1
|
Roggenbuck EC, Hall EA, Hanson IB, Roby AA, Zhang KK, Alkatib KA, Carter JA, Clewner JE, Gelfius AL, Gong S, Gordon FR, Iseler JN, Kotapati S, Li M, Maysun A, McCormick EO, Rastogi G, Sengupta S, Uzoma CU, Wolkov MA, Clowney EJ. Let's talk about sex: Mechanisms of neural sexual differentiation in Bilateria. WIREs Mech Dis 2024; 16:e1636. [PMID: 38185860 DOI: 10.1002/wsbm.1636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 01/09/2024]
Abstract
In multicellular organisms, sexed gonads have evolved that facilitate release of sperm versus eggs, and bilaterian animals purposefully combine their gametes via mating behaviors. Distinct neural circuits have evolved that control these physically different mating events for animals producing eggs from ovaries versus sperm from testis. In this review, we will describe the developmental mechanisms that sexually differentiate neural circuits across three major clades of bilaterian animals-Ecdysozoa, Deuterosomia, and Lophotrochozoa. While many of the mechanisms inducing somatic and neuronal sex differentiation across these diverse organisms are clade-specific rather than evolutionarily conserved, we develop a common framework for considering the developmental logic of these events and the types of neuronal differences that produce sex-differentiated behaviors. This article is categorized under: Congenital Diseases > Stem Cells and Development Neurological Diseases > Stem Cells and Development.
Collapse
Affiliation(s)
- Emma C Roggenbuck
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Elijah A Hall
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Isabel B Hanson
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Alyssa A Roby
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Katherine K Zhang
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Kyle A Alkatib
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Joseph A Carter
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Jarred E Clewner
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Anna L Gelfius
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Shiyuan Gong
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Finley R Gordon
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Jolene N Iseler
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Samhita Kotapati
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Marilyn Li
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Areeba Maysun
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Elise O McCormick
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Geetanjali Rastogi
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Srijani Sengupta
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Chantal U Uzoma
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Madison A Wolkov
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - E Josephine Clowney
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
- Michigan Neuroscience Institute Affiliate, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
2
|
Titus MB, Chang AW, Popitsch N, Ebmeier CC, Bono JM, Olesnicky EC. The identification of protein and RNA interactors of the splicing factor Caper in the adult Drosophila nervous system. Front Mol Neurosci 2023; 16:1114857. [PMID: 37435576 PMCID: PMC10332324 DOI: 10.3389/fnmol.2023.1114857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 05/19/2023] [Indexed: 07/13/2023] Open
Abstract
Post-transcriptional gene regulation is a fundamental mechanism that helps regulate the development and healthy aging of the nervous system. Mutations that disrupt the function of RNA-binding proteins (RBPs), which regulate post-transcriptional gene regulation, have increasingly been implicated in neurological disorders including amyotrophic lateral sclerosis, Fragile X Syndrome, and spinal muscular atrophy. Interestingly, although the majority of RBPs are expressed widely within diverse tissue types, the nervous system is often particularly sensitive to their dysfunction. It is therefore critical to elucidate how aberrant RNA regulation that results from the dysfunction of ubiquitously expressed RBPs leads to tissue specific pathologies that underlie neurological diseases. The highly conserved RBP and alternative splicing factor Caper is widely expressed throughout development and is required for the development of Drosophila sensory and motor neurons. Furthermore, caper dysfunction results in larval and adult locomotor deficits. Nonetheless, little is known about which proteins interact with Caper, and which RNAs are regulated by Caper. Here we identify proteins that interact with Caper in both neural and muscle tissue, along with neural specific Caper target RNAs. Furthermore, we show that a subset of these Caper-interacting proteins and RNAs genetically interact with caper to regulate Drosophila gravitaxis behavior.
Collapse
Affiliation(s)
- M. Brandon Titus
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO, United States
| | - Adeline W. Chang
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO, United States
| | - Niko Popitsch
- Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Vienna, Austria
| | | | - Jeremy M. Bono
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO, United States
| | - Eugenia C. Olesnicky
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO, United States
| |
Collapse
|
3
|
Aging and memory are altered by genetically manipulating lactate dehydrogenase in the neurons or glia of flies. Aging (Albany NY) 2023; 15:947-981. [PMID: 36849157 PMCID: PMC10008500 DOI: 10.18632/aging.204565] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 02/20/2023] [Indexed: 03/01/2023]
Abstract
The astrocyte-neuron lactate shuttle hypothesis posits that glial-generated lactate is transported to neurons to fuel metabolic processes required for long-term memory. Although studies in vertebrates have revealed that lactate shuttling is important for cognitive function, it is uncertain if this form of metabolic coupling is conserved in invertebrates or is influenced by age. Lactate dehydrogenase (Ldh) is a rate limiting enzyme that interconverts lactate and pyruvate. Here we genetically manipulated expression of Drosophila melanogaster lactate dehydrogenase (dLdh) in neurons or glia to assess the impact of altered lactate metabolism on invertebrate aging and long-term courtship memory at different ages. We also assessed survival, negative geotaxis, brain neutral lipids (the core component of lipid droplets) and brain metabolites. Both upregulation and downregulation of dLdh in neurons resulted in decreased survival and memory impairment with age. Glial downregulation of dLdh expression caused age-related memory impairment without altering survival, while upregulated glial dLdh expression lowered survival without disrupting memory. Both neuronal and glial dLdh upregulation increased neutral lipid accumulation. We provide evidence that altered lactate metabolism with age affects the tricarboxylic acid (TCA) cycle, 2-hydroxyglutarate (2HG), and neutral lipid accumulation. Collectively, our findings indicate that the direct alteration of lactate metabolism in either glia or neurons affects memory and survival but only in an age-dependent manner.
Collapse
|
4
|
Palmateer CM, Artikis C, Brovero SG, Friedman B, Gresham A, Arbeitman MN. Single-cell transcriptome profiles of Drosophila fruitless-expressing neurons from both sexes. eLife 2023; 12:e78511. [PMID: 36724009 PMCID: PMC9891730 DOI: 10.7554/elife.78511] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 01/08/2023] [Indexed: 02/02/2023] Open
Abstract
Drosophila melanogaster reproductive behaviors are orchestrated by fruitless neurons. We performed single-cell RNA-sequencing on pupal neurons that produce sex-specifically spliced fru transcripts, the fru P1-expressing neurons. Uniform Manifold Approximation and Projection (UMAP) with clustering generates an atlas containing 113 clusters. While the male and female neurons overlap in UMAP space, more than half the clusters have sex differences in neuron number, and nearly all clusters display sex-differential expression. Based on an examination of enriched marker genes, we annotate clusters as circadian clock neurons, mushroom body Kenyon cell neurons, neurotransmitter- and/or neuropeptide-producing, and those that express doublesex. Marker gene analyses also show that genes that encode members of the immunoglobulin superfamily of cell adhesion molecules, transcription factors, neuropeptides, neuropeptide receptors, and Wnts have unique patterns of enriched expression across the clusters. In vivo spatial gene expression links to the clusters are examined. A functional analysis of fru P1 circadian neurons shows they have dimorphic roles in activity and period length. Given that most clusters are comprised of male and female neurons indicates that the sexes have fru P1 neurons with common gene expression programs. Sex-specific expression is overlaid on this program, to build the potential for vastly different sex-specific behaviors.
Collapse
Affiliation(s)
- Colleen M Palmateer
- Department of Biomedical Sciences, Florida State University, College of MedicineTallahasseeUnited States
| | - Catherina Artikis
- Department of Biomedical Sciences, Florida State University, College of MedicineTallahasseeUnited States
| | - Savannah G Brovero
- Department of Biomedical Sciences, Florida State University, College of MedicineTallahasseeUnited States
| | - Benjamin Friedman
- Department of Biomedical Sciences, Florida State University, College of MedicineTallahasseeUnited States
| | - Alexis Gresham
- Department of Biomedical Sciences, Florida State University, College of MedicineTallahasseeUnited States
| | - Michelle N Arbeitman
- Department of Biomedical Sciences, Florida State University, College of MedicineTallahasseeUnited States
- Program of Neuroscience, Florida State UniversityTallahasseeUnited States
| |
Collapse
|
5
|
Gao Y, Zhang X, Yuan J, Zhang C, Li S, Li F. CRISPR/Cas9-mediated mutation on an insulin-like peptide encoding gene affects the growth of the ridgetail white prawn Exopalaemon carinicauda. Front Endocrinol (Lausanne) 2022; 13:986491. [PMID: 36246877 PMCID: PMC9556898 DOI: 10.3389/fendo.2022.986491] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 09/15/2022] [Indexed: 11/25/2022] Open
Abstract
Insulin-like peptides (ILPs) play key roles in animal growth, metabolism and reproduction in vertebrates. In crustaceans, one type of ILPs, insulin-like androgenic gland hormone (IAG) had been reported to be related to the sex differentiations. However, the function of other types of ILPs is rarely reported. Here, we identified another type of ILPs in the ridgetail white prawn Exopalaemon carinicauda (EcILP), which is an ortholog of Drosophila melanogaster ILP7. Sequence characterization and expression analyses showed that EcILP is similar to vertebrate insulin/IGFs and insect ILPs in its heterodimeric structure and expression profile. Using CRISPR/Cas9 genome editing technology, we generated EcILP knockout (KO) prawns. EcILP-KO individuals have a significant higher growth-inhibitory trait and mortality than those in the normal group. In addition, knockdown of EcILP by RNA interference (RNAi) resulted in slower growth rate and higher mortality. These results indicated that EcILP was an important growth regulator in E. carinicauda.
Collapse
Affiliation(s)
- Yi Gao
- Chinese Academy of Sciences (CAS) and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Xiaojun Zhang
- Chinese Academy of Sciences (CAS) and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Jianbo Yuan
- Chinese Academy of Sciences (CAS) and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Chengsong Zhang
- Chinese Academy of Sciences (CAS) and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Shihao Li
- Chinese Academy of Sciences (CAS) and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Fuhua Li
- Chinese Academy of Sciences (CAS) and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
6
|
Wat LW, Chowdhury ZS, Millington JW, Biswas P, Rideout EJ. Sex determination gene transformer regulates the male-female difference in Drosophila fat storage via the adipokinetic hormone pathway. eLife 2021; 10:e72350. [PMID: 34672260 PMCID: PMC8594944 DOI: 10.7554/elife.72350] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/07/2021] [Indexed: 12/17/2022] Open
Abstract
Sex differences in whole-body fat storage exist in many species. For example, Drosophila females store more fat than males. Yet, the mechanisms underlying this sex difference in fat storage remain incompletely understood. Here, we identify a key role for sex determination gene transformer (tra) in regulating the male-female difference in fat storage. Normally, a functional Tra protein is present only in females, where it promotes female sexual development. We show that loss of Tra in females reduced whole-body fat storage, whereas gain of Tra in males augmented fat storage. Tra's role in promoting fat storage was largely due to its function in neurons, specifically the Adipokinetic hormone (Akh)-producing cells (APCs). Our analysis of Akh pathway regulation revealed a male bias in APC activity and Akh pathway function, where this sex-biased regulation influenced the sex difference in fat storage by limiting triglyceride accumulation in males. Importantly, Tra loss in females increased Akh pathway activity, and genetically manipulating the Akh pathway rescued Tra-dependent effects on fat storage. This identifies sex-specific regulation of Akh as one mechanism underlying the male-female difference in whole-body triglyceride levels, and provides important insight into the conserved mechanisms underlying sexual dimorphism in whole-body fat storage.
Collapse
Affiliation(s)
- Lianna W Wat
- Department of Cellular and Physiological Sciences, The University of British ColumbiaVancouverCanada
| | - Zahid S Chowdhury
- Department of Cellular and Physiological Sciences, The University of British ColumbiaVancouverCanada
| | - Jason W Millington
- Department of Cellular and Physiological Sciences, The University of British ColumbiaVancouverCanada
| | - Puja Biswas
- Department of Cellular and Physiological Sciences, The University of British ColumbiaVancouverCanada
| | - Elizabeth J Rideout
- Department of Cellular and Physiological Sciences, The University of British ColumbiaVancouverCanada
| |
Collapse
|
7
|
Goodwin SF, Hobert O. Molecular Mechanisms of Sexually Dimorphic Nervous System Patterning in Flies and Worms. Annu Rev Cell Dev Biol 2021; 37:519-547. [PMID: 34613817 DOI: 10.1146/annurev-cellbio-120319-115237] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Male and female brains display anatomical and functional differences. Such differences are observed in species across the animal kingdom, including humans, but have been particularly well-studied in two classic animal model systems, the fruit fly Drosophila melanogaster and the nematode Caenorhabditis elegans. Here we summarize recent advances in understanding how the worm and fly brain acquire sexually dimorphic features during development. We highlight the advantages of each system, illustrating how the precise anatomical delineation of sexual dimorphisms in worms has enabled recent analysis into how these dimorphisms become specified during development, and how focusing on sexually dimorphic neurons in the fly has enabled an increasingly detailed understanding of sex-specific behaviors.
