1
|
Podraza-Farhanieh A, Raj D, Kao G, Naredi P. A proinsulin-dependent interaction between ENPL-1 and ASNA-1 in neurons is required to maintain insulin secretion in C. elegans. Development 2023; 150:dev201035. [PMID: 36939052 PMCID: PMC10112894 DOI: 10.1242/dev.201035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 02/13/2023] [Indexed: 03/21/2023]
Abstract
Neuropeptides, including insulin, are important regulators of physiological functions of the organisms. Trafficking through the Golgi is crucial for the regulation of secretion of insulin-like peptides. ASNA-1 (TRC40) and ENPL-1 (GRP94) are conserved insulin secretion regulators in Caenorhabditis elegans (and mammals), and mouse Grp94 mutants display type 2 diabetes. ENPL-1/GRP94 binds proinsulin and regulates proinsulin levels in C. elegans and mammalian cells. Here, we have found that ASNA-1 and ENPL-1 cooperate to regulate insulin secretion in worms via a physical interaction that is independent of the insulin-binding site of ENPL-1. The interaction occurs in DAF-28/insulin-expressing neurons and is sensitive to changes in DAF-28 pro-peptide levels. Consistently, ASNA-1 acted in neurons to promote DAF-28/insulin secretion. The chaperone form of ASNA-1 was likely the interaction partner of ENPL-1. Loss of asna-1 disrupted Golgi trafficking pathways. ASNA-1 localization to the Golgi was affected in enpl-1 mutants and ENPL-1 overexpression partially bypassed the ASNA-1 requirement. Taken together, we find a functional interaction between ENPL-1 and ASNA-1 that is necessary to maintain proper insulin secretion in C. elegans and provides insights into how their loss might cause diabetes in mammals.
Collapse
Affiliation(s)
- Agnieszka Podraza-Farhanieh
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, SE413 45 Gothenburg, Sweden
| | - Dorota Raj
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, SE413 45 Gothenburg, Sweden
| | - Gautam Kao
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, SE413 45 Gothenburg, Sweden
| | - Peter Naredi
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, SE413 45 Gothenburg, Sweden
- Department of Surgery, Sahlgrenska University Hospital, SE413 45 Gothenburg, Sweden
| |
Collapse
|
2
|
Raj D, Podraza-Farhanieh A, Gallego P, Kao G, Naredi P. Identification of C. elegans ASNA-1 domains and tissue requirements that differentially influence platinum sensitivity and growth control. PLoS Genet 2022; 18:e1010538. [PMID: 36480541 PMCID: PMC9803280 DOI: 10.1371/journal.pgen.1010538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 12/30/2022] [Accepted: 11/21/2022] [Indexed: 12/13/2022] Open
Abstract
ASNA1 plays an essential role in cisplatin chemotherapy response, type 2 diabetes, and heart disease. It is also an important biomarker in the treatment response of many diseases. Biochemically, ASNA1 has two mutually exclusive redox-modulated roles: a tail-anchored protein (TAP) targeting function in the reduced state and a holdase/chaperone function in the oxidized state. Assigning biochemical roles of mammalian ASNA1 to biomedical functions is crucial for successful therapy development. Our previous work showed the relevance of the C. elegans ASNA-1 homolog in modeling cisplatin response and insulin secretion. Here we analyzed two-point mutants in highly conserved residues in C. elegans ASNA-1 and determined their importance in separating the cisplatin response function from its roles in insulin secretion. asna-1(ΔHis164) and asna-1(A63V) point mutants, which both preferentially exist in the oxidized state, displayed cisplatin sensitivity phenotype as well as TAP insertion defect but not an insulin secretion defect. Further, using targeted depletion we analyzed the tissue requirements of asna-1 for C. elegans growth and development. Somatic depletion of ASNA-1 as well as simultaneous depletion of ASNA-1 in neurons and intestines resulted in an L1 arrest. We concluded that, targeting single residues in ASNA-1 affecting Switch I/Switch II domain function, in comparison to complete knockdown counteracted cisplatin resistance without jeopardizing other important biological functions. Taken together, our study shows that effects on health caused by ASNA1 mutations can have different biochemical bases.
Collapse
Affiliation(s)
- Dorota Raj
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Agnieszka Podraza-Farhanieh
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Pablo Gallego
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| | - Gautam Kao
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Peter Naredi
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Surgery, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
3
|
Tambe MA, Ng BG, Shimada S, Wolfe LA, Adams DR, Gahl WA, Bamshad MJ, Nickerson DA, Malicdan MC, Freeze HH. Mutations in GET4 disrupt the transmembrane domain recognition complex pathway. J Inherit Metab Dis 2020; 43:1037-1045. [PMID: 32395830 PMCID: PMC7508799 DOI: 10.1002/jimd.12249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/21/2020] [Accepted: 05/07/2020] [Indexed: 01/06/2023]
Abstract
The transmembrane domain recognition complex (TRC) targets cytoplasmic C-terminal tail-anchored (TA) proteins to their respective membranes in the endoplasmic reticulum (ER), Golgi, and mitochondria. It is composed of three proteins, GET4, BAG6, and GET5. We identified an individual with compound heterozygous missense variants (p.Arg122His, p.Ile279Met) in GET4 that reduced all three TRC proteins by 70% to 90% in his fibroblasts, suggesting a possible defect in TA protein targeting. He presented with global developmental delay, intellectual disabilities, seizures, facial dysmorphism, and delayed bone age. We found the TA protein, syntaxin 5, is poorly targeted to Golgi membranes compared to normal controls. Since GET4 regulates ER to Golgi transport, we hypothesized that such transport would be disrupted in his fibroblasts, and discovered that retrograde (but not anterograde) transport was significantly reduced. Despite reduction in the three TRC proteins, their mRNA levels were unchanged, suggesting increased degradation in patient fibroblasts. Treating fibroblasts with the FDA-approved proteasome inhibitor, bortezomib (10 nM), restored syntaxin 5 localization and nearly normalized the levels of all three TRC proteins. Our study identifies the first individual with GET4 mutations.
