1
|
Catela C, Assimacopoulos S, Chen Y, Tsioras K, Feng W, Kratsios P. The Iroquois ( Iro/Irx) homeobox genes are conserved Hox targets involved in motor neuron development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.30.596714. [PMID: 38853975 PMCID: PMC11160718 DOI: 10.1101/2024.05.30.596714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
The Iroquois (Iro/Irx) homeobox genes encode transcription factors with fundamental roles in animal development. Despite their link to various congenital conditions in humans, our understanding of Iro/Irx gene expression, function, and regulation remains incomplete. Here, we conducted a systematic expression analysis of all six mouse Irx genes in the embryonic spinal cord. We found five Irx genes (Irx1, Irx2, Irx3, Irx5, and Irx6) to be confined mostly to ventral spinal domains, offering new molecular markers for specific groups of post-mitotic motor neurons (MNs). Further, we engineered Irx2, Irx5, and Irx6 mouse mutants and uncovered essential but distinct roles for Irx2 and Irx6 in MN development. Last, we found that the highly conserved regulators of MN development across species, the HOX proteins, directly control Irx gene expression both in mouse and C. elegans MNs, critically expanding the repertoire of HOX target genes in the developing nervous system. Altogether, our study provides important insights into Iro/Irx expression and function in the developing spinal cord, and uncovers an ancient gene regulatory relationship between HOX and Iro/Irx genes.
Collapse
Affiliation(s)
- Catarina Catela
- Department of Neurobiology, University of Chicago, Chicago, IL, USA
- Neuroscience Institute, University of Chicago, Chicago, IL, USA
| | - Stavroula Assimacopoulos
- Department of Neurobiology, University of Chicago, Chicago, IL, USA
- Neuroscience Institute, University of Chicago, Chicago, IL, USA
| | - Yihan Chen
- Department of Neurobiology, University of Chicago, Chicago, IL, USA
- Neuroscience Institute, University of Chicago, Chicago, IL, USA
| | - Konstantinos Tsioras
- Department of Neurobiology, University of Chicago, Chicago, IL, USA
- Neuroscience Institute, University of Chicago, Chicago, IL, USA
| | - Weidong Feng
- Department of Neurobiology, University of Chicago, Chicago, IL, USA
- Neuroscience Institute, University of Chicago, Chicago, IL, USA
| | - Paschalis Kratsios
- Department of Neurobiology, University of Chicago, Chicago, IL, USA
- Neuroscience Institute, University of Chicago, Chicago, IL, USA
| |
Collapse
|
2
|
Rapacioli M, Fiszer de Plazas S, Flores V. The developing optic tectum: An asymmetrically organized system and the need for a redefinition of the notion of sensitive period. Int J Dev Neurosci 2018; 73:1-9. [PMID: 30572015 DOI: 10.1016/j.ijdevneu.2018.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 12/13/2018] [Accepted: 12/14/2018] [Indexed: 10/27/2022] Open
Abstract
The present article summarizes the main events involved in the isthmic organizer and optic tectum determination and analyses how optic tectum patterning is translated, by the organized operation of several specific cell behaviors, into the terminally differentiated optic tectum. The paper proposes that this assembling of temporally/spatially organized cell behaviors could be incorporated into a wider notion of patterning and that, given the asymmetric organization of the developing optic tectum, the notion of "sensitive period" does not capture the whole complexity of midbrain development and the pathogenesis of congenital disorders. The cell behaviors involved in the optic tectum development are organized in time and space by the isthmic organizer. A comprehensive description of the normal optic tectum development, and also its alterations, should consider both domains. Significantly, the identity of each neuronal cohort depends critically on its "time and place of birth". Both parameters must be considered at once to explain how the structural and functional organization of the optic tectum is elaborated. The notion of "patterning" applies only to the early events of the optic tectum development. Besides, the notion of "sensitive period" considers only a temporal domain and disregards the asymmetric organization of the developing optic tectum. The present paper proposes that these notions might be re-defined: (a) a wider meaning of the term patterning and (b) a replacement of the term "sensitive period" by a more precise concept of "sensitive temporal/spatial window".
Collapse
Affiliation(s)
- Melina Rapacioli
- Grupo Interdisciplinario de Biología Teórica, Instituto de Neurociencia Cognitiva y Traslacional (INCyT), Universidad Favaloro-INECO-CONICET, Buenos Aires, Argentina.
| | - Sara Fiszer de Plazas
- Instituto de Biología Celular y Neurociencias (IBCN) Dr. Eduardo de Robertis, Facultad de Medicina, CONICET, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Vladimir Flores
- Grupo Interdisciplinario de Biología Teórica, Instituto de Neurociencia Cognitiva y Traslacional (INCyT), Universidad Favaloro-INECO-CONICET, Buenos Aires, Argentina; Instituto de Biología Celular y Neurociencias (IBCN) Dr. Eduardo de Robertis, Facultad de Medicina, CONICET, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| |
Collapse
|
3
|
Steventon B, Mayor R, Streit A. Directional cell movements downstream of Gbx2 and Otx2 control the assembly of sensory placodes. Biol Open 2016; 5:1620-1624. [PMID: 27659690 PMCID: PMC5155537 DOI: 10.1242/bio.020966] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Cranial placodes contribute to sensory structures including the inner ear, the lens and olfactory epithelium and the neurons of the cranial sensory ganglia. At neurula stages, placode precursors are interspersed in the ectoderm surrounding the anterior neural plate before segregating into distinct placodes by as yet unknown mechanisms. Here, we perform live imaging to follow placode progenitors as they aggregate to form the lens and otic placodes. We find that while placode progenitors move with the same speed as their non-placodal neighbours, they exhibit increased persistence and directionality and these properties are required to assemble morphological placodes. Furthermore, we demonstrate that these factors are components of the transcriptional networks that coordinate placode cell behaviour including their directional movements. Together with previous work, our results support a dual role for Otx and Gbx transcription factors in both the early patterning of the neural plate border and the later segregation of its derivatives into distinct placodes. Summary: Using spatial and temporally controlled perturbations followed by live cell tracking in vivo, this paper demonstrates that directional movements downstream of Gbx2 and Otx2 are important for otic and lens placode formation.
Collapse
Affiliation(s)
- Ben Steventon
- Department of Craniofacial Development, King's College London, Guy's Campus, Tower Wing Floor 27, London SE1 9RT, UK .,Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Roberto Mayor
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Andrea Streit
- Department of Craniofacial Development, King's College London, Guy's Campus, Tower Wing Floor 27, London SE1 9RT, UK
| |
Collapse
|
4
|
Cardeña-Núñez S, Sánchez-Guardado LÓ, Corral-San-Miguel R, Rodríguez-Gallardo L, Marín F, Puelles L, Aroca P, Hidalgo-Sánchez M. Expression patterns of Irx genes in the developing chick inner ear. Brain Struct Funct 2016; 222:2071-2092. [PMID: 27783221 DOI: 10.1007/s00429-016-1326-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 10/14/2016] [Indexed: 10/20/2022]
Abstract
The vertebrate inner ear is a complex three-dimensional sensorial structure with auditory and vestibular functions. The molecular patterning of the developing otic epithelium creates various positional identities, consequently leading to the stereotyped specification of each neurosensory and non-sensory element of the membranous labyrinth. The Iroquois (Iro/Irx) genes, clustered in two groups (A: Irx1, Irx2, and Irx4; and B: Irx3, Irx5, and Irx6), encode for transcriptional factors involved directly in numerous patterning processes of embryonic tissues in many phyla. This work presents a detailed study of the expression patterns of these six Irx genes during chick inner ear development, paying particular attention to the axial specification of the otic anlagen. The Irx genes seem to play different roles at different embryonic periods. At the otic vesicle stage (HH18), all the genes of each cluster are expressed identically. Both clusters A and B seem involved in the specification of the lateral and posterior portions of the otic anlagen. Cluster B seems to regulate a larger area than cluster A, including the presumptive territory of the endolymphatic apparatus. Both clusters seem also to be involved in neurogenic events. At stages HH24/25-HH27, combinations of IrxA and IrxB genes participate in the specification of most sensory patches and some non-sensory components of the otic epithelium. At stage HH34, the six Irx genes show divergent patterns of expression, leading to the final specification of the membranous labyrinth, as well as to cell differentiation.
Collapse
Affiliation(s)
- Sheila Cardeña-Núñez
- Department of Cell Biology, School of Science, University of Extremadura, Avda de Elvas s/n, E06071, Badajoz, Spain
| | - Luis Óscar Sánchez-Guardado
- Department of Cell Biology, School of Science, University of Extremadura, Avda de Elvas s/n, E06071, Badajoz, Spain
| | - Rubén Corral-San-Miguel
- Department of Human Anatomy and Psychobiology, School of Medicine, University of Murcia and Instituto Murciano de Investigación Biosanitaria-Virgen de La Arrixaca (IMIB-Arrixaca), E30100, Murcia, Spain
| | - Lucía Rodríguez-Gallardo
- Department of Cell Biology, School of Science, University of Extremadura, Avda de Elvas s/n, E06071, Badajoz, Spain
| | - Faustino Marín
- Department of Human Anatomy and Psychobiology, School of Medicine, University of Murcia and Instituto Murciano de Investigación Biosanitaria-Virgen de La Arrixaca (IMIB-Arrixaca), E30100, Murcia, Spain
| | - Luis Puelles
- Department of Human Anatomy and Psychobiology, School of Medicine, University of Murcia and Instituto Murciano de Investigación Biosanitaria-Virgen de La Arrixaca (IMIB-Arrixaca), E30100, Murcia, Spain
| | - Pilar Aroca
- Department of Human Anatomy and Psychobiology, School of Medicine, University of Murcia and Instituto Murciano de Investigación Biosanitaria-Virgen de La Arrixaca (IMIB-Arrixaca), E30100, Murcia, Spain
| | - Matías Hidalgo-Sánchez
- Department of Cell Biology, School of Science, University of Extremadura, Avda de Elvas s/n, E06071, Badajoz, Spain.
| |
Collapse
|
5
|
Radhakrishnan B, Alwin Prem Anand A. Role of miRNA-9 in Brain Development. J Exp Neurosci 2016; 10:101-120. [PMID: 27721656 PMCID: PMC5053108 DOI: 10.4137/jen.s32843] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 09/01/2016] [Accepted: 09/07/2016] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs) are a class of small regulatory RNAs involved in gene regulation. The regulation is effected by either translational inhibition or transcriptional silencing. In vertebrates, the importance of miRNA in development was discovered from mice and zebrafish dicer knockouts. The miRNA-9 (miR-9) is one of the most highly expressed miRNAs in the early and adult vertebrate brain. It has diverse functions within the developing vertebrate brain. In this article, the role of miR-9 in the developing forebrain (telencephalon and diencephalon), midbrain, hindbrain, and spinal cord of vertebrate species is highlighted. In the forebrain, miR-9 is necessary for the proper development of dorsoventral telencephalon by targeting marker genes expressed in the telencephalon. It regulates proliferation in telencephalon by regulating Foxg1, Pax6, Gsh2, and Meis2 genes. The feedback loop regulation between miR-9 and Nr2e1/Tlx helps in neuronal migration and differentiation. Targeting Foxp1 and Foxp2, and Map1b by miR-9 regulates the radial migration of neurons and axonal development. In the organizers, miR-9 is inversely regulated by hairy1 and Fgf8 to maintain zona limitans interthalamica and midbrain–hindbrain boundary (MHB). It maintains the MHB by inhibiting Fgf signaling genes and is involved in the neurogenesis of the midbrain–hindbrain by regulating Her genes. In the hindbrain, miR-9 modulates progenitor proliferation and differentiation by regulating Her genes and Elav3. In the spinal cord, miR-9 modulates the regulation of Foxp1 and Onecut1 for motor neuron development. In the forebrain, midbrain, and hindbrain, miR-9 is necessary for proper neuronal progenitor maintenance, neurogenesis, and differentiation. In vertebrate brain development, miR-9 is involved in regulating several region-specific genes in a spatiotemporal pattern.
Collapse
Affiliation(s)
| | - A Alwin Prem Anand
- Institute of Clinical Anatomy and Cell Analysis, University of Tübingen, Tübingen, Germany
| |
Collapse
|
6
|
Rapacioli M, Palma V, Flores V. Morphogenetic and Histogenetic Roles of the Temporal-Spatial Organization of Cell Proliferation in the Vertebrate Corticogenesis as Revealed by Inter-specific Analyses of the Optic Tectum Cortex Development. Front Cell Neurosci 2016; 10:67. [PMID: 27013978 PMCID: PMC4794495 DOI: 10.3389/fncel.2016.00067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 03/01/2016] [Indexed: 12/11/2022] Open
Abstract
The central nervous system areas displaying the highest structural and functional complexity correspond to the so called cortices, i.e., concentric alternating neuronal and fibrous layers. Corticogenesis, i.e., the development of the cortical organization, depends on the temporal-spatial organization of several developmental events: (a) the duration of the proliferative phase of the neuroepithelium, (b) the relative duration of symmetric (expansive) versus asymmetric (neuronogenic) sub phases, (c) the spatial organization of each kind of cell division, (e) the time of determination and cell cycle exit and (f) the time of onset of the post-mitotic neuronal migration and (g) the time of onset of the neuronal structural and functional differentiation. The first five events depend on molecular mechanisms that perform a fine tuning of the proliferative activity. Changes in any of them significantly influence the cortical size or volume (tangential expansion and radial thickness), morphology, architecture and also impact on neuritogenesis and synaptogenesis affecting the cortical wiring. This paper integrates information, obtained in several species, on the developmental roles of cell proliferation in the development of the optic tectum (OT) cortex, a multilayered associative area of the dorsal (alar) midbrain. The present review (1) compiles relevant information on the temporal and spatial organization of cell proliferation in different species (fish, amphibians, birds, and mammals), (2) revises the main molecular events involved in the isthmic organizer (IsO) determination and localization, (3) describes how the patterning installed by IsO is translated into spatially organized neural stem cell proliferation (i.e., by means of growth factors, receptors, transcription factors, signaling pathways, etc.) and (4) describes the morpho- and histogenetic effect of a spatially organized cell proliferation in the above mentioned species. A brief section on the OT evolution is also included. This section considers how the differential operation of cell proliferation could explain differences among species.
Collapse
Affiliation(s)
- Melina Rapacioli
- Interdisciplinary Group in Theoretical Biology, Department of Biostructural Sciences, Favaloro UniversityBuenos Aires, Argentina
| | - Verónica Palma
- Laboratory of Stem Cell and Developmental Biology, Faculty of Science, University of ChileSantiago, Chile
| | - Vladimir Flores
- Interdisciplinary Group in Theoretical Biology, Department of Biostructural Sciences, Favaloro UniversityBuenos Aires, Argentina
| |
Collapse
|
7
|
Vega‐López GA, Bonano M, Tríbulo C, Fernández JP, Agüero TH, Aybar MJ. Functional analysis of
Hairy
genes in
Xenopus
neural crest initial specification and cell migration. Dev Dyn 2015; 244:988-1013. [DOI: 10.1002/dvdy.24295] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 04/25/2015] [Accepted: 05/14/2015] [Indexed: 01/28/2023] Open
Affiliation(s)
| | - Marcela Bonano
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET‐UNT
| | - Celeste Tríbulo
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET‐UNT
- Instituto de Biología “Dr. Francisco D. Barbieri”, Facultad de Bioquímica, Química y FarmaciaUniversidad Nacional de TucumánChacabuco San Miguel de Tucumán Argentina
| | - Juan P. Fernández
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET‐UNT
| | - Tristán H. Agüero
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET‐UNT
| | - Manuel J. Aybar
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET‐UNT
- Instituto de Biología “Dr. Francisco D. Barbieri”, Facultad de Bioquímica, Química y FarmaciaUniversidad Nacional de TucumánChacabuco San Miguel de Tucumán Argentina
| |
Collapse
|
8
|
Pose-Méndez S, Candal E, Mazan S, Rodríguez-Moldes I. Genoarchitecture of the rostral hindbrain of a shark: basis for understanding the emergence of the cerebellum at the agnathan–gnathostome transition. Brain Struct Funct 2015; 221:1321-35. [DOI: 10.1007/s00429-014-0973-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 12/17/2014] [Indexed: 12/14/2022]
|
9
|
Setting appropriate boundaries: fate, patterning and competence at the neural plate border. Dev Biol 2013; 389:2-12. [PMID: 24321819 DOI: 10.1016/j.ydbio.2013.11.027] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Revised: 11/26/2013] [Accepted: 11/27/2013] [Indexed: 11/20/2022]
Abstract
The neural crest and craniofacial placodes are two distinct progenitor populations that arise at the border of the vertebrate neural plate. This border region develops through a series of inductive interactions that begins before gastrulation and progressively divide embryonic ectoderm into neural and non-neural regions, followed by the emergence of neural crest and placodal progenitors. In this review, we describe how a limited repertoire of inductive signals-principally FGFs, Wnts and BMPs-set up domains of transcription factors in the border region which establish these progenitor territories by both cross-inhibitory and cross-autoregulatory interactions. The gradual assembly of different cohorts of transcription factors that results from these interactions is one mechanism to provide the competence to respond to inductive signals in different ways, ultimately generating the neural crest and cranial placodes.
Collapse
|
10
|
Nakayama Y, Kikuta H, Kanai M, Yoshikawa K, Kawamura A, Kobayashi K, Wang Z, Khan A, Kawakami K, Yamasu K. Gbx2 functions as a transcriptional repressor to regulate the specification and morphogenesis of the mid–hindbrain junction in a dosage- and stage-dependent manner. Mech Dev 2013; 130:532-52. [DOI: 10.1016/j.mod.2013.07.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 07/16/2013] [Accepted: 07/19/2013] [Indexed: 11/29/2022]
|
11
|
Dworkin S, Jane SM. Novel mechanisms that pattern and shape the midbrain-hindbrain boundary. Cell Mol Life Sci 2013; 70:3365-74. [PMID: 23307071 PMCID: PMC11113640 DOI: 10.1007/s00018-012-1240-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 11/18/2012] [Accepted: 12/10/2012] [Indexed: 12/27/2022]
Abstract
The midbrain-hindbrain boundary (MHB) is a highly conserved vertebrate signalling centre, acting to pattern and establish neural identities within the brain. While the core signalling pathways regulating MHB formation have been well defined, novel genetic and mechanistic processes that interact with these core components are being uncovered, helping to further elucidate the complicated networks governing MHB specification, patterning and shaping. Although formation of the MHB organiser is traditionally thought of as comprising three stages, namely positioning, induction and maintenance, we propose that a fourth stage, morphogenesis, should be considered as an additional stage in MHB formation. This review will examine evidence for novel factors regulating the first three stages of MHB development and will explore the evidence for regulation of MHB morphogenesis by non-classical MHB-patterning genes.
Collapse
Affiliation(s)
- Sebastian Dworkin
- Department of Medicine, Monash University Central Clinical School, Melbourne, VIC, 3004, Australia.
| | | |
Collapse
|
12
|
Streit A, Tambalo M, Chen J, Grocott T, Anwar M, Sosinsky A, Stern CD. Experimental approaches for gene regulatory network construction: the chick as a model system. Genesis 2012; 51:296-310. [PMID: 23174848 DOI: 10.1002/dvg.22359] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 11/09/2012] [Accepted: 11/11/2012] [Indexed: 01/23/2023]
Abstract
Setting up the body plan during embryonic development requires the coordinated action of many signals and transcriptional regulators in a precise temporal sequence and spatial pattern. The last decades have seen an explosion of information describing the molecular control of many developmental processes. The next challenge is to integrate this information into logic "wiring diagrams" that visualize gene actions and outputs, have predictive power and point to key control nodes. Here, we provide an experimental workflow on how to construct gene regulatory networks using the chick as model system.
Collapse
Affiliation(s)
- Andrea Streit
- Department of Craniofacial Development and Stem Cell Biology, King's College London, London, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
Despite its complexity in the adult, during development the inner ear arises from a simple epithelium, the otic placode. Placode specification is a multistep process that involves the integration of various signalling pathways and downstream transcription factors in time and space. Here we review the molecular events that successively commit multipotent ectodermal precursors to the otic lineage. The first step in this hierarchy is the specification of sensory progenitor cells, which can contribute to all sensory placodes, followed by the induction of a common otic-epibranchial field and finally the establishment the otic territory. In recent years, some of the molecular components that control this process have been identified, and begin to reveal complex interactions. Future studies will need to unravel how this information is integrated and encoded in the genome. This will form the blueprint for stem cell differentiation towards otic fates and generate a predictive gene regulatory network that models the earliest steps of otic specification.
Collapse
Affiliation(s)
- Jingchen Chen
- Department of Craniofacial Development and Stem Cell Biology, King's College London, Guy's Tower Wing, Floor 27, London SE1 9RT, UK
| | | |
Collapse
|
14
|
Grocott T, Tambalo M, Streit A. The peripheral sensory nervous system in the vertebrate head: a gene regulatory perspective. Dev Biol 2012; 370:3-23. [PMID: 22790010 DOI: 10.1016/j.ydbio.2012.06.028] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 06/28/2012] [Accepted: 06/29/2012] [Indexed: 02/06/2023]
Abstract
In the vertebrate head, crucial parts of the sense organs and sensory ganglia develop from special regions, the cranial placodes. Despite their cellular and functional diversity, they arise from a common field of multipotent progenitors and acquire distinct identity later under the influence of local signalling. Here we present the gene regulatory network that summarises our current understanding of how sensory cells are specified, how they become different from other ectodermal derivatives and how they begin to diversify to generate placodes with different identities. This analysis reveals how sequential activation of sets of transcription factors subdivides the ectoderm over time into smaller domains of progenitors for the central nervous system, neural crest, epidermis and sensory placodes. Within this hierarchy the timing of signalling and developmental history of each cell population is of critical importance to determine the ultimate outcome. A reoccurring theme is that local signals set up broad gene expression domains, which are further refined by mutual repression between different transcription factors. The Six and Eya network lies at the heart of sensory progenitor specification. In a positive feedback loop these factors perpetuate their own expression thus stabilising pre-placodal fate, while simultaneously repressing neural and neural crest specific factors. Downstream of the Six and Eya cassette, Pax genes in combination with other factors begin to impart regional identity to placode progenitors. While our review highlights the wealth of information available, it also points to the lack information on the cis-regulatory mechanisms that control placode specification and of how the repeated use of signalling input is integrated.
Collapse
Affiliation(s)
- Timothy Grocott
- Department of Craniofacial Development and Stem Cell Biology, King's College London, Guy's Tower Wing, Floor 27, London SE1 9RT, UK
| | | | | |
Collapse
|
15
|
Mutual repression between Gbx2 and Otx2 in sensory placodes reveals a general mechanism for ectodermal patterning. Dev Biol 2012; 367:55-65. [PMID: 22564795 PMCID: PMC3384001 DOI: 10.1016/j.ydbio.2012.04.025] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 04/13/2012] [Accepted: 04/17/2012] [Indexed: 11/27/2022]
Abstract
In the vertebrate head, central and peripheral components of the sensory nervous system have different embryonic origins, the neural plate and sensory placodes. This raises the question of how they develop in register to form functional sense organs and sensory circuits. Here we show that mutual repression between the homeobox transcription factors Gbx2 and Otx2 patterns the placode territory by influencing regional identity and by segregating inner ear and trigeminal progenitors. Activation of Otx2 targets is necessary for anterior olfactory, lens and trigeminal character, while Gbx2 function is required for the formation of the posterior otic placode. Thus, like in the neural plate antagonistic interaction between Otx2 and Gbx2 establishes positional information thus providing a general mechanism for rostro-caudal patterning of the ectoderm. Our findings support the idea that the Otx/Gbx boundary has an ancient evolutionary origin to which different modules were recruited to specify cells of different fates.
Collapse
|
16
|
Posnien N, Koniszewski NDB, Hein HJ, Bucher G. Candidate gene screen in the red flour beetle Tribolium reveals six3 as ancient regulator of anterior median head and central complex development. PLoS Genet 2011; 7:e1002416. [PMID: 22216011 PMCID: PMC3245309 DOI: 10.1371/journal.pgen.1002416] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Accepted: 10/13/2011] [Indexed: 11/19/2022] Open
Abstract
Several highly conserved genes play a role in anterior neural plate patterning of vertebrates and in head and brain patterning of insects. However, head involution in Drosophila has impeded a systematic identification of genes required for insect head formation. Therefore, we use the red flour beetle Tribolium castaneum in order to comprehensively test the function of orthologs of vertebrate neural plate patterning genes for a function in insect head development. RNAi analysis reveals that most of these genes are indeed required for insect head capsule patterning, and we also identified several genes that had not been implicated in this process before. Furthermore, we show that Tc-six3/optix acts upstream of Tc-wingless, Tc-orthodenticle1, and Tc-eyeless to control anterior median development. Finally, we demonstrate that Tc-six3/optix is the first gene known to be required for the embryonic formation of the central complex, a midline-spanning brain part connected to the neuroendocrine pars intercerebralis. These functions are very likely conserved among bilaterians since vertebrate six3 is required for neuroendocrine and median brain development with certain mutations leading to holoprosencephaly.
Collapse
Affiliation(s)
- Nico Posnien
- Center for Molecular Physiology of the Brain (CMPB), Göttingen Center of Molecular Biology, Caspari-Haus, Georg-August-University Göttingen, Göttingen, Germany
- School of Life Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Nikolaus Dieter Bernhard Koniszewski
- Center for Molecular Physiology of the Brain (CMPB), Göttingen Center of Molecular Biology, Caspari-Haus, Georg-August-University Göttingen, Göttingen, Germany
| | | | - Gregor Bucher
- Center for Molecular Physiology of the Brain (CMPB), Göttingen Center of Molecular Biology, Caspari-Haus, Georg-August-University Göttingen, Göttingen, Germany
| |
Collapse
|
17
|
Tossell K, Kiecker C, Wizenmann A, Lang E, Irving C. Notch signalling stabilises boundary formation at the midbrain-hindbrain organiser. Development 2011; 138:3745-57. [PMID: 21795283 DOI: 10.1242/dev.070318] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The midbrain-hindbrain interface gives rise to a boundary of particular importance in CNS development as it forms a local signalling centre, the proper functioning of which is essential for the formation of tectum and cerebellum. Positioning of the mid-hindbrain boundary (MHB) within the neuroepithelium is dependent on the interface of Otx2 and Gbx2 expression domains, yet in the absence of either or both of these genes, organiser genes are still expressed, suggesting that other, as yet unknown mechanisms are also involved in MHB establishment. Here, we present evidence for a role for Notch signalling in stabilising cell lineage restriction and regulating organiser gene expression at the MHB. Experimental interference with Notch signalling in the chick embryo disrupts MHB formation, including downregulation of the organiser signal Fgf8. Ectopic activation of Notch signalling in cells of the anterior hindbrain results in an exclusion of those cells from rhombomeres 1 and 2, and in a simultaneous clustering along the anterior and posterior boundaries of this area, suggesting that Notch signalling influences cell sorting. These cells ectopically express the boundary marker Fgf3. In agreement with a role for Notch signalling in cell sorting, anterior hindbrain cells with activated Notch signalling segregate from normal cells in an aggregation assay. Finally, misexpression of the Notch modulator Lfng or the Notch ligand Ser1 across the MHB leads to a shift in boundary position and loss of restriction of Fgf8 to the MHB. We propose that differential Notch signalling stabilises the MHB through regulating cell sorting and specifying boundary cell fate.
Collapse
Affiliation(s)
- Kyoko Tossell
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | | | | | | | | |
Collapse
|
18
|
Carrasco-Rando M, Tutor AS, Prieto-Sánchez S, González-Pérez E, Barrios N, Letizia A, Martín P, Campuzano S, Ruiz-Gómez M. Drosophila araucan and caupolican integrate intrinsic and signalling inputs for the acquisition by muscle progenitors of the lateral transverse fate. PLoS Genet 2011; 7:e1002186. [PMID: 21811416 PMCID: PMC3141015 DOI: 10.1371/journal.pgen.1002186] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Accepted: 05/28/2011] [Indexed: 01/23/2023] Open
Abstract
A central issue of myogenesis is the acquisition of identity by individual muscles. In Drosophila, at the time muscle progenitors are singled out, they already express unique combinations of muscle identity genes. This muscle code results from the integration of positional and temporal signalling inputs. Here we identify, by means of loss-of-function and ectopic expression approaches, the Iroquois Complex homeobox genes araucan and caupolican as novel muscle identity genes that confer lateral transverse muscle identity. The acquisition of this fate requires that Araucan/Caupolican repress other muscle identity genes such as slouch and vestigial. In addition, we show that Caupolican-dependent slouch expression depends on the activation state of the Ras/Mitogen Activated Protein Kinase cascade. This provides a comprehensive insight into the way Iroquois genes integrate in muscle progenitors, signalling inputs that modulate gene expression and protein activity. In Drosophila, as in vertebrates, the muscular system consists of different types of muscles that must act in coordination with the nervous system to control the adequate release of contraction power required for the proper functioning of the organism. Therefore, the acquisition of specific identities by individual muscles is a key step in the generation of the muscular system. In Drosophila, muscle progenitors (specific myoblasts that seed the formation of mature muscles) integrate positional and temporal signalling inputs, resulting in the expression of unique combinations of muscle identity genes, which confer on them specific fates. Up to now, very little was known of how this integration takes place at a molecular level and how a particular code is translated into a specific muscle fate. Here we show that the acquisition of the lateral transverse muscle fate requires the repression mediated by Araucan and Caupolican, two homeoproteins of the Iroquois Complex, of other muscle identity genes, like slouch and vestigial. The repressor or activator function of the Iroquois proteins depends on the activity of the Ras signalling pathway. Therefore, our work places Iroquois genes at a nodal point that integrates signalling inputs and regulates protein activity and cell fate determination.
Collapse
Affiliation(s)
- Marta Carrasco-Rando
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas–Universidad Autónoma de Madrid, Madrid, Spain
| | - Antonio S. Tutor
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas–Universidad Autónoma de Madrid, Madrid, Spain
| | - Silvia Prieto-Sánchez
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas–Universidad Autónoma de Madrid, Madrid, Spain
| | - Esther González-Pérez
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas–Universidad Autónoma de Madrid, Madrid, Spain
| | - Natalia Barrios
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas–Universidad Autónoma de Madrid, Madrid, Spain
| | - Annalisa Letizia
- Institut de Biologia Molecular de Barcelona, Consejo Superior de Investigaciones Científicas, Barcelona, Spain
| | - Paloma Martín
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas–Universidad Autónoma de Madrid, Madrid, Spain
| | - Sonsoles Campuzano
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas–Universidad Autónoma de Madrid, Madrid, Spain
| | - Mar Ruiz-Gómez
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas–Universidad Autónoma de Madrid, Madrid, Spain
- * E-mail:
| |
Collapse
|
19
|
Morona R, Ferran JL, Puelles L, González A. Embryonic genoarchitecture of the pretectum in Xenopus laevis: A conserved pattern in tetrapods. J Comp Neurol 2011; 519:1024-50. [DOI: 10.1002/cne.22548] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
20
|
Bellipanni G, Murakami T, Weinberg ES. Molecular dissection of Otx1 functional domains in the zebrafish embryo. J Cell Physiol 2010; 222:286-93. [DOI: 10.1002/jcp.21944] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
21
|
Schlosser G. Making senses development of vertebrate cranial placodes. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2010; 283:129-234. [PMID: 20801420 DOI: 10.1016/s1937-6448(10)83004-7] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Cranial placodes (which include the adenohypophyseal, olfactory, lens, otic, lateral line, profundal/trigeminal, and epibranchial placodes) give rise to many sense organs and ganglia of the vertebrate head. Recent evidence suggests that all cranial placodes may be developmentally related structures, which originate from a common panplacodal primordium at neural plate stages and use similar regulatory mechanisms to control developmental processes shared between different placodes such as neurogenesis and morphogenetic movements. After providing a brief overview of placodal diversity, the present review summarizes current evidence for the existence of a panplacodal primordium and discusses the central role of transcription factors Six1 and Eya1 in the regulation of processes shared between different placodes. Upstream signaling events and transcription factors involved in early embryonic induction and specification of the panplacodal primordium are discussed next. I then review how individual placodes arise from the panplacodal primordium and present a model of multistep placode induction. Finally, I briefly summarize recent advances concerning how placodal neurons and sensory cells are specified, and how morphogenesis of placodes (including delamination and migration of placode-derived cells and invagination) is controlled.
Collapse
Affiliation(s)
- Gerhard Schlosser
- Zoology, School of Natural Sciences & Martin Ryan Institute, National University of Ireland, Galway, Ireland
| |
Collapse
|
22
|
Developmental expression of the three iroquois genes of amphioxus (BfIrxA, BfIrxB, and BfIrxC) with special attention to the gastrula organizer and anteroposterior boundaries in the central nervous system. Gene Expr Patterns 2009; 9:329-34. [DOI: 10.1016/j.gep.2009.02.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2008] [Revised: 02/06/2009] [Accepted: 02/11/2009] [Indexed: 11/16/2022]
|
23
|
Shima T, Znosko W, Tsang M. The characterization of a zebrafish mid-hindbrain mutant, mid-hindbrain gone (mgo). Dev Dyn 2009; 238:899-907. [DOI: 10.1002/dvdy.21916] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
24
|
Rodríguez-Seguel E, Alarcón P, Gómez-Skarmeta JL. The Xenopus Irx genes are essential for neural patterning and define the border between prethalamus and thalamus through mutual antagonism with the anterior repressors Fezf and Arx. Dev Biol 2009; 329:258-68. [PMID: 19268445 DOI: 10.1016/j.ydbio.2009.02.028] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Revised: 02/20/2009] [Accepted: 02/24/2009] [Indexed: 12/17/2022]
Abstract
The Iroquois (Irx) genes encode homeoproteins conserved during evolution. Vertebrate genomes contain six Irx genes organized in two clusters, IrxA (which harbors Irx1, Irx2 and Irx4) and IrxB (which harbors Irx3, Irx5 and Irx6). To determine the precise role of these genes during development and their putative redundancies, we conducted a comparative expression analysis and a comprehensive loss-of-function study of all the early expressed Irx genes (Irx1-5) using specific morpholinos in Xenopus. We found that the five Irx genes display largely overlapping expression patterns and contribute to neural patterning. All Irx genes are required for proper formation of posterior forebrain, midbrain, hindbrain and, to a lesser an extent, spinal cord. Nevertheless, Irx1 and Irx3 seem to have a predominant role during regionalization of the neural plate. In addition, we find that the common anterior limit of Irx gene expression, which will correspond to the future border between the prethalamus and thalamus, is defined by mutual repression between Fezf and Irx proteins. This mutual repression is likely direct. Finally, we show that Arx, another anteriorly expressed repressor, also contribute to delineate the anterior border of Irx expression.
Collapse
Affiliation(s)
- Elisa Rodríguez-Seguel
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide, Carretera de Utrera Km1, 41013 Sevilla, Spain
| | | | | |
Collapse
|
25
|
Smidt MP. Specific vulnerability of substantia nigra compacta neurons. JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 2009:39-47. [PMID: 20411766 DOI: 10.1007/978-3-211-92660-4_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The specific loss of substantia nigra compacta (SNc) neurons in Parkinson's disease (PD) has been the main driving force in initiating research efforts to unravel the apparent SNc-specific vulnerability. Initially, metabolic constraints due to high dopamine turnover have been the main focus in the attempts to solve this issue. Recently, it has become clear that fundamental differences in the molecular signature are adding to the neuronal vulnerability and provide specific molecular dependencies. Here, the different processes that define the molecular background of SNc vulnerability are summarized.
Collapse
Affiliation(s)
- Marten P Smidt
- Rudolf Magnus Institute of Neuroscience, Department of Neuroscience and Pharmacology, University Medical Center Utrecht, Universiteitsweg 100, 3584, CG Utrecht, The Netherlands.
| |
Collapse
|
26
|
Aboitiz F, Montiel J. Co-option of signaling mechanisms from neural induction to telencephalic patterning. Rev Neurosci 2007; 18:311-42. [PMID: 18019612 DOI: 10.1515/revneuro.2007.18.3-4.311] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
This article provides an overview of signaling processes during early specification of the anterior neural tube, with special emphasis on the telencephalon. A series of signaling systems based on the action of distinct morphogens acts at different developmental stages, specifying interacting developmental fields that define axes of differentiation in the rostrocaudal and the dorsoventral domains. Interestingly, many of these signaling systems are co-opted for several differentiation processes. This strategy provides a simple and efficient mechanism to generate novel structures in evolution, and may have been especially important in the origin of the telencephalon and the mammalian cerebral cortex. For example, the action of fibroblast growth factor (FGF) secreted in early stages from the anterior neural ridge, but in later stages from the dorsal anterior forebrain, may have been a key factor in the early differentiation of the ventral telencephalon and in the eventual expansion of the mammalian neocortex. Likewise, bone morphogenetic proteins (BMPs) participate at several stages in neural patterning, even if early neural induction consists of the inhibition of the BMP pathway. BMPs, secreted dorsally, interact with FGFs in the frontal aspect of the hemispheres, and with PAX6-dependent signaling sources located laterally, to pattern the dorsal telencephalon. The actions of other morphogens are also described in this context, such as the ventralizing factor SHH, the dorsalizing element GLI3, and other factors related to the dorsomedial telencephalon such as WNTs and EMXs. The main conclusion we draw from this review is the well-known phylogenetic and developmental conservatism of signaling pathways, which in evolution have been applied in different embryological contexts, generating novel interactions between morphogenetic fields and leading to the generation of new morphological structures.
Collapse
Affiliation(s)
- Francisco Aboitiz
- Departamento de Psiquiatría y Centro de Investigaciones Médicas, Escuela de Medicina, Pontificia Universidad Católica de Chile.
| | | |
Collapse
|
27
|
Abstract
Members of the Zic family of zinc finger transcription factors play critical roles in a variety of developmental processes. They are involved in development of neural tissues and the neural crest, in left-right axis patterning, in somite development, and in formation of the cerebellum. In addition to their roles in cell-fate specification, zic genes also promote cell proliferation. Further, they are expressed in postmitotic cells of the cerebellum and in retinal ganglion cells. Efforts to determine the role of individual zic genes within an array of developmental and cellular processes are complicated by overlapping patterns of zic gene expression and strong sequence conservation within this gene family. Nevertheless, substantial progress has been made. This review summarizes our knowledge of the molecular events that govern the activities of zic family members, including emerging relationships between upstream signaling pathways and zic genes. In addition, advancements in our understanding of the molecular events downstream of Zic transcription factors are reviewed. Despite significant progress, however, much remains to be learned regarding the mechanisms through which zic genes exert their function in a variety of different contexts.
Collapse
Affiliation(s)
- Christa S Merzdorf
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, Montana.
| |
Collapse
|
28
|
Abstract
Dopaminergic neurons located in the ventral mesodiencephalon are essential for the control of voluntary movement and the regulation of emotion, and are severely affected in neurodegenerative diseases such as Parkinson's disease. Recent advances in molecular biology and mouse genetics have helped to unravel the mechanisms involved in the development of mesodiencephalic dopaminergic (mdDA) neurons, including their specification, migration and differentiation, as well as the processes that govern axonal pathfinding and their specific patterns of connectivity and maintenance. Here, we follow the developmental path of these neurons with the goal of generating a molecular code that could be exploited in cell-replacement strategies to treat diseases such as Parkinson's disease.
Collapse
Affiliation(s)
- Marten P Smidt
- Department of Pharmacology and Anatomy, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, 3508 AB Utrecht [corrected] The Netherlands.
| | | |
Collapse
|
29
|
Islam ME, Kikuta H, Inoue F, Kanai M, Kawakami A, Parvin MS, Takeda H, Yamasu K. Three enhancer regions regulate gbx2 gene expression in the isthmic region during zebrafish development. Mech Dev 2006; 123:907-24. [PMID: 17067785 DOI: 10.1016/j.mod.2006.08.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2006] [Revised: 08/16/2006] [Accepted: 08/24/2006] [Indexed: 10/24/2022]
Abstract
In vertebrate embryos, positioning of the boundary between the midbrain and hindbrain (MHB) and subsequent isthmus formation are dependent upon the interaction between the Otx2 and Gbx genes. In zebrafish, sequential expression of gbx1 and gbx2 in the anterior hindbrain contributes to this process, whereas in mouse embryos, a single Gbx gene (Gbx2) is responsible for MHB development. In the present study, to investigate the regulatory mechanism of gbx2 in the MHB/isthmic region of zebrafish embryos, we cloned the gene and showed that its organization is conserved among different vertebrates. Promoter analyses revealed three enhancers that direct reporter gene expression after the end of epiboly in the anterior-most hindbrain, which is a feature of the zebrafish gbx2 gene. One of the enhancers is located upstream of gbx2 (AMH1), while the other two enhancers are located downstream of gbx2 (AMH2 and AMH3). Detailed analysis of the AMH1 enhancer showed that it directs expression in the rhombomere 1 (r1) region and the dorsal thalamus, as has been shown for gbx2, whereas no expression was induced by the AMH1 enhancer in other embryonic regions in which gbx2 is expressed. The AMH1 enhancer is composed of multiple regulatory subregions that share the same spatial specificity. The most active of the regulatory subregions is a 291-bp region that contains at least two Pax2-binding sites, both of which are necessary for the function of the main component (PB1-A region) of the AMH1 enhancer. In accordance with these results, enhancer activity in the PB1-A region, as well as gbx2 expression in r1, was missing in no isthmus mutant embryos that lacked functional pax2a. In addition, we identified an upstream conserved sequence of 227bp that suppresses the enhancer activity of AMH1. Taken together, these findings suggest that gbx2 expression during the somitogenesis stage in zebrafish is regulated by a complex mechanism involving Pax2 as well as activators and suppressors in the regions flanking the gene.
Collapse
Affiliation(s)
- Md Ekramul Islam
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Shimo-Okubo, Sakura-ku, Saitama City, Saitama 338-8570, Japan
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Sugimoto K, Okabayashi K, Sedohara A, Hayata T, Asashima M. The role of XBtg2 in Xenopus neural development. Dev Neurosci 2006; 29:468-79. [PMID: 17119321 DOI: 10.1159/000097320] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2006] [Accepted: 08/17/2006] [Indexed: 11/19/2022] Open
Abstract
In early neural development, active cell proliferation and apoptosis take place concurrent with cell differentiation, but how these processes are coordinated remains unclear. In this study, we characterized the role of XBtg2 in Xenopus neural development. XBtg2 transcripts were detected at the edge of the anterolateral neural plate and the neural crest region at the midneurula stage, and in eyes and in part of the neural tube at the tailbud stage. Translational inhibition of XBtg2 affected anterior neural development and impaired eye formation. XBtg2 depletion altered the expression patterns of the early neural genes, Zic3 and SoxD, at the midneurula stage, but not at the early neurula stage. At the midneurula stage, XBtg2-depleted embryos exhibited a marked decrease in the expression of anterior neural genes, En2, Otx2, and Rx1, without any changes in neural crest genes, Slug and Snail, or an epidermal gene, XK81. These results suggest that XBtg2 is required for the differentiation of the anterior neural plate from the midneurula stage, but not for the specification of the fate and patterning of the neural plate. XBtg2-depleted embryos also exhibited an increase in both proliferation and apoptosis in the anterior neural plate; however, the altered expression patterns of neural markers were not reversed by inhibition of either the cell cycle or apoptosis. Based on these data, we propose that XBtg2 plays an essential role in the anterior neural development, by regulating neural cell differentiation, and, independently, cell proliferation and survival.
Collapse
Affiliation(s)
- Kaoru Sugimoto
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | | | | | | | | |
Collapse
|
31
|
Heimbucher T, Murko C, Bajoghli B, Aghaallaei N, Huber A, Stebegg R, Eberhard D, Fink M, Simeone A, Czerny T. Gbx2 and Otx2 interact with the WD40 domain of Groucho/Tle corepressors. Mol Cell Biol 2006; 27:340-51. [PMID: 17060451 PMCID: PMC1800652 DOI: 10.1128/mcb.00811-06] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
One of the earliest organizational decisions in the development of the vertebrate brain is the division of the neural plate into Otx2-positive anterior and Gbx2-positive posterior territories. At the junction of these two expression domains, a local signaling center is formed, known as the midbrain-hindbrain boundary (MHB). This tissue coordinates or "organizes" the development of neighboring brain structures, such as the midbrain and cerebellum. Correct positioning of the MHB is thought to depend on mutual repression involving these two homeobox genes. Using a cell culture colocalization assay and coimmunoprecipitation experiments, we show that engrailed homology region 1 (eh1)-like motifs of both transcription factors physically interact with the WD40 domain of Groucho/Tle corepressor proteins. In addition, heat shock-induced expression of wild-type and mutant Otx2 and Gbx2 in medaka embryos demonstrates that Groucho is required for the repression of Otx2 by Gbx2. On the other hand, the repressive functions of Otx2 on Gbx2 do not appear to be dependent on corepressor interaction. Interestingly, the association of Groucho with Otx2 is also required for the repression of Fgf8 in the MHB. Therefore Groucho/Tle family members appear to regulate key aspects in the MHB development of the vertebrate brain.
Collapse
Affiliation(s)
- Thomas Heimbucher
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine, Veterinärplatz 1, A-1210 Vienna, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Li S, Shin Y, Cho KWY, Merzdorf CS. The Xfeb gene is directly upregulated by Zic1 during early neural development. Dev Dyn 2006; 235:2817-27. [PMID: 16871635 DOI: 10.1002/dvdy.20896] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The transcription factor Zic1 plays important roles in patterning the neural plate in early vertebrate development. However, few genes that are regulated by Zic1 are known. We have identified a new direct downstream target gene of Zic1 that we have named Xfeb. Xfeb is a member of the pathogenesis-related (PR) protein superfamily and contains five tandem SCP domains. The sequence of Xfeb suggests that it may possess serine protease activity. Xfeb is expressed in the presumptive hindbrain region during neurula stages and in somite tissues later in development. Xfeb represses the hindbrain gene hoxB1 and the anterior neural gene otx2, suggesting that Xfeb is involved in regionalizing the neural plate, possibly by ensuring a posterior expression limit for otx2.
Collapse
Affiliation(s)
- Shuzhao Li
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, Montana, USA
| | | | | | | |
Collapse
|
33
|
Castro LFC, Rasmussen SLK, Holland PWH, Holland ND, Holland LZ. A Gbx homeobox gene in amphioxus: insights into ancestry of the ANTP class and evolution of the midbrain/hindbrain boundary. Dev Biol 2006; 295:40-51. [PMID: 16687133 DOI: 10.1016/j.ydbio.2006.03.003] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2006] [Revised: 02/28/2006] [Accepted: 03/01/2006] [Indexed: 11/24/2022]
Abstract
In the vertebrate central nervous system (CNS), mutual antagonism between posteriorly expressed Gbx2 and anteriorly expressed Otx2 positions the midbrain/hindbrain boundary (MHB), but does not induce MHB organizer genes such as En, Pax2/5/8 and Wnt1. In the CNS of the cephalochordate amphioxus, Otx is also expressed anteriorly, but En, Pax2/5/8 and Wnt1 are not expressed near the caudal limit of Otx, raising questions about the existence of an MHB organizer in amphioxus. To investigate the evolutionary origins of the MHB, we cloned the single amphioxus Gbx gene. Fluorescence in situ hybridization showed that, as in vertebrates, amphioxus Gbx and the Hox cluster are on the same chromosome. From analysis of linked genes, we argue that during evolution a single ancestral Gbx gene duplicated fourfold in vertebrates, with subsequent loss of two duplicates. Amphioxus Gbx is expressed in all germ layers in the posterior 75% of the embryo, and in the CNS, the Gbx and Otx domains abut at the boundary between the cerebral vesicle (forebrain/midbrain) and the hindbrain. Thus, the genetic machinery to position the MHB was present in the protochordate ancestors of the vertebrates, but is insufficient for induction of organizer genes. Comparison with hemichordates suggests that anterior Otx and posterior Gbx domains were probably overlapping in the ancestral deuterostome and came to abut at the MHB early in the chordate lineage before MHB organizer properties evolved.
Collapse
Affiliation(s)
- L Filipe C Castro
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | | | | | | | | |
Collapse
|
34
|
Anteroposterior and Dorsoventral Patterning. Dev Neurobiol 2006. [DOI: 10.1007/0-387-28117-7_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
35
|
Culi J, Aroca P, Modolell J, Mann RS. jing is required for wing development and to establish the proximo-distal axis of the leg in Drosophila melanogaster. Genetics 2006; 173:255-66. [PMID: 16510782 PMCID: PMC1461433 DOI: 10.1534/genetics.106.056341] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The establishment of the proximo-distal (PD) axis in the legs of Drosophila melanogaster requires the expression of a nested set of transcription factors that are activated in discreet domains by secreted signaling molecules. The precise regulation of these transcription factor domains is critical for generating the stereotyped morphological characteristics that exist along the PD axis, such as the positioning of specific bristle types and leg joints. Here we provide evidence that the Zn-finger protein encoded by the gene jing is critical for PD axis formation in the Drosophila legs. Our data suggest that jing represses transcription and that it is necessary to keep the proximal gene homothorax (hth) repressed in the medial domain of the PD axis. We further show that jing is also required for alula and vein development in the adult wing. In the wing, Jing is required to repress another proximal gene, teashirt (tsh), in a small domain that will give rise to the alula. Interestingly, we also demonstrate that two other genes affecting alula development, Alula and elbow, also exhibit tsh derepression in the same region of the wing disc as jing- clones. Finally, we show that jing genetically interacts with several members of the Polycomb (Pc) group of genes during development. Together, our data suggest that jing encodes a transcriptional repressor that may participate in a subset of Pc-dependent activities during Drosophila appendage development.
Collapse
Affiliation(s)
- Joaquim Culi
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, USA
| | | | | | | |
Collapse
|
36
|
Aroca P, Puelles L. Postulated boundaries and differential fate in the developing rostral hindbrain. ACTA ACUST UNITED AC 2005; 49:179-90. [PMID: 16111548 DOI: 10.1016/j.brainresrev.2004.12.031] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2004] [Revised: 11/11/2004] [Accepted: 12/10/2004] [Indexed: 11/24/2022]
Abstract
The vertebrate brain is progressively regionalized during development in a process whereby a precise spatio-temporal arrangement of gene expression patterns and resulting intercellular and intracellular signals drive patterning, growth, morphogenesis, and final fates, thus producing ordered species-specific differentiation of each territory within a shared morphotype. Before genetic and molecular biology tools started to be used to uncover the underlying mechanisms that control morphogenesis, knowledge on brain development largely depended on descriptive analysis and experimental embryology. The first approach allowed us to know how the brain develops but not why. The second provided insights into inductive and field histogenetic phenomena, requiring causal explanation. In this review, we focused on the regionalization of the rostral hindbrain, defined as isthmus plus rhombomere 1, which is the least understood part of the hindbrain. We addressed what is known about the formation of boundaries in this area and the fate of diverse neuroepithelial portions. We introduced to this end some fate-mapping data recently obtained in our laboratory. Starting from the background of pioneering morphological studies and available fate mapping data, we establish correlation with current knowledge about how morphogens, transcription factors, or other signaling molecules map onto particular territories, from where they may drive morphogenetic interactions that generate final fates step by step.
Collapse
Affiliation(s)
- Pilar Aroca
- Department of Human Anatomy, Faculty of Medicine, University of Murcia, 30100 Murcia, Spain.
| | | |
Collapse
|
37
|
Byrne M, Cisternas P, Elia L, Relf B. Engrailed is expressed in larval development and in the radial nervous system of Patiriella sea stars. Dev Genes Evol 2005; 215:608-17. [PMID: 16163500 DOI: 10.1007/s00427-005-0018-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2005] [Accepted: 08/09/2005] [Indexed: 11/25/2022]
Abstract
We documented expression of the pan-metazoan neurogenic gene engrailed in larval and juvenile Patiriella sea stars to determine if this gene patterns bilateral and radial echinoderm nervous systems. Engrailed homologues, containing conserved En protein domains, were cloned from the radial nerve cord. During development, engrailed was expressed in ectodermal (nervous system) and mesodermal (coeloms) derivatives. In larvae, engrailed was expressed in cells lining the larval and future adult coeloms. Engrailed was not expressed in the larval nervous system. As adult-specific developmental programs were switched on during metamorphosis, engrailed was expressed in the central nervous system and peripheral nervous system (PNS), paralleling the pattern of neuropeptide immunolocalisation. Engrailed was first seen in the developing nerve ring and appeared to be up-regulated as the nervous system developed. Expression of engrailed in the nerve plexus of the tube feet, the lobes of the hydrocoel along the adult arm axis, is similar to the reiterated pattern of expression seen in other animals. Engrailed expression in developing nervous tissue reflects its conserved role in neurogenesis, but its broad expression in the adult nervous system of Patiriella differs from the localised expression seen in other bilaterians. The role of engrailed in patterning repeated PNS structures indicates that it may be important in patterning the fivefold organisation of the ambulacrae, a defining feature of the Echinodermata.