Collapse
Affiliation(s)
- Stephen F Goodwin
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford OX1 3SR, United Kingdom;
| | - Oliver Hobert
- Department of Biological Sciences and Howard Hughes Medical Institute, Columbia University, New York, NY 10027, USA;
| |
Collapse
|
8
|
Mank JE, Rideout EJ. Developmental mechanisms of sex differences: from cells to organisms. Development 2021; 148:272484. [PMID: 34647574 DOI: 10.1242/dev.199750] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Male-female differences in many developmental mechanisms lead to the formation of two morphologically and physiologically distinct sexes. Although this is expected for traits with prominent differences between the sexes, such as the gonads, sex-specific processes also contribute to traits without obvious male-female differences, such as the intestine. Here, we review sex differences in developmental mechanisms that operate at several levels of biological complexity - molecular, cellular, organ and organismal - and discuss how these differences influence organ formation, function and whole-body physiology. Together, the examples we highlight show that one simple way to gain a more accurate and comprehensive understanding of animal development is to include both sexes.
Collapse
Affiliation(s)
- Judith E Mank
- Department of Zoology, Biodiversity Research Centre, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada.,Biosciences, University of Exeter, Penryn Campus, Penryn TR10 9FE, UK
| | - Elizabeth J Rideout
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
9
|
Millington JW, Brownrigg GP, Basner-Collins PJ, Sun Z, Rideout EJ. Genetic manipulation of insulin/insulin-like growth factor signaling pathway activity has sex-biased effects on Drosophila body size. G3 (BETHESDA, MD.) 2021; 11:jkaa067. [PMID: 33793746 PMCID: PMC8063079 DOI: 10.1093/g3journal/jkaa067] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 11/09/2020] [Indexed: 12/14/2022]
Abstract
In Drosophila raised in nutrient-rich conditions, female body size is approximately 30% larger than male body size due to an increased rate of growth and differential weight loss during the larval period. While the mechanisms that control this sex difference in body size remain incompletely understood, recent studies suggest that the insulin/insulin-like growth factor signaling pathway (IIS) plays a role in the sex-specific regulation of processes that influence body size during development. In larvae, IIS activity differs between the sexes, and there is evidence of sex-specific regulation of IIS ligands. Yet, we lack knowledge of how changes to IIS activity impact body size in each sex, as the majority of studies on IIS and body size use single- or mixed-sex groups of larvae and/or adult flies. The goal of our current study was to clarify the body size requirement for IIS activity in each sex. To achieve this goal, we used established genetic approaches to enhance, or inhibit, IIS activity, and quantified pupal size in males and females. Overall, genotypes that inhibited IIS activity caused a female-biased decrease in body size, whereas genotypes that augmented IIS activity caused a male-specific increase in body size. These data extend our current understanding of body size regulation by showing that most changes to IIS pathway activity have sex-biased effects, and highlights the importance of analyzing body size data according to sex.
Collapse
Affiliation(s)
- Jason W Millington
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - George P Brownrigg
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Paige J Basner-Collins
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Ziwei Sun
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Elizabeth J Rideout
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
10
|
Millington JW, Brownrigg GP, Chao C, Sun Z, Basner-Collins PJ, Wat LW, Hudry B, Miguel-Aliaga I, Rideout EJ. Female-biased upregulation of insulin pathway activity mediates the sex difference in Drosophila body size plasticity. eLife 2021; 10:e58341. [PMID: 33448263 PMCID: PMC7864645 DOI: 10.7554/elife.58341] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 01/11/2021] [Indexed: 12/14/2022] Open
Abstract
Nutrient-dependent body size plasticity differs between the sexes in most species, including mammals. Previous work in Drosophila showed that body size plasticity was higher in females, yet the mechanisms underlying increased female body size plasticity remain unclear. Here, we discover that a protein-rich diet augments body size in females and not males because of a female-biased increase in activity of the conserved insulin/insulin-like growth factor signaling pathway (IIS). This sex-biased upregulation of IIS activity was triggered by a diet-induced increase in stunted mRNA in females, and required Drosophila insulin-like peptide 2, illuminating new sex-specific roles for these genes. Importantly, we show that sex determination gene transformer promotes the diet-induced increase in stunted mRNA via transcriptional coactivator Spargel to regulate the male-female difference in body size plasticity. Together, these findings provide vital insight into conserved mechanisms underlying the sex difference in nutrient-dependent body size plasticity.