Collapse
Affiliation(s)
- Mitali A. Tambe
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Bobby G. Ng
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Shino Shimada
- Undiagnosed Diseases Program, National Human Genome Research Institute (NHGRI), National Institutes of Health (NIH), Bethesda, MD 20892, USA; Common Fund, Office of the Director, NIH, Bethesda, MD 20892-1851, USA
| | - Lynne A. Wolfe
- Undiagnosed Diseases Program, National Human Genome Research Institute (NHGRI), National Institutes of Health (NIH), Bethesda, MD 20892, USA; Common Fund, Office of the Director, NIH, Bethesda, MD 20892-1851, USA
| | - David R. Adams
- Undiagnosed Diseases Program, National Human Genome Research Institute (NHGRI), National Institutes of Health (NIH), Bethesda, MD 20892, USA; Common Fund, Office of the Director, NIH, Bethesda, MD 20892-1851, USA
- Section of Human Biochemical Genetics, Medical Genetics Branch, NHGRI, NIH, 10 Center Drive, Bldg. 10, Rm 10C107, MSC1851, Bethesda, MD 20892-1851, USA
| | | | - William A. Gahl
- Undiagnosed Diseases Program, National Human Genome Research Institute (NHGRI), National Institutes of Health (NIH), Bethesda, MD 20892, USA; Common Fund, Office of the Director, NIH, Bethesda, MD 20892-1851, USA
- Section of Human Biochemical Genetics, Medical Genetics Branch, NHGRI, NIH, 10 Center Drive, Bldg. 10, Rm 10C107, MSC1851, Bethesda, MD 20892-1851, USA
| | - Michael J. Bamshad
- Department of Pediatrics, University of Washington Seattle, Washington
- Department of Genome Sciences, University of Washington Seattle, Washington
| | | | | | - May C.V. Malicdan
- Undiagnosed Diseases Program, National Human Genome Research Institute (NHGRI), National Institutes of Health (NIH), Bethesda, MD 20892, USA; Common Fund, Office of the Director, NIH, Bethesda, MD 20892-1851, USA
- Section of Human Biochemical Genetics, Medical Genetics Branch, NHGRI, NIH, 10 Center Drive, Bldg. 10, Rm 10C107, MSC1851, Bethesda, MD 20892-1851, USA
| | - Hudson H. Freeze
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| |
Collapse
|
4
|
Verhagen JMA, van den Born M, van der Linde HC, G J Nikkels P, Verdijk RM, Kivlen MH, van Unen LMA, Baas AF, Ter Heide H, van Osch-Gevers L, Hoogeveen-Westerveld M, Herkert JC, Bertoli-Avella AM, van Slegtenhorst MA, Wessels MW, Verheijen FW, Hassel D, Hofstra RMW, Hegde RS, van Hasselt PM, van Ham TJ, van de Laar IMBH. Biallelic Variants in ASNA1, Encoding a Cytosolic Targeting Factor of Tail-Anchored Proteins, Cause Rapidly Progressive Pediatric Cardiomyopathy. CIRCULATION-GENOMIC AND PRECISION MEDICINE 2019; 12:397-406. [PMID: 31461301 PMCID: PMC7205403 DOI: 10.1161/circgen.119.002507] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Supplemental Digital Content is available in the text. Pediatric cardiomyopathies are a clinically and genetically heterogeneous group of heart muscle disorders associated with high morbidity and mortality. Although knowledge of the genetic basis of pediatric cardiomyopathy has improved considerably, the underlying cause remains elusive in a substantial proportion of cases.
Collapse
Affiliation(s)
- Judith M A Verhagen
- Department of Clinical Genetics (J.M.A.V., M.v.d.B., H.C.v.d.L., L.M.A.v.U., M.H.-W., M.A.v.S., M.W.W., F.W.V., R.M.W.H., T.J.v.H., I.M.B.H.v.d.L.), Erasmus MC, University Medical Center Rotterdam
| | - Myrthe van den Born
- Department of Clinical Genetics (J.M.A.V., M.v.d.B., H.C.v.d.L., L.M.A.v.U., M.H.-W., M.A.v.S., M.W.W., F.W.V., R.M.W.H., T.J.v.H., I.M.B.H.v.d.L.), Erasmus MC, University Medical Center Rotterdam
| | - Herma C van der Linde
- Department of Clinical Genetics (J.M.A.V., M.v.d.B., H.C.v.d.L., L.M.A.v.U., M.H.-W., M.A.v.S., M.W.W., F.W.V., R.M.W.H., T.J.v.H., I.M.B.H.v.d.L.), Erasmus MC, University Medical Center Rotterdam
| | - Peter G J Nikkels
- Department of Pathology (P.G.J.N.), University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Rob M Verdijk
- Department of Pathology (R.M.V.), Erasmus MC, University Medical Center Rotterdam
| | - Maryann H Kivlen
- Medical Research Council Laboