1
|
Krishna MM, Waghmare SG, Franitza AL, Maccoux EC, E L. Epidermal Collagen Reduction Drives Selective Aspects of Aging in Sensory Neurons. Aging Cell 2024:e14459. [PMID: 39731224 DOI: 10.1111/acel.14459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 11/04/2024] [Accepted: 12/02/2024] [Indexed: 12/29/2024] Open
Abstract
Despite advances in understanding molecular and cellular changes in the aging nervous system, the upstream drivers of these changes remain poorly defined. Here, we investigate the roles of non-neural tissues in neuronal aging, using the cutaneous PVD polymodal sensory neuron in Caenorhabditis elegans as a model. We demonstrate that during normal aging, PVD neurons progressively develop excessive dendritic branching, functionally correlated with age-related proprioceptive deficits. Our study reveals that decreased collagen expression, a common age-related phenomenon across species, triggers this process. Specifically, loss-of-function in dpy-5 or col-120, genes encoding cuticular collagens secreted to the epidermal apical surface, induces early-onset excessive dendritic branching and proprioceptive deficits. Adulthood-specific overexpression of dpy-5 or col-120 mitigates excessive branching in aged animals without extending lifespan, highlighting their specific roles in promoting neuronal health span. Notably, collagen reduction specifically drives excessive branching in select sensory neuron subclasses but does not contribute to PVD dendritic beading, another aging-associated neurodegenerative phenotype associated with distinct mechanosensitive dysfunction. Lastly, we identify that rig-3, an immunoglobulin superfamily member expressed in interneurons, acts upstream of collagen genes to maintain PVD dendritic homeostasis during aging, with collagen's regulatory role requiring daf-16/FOXO. These findings reveal that age-related collagen reduction cues neuronal aging independently of collagen's traditional structural support function, possibly involving bi-directional communication processes between neurons and non-neuronal cells. Our study also offers new insights into understanding selective neuron vulnerability in aging, emphasizing the importance of multi-tissue strategies to address the complexities of neuronal aging.
Collapse
Affiliation(s)
- Meera M Krishna
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Swapnil G Waghmare
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Ariel L Franitza
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Emily C Maccoux
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Lezi E
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
2
|
Heiman MG, Bülow HE. Dendrite morphogenesis in Caenorhabditis elegans. Genetics 2024; 227:iyae056. [PMID: 38785371 PMCID: PMC11151937 DOI: 10.1093/genetics/iyae056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/02/2024] [Indexed: 05/25/2024] Open
Abstract
Since the days of Ramón y Cajal, the vast diversity of neuronal and particularly dendrite morphology has been used to catalog neurons into different classes. Dendrite morphology varies greatly and reflects the different functions performed by different types of neurons. Significant progress has been made in our understanding of how dendrites form and the molecular factors and forces that shape these often elaborately sculpted structures. Here, we review work in the nematode Caenorhabditis elegans that has shed light on the developmental mechanisms that mediate dendrite morphogenesis with a focus on studies investigating ciliated sensory neurons and the highly elaborated dendritic trees of somatosensory neurons. These studies, which combine time-lapse imaging, genetics, and biochemistry, reveal an intricate network of factors that function both intrinsically in dendrites and extrinsically from surrounding tissues. Therefore, dendrite morphogenesis is the result of multiple tissue interactions, which ultimately determine the shape of dendritic arbors.
Collapse
Affiliation(s)
- Maxwell G Heiman
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Hannes E Bülow
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
3
|
Brar HK, Dey S, Singh P, Pande D, Ghosh-Roy A. Functional Recovery Associated with Dendrite Regeneration in PVD Neuron of Caenorhabditis elegans. eNeuro 2024; 11:ENEURO.0292-23.2024. [PMID: 38548333 PMCID: PMC7615967 DOI: 10.1523/eneuro.0292-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 02/18/2024] [Accepted: 03/03/2024] [Indexed: 05/02/2024] Open
Abstract
PVD neuron of Caenorhabditis elegans is a highly polarized cell with well-defined axonal, and dendritic compartments. PVD neuron operates in multiple sensory modalities including the control of both nociceptive touch sensation and body posture. Although both the axon and dendrites of this neuron show a regeneration response following laser-assisted injury, it is rather unclear how the behavior associated with this neuron is affected by the loss of these structures. It is also unclear whether neurite regrowth would lead to functional restoration in these neurons. Upon axotomy, using a femtosecond laser, we saw that harsh touch response was specifically affected leaving the body posture unperturbed. Subsequently, recovery in the touch response is highly correlated to the axon regrowth, which was dependent on DLK-1/MLK-1 MAP Kinase. Dendrotomy of both major and minor primary dendrites affected the wavelength and amplitude of sinusoidal movement without any apparent effect on harsh touch response. We further correlated the recovery in posture behavior to the type of dendrite regeneration events. We found that dendrite regeneration through the fusion and reconnection between the proximal and distal branches of the injured dendrite corresponded to improved recovery in posture. Our data revealed that the axons and dendrites of PVD neurons regulate the nociception and proprioception in worms, respectively. It also revealed that dendrite and axon regeneration lead to the restoration of these differential sensory modalities.
Collapse
Affiliation(s)
- Harjot Kaur Brar
- Department of Cellular and Molecular Neuroscience, National Brain Research Centre, Manesar 122052, Haryana, India
| | - Swagata Dey
- Department of Cellular and Molecular Neuroscience, National Brain Research Centre, Manesar 122052, Haryana, India
| | - Pallavi Singh
- Department of Cellular and Molecular Neuroscience, National Brain Research Centre, Manesar 122052, Haryana, India
| | - Devashish Pande
- Department of Cellular and Molecular Neuroscience, National Brain Research Centre, Manesar 122052, Haryana, India
| | - Anindya Ghosh-Roy
- Department of Cellular and Molecular Neuroscience, National Brain Research Centre, Manesar 122052, Haryana, India
| |
Collapse
|
4
|
Liu X, Zhao Y, Zou W. Molecular mechanisms of neurite regeneration and repair: insights from C. elegans and Drosophila. CELL REGENERATION (LONDON, ENGLAND) 2023; 12:12. [PMID: 37005942 PMCID: PMC10067779 DOI: 10.1186/s13619-022-00155-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 12/01/2022] [Indexed: 04/04/2023]
Abstract
The difficulties of injured and degenerated neurons to regenerate neurites and regain functions are more significant than in other body tissues, making neurodegenerative and related diseases hard to cure. Uncovering the secrets of neural regeneration and how this process may be inhibited after injury will provide insights into novel management and potential treatments for these diseases. Caenorhabditis elegans and Drosophila melanogaster are two of the most widely used and well-established model organisms endowed with advantages in genetic manipulation and live imaging to explore this fundamental question about neural regeneration. Here, we review the classical models and techniques, and the involvement and cooperation of subcellular structures during neurite regeneration using these two organisms. Finally, we list several important open questions that we look forward to inspiring future research.
Collapse
Affiliation(s)
- Xiaofan Liu
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, China
| | - Yuqing Zhao
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, China
- Institute of Zhejiang University and University of Edinburgh, Jiaxing, China
| | - Wei Zou
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China.
- Institute of Translational Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
5
|
Brar HK, Dey S, Bhardwaj S, Pande D, Singh P, Dey S, Ghosh-Roy A. Dendrite regeneration in C. elegans is controlled by the RAC GTPase CED-10 and the RhoGEF TIAM-1. PLoS Genet 2022; 18:e1010127. [PMID: 35344539 PMCID: PMC8989329 DOI: 10.1371/journal.pgen.1010127] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 04/07/2022] [Accepted: 02/28/2022] [Indexed: 01/30/2023] Open
Abstract
Neurons are vulnerable to physical insults, which compromise the integrity of both dendrites and axons. Although several molecular pathways of axon regeneration are identified, our knowledge of dendrite regeneration is limited. To understand the mechanisms of dendrite regeneration, we used the PVD neurons in C. elegans with stereotyped branched dendrites. Using femtosecond laser, we severed the primary dendrites and axon of this neuron. After severing the primary dendrites near the cell body, we observed sprouting of new branches from the proximal site within 6 hours, which regrew further with time in an unstereotyped manner. This was accompanied by reconnection between the proximal and distal dendrites, and fusion among the higher-order branches as reported before. We quantified the regeneration pattern into three aspects–territory length, number of branches, and fusion phenomena. Axonal injury causes a retraction of the severed end followed by a Dual leucine zipper kinase-1 (DLK-1) dependent regrowth from the severed end. We tested the roles of the major axon regeneration signalling hubs such as DLK-1-RPM-1, cAMP elevation, let-7 miRNA, AKT-1, Phosphatidylserine (PS) exposure/PS in dendrite regeneration. We found that neither dendrite regrowth nor fusion was affected by the axon injury pathway molecules. Surprisingly, we found that the RAC GTPase, CED-10 and its upstream GEF, TIAM-1 play a cell-autonomous role in dendrite regeneration. Additionally, the function of CED-10 in epidermal cell is critical for post-dendrotomy fusion phenomena. This work describes a novel regulatory mechanism of dendrite regeneration and provides a framework for understanding the cellular mechanism of dendrite regeneration using PVD neuron as a model system. The knowledge of the repair of injured neural circuits comes from the study of the regeneration of injured axons. The information receiving neurites, namely dendrites, are also vulnerable to physical insult during stroke and trauma. However, little knowledge is available on the mechanism of dendrite regeneration since the study of Cajal. In order to get insight into this process, we severed both axon and dendrites of PVD neuron in C. elegans using laser. By comparing the roles of axon regeneration pathways in both dendrite and axon regeneration in this neuron, we found that dendrite regeneration is independent of molecular mechanisms involving axon regrowth. We discovered that dendrite regeneration is dependent on the RAC GTPase CED-10 and GEF TIAM-1. Moreover, we found that CED-10 plays roles within both neuron and in the surrounding epithelia for mounting regeneration response to dendrite injury. This work provides mechanistic insight into the process of dendrite repair after physical injury.
Collapse
Affiliation(s)
- Harjot Kaur Brar
- Department of Cellular & Molecular Neuroscience, National Brain Research Centre, Manesar, Haryana, India
| | - Swagata Dey
- Department of Cellular & Molecular Neuroscience, National Brain Research Centre, Manesar, Haryana, India
| | - Smriti Bhardwaj
- Department of Cellular & Molecular Neuroscience, National Brain Research Centre, Manesar, Haryana, India
| | - Devashish Pande
- Department of Cellular & Molecular Neuroscience, National Brain Research Centre, Manesar, Haryana, India
| | - Pallavi Singh
- Department of Cellular & Molecular Neuroscience, National Brain Research Centre, Manesar, Haryana, India
| | - Shirshendu Dey
- Fluorescence Microscopy Division, Bruker India Scientific Pvt. Ltd., International Trade Tower, Nehru Place, New Delhi, India
| | - Anindya Ghosh-Roy
- Department of Cellular & Molecular Neuroscience, National Brain Research Centre, Manesar, Haryana, India
- * E-mail:
| |
Collapse
|
6
|
Mostovenko E, Saunders S, Muldoon PP, Bishop L, Campen MJ, Erdely A, Ottens AK. Carbon Nanotube Exposure Triggers a Cerebral Peptidomic Response: Barrier Compromise, Neuroinflammation, and a Hyperexcited State. Toxicol Sci 2021; 182:107-119. [PMID: 33892499 DOI: 10.1093/toxsci/kfab042] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The unique physicochemical properties of carbon nanomaterials and their ever-growing utilization generate a serious concern for occupational risk. Pulmonary exposure to these nanoparticles induces local and systemic inflammation, cardiovascular dysfunction, and even cognitive deficits. Although multiple routes of extrapulmonary toxicity have been proposed, the mechanism for and manner of neurologic effects remain minimally understood. Here, we examine the cerebral spinal fluid (CSF)-derived peptidomic fraction as a reflection of neuropathological alterations induced by pulmonary carbon nanomaterial exposure. Male C57BL/6 mice were exposed to 10 or 40 µg of multiwalled carbon nanotubes (MWCNT) by oropharyngeal aspiration. Serum and CSFs were collected 4 h post exposure. An enriched peptide fraction of both biofluids was analyzed using ion mobility-enabled data-independent mass spectrometry for label-free quantification. MWCNT exposure induced a prominent peptidomic response in the blood and CSF; however, correlation between fluids was limited. Instead, we determined that a MWCNT-induced peptidomic shift occurred specific to the CSF with 292 significant responses found that were not in serum. Identified MWCNT-responsive peptides depicted a mechanism involving aberrant fibrinolysis (fibrinopeptide A), blood-brain barrier permeation (homeobox protein A4), neuroinflammation (transmembrane protein 131L) with reactivity by astrocytes and microglia, and a pro-degradative (signal transducing adapter molecule, phosphoglycerate kinase), antiplastic (AF4/FMR2 family member 1, vacuolar protein sorting-associated protein 18) state with the excitation-inhibition balance shifted to a hyperexcited (microtubule-associated protein 1B) phenotype. Overall, the significant pathologic changes observed were consistent with early neurodegenerative disease and were diagnostically reflected in the CSF peptidome.
Collapse
Affiliation(s)
- Ekaterina Mostovenko
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, Virginia 23298, USA
| | - Samantha Saunders
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, Virginia 23298, USA
| | - Pretal P Muldoon
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, Virginia 23298, USA
| | - Lindsey Bishop
- Pathology and Physiology Research Branch, National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505, USA
| | - Matthew J Campen
- Department of Pharmaceutical Sciences, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Aaron Erdely
- Pathology and Physiology Research Branch, National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505, USA
| | - Andrew K Ottens
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, Virginia 23298, USA
| |
Collapse
|
7
|
Yuval O, Iosilevskii Y, Meledin A, Podbilewicz B, Shemesh T. Neuron tracing and quantitative analyses of dendritic architecture reveal symmetrical three-way-junctions and phenotypes of git-1 in C. elegans. PLoS Comput Biol 2021; 17:e1009185. [PMID: 34280180 PMCID: PMC8321406 DOI: 10.1371/journal.pcbi.1009185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 07/29/2021] [Accepted: 06/15/2021] [Indexed: 11/18/2022] Open
Abstract
Complex dendritic trees are a distinctive feature of neurons. Alterations to dendritic morphology are associated with developmental, behavioral and neurodegenerative changes. The highly-arborized PVD neuron of C. elegans serves as a model to study dendritic patterning; however, quantitative, objective and automated analyses of PVD morphology are missing. Here, we present a method for neuronal feature extraction, based on deep-learning and fitting algorithms. The extracted neuronal architecture is represented by a database of structural elements for abstracted analysis. We obtain excellent automatic tracing of PVD trees and uncover that dendritic junctions are unevenly distributed. Surprisingly, these junctions are three-way-symmetrical on average, while dendritic processes are arranged orthogonally. We quantify the effect of mutation in git-1, a regulator of dendritic spine formation, on PVD morphology and discover a localized reduction in junctions. Our findings shed new light on PVD architecture, demonstrating the effectiveness of our objective analyses of dendritic morphology and suggest molecular control mechanisms.
Collapse
Affiliation(s)
- Omer Yuval
- Faculty of Biology, Technion–Israel Institute of Technology, Haifa, Israel
- School of Computing, Faculty of Engineering and Physical Sciences, University of Leeds, Leeds, United Kingdom
| | - Yael Iosilevskii
- Faculty of Biology, Technion–Israel Institute of Technology, Haifa, Israel
| | - Anna Meledin
- Faculty of Biology, Technion–Israel Institute of Technology, Haifa, Israel
| | | | - Tom Shemesh
- Faculty of Biology, Technion–Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
8
|
Kaur S, Aballay A. G-Protein-Coupled Receptor SRBC-48 Protects against Dendrite Degeneration and Reduced Longevity Due to Infection. Cell Rep 2021; 31:107662. [PMID: 32433971 DOI: 10.1016/j.celrep.2020.107662] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 03/06/2020] [Accepted: 04/28/2020] [Indexed: 02/07/2023] Open
Abstract
Increasing evidence suggests that deficient immune modulation and microbial infections underline neurodegeneration, but the mechanisms remain obscure. Here, we show that the G-protein-coupled receptor (GPCR) SRBC-48, which belongs to the class BC serpentine receptors, has a protective role in Caenorhabditis elegans dendrite degeneration caused by Pseudomonas aeruginosa infection. Our results indicate that SRBC-48 functions in a cell-autonomous manner in AWC neurons to protect against infection-associated dendrite degeneration. The absence of SRBC-48 results in a reduced lifespan caused by a pathogen infection early in life that induces dendrite degeneration. The decreased longevity in animals deficient in SRBC-48 is due to uncontrolled activation of immune genes, particularly those regulated by the FOXO family transcription factor DAF-16 that is part of the insulin/insulin-like growth factor (IGF)-1 receptor homolog DAF-2. These results reveal how an infection early in life can not only induce dendrite degeneration but also reduce lifespan.
Collapse
Affiliation(s)
- Supender Kaur
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Alejandro Aballay
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR 97239, USA.
| |
Collapse
|
9
|
Laranjeiro R, Harinath G, Pollard AK, Gaffney CJ, Deane CS, Vanapalli SA, Etheridge T, Szewczyk NJ, Driscoll M. Spaceflight affects neuronal morphology and alters transcellular degradation of neuronal debris in adult Caenorhabditis elegans. iScience 2021; 24:102105. [PMID: 33659873 PMCID: PMC7890410 DOI: 10.1016/j.isci.2021.102105] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/17/2020] [Accepted: 01/21/2021] [Indexed: 12/21/2022] Open
Abstract
Extended space travel is a goal of government space agencies and private companies. However, spaceflight poses risks to human health, and the effects on the nervous system have to be better characterized. Here, we exploited the unique experimental advantages of the nematode Caenorhabditis elegans to explore how spaceflight affects adult neurons in vivo. We found that animals that lived 5 days of adulthood on the International Space Station exhibited hyperbranching in PVD and touch receptor neurons. We also found that, in the presence of a neuronal proteotoxic stress, spaceflight promotes a remarkable accumulation of neuronal-derived waste in the surrounding tissues, suggesting an impaired transcellular degradation of debris released from neurons. Our data reveal that spaceflight can significantly affect adult neuronal morphology and clearance of neuronal trash, highlighting the need to carefully assess the risks of long-duration spaceflight on the nervous system and to develop adequate countermeasures for safe space exploration.
Collapse
Affiliation(s)
- Ricardo Laranjeiro
- Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Girish Harinath
- Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Amelia K. Pollard
- MRC Versus Arthritis Centre for Musculoskeletal Ageing Research and NIHR Nottingham BRC, University of Nottingham, Medical School Royal Derby Hospital, Derby, DE22 3DT, UK
| | - Christopher J. Gaffney
- Sport and Health Sciences, University of Exeter, Exeter, EX1 2LU, UK
- Lancaster Medical School, Health Innovation One, Lancaster University, Lancaster, LA1 4AT, UK
| | - Colleen S. Deane
- Sport and Health Sciences, University of Exeter, Exeter, EX1 2LU, UK
| | - Siva A. Vanapalli
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA
| | - Timothy Etheridge
- Sport and Health Sciences, University of Exeter, Exeter, EX1 2LU, UK
| | - Nathaniel J. Szewczyk
- MRC Versus Arthritis Centre for Musculoskeletal Ageing Research and NIHR Nottingham BRC, University of Nottingham, Medical School Royal Derby Hospital, Derby, DE22 3DT, UK
- Ohio Musculoskeletal and Neurologic Institute and Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - Monica Driscoll
- Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
10
|
Abstract
During multicellular organism development, complex structures are sculpted to form organs and tissues, which are maintained throughout adulthood. Many of these processes require cells to fuse with one another, or with themselves. These plasma membrane fusions merge endoplasmic cellular content across external, exoplasmic, space. In the nematode Caenorhabditis elegans, such cell fusions serve as a unique sculpting force, involved in the embryonic morphogenesis of the skin-like multinuclear hypodermal cells, but also in refining delicate structures, such as valve openings and the tip of the tail. During post-embryonic development, plasma membrane fusions continue to shape complex neuron structures and organs such as the vulva, while during adulthood fusion participates in cell and tissue repair. These processes rely on two fusion proteins (fusogens): EFF-1 and AFF-1, which are part of a broader family of structurally related membrane fusion proteins, encompassing sexual reproduction, viral infection, and tissue remodeling. The established capabilities of these exoplasmic fusogens are further expanded by new findings involving EFF-1 and AFF-1 in endocytic vesicle fission and phagosome sealing. Tight regulation by cell-autonomous and non-cell autonomous mechanisms orchestrates these diverse cell fusions at the correct place and time-these processes and their significance are discussed in this review.
Collapse
|
11
|
Furusawa K, Emoto K. Scrap and Build for Functional Neural Circuits: Spatiotemporal Regulation of Dendrite Degeneration and Regeneration in Neural Development and Disease. Front Cell Neurosci 2021; 14:613320. [PMID: 33505249 PMCID: PMC7829185 DOI: 10.3389/fncel.2020.613320] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/04/2020] [Indexed: 01/01/2023] Open
Abstract
Dendrites are cellular structures essential for the integration of neuronal information. These elegant but complex structures are highly patterned across the nervous system but vary tremendously in their size and fine architecture, each designed to best serve specific computations within their networks. Recent in vivo imaging studies reveal that the development of mature dendrite arbors in many cases involves extensive remodeling achieved through a precisely orchestrated interplay of growth, degeneration, and regeneration of dendritic branches. Both degeneration and regeneration of dendritic branches involve precise spatiotemporal regulation for the proper wiring of functional networks. In particular, dendrite degeneration must be targeted in a compartmentalized manner to avoid neuronal death. Dysregulation of these developmental processes, in particular dendrite degeneration, is associated with certain types of pathology, injury, and aging. In this article, we review recent progress in our understanding of dendrite degeneration and regeneration, focusing on molecular and cellular mechanisms underlying spatiotemporal control of dendrite remodeling in neural development. We further discuss how developmental dendrite degeneration and regeneration are molecularly and functionally related to dendrite remodeling in pathology, disease, and aging.
Collapse
Affiliation(s)
- Kotaro Furusawa
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Kazuo Emoto
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo, Tokyo, Japan
| |
Collapse
|
12
|
Saberi-Bosari S, Flores KB, San-Miguel A. Deep learning-enabled analysis reveals distinct neuronal phenotypes induced by aging and cold-shock. BMC Biol 2020; 18:130. [PMID: 32967665 PMCID: PMC7510121 DOI: 10.1186/s12915-020-00861-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 09/01/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Access to quantitative information is crucial to obtain a deeper understanding of biological systems. In addition to being low-throughput, traditional image-based analysis is mostly limited to error-prone qualitative or semi-quantitative assessment of phenotypes, particularly for complex subcellular morphologies. The PVD neuron in Caenorhabditis elegans, which is responsible for harsh touch and thermosensation, undergoes structural degeneration as nematodes age characterized by the appearance of dendritic protrusions. Analysis of these neurodegenerative patterns is labor-intensive and limited to qualitative assessment. RESULTS In this work, we apply deep learning to perform quantitative image-based analysis of complex neurodegeneration patterns exhibited by the PVD neuron in C. elegans. We apply a convolutional neural network algorithm (Mask R-CNN) to identify neurodegenerative subcellular protrusions that appear after cold-shock or as a result of aging. A multiparametric phenotypic profile captures the unique morphological changes induced by each perturbation. We identify that acute cold-shock-induced neurodegeneration is reversible and depends on rearing temperature and, importantly, that aging and cold-shock induce distinct neuronal beading patterns. CONCLUSION The results of this work indicate that implementing deep learning for challenging image segmentation of PVD neurodegeneration enables quantitatively tracking subtle morphological changes in an unbiased manner. This analysis revealed that distinct patterns of morphological alteration are induced by aging and cold-shock, suggesting different mechanisms at play. This approach can be used to identify the molecular components involved in orchestrating neurodegeneration and to characterize the effect of other stressors on PVD degeneration.
Collapse
Affiliation(s)
- Sahand Saberi-Bosari
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Kevin B Flores
- Department of Mathematics, North Carolina State University, Raleigh, NC, 27695, USA
| | - Adriana San-Miguel
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
13
|
Fusogen-mediated neuron-neuron fusion disrupts neural circuit connectivity and alters animal behavior. Proc Natl Acad Sci U S A 2020; 117:23054-23065. [PMID: 32855296 PMCID: PMC7502713 DOI: 10.1073/pnas.1919063117] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Ramón y Cajal’s neuron doctrine, which states that neurons are individual cells that do not share any membrane or cytoplasmic continuity between them, has underpinned our view of modern neuroscience. However, there is considerable evidence that fusogens, specialized proteins essential and sufficient for the fusion of cells in other tissues, are expressed in the nervous system of several species in response to viral infection, stress conditions, and neurological disease. By manipulating the expression of fusogens in the chemosensory neurons of Caenorhabditis elegans, our results provide conclusive evidence that deregulation of fusogen expression causes neuronal fusion and can have deleterious effects on neural circuitry and behavioral outputs, revealing a possible novel underlying cause of neurological disorders. The 100-y-old neuron doctrine from Ramón y Cajal states that neurons are individual cells, rejecting the process of cell−cell fusion in the normal development and function of the nervous system. However, fusogens—specialized molecules essential and sufficient for the fusion of cells—are expressed in the nervous system of different species under conditions of viral infection, stress, or disease. Despite these findings, whether the expression of fusogens in neurons leads to cell−cell fusion, and, if so, whether this affects neuronal fate, function, and animal behavior, has not been explored. Here, using Caenorhabditis elegans chemosensory neurons as a model system, we provide proof-of-principle that aberrant expression of fusogens in neurons results in neuron−neuron fusion and behavioral impairments. We demonstrate that fusion between chemoattractive neurons does not affect the response to odorants, whereas fusion between chemoattractive and chemorepulsive neurons compromises chemosensation. Moreover, we provide evidence that fused neurons are viable and retain their original specific neuronal fate markers. Finally, analysis of calcium transients reveals that fused neurons become electrically coupled, thereby compromising neural circuit connectivity. Thus, we propose that aberrant expression of fusogens in the nervous system disrupts neuronal individuality, which, in turn, leads to a change in neural circuit connectivity and disruption of normal behavior. Our results expose a previously uncharacterized basis of circuit malfunction, and a possible underlying cause of neurological diseases.
Collapse
|
14
|
Vanhunsel S, Beckers A, Moons L. Designing neuroreparative strategies using aged regenerating animal models. Ageing Res Rev 2020; 62:101086. [PMID: 32492480 DOI: 10.1016/j.arr.2020.101086] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 04/13/2020] [Accepted: 05/08/2020] [Indexed: 12/13/2022]
Abstract
In our ever-aging world population, the risk of age-related neuropathies has been increasing, representing both a social and economic burden to society. Since the ability to regenerate in the adult mammalian central nervous system is very limited, brain trauma and neurodegeneration are often permanent. As a consequence, novel scientific challenges have emerged and many research efforts currently focus on triggering repair in the damaged or diseased brain. Nevertheless, stimulating neuroregeneration remains ambitious. Even though important discoveries have been made over the past decades, they did not translate into a therapy yet. Actually, this is not surprising; while these disorders mainly manifest in aged individuals, most of the research is being performed in young animal models. Aging of neurons and their environment, however, greatly affects the central nervous system and its capacity to repair. This review provides a detailed overview of the impact of aging on central nervous system functioning and regeneration potential, both in non-regenerating and spontaneously regenerating animal models. Additionally, we highlight the need for aging animal models with regenerative capacities in the search for neuroreparative strategies.
Collapse
Affiliation(s)
- Sophie Vanhunsel
- Laboratory of Neural Circuit Development and Regeneration, Animal Physiology and Neurobiology Section, Department of Biology, KU Leuven, Leuven, Belgium
| | - An Beckers
- Laboratory of Neural Circuit Development and Regeneration, Animal Physiology and Neurobiology Section, Department of Biology, KU Leuven, Leuven, Belgium
| | - Lieve Moons
- Laboratory of Neural Circuit Development and Regeneration, Animal Physiology and Neurobiology Section, Department of Biology, KU Leuven, Leuven, Belgium.
| |
Collapse
|
15
|
Neumann B, Hilliard MA. Axonal repair by fusion: pitfalls, consequences and solutions. FASEB J 2020; 33:13071-13074. [PMID: 31795027 DOI: 10.1096/fj.201901407r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Brent Neumann
- Neuroscience Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, Australia; and
| | - Massimo A Hilliard
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
16
|
Liu HH, Jan YN. Mechanisms of neurite repair. Curr Opin Neurobiol 2020; 63:53-58. [PMID: 32278210 DOI: 10.1016/j.conb.2020.02.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 02/23/2020] [Indexed: 10/24/2022]
Abstract
Upon receiving injury signals, neurons can activate various pathways to reduce harm, initiate neuroprotection, and repair damaged neurite without cell death. Here, we review recent progresses in the study of neurite repair focusing on neuronal cell-autonomous mechanisms, including new findings on ion channels that serve as key regulators to initiate neurite repair and intrinsic signaling pathways and transcriptional and post-transcriptional factors that facilitate neurite repair. We also touch upon reports on how dendrites may be affected upon axotomy and how the regeneration potential in injured neurites might be maximized.
Collapse
Affiliation(s)
- Han-Hsuan Liu
- Howard Hughes Medical Institute, Department of Physiology, University of California, San Francisco, CA 94158, USA
| | - Yuh-Nung Jan
- Howard Hughes Medical Institute, Department of Physiology, University of California, San Francisco, CA 94158, USA.
| |
Collapse
|
17
|
Richardson CE, Yee C, Shen K. A hormone receptor pathway cell-autonomously delays neuron morphological aging by suppressing endocytosis. PLoS Biol 2019; 17:e3000452. [PMID: 31589601 PMCID: PMC6797217 DOI: 10.1371/journal.pbio.3000452] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 10/17/2019] [Accepted: 09/05/2019] [Indexed: 01/12/2023] Open
Abstract
Neurons have a lifespan that parallels that of the organism and are largely irreplaceable. Their unusually long lifespan predisposes neurons to neurodegenerative disease. We sought to identify physiological mechanisms that delay neuron aging in Caenorhabditis elegans by asking how neuron morphological aging is arrested in the long-lived, alternate organismal state, the dauer diapause. We find that a hormone signaling pathway, the abnormal DAuer Formation (DAF) 12 nuclear hormone receptor (NHR) pathway, functions cell-intrinsically in the dauer diapause to arrest neuron morphological aging, and that same pathway can be cell-autonomously manipulated during normal organismal aging to delay neuron morphological aging. This delayed aging is mediated by suppressing constitutive endocytosis, which alters the subcellular localization of the actin regulator T cell lymphoma Invasion And Metastasis 1 (TIAM-1), thereby decreasing age-dependent neurite growth. Intriguingly, we show that suppressed endocytosis appears to be a general feature of cells in diapause, suggestive that this may be a mechanism to halt the growth and other age-related programs supported by most endosome recycling.
Collapse
Affiliation(s)
- Claire E. Richardson
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Callista Yee
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Kang Shen
- Department of Biology, Stanford University, Stanford, California, United States of America
- Howard Hughes Medical Institute, Department of Biology, Stanford University, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
18
|
Sundararajan L, Stern J, Miller DM. Mechanisms that regulate morphogenesis of a highly branched neuron in C. elegans. Dev Biol 2019; 451:53-67. [PMID: 31004567 DOI: 10.1016/j.ydbio.2019.04.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 03/09/2019] [Accepted: 04/05/2019] [Indexed: 02/08/2023]
Abstract
The shape of an individual neuron is linked to its function with axons sending signals to other cells and dendrites receiving them. Although much is known of the mechanisms for axonal outgrowth, the striking complexity of dendritic architecture has hindered efforts to uncover pathways that direct dendritic branching. Here we review the results of an experimental strategy that exploits the power of genetic analysis and live cell imaging of the PVD sensory neuron in C. elegans to reveal key molecular drivers of dendrite morphogenesis.
Collapse
Affiliation(s)
- Lakshmi Sundararajan
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240, USA
| | - Jamie Stern
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240, USA
| | - David M Miller
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240, USA.
| |
Collapse
|
19
|
Inberg S, Meledin A, Kravtsov V, Iosilevskii Y, Oren-Suissa M, Podbilewicz B. Lessons from Worm Dendritic Patterning. Annu Rev Neurosci 2019; 42:365-383. [PMID: 30939099 DOI: 10.1146/annurev-neuro-072116-031437] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The structural and functional properties of neurons have intrigued scientists since the pioneering work of Santiago Ramón y Cajal. Since then, emerging cutting-edge technologies, including light and electron microscopy, electrophysiology, biochemistry, optogenetics, and molecular biology, have dramatically increased our understanding of dendritic properties. This advancement was also facilitated by the establishment of different animal model organisms, from flies to mammals. Here we describe the emerging model system of a Caenorhabditis elegans polymodal neuron named PVD, whose dendritic tree follows a stereotypical structure characterized by repeating candelabra-like structural units. In the past decade, progress has been made in understanding PVD's functions, morphogenesis, regeneration, and aging, yet many questions still remain.
Collapse
Affiliation(s)
- Sharon Inberg
- Department of Biology, Technion Israel Institute of Technology, Haifa 3200003, Israel;
| | - Anna Meledin
- Department of Biology, Technion Israel Institute of Technology, Haifa 3200003, Israel;
| | - Veronika Kravtsov
- Department of Biology, Technion Israel Institute of Technology, Haifa 3200003, Israel;
| | - Yael Iosilevskii
- Department of Biology, Technion Israel Institute of Technology, Haifa 3200003, Israel;
| | - Meital Oren-Suissa
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Benjamin Podbilewicz
- Department of Biology, Technion Israel Institute of Technology, Haifa 3200003, Israel;
| |
Collapse
|
20
|
Brukman NG, Uygur B, Podbilewicz B, Chernomordik LV. How cells fuse. J Cell Biol 2019; 218:1436-1451. [PMID: 30936162 PMCID: PMC6504885 DOI: 10.1083/jcb.201901017] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 03/05/2019] [Accepted: 03/08/2019] [Indexed: 12/11/2022] Open
Abstract
Brukman et al. review cell–cell fusion mechanisms, focusing on the identity of the fusogens that mediate these processes and the regulation of their activities. Cell–cell fusion remains the least understood type of membrane fusion process. However, the last few years have brought about major advances in understanding fusion between gametes, myoblasts, macrophages, trophoblasts, epithelial, cancer, and other cells in normal development and in diseases. While different cell fusion processes appear to proceed via similar membrane rearrangements, proteins that have been identified as necessary and sufficient for cell fusion (fusogens) use diverse mechanisms. Some fusions are controlled by a single fusogen; other fusions depend on several proteins that either work together throughout the fusion pathway or drive distinct stages. Furthermore, some fusions require fusogens to be present on both fusing membranes, and in other fusions, fusogens have to be on only one of the membranes. Remarkably, some of the proteins that fuse cells also sculpt single cells, repair neurons, promote scission of endocytic vesicles, and seal phagosomes. In this review, we discuss the properties and diversity of the known proteins mediating cell–cell fusion and highlight their different working mechanisms in various contexts.
Collapse
Affiliation(s)
- Nicolas G Brukman
- Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Berna Uygur
- Section on Membrane Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | | | - Leonid V Chernomordik
- Section on Membrane Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| |
Collapse
|
21
|
Caneo M, Julian V, Byrne AB, Alkema MJ, Calixto A. Diapause induces functional axonal regeneration after necrotic insult in C. elegans. PLoS Genet 2019; 15:e1007863. [PMID: 30640919 PMCID: PMC6347329 DOI: 10.1371/journal.pgen.1007863] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 01/25/2019] [Accepted: 11/29/2018] [Indexed: 02/07/2023] Open
Abstract
Many neurons are unable to regenerate after damage. The ability to regenerate after an insult depends on life stage, neuronal subtype, intrinsic and extrinsic factors. C. elegans is a powerful model to test the genetic and environmental factors that affect axonal regeneration after damage, since its axons can regenerate after neuronal insult. Here we demonstrate that diapause promotes the complete morphological regeneration of truncated touch receptor neuron (TRN) axons expressing a neurotoxic MEC-4(d) DEG/ENaC channel. Truncated axons of different lengths were repaired during diapause and we observed potent axonal regrowth from somas alone. Complete morphological regeneration depends on DLK-1 but neuronal sprouting and outgrowth is DLK-1 independent. We show that TRN regeneration is fully functional since animals regain their ability to respond to mechanical stimulation. Thus, diapause induced regeneration provides a simple model of complete axonal regeneration which will greatly facilitate the study of environmental and genetic factors affecting the rate at which neurons die.
Collapse
Affiliation(s)
- Mauricio Caneo
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Santiago de Chile, Chile
- Centro Interdisciplinario de Neurociencias de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaiso, Chile
| | - Victoria Julian
- Neurobiology Department, University of Massachusetts Medical School, Worcester, MA, United States of America
| | - Alexandra B. Byrne
- Neurobiology Department, University of Massachusetts Medical School, Worcester, MA, United States of America
| | - Mark J. Alkema
- Neurobiology Department, University of Massachusetts Medical School, Worcester, MA, United States of America
| | - Andrea Calixto
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Santiago de Chile, Chile
- Centro Interdisciplinario de Neurociencias de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaiso, Chile
- * E-mail: ,
| |
Collapse
|
22
|
Beckers A, Moons L. Dendritic shrinkage after injury: a cellular killer or a necessity for axonal regeneration? Neural Regen Res 2019; 14:1313-1316. [PMID: 30860164 PMCID: PMC6524513 DOI: 10.4103/1673-5374.253505] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Dendrites form an essential component of the neuronal circuit have been largely overlooked in regenerative research. Nevertheless, subtle changes in the dendritic arbors of neurons are one of the first stages of various neurodegenerative diseases, leading to dysfunctional neuronal networks and ultimately cellular death. Maintaining dendrites is therefore considered an essential neuroprotective strategy. This mini-review aims to discuss an intriguing hypothesis, which postulates that dendritic shrinkage is an important stimulant to boost axonal regeneration, and thus that preserving dendrites might not be the ideal therapeutic method to regain a full functional network upon central nervous system damage. Indeed, our study in zebrafish, a versatile animal model with robust regenerative capacity recently unraveled that dendritic retraction is evoked prior to axonal regrowth after optic nerve injury. Strikingly, inhibiting dendritic pruning upon damage perturbed axonal regeneration. This constraining effect of dendrites on axonal regrowth has sporadically been proposed in literature, as summarized in this short narrative. In addition, the review discusses a plausible underlying mechanism for the observed antagonistic axon-dendrite interplay, which is based on energy restriction inside neurons. Axonal injury indeed leads to a high local energy demand in which efficient axonal energy supply is fundamental to ensure regrowth. At the same time, axonal lesion is known to induce mitochondrial depolarization, causing energy depletion in the axonal compartment of damaged neurons. Mitochondria, however, become mostly stationary after development, which has been proposed as a potential underlying reason for the low regenerative capacity of adult mammals. Per contra, upon reduced neuronal activity, mitochondrial mobility enhances. In this view, dendritic shrinkage after axonal injury in zebrafish could result in less synaptic input and hence, a release of mitochondria within the soma-dendrite compartment that then translocate to the axonal growth cone to stimulate axonal regeneration. If this hypothesis proofs to be correct, i.e. dendritic remodeling serving as fuel for axonal regeneration, we envision a major shift in the research focus within the neuroregenerative field and in the potential uncovering of various novel therapeutic targets.
Collapse
Affiliation(s)
- An Beckers
- Neural Circuit Development and Regeneration Research Group, Department of Biology, KU Leuven, Leuven, Belgium
| | - Lieve Moons
- Neural Circuit Development and Regeneration Research Group, Department of Biology, KU Leuven, Leuven, Belgium
| |
Collapse
|
23
|
Neumann B, Linton C, Giordano-Santini R, Hilliard MA. Axonal fusion: An alternative and efficient mechanism of nerve repair. Prog Neurobiol 2018; 173:88-101. [PMID: 30500382 DOI: 10.1016/j.pneurobio.2018.11.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 11/22/2018] [Accepted: 11/26/2018] [Indexed: 02/07/2023]
Abstract
Injuries to the nervous system can cause lifelong morbidity due to the disconnect that occurs between nerve cells and their cellular targets. Re-establishing these lost connections is the ultimate goal of endogenous regenerative mechanisms, as well as those induced by exogenous manipulations in a laboratory or clinical setting. Reconnection between severed neuronal fibers occurs spontaneously in some invertebrate species and can be induced in mammalian systems. This process, known as axonal fusion, represents a highly efficient means of repair after injury. Recent progress has greatly enhanced our understanding of the molecular control of axonal fusion, demonstrating that the machinery required for the engulfment of apoptotic cells is repurposed to mediate the reconnection between severed axon fragments, which are subsequently merged by fusogen proteins. Here, we review our current understanding of naturally occurring axonal fusion events, as well as those being ectopically produced with the aim of achieving better clinical outcomes.
Collapse
Affiliation(s)
- Brent Neumann
- Neuroscience Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne VIC 3800, Australia.
| | - Casey Linton
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Rosina Giordano-Santini
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Massimo A Hilliard
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
24
|
McLachlan IG, Beets I, de Bono M, Heiman MG. A neuronal MAP kinase constrains growth of a Caenorhabditis elegans sensory dendrite throughout the life of the organism. PLoS Genet 2018; 14:e1007435. [PMID: 29879119 PMCID: PMC6007932 DOI: 10.1371/journal.pgen.1007435] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 06/19/2018] [Accepted: 05/18/2018] [Indexed: 02/07/2023] Open
Abstract
Neurons develop elaborate morphologies that provide a model for understanding cellular architecture. By studying C. elegans sensory dendrites, we previously identified genes that act to promote the extension of ciliated sensory dendrites during embryogenesis. Interestingly, the nonciliated dendrite of the oxygen-sensing neuron URX is not affected by these genes, suggesting it develops through a distinct mechanism. Here, we use a visual forward genetic screen to identify mutants that affect URX dendrite morphogenesis. We find that disruption of the MAP kinase MAPK-15 or the βH-spectrin SMA-1 causes a phenotype opposite to what we had seen before: dendrites extend normally during embryogenesis but begin to overgrow as the animals reach adulthood, ultimately extending up to 150% of their normal length. SMA-1 is broadly expressed and acts non-cell-autonomously, while MAPK-15 is expressed in many sensory neurons including URX and acts cell-autonomously. MAPK-15 acts at the time of overgrowth, localizes at the dendrite ending, and requires its kinase activity, suggesting it acts locally in time and space to constrain dendrite growth. Finally, we find that the oxygen-sensing guanylate cyclase GCY-35, which normally localizes at the dendrite ending, is localized throughout the overgrown region, and that overgrowth can be suppressed by overexpressing GCY-35 or by genetically mimicking elevated cGMP signaling. These results suggest that overgrowth may correspond to expansion of a sensory compartment at the dendrite ending, reminiscent of the remodeling of sensory cilia or dendritic spines. Thus, in contrast to established pathways that promote dendrite growth during early development, our results reveal a distinct mechanism that constrains dendrite growth throughout the life of the animal, possibly by controlling the size of a sensory compartment at the dendrite ending.
Collapse
Affiliation(s)
- Ian G McLachlan
- Department of Genetics, Harvard Medical School and Boston Children's Hospital, Boston MA, United States of America
| | - Isabel Beets
- Division of Cell Biology, Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Mario de Bono
- Division of Cell Biology, Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Maxwell G Heiman
- Department of Genetics, Harvard Medical School and Boston Children's Hospital, Boston MA, United States of America
| |
Collapse
|
25
|
The AFF-1 exoplasmic fusogen is required for endocytic scission and seamless tube elongation. Nat Commun 2018; 9:1741. [PMID: 29717108 PMCID: PMC5931541 DOI: 10.1038/s41467-018-04091-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 04/03/2018] [Indexed: 12/28/2022] Open
Abstract
Many membranes must merge during cellular trafficking, but fusion and fission events initiating at exoplasmic (non-cytosolic) membrane surfaces are not well understood. Here we show that the C. elegans cell-cell fusogen anchor-cell fusion failure 1 (AFF-1) is required for membrane trafficking events during development of a seamless unicellular tube. EGF-Ras-ERK signaling upregulates AFF-1 expression in the excretory duct tube to promote tube auto-fusion and subsequent lumen elongation. AFF-1 is required for scission of basal endocytic compartments and for apically directed exocytosis to extend the apical membrane. Lumen elongation also requires the transcytosis factor Rab11, but occurs independently of dynamin and clathrin. These results support a transcytosis model of seamless tube lumen growth and show that cell-cell fusogens also can play roles in intracellular membrane trafficking events.
Collapse
|
26
|
DeVault L, Li T, Izabel S, Thompson-Peer KL, Jan LY, Jan YN. Dendrite regeneration of adult Drosophila sensory neurons diminishes with aging and is inhibited by epidermal-derived matrix metalloproteinase 2. Genes Dev 2018; 32:402-414. [PMID: 29563183 PMCID: PMC5900713 DOI: 10.1101/gad.308270.117] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 02/26/2018] [Indexed: 11/30/2022]
Abstract
DeVault et al. show that the capacity for regeneration was present in adult neurons but diminished as the animal aged. The regenerated dendrites showed preferential alignment with the extracellular matrix, and inhibition of matrix metalloproteinase 2 led to increased dendrite regeneration. Dendrites possess distinct structural and functional properties that enable neurons to receive information from the environment as well as other neurons. Despite their key role in neuronal function, current understanding of the ability of neurons to regenerate dendrites is lacking. This study characterizes the structural and functional capacity for dendrite regeneration in vivo in adult animals and examines the effect of neuronal maturation on dendrite regeneration. We focused on the class IV dendritic arborization (c4da) neuron of the Drosophila sensory system, which has a dendritic arbor that undergoes dramatic remodeling during the first 3 d of adult life and then maintains a relatively stable morphology thereafter. Using a laser severing paradigm, we monitored regeneration after acute and spatially restricted injury. We found that the capacity for regeneration was present in adult neurons but diminished as the animal aged. Regenerated dendrites recovered receptive function. Furthermore, we found that the regenerated dendrites show preferential alignment with the extracellular matrix (ECM). Finally, inhibition of ECM degradation by inhibition of matrix metalloproteinase 2 (Mmp2) to preserve the extracellular environment characteristics of young adults led to increased dendrite regeneration. These results demonstrate that dendrites retain regenerative potential throughout adulthood and that regenerative capacity decreases with aging.
Collapse
Affiliation(s)
- Laura DeVault
- Howard Hughes Medical Institute, Department of Physiology, Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, California 94158, USA
| | - Tun Li
- Howard Hughes Medical Institute, Department of Physiology, Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, California 94158, USA
| | - Sarah Izabel
- Howard Hughes Medical Institute, Department of Physiology, Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, California 94158, USA
| | - Katherine L Thompson-Peer
- Howard Hughes Medical Institute, Department of Physiology, Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, California 94158, USA
| | - Lily Yeh Jan
- Howard Hughes Medical Institute, Department of Physiology, Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, California 94158, USA
| | - Yuh Nung Jan
- Howard Hughes Medical Institute, Department of Physiology, Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, California 94158, USA
| |
Collapse
|
27
|
Abstract
Cell-cell fusion is essential for fertilization and organ development. Dedicated proteins known as fusogens are responsible for mediating membrane fusion. However, until recently, these proteins either remained unidentified or were poorly understood at the mechanistic level. Here, we review how fusogens surmount multiple energy barriers to mediate cell-cell fusion. We describe how early preparatory steps bring membranes to a distance of ∼10 nm, while fusogens act in the final approach between membranes. The mechanical force exerted by cell fusogens and the accompanying lipidic rearrangements constitute the hallmarks of cell-cell fusion. Finally, we discuss the relationship between viral and eukaryotic fusogens, highlight a classification scheme regrouping a superfamily of fusogens called Fusexins, and propose new questions and avenues of enquiry.
Collapse
Affiliation(s)
- Javier M Hernández
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, D-44227 Dortmund, Germany
| | - Benjamin Podbilewicz
- Department of Biology, Technion - Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|
28
|
Abay ZC, Wong MYY, Neumann B. daf-2 modulates regeneration of mechanosensory neurons II. MICROPUBLICATION BIOLOGY 2017; 2017:10.17912/W2SM1T. [PMID: 32550345 PMCID: PMC7255863 DOI: 10.17912/w2sm1t] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Zehra C. Abay
- Neuroscience Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne VIC 3800, Australia
| | - Michelle Yu-Ying Wong
- Neuroscience Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne VIC 3800, Australia
| | - Brent Neumann
- Neuroscience Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne VIC 3800, Australia,
Correspondence to: Brent Neumann ()
| |
Collapse
|
29
|
Abay ZC, Wong MYY, Neumann B. daf-2 regeneration of mechanosensory neurons: integration. MICROPUBLICATION BIOLOGY 2017; 2017:10.17912/W2NW9C. [PMID: 32550348 PMCID: PMC7255867 DOI: 10.17912/w2nw9c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 11/26/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Zehra C. Abay
- Neuroscience Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne VIC 3800, Australia
| | - Michelle Yu-Ying Wong
- Neuroscience Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne VIC 3800, Australia
| | - Brent Neumann
- Neuroscience Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne VIC 3800, Australia
| |
Collapse
|
30
|
Abay ZC, Wong MYY, Neumann B. daf-2 modulates regeneration of mechanosensory neurons I. MICROPUBLICATION BIOLOGY 2017; 2017:10.17912/W2XD3R. [PMID: 32550350 PMCID: PMC7255869 DOI: 10.17912/w2xd3r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Zehra C. Abay
- Neuroscience Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne VIC 3800, Australia
| | - Michelle Yu-Ying Wong
- Neuroscience Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne VIC 3800, Australia
| | - Brent Neumann
- Neuroscience Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne VIC 3800, Australia,
Correspondence to: Brent Neumann ()
| |
Collapse
|
31
|
Basu A, Dey S, Puri D, Das Saha N, Sabharwal V, Thyagarajan P, Srivastava P, Koushika SP, Ghosh-Roy A. let-7 miRNA controls CED-7 homotypic adhesion and EFF-1-mediated axonal self-fusion to restore touch sensation following injury. Proc Natl Acad Sci U S A 2017; 114:E10206-E10215. [PMID: 29109254 PMCID: PMC5703274 DOI: 10.1073/pnas.1704372114] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Neuronal injury often leads to devastating consequences such as loss of senses or locomotion. Restoration of function after injury relies on whether the injured axons can find their target cells. Although fusion between injured proximal axon and distal fragment has been observed in many organisms, its functional significance is not clear. Here, using Caenorhabditis elegans mechanosensory neurons, we address this question. Using two femtosecond lasers simultaneously, we could scan and sever posterior lateral microtubule neurons [posterior lateral microtubules (PLMs)] on both sides of the worm. We showed that axotomy of both PLMs leads to a dramatic loss of posterior touch sensation. During the regenerative phase, only axons that fuse to their distal counterparts contribute to functional recovery. Loss of let-7 miRNA promotes functional restoration in both larval and adult stages. In the L4 stage, loss of let-7 increases fusion events by increasing the mRNA level of one of the cell-recognition molecules, CED-7. The ability to establish cytoplasmic continuity between the proximal and distal ends declines with age. Loss of let-7 overcomes this barrier by promoting axonal transport and enrichment of the EFF-1 fusogen at the growing tip of cut processes. Our data reveal the functional property of a regenerating neuron.
Collapse
Affiliation(s)
- Atrayee Basu
- National Brain Research Centre, Manesar, Nainwal Mode, Gurgaon, Haryana 122051, India
| | - Shirshendu Dey
- Bruker India Scientific Private Ltd, New Delhi 110019, India
| | - Dharmendra Puri
- National Brain Research Centre, Manesar, Nainwal Mode, Gurgaon, Haryana 122051, India
| | - Nilanjana Das Saha
- National Brain Research Centre, Manesar, Nainwal Mode, Gurgaon, Haryana 122051, India
| | - Vidur Sabharwal
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai 400 005, India
| | - Pankajam Thyagarajan
- National Brain Research Centre, Manesar, Nainwal Mode, Gurgaon, Haryana 122051, India
| | - Prerna Srivastava
- National Brain Research Centre, Manesar, Nainwal Mode, Gurgaon, Haryana 122051, India
| | | | - Anindya Ghosh-Roy
- National Brain Research Centre, Manesar, Nainwal Mode, Gurgaon, Haryana 122051, India;
- Wellcome Trust-Department of Biotechnology India Alliance, Banjara Hills, Hyderabad, Telangana 500034, India
| |
Collapse
|