Collapse
Affiliation(s)
- Jason W Millington
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British ColumbiaVancouverCanada
| | - George P Brownrigg
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British ColumbiaVancouverCanada
| | - Charlotte Chao
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British ColumbiaVancouverCanada
| | - Ziwei Sun
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British ColumbiaVancouverCanada
| | - Paige J Basner-Collins
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British ColumbiaVancouverCanada
| | - Lianna W Wat
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British ColumbiaVancouverCanada
| | - Bruno Hudry
- MRC London Institute of Medical Sciences, and Institute of Clinical Sciences, Faculty of Medicine, Imperial College LondonLondonUnited Kingdom
| | - Irene Miguel-Aliaga
- MRC London Institute of Medical Sciences, and Institute of Clinical Sciences, Faculty of Medicine, Imperial College LondonLondonUnited Kingdom
| | - Elizabeth J Rideout
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British ColumbiaVancouverCanada
| |
Collapse
|
11
|
Ghosh N, Bakshi A, Khandelwal R, Rajan SG, Joshi R. The Hox gene Abdominal-B uses Doublesex F as a cofactor to promote neuroblast apoptosis in the Drosophila central nervous system. Development 2019; 146:dev.175158. [PMID: 31371379 PMCID: PMC6737903 DOI: 10.1242/dev.175158] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 07/22/2019] [Indexed: 12/28/2022]
Abstract
Highly conserved DM domain-containing transcription factors (Doublesex/MAB-3/DMRT1) are responsible for generating sexually dimorphic features. In the Drosophila central nervous system, a set of Doublesex (Dsx)-expressing neuroblasts undergo apoptosis in females whereas their male counterparts proliferate and give rise to serotonergic neurons crucial for adult mating behaviour. Our study demonstrates that the female-specific isoform of Dsx collaborates with Hox gene Abdominal-B (Abd-B) to bring about this apoptosis. Biochemical results suggest that proteins AbdB and Dsx interact through their highly conserved homeodomain and DM domain, respectively. This interaction is translated into a cooperative binding of the two proteins on the apoptotic enhancer in the case of females but not in the case of males, resulting in female-specific activation of apoptotic genes. The capacity of AbdB to use the sex-specific isoform of Dsx as a cofactor underlines the possibility that these two classes of protein are capable of cooperating in selection and regulation of target genes in a tissue- and sex-specific manner. We propose that this interaction could be a common theme in generating sexual dimorphism in different tissues across different species.
Collapse
Affiliation(s)
- Neha Ghosh
- Laboratory of Drosophila Neural Development, Centre for DNA Fingerprinting and Diagnostics (CDFD), Inner Ring Road, Uppal, Hyderabad 500039, India.,Graduate Studies, Manipal Academy of Higher Education, Manipal 576104, India
| | - Asif Bakshi
- Laboratory of Drosophila Neural Development, Centre for DNA Fingerprinting and Diagnostics (CDFD), Inner Ring Road, Uppal, Hyderabad 500039, India.,Graduate Studies, Manipal Academy of Higher Education, Manipal 576104, India
| | - Risha Khandelwal
- Laboratory of Drosophila Neural Development, Centre for DNA Fingerprinting and Diagnostics (CDFD), Inner Ring Road, Uppal, Hyderabad 500039, India.,Graduate Studies, Manipal Academy of Higher Education, Manipal 576104, India
| | | | - Rohit Joshi
- Laboratory of Drosophila Neural Development, Centre for DNA Fingerprinting and Diagnostics (CDFD), Inner Ring Road, Uppal, Hyderabad 500039, India
| |
Collapse
|
12
|
Millington JW, Rideout EJ. Sex differences in Drosophila development and physiology. CURRENT OPINION IN PHYSIOLOGY 2018. [DOI: 10.1016/j.cophys.2018.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|