36. [PMID: 15287369 DOI: 10.1076/ceyr.28.5.327.28679] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
PURPOSE To investigate different in vitro model systems for retinal progenitor cell (RPC) isolation and expansion. METHODS RPCs were isolated from embryonic day (E) 17 Long Evans rat retinas. Three different culture media: (1) modified serum free defined media (2) serum-containing media and (3) embryonic stem cell (ES)-conditioned media were used for RPC isolation and long term expansion. Expression of various cellular markers and cell morphologies were compared among the three culture systems at different passages by immunostaining and confocal microscopy. RESULTS All three culture systems could maintain RPCs as nestin-positive cells (78-87%) after long-term in vitro expansion. However, RPCs appeared to proliferate faster in the serum-free culture system. The ES-conditioned media provided the best RPC survival. Cells appeared smaller at early passages compared with later passages. This morphology change occurred at P9-P10 in the serum-free medium, and at P5-P6 in the other two culture systems. CONCLUSIONS The serum-free medium may be superior for preventing RPC differentiation during expansion.
Collapse
Affiliation(s)
- G Qiu
- Department of Ophthalmology, Doheny Retina Institute, Doheny Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles 90033-3699, USA
| | | | | | | | | |
Collapse
|
48
|
Bhattacharyya S, Bailey AP, Bronner-Fraser M, Streit A. Segregation of lens and olfactory precursors from a common territory: cell sorting and reciprocity of Dlx5 and Pax6 expression. Dev Biol 2004; 271:403-14. [PMID: 15223343 DOI: 10.1016/j.ydbio.2004.04.010] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2004] [Accepted: 04/23/2004] [Indexed: 11/26/2022]
Abstract
Cranial placodes are focal regions of columnar epithelium next to the neural tube that contribute to sensory ganglia and organs in the vertebrate head, including the olfactory epithelium and the crystalline lens of the eye. Using focal dye labelling within the presumptive placode domain, we show that lens and nasal precursors arise from a common territory surrounding the anterior neural plate. They then segregate over time and converge to their final positions in discrete placodes by apparently directed movements. Since these events closely parallel the separation of eye and antennal primordia (containing olfactory sensory cells) from a common imaginal disc in Drosophila, we investigated whether the vertebrate homologues of Distalless (Dll) and Eyeless (Ey), which determine antennal and eye identity in the fly, play a role in segregation of lens and nasal precursors in the chick. Dlx5 and Pax6 are initially co-expressed by future lens and olfactory cells. As soon as presumptive lens cells acquire columnar morphology all Dlx family members are down-regulated in the placode, while Pax6 is lost in the olfactory region. Lens precursor cells that express ectopic Dlx5 never acquire lens-specific gene expression and are excluded from the lens placode to cluster in the head ectoderm. These results suggest that the loss of Dlx5 is required for cells to adopt a lens fate and that the balance of Pax6 and Dlx expression regulates cell sorting into appropriate placodal domains.
Collapse
Affiliation(s)
- Sujata Bhattacharyya
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | | | |
Collapse
|
49
|
Abstract
The Drosophila eye is a highly ordered epithelial tissue composed of approximately 750 subunits called ommatidia arranged in a reiterated hexagonal pattern. At higher resolution, observation of the constituent photoreceptors, cone cells, and pigment cells of the eye reveals a highly ordered mosaic of amazing regularity. This relatively simple organization belies the repeated requirement for spatially and temporally coordinated inputs from the Hedgehog (Hh), Wingless (Wg), Decapentaplegic (Dpp), JAK-STAT, Notch, and receptor tyrosine kinase (RTK) signaling pathways. This review will discuss how signaling inputs from the Notch and RTK pathways, superimposed on the developmental history of a cell, facilitate context-specific and appropriate cell fate specification decisions in the developing fly eye. Lessons learned from investigating the combinatorial signal integration strategies underlying Drosophila eye development will likely reveal cell-cell communication paradigms relevant to many aspects of invertebrate and mammalian development. Developmental Dynamics 229:162-175, 2004.
Collapse
Affiliation(s)
- Matthew G Voas
- Whitehead Institute and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | | |
Collapse
|
50
|
Jones C, Moses K. Cell-cycle regulation and cell-type specification in the developing Drosophila compound eye. Semin Cell Dev Biol 2004; 15:75-81. [PMID: 15036210 DOI: 10.1016/j.semcdb.2003.09.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
During nervous system development stem cell daughters must exit the proliferative cycle to adopt specific neural and glial fates and they must do so in the correct positions. Cell proliferation in the central nervous system occurs in neuroepithelia such as the neural retina and the ventricular zones. As cells are assigned specific fates they migrate out of the plane of the epithelium to form higher layers. Recent evidence from the Drosophila compound eye suggests that a novel mode of Ras pathway regulation may be crucial in both cell-cycle exit and neural patterning: "MAP Kinase cytoplasmic hold".
Collapse
Affiliation(s)
- Chonnettia Jones
- Department of Cell Biology, Emory University School of Medicine, 615 Michael Street NE, 1648 Pierce Drive, Atlanta, GA 30322-3030, USA
| | | |
Collapse
|