Collapse
Affiliation(s)
- Maria Byrne
- Department of Anatomy and Histology, University of Sydney, New South Wales, Australia.
| | | | | | | |
Collapse
|
38
|
Takada H, Hattori D, Kitayama A, Ueno N, Taira M. Identification of target genes for the Xenopus Hes-related protein XHR1, a prepattern factor specifying the midbrain-hindbrain boundary. Dev Biol 2005; 283:253-67. [PMID: 15935340 DOI: 10.1016/j.ydbio.2005.04.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2004] [Revised: 04/02/2005] [Accepted: 04/16/2005] [Indexed: 01/29/2023]
Abstract
The midbrain-hindbrain boundary (MHB) acts as a local organizer in the development of the CNS in vertebrates. Previously, we identified an MHB-specific bHLH-WRPW transcriptional repressor gene, Xenopus Hes-related 1 (XHR1), which is initially expressed in the presumptive MHB (pre-MHB) region at the early gastrula stage. To better understand the gene cascades involved in MHB formation, we investigated the genes downstream from XHR1 by differential screening using a Xenopus cDNA macroarray and a dexamethasone (DEX)-inducible, dominant-negative transcriptional activator construct of XHR1 (XHR1-VP16-GR). Among the newly identified candidate target genes of XHR1 were Enhancer of split-related genes (ESR1, ESR3/7, and ESR9) and Xenopus laevis cleavage 2 (XLCL2). XHR1-VP16-GR induced the expression of the ESR genes and XLCL2 as well as Xdelta1, Xngnr1, and XHR1 itself in the presence of DEX even after pretreatment with the protein synthesis inhibitor, cycloheximide. This suggests that these genes are direct targets of XHR1. XHR1-knockdown experiments with antisense morpholino oligos and ectopic expression of wild-type XHR1 revealed that XHR1 is necessary and sufficient to repress ESR genes in the pre-MHB region. Misexpression of the ESR genes in the pre-MHB region repressed the MHB marker gene, Pax2, suggesting that the repression of the ESR genes by XHR1 is at least partly required for the early development of the pre-MHB. Our data also show that XHR1 is not activated by Notch signaling, differing from ESR genes. Taken together, we propose a model in which XHR1 defines the pre-MHB region as a prepattern gene by repressing those possible direct target genes.
Collapse
Affiliation(s)
- Hitomi Takada
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Japan
| | | | | | | | | |
Collapse
|
39
|
Akin ZN, Nazarali AJ. Hox genes and their candidate downstream targets in the developing central nervous system. Cell Mol Neurobiol 2005; 25:697-741. [PMID: 16075387 DOI: 10.1007/s10571-005-3971-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2003] [Accepted: 04/14/2004] [Indexed: 12/14/2022]
Abstract
1. Homeobox (Hox) genes were originally discovered in the fruit fly Drosophila, where they function through a conserved homeodomain as transcriptional regulators to control embryonic morphogenesis. Since then over 1000 homeodomain proteins have been identified in several species. In vertebrates, 39 Hox genes have been identified as homologs of the original Drosophila complex, and like their Drosophila counterparts they are organized within chromosomal clusters. Vertebrate Hox genes have also been shown to play a critical role in embryonic development as transcriptional regulators. 2. Both the Drosophila and vertebrate Hox genes have been shown to interact with various cofactors, such as the TALE homeodomain proteins, in recognition of consensus sequences within regulatory elements of their target genes. These protein-protein interactions are believed to contribute to enhancing the specificity of target gene recognition in a cell-type or tissue- dependent manner. The regulatory activity of a particular Hox protein on a specific regulatory element is highly variable and dependent on its interacting partners within the transcriptional complex. 3. In vertebrates, Hox genes display spatially restricted patterns of expression within the developing CNS, both along the anterioposterior and dorsoventral axis of the embryo. Their restricted gene expression is suggestive of a regulatory role in patterning of the CNS, as well as in cell specification. Determining the precise function of individual Hox genes in CNS morphogenesis through classical mutational analyses is complicated due to functional redundancy between Hox genes. 4. Understanding the precise mechanisms through which Hox genes mediate embryonic morphogenesis requires the identification of their downstream target genes. Although Hox genes have been implicated in the regulation of several pathways, few target genes have been shown to be under their direct regulatory control. Development of methodologies used for the isolation of target genes and for the analysis of putative targets will be beneficial in establishing the genetic pathways controlled by Hox factors. 5. Within the developing CNS various cell adhesion molecules and signaling molecules have been identified as candidate downstream target genes of Hox proteins. These targets play a role in processes such as cell migration and differentiation, and are implicated in contributing to neuronal processes such as plasticity and/or specification. Hence, Hox genes not only play a role in patterning of the CNS during early development, but may also contribute to cell specification and identity.
Collapse
Affiliation(s)
- Z N Akin
- Laboratory of Molecular Biology, College of Pharmacy and Nutrition, University of Saskatchewan, 116 Thorvaldson Building, 110 Science Place, Saskatoon, Saskatchewan, S7N 5C9, Canada
| | | |
Collapse
|
40
|
Chitnis AB, Itoh M. Exploring alternative models of rostral-caudal patterning in the zebrafish neurectoderm with computer simulations. Curr Opin Genet Dev 2005; 14:415-21. [PMID: 15261658 DOI: 10.1016/j.gde.2004.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The StarLogo and NetLogo programming environments allow developmental biologists to build computer models of cell-cell interactions in an epithelium and visualize emergent properties of hypothetical genetic regulatory networks operating in the cells. These environments were used to explore alternative models that show how a posteriorizing morphogen gradient might define gene-expression domains along the rostral-caudal axis in the zebrafish neurectoderm. The models illustrate how a hypothetical genetic network based on auto-activation and cross-repression could lead to establishment of discrete non-overlapping gene-expression domains.
Collapse
Affiliation(s)
- Ajay B Chitnis
- Unit on Vertebrate Neural Development, Laboratory of Molecular Genetics, National Institute of Child Health and Human Development, National Institutes of Health, Building 6B, Room 3B 315, 6 Center Drive, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|
41
|
Abstract
The midbrain-hindbrain organizer (MHO) is a signalling centre that orchestrates development of the mesencephalic and anterior metencephalic primordia. In recent years, details have been revealed about the molecular nature of these signals, their transmission and reception, and the regulatory processes associated with MHO function. This article reviews recent progress in understanding the genetic and molecular components of the MHO, and how they synergize to control brain development.
Collapse
Affiliation(s)
- Florian Raible
- Max-Planck Institute of Molecular Cell Biology and Genetics, and Department of Genetics, University of Technology, Dresden, Pfotenhauerstrasse 108, D-01309 Dresden, Germany.
| | | |
Collapse
|
42
|
Glavic A, Maris Honoré S, Gloria Feijóo C, Bastidas F, Allende ML, Mayor R. Role of BMP signaling and the homeoprotein iroquois in the specification of the cranial placodal field. Dev Biol 2004; 272:89-103. [PMID: 15242793 DOI: 10.1016/j.ydbio.2004.04.020] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2003] [Revised: 03/30/2004] [Accepted: 04/19/2004] [Indexed: 01/24/2023]
Abstract
Different types of placodes originate at the anterior border of the neural plate but it is still an unresolved question whether individual placodes arise as distinct ectodermal specializations in situ or whether all or a subset of the placodes originate from a common preplacodal field. We have analyzed the expression and function of the homeoprotein Iro1 in Xenopus and zebrafish embryos, and we have compared its expression with several preplacodal and placodal markers. Our results indicate that the iro1 genes are expressed in the preplacodal region, being one of the earliest markers for this area. We show that an interaction between the neural plate and the epidermis is able to induce the expression of several preplacodal markers, including Xiro1, by a similar mechanism to that previously shown for neural crest induction. In addition, we analyzed the role of BMP in the specification of the preplacodal field by studying the expression of the preplacodal markers Six1, Xiro1, and several specific placodal markers. We experimentally modified the level of BMP activity by three different methods. First, we implanted beads soaked with noggin in early neurula stage Xenopus embryos; second, we injected the mRNA that encodes a dominant negative of the BMP receptor into Xenopus and zebrafish embryos; and third, we grafted cells expressing chordin into zebrafish embryos. The results obtained using all three methods show that a reduction in the level of BMP activity leads to an expansion of the preplacodal and placodal region similar to what has been described for neural crest regions. By using conditional constructs of Xiro1, we performed gain and loss of function experiments. We show that Xiro1 play an important role in the specification of both the preplacodal field as well as individual placodes. We have also used inducible dominant negative and activator constructs of Notch signaling components to analyze the role of these factors on placodal development. Our results indicate that the a precise level of BMP activity is required to induce the neural plate border, including placodes and neural crest cells, that in this border the iro1 gene is activated, and that this activation is required for the specification of the placodes.
Collapse
Affiliation(s)
- Alvaro Glavic
- Millennium Nucleus in Developmental Biology, Laboratory of Developmental Biology, Facultad de Ciencias, Universidad de Chile, Santiago
| | | | | | | | | | | |
Collapse
|
43
|
Matsumoto K, Nishihara S, Kamimura M, Shiraishi T, Otoguro T, Uehara M, Maeda Y, Ogura K, Lumsden A, Ogura T. The prepattern transcription factor Irx2, a target of the FGF8/MAP kinase cascade, is involved in cerebellum formation. Nat Neurosci 2004; 7:605-12. [PMID: 15133517 DOI: 10.1038/nn1249] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2003] [Accepted: 03/22/2004] [Indexed: 02/07/2023]
Abstract
The cerebellum develops from the rhombic lip of the rostral hindbrain and is organized by fibroblast growth factor 8 (FGF8) expressed by the isthmus. Here we report characterization of Irx2, a member of the Iroquois (Iro) and Irx class of homeobox genes, that is expressed in the presumptive cerebellum. When Irx2 is misexpressed with Fgf8a in the chick midbrain, the midbrain develops into cerebellum in conjunction with repression of Otx2 and induction of Gbx2. During this event, signaling by the FGF8 and mitogen-activated protein (MAP) kinase cascade modulates the activity of Irx2 by phosphorylation. Our data identify a link between the isthmic organizer and Irx2, thereby shedding light on the roles of Iro and Irx genes, which are conserved in both vertebrates and invertebrates.
Collapse
Affiliation(s)
- Ken Matsumoto
- Department of Developmental Neurobiology, Institute of Development, Aging and Cancer, Tohoku University 4-1, Seiryo, Aoba, Sendai 980-8575, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
The tremendous complexity of the adult forebrain makes it a challenging task to elucidate how this structure forms during embryonic development. Nevertheless, we are beginning to understand how a simple epithelial sheet of ectoderm gives rise to the labyrinthine network of cells that constitutes the functional forebrain. Here, we discuss early events in forebrain development--those that lead to the establishment of the anterior neural plate and the regional subdivision of this territory into the different domains of the prospective forebrain.
Collapse
Affiliation(s)
- Stephen W. Wilson
- Department of Anatomy and Developmental Biology University College London Gower Street London WC1E 6BT United Kingdom
| | - Corinne Houart
- MRC Centre for Developmental Neurobiology 4th Floor, New Hunt’s House King’s College London, Guy’s Campus London SE1 1UL United Kingdom
| |
Collapse
|
45
|
Lebel M, Agarwal P, Cheng CW, Kabir MG, Chan TY, Thanabalasingham V, Zhang X, Cohen DR, Husain M, Cheng SH, Bruneau BG, Hui CC. The Iroquois homeobox gene Irx2 is not essential for normal development of the heart and midbrain-hindbrain boundary in mice. Mol Cell Biol 2003; 23:8216-25. [PMID: 14585979 PMCID: PMC262378 DOI: 10.1128/mcb.23.22.8216-8225.2003] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Iroquois homeobox (Irx) genes have been implicated in the specification and patterning of several organs in Drosophila and several vertebrate species. Misexpression studies of chick, Xenopus, and zebra fish embryos have demonstrated that Irx genes are involved in the specification of the midbrain-hindbrain boundary. All six murine Irx genes are expressed in the developing heart, suggesting that they might possess distinct functions during heart development, and a role for Irx4 in normal heart development has been recently demonstrated by gene-targeting experiments. Here we describe the generation and phenotypic analysis of an Irx2-deficient mouse strain. By targeted insertion of a lacZ reporter gene into the Irx2 locus, we show that lacZ expression reproduces most of the endogenous Irx2 expression pattern. Despite the dynamic expression of Irx2 in the developing heart, nervous system, and other organs, Irx2-deficient mice are viable, are fertile, and appear to be normal. Although chick Irx2 has been implicated in the development of the midbrain-hindbrain region, we show that Irx2-deficient mice develop a normal midbrain-hindbrain boundary. Furthermore, Irx2-deficient mice have normal cardiac morphology and function. Functional compensation by other Irx genes might account for the absence of a phenotype in Irx2-deficient mice. Further studies of mutant mice of other Irx genes as well as compound mutant mice will be necessary to uncover the functional roles of these evolutionarily conserved transcriptional regulators in development and disease.
Collapse
Affiliation(s)
- Mélanie Lebel
- Program in Developmental Biology, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario M5G 1X8, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
de la Calle-Mustienes E, Lu Z, Cortés M, Andersen B, Modolell J, Gómez-Skarmeta JL. Xenopus Xlmo4 is a GATA cofactor during ventral mesoderm formation and regulates Ldb1 availability at the dorsal mesoderm and the neural plate. Dev Biol 2003; 264:564-81. [PMID: 14651938 DOI: 10.1016/j.ydbio.2003.09.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We have identified and functionally characterized the Xenopus Xlmo4 gene, which encodes a member of the LIM-domain-only protein family. Xlmo4 is activated at gastrula stages in the mesodermal marginal zone probably in response to BMP4 signaling. Soon after, Xlmo4 is downregulated in the dorsal region of the mesoderm. This repression seems to be mediated by organizer-expressed repressors, such as Gsc. Xlmo4 downregulation is necessary for the proper formation of this territory. Increasing Xlmo4 function in this region downregulates Spemman Organizer genes and suppresses dorsal-anterior structures. By binding to Ldb1, Xlmo4 may restrict the availability of this cofactor for transcription factors expressed at the Spemman Organizer. In the ventral mesoderm, Xlmo4 is required to establish the identity of this territory by acting as a positive cofactor of GATA factors. In the neural ectoderm, Xlmo4 expression depends on Xiro homeoprotein activity. In this region, Xlmo4 suppresses differentiation of primary neurons and interferes with gene expression at the Isthmic Organizer, most likely by displacing Ldb1 from active transcription factor complexes required for these processes. Together, our data suggest that Xlmo4 uses distinct mechanisms to participate in different processes during development.
Collapse
Affiliation(s)
- Elisa de la Calle-Mustienes
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
47
|
Lowe CJ, Wu M, Salic A, Evans L, Lander E, Stange-Thomann N, Gruber CE, Gerhart J, Kirschner M. Anteroposterior patterning in hemichordates and the origins of the chordate nervous system. Cell 2003; 113:853-65. [PMID: 12837244 DOI: 10.1016/s0092-8674(03)00469-0] [Citation(s) in RCA: 343] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The chordate central nervous system has been hypothesized to originate from either a dorsal centralized, or a ventral centralized, or a noncentralized nervous system of a deuterostome ancestor. In an effort to resolve these issues, we examined the hemichordate Saccoglossus kowalevskii and studied the expression of orthologs of genes that are involved in patterning the chordate central nervous system. All 22 orthologs studied are expressed in the ectoderm in an anteroposterior arrangement nearly identical to that found in chordates. Domain topography is conserved between hemichordates and chordates despite the fact that hemichordates have a diffuse nerve net, whereas chordates have a centralized system. We propose that the deuterostome ancestor may have had a diffuse nervous system, which was later centralized during the evolution of the chordate lineage.
Collapse
Affiliation(s)
- Christopher J Lowe
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Theokli C, Morsi El-Kadi AS, Morgan R. TALE class homeodomain gene Irx5 is an immediate downstream target for Hoxb4 transcriptional regulation. Dev Dyn 2003; 227:48-55. [PMID: 12701098 DOI: 10.1002/dvdy.10287] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The Hox genes are a family of homeodomain-containing transcription factors that determine anteroposterior identity early on in development. Although much is now known about their regulation and function, very little is known of their effector (downstream target) genes. Here, we show that the TALE class homeodomain transcription factor Irx5 is a direct, positively regulated target of Hoxb4.
Collapse
Affiliation(s)
- Christopher Theokli
- Department of Anatomy and Developmental Biology, St. George's Hospital Medical School, London, United Kingdom
| | | | | |
Collapse
|
49
|
Gómez-Skarmeta JL, Modolell J. Iroquois genes: genomic organization and function in vertebrate neural development. Curr Opin Genet Dev 2002; 12:403-8. [PMID: 12100884 DOI: 10.1016/s0959-437x(02)00317-9] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We review recent work that shows that the iroquois (Iro/Irx) homeobox genes have conserved genomic organization in Drosophila and vertebrates. In addition, these genes play pivotal functions in the initial specification of the vertebrate neuroectoderm, and, in collaboration with other transcription factors, later subdivision of the anterior-posterior and dorso-ventral axis of the neuroectoderm.
Collapse
Affiliation(s)
- José Luis Gómez-Skarmeta
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain.
| | | |
Collapse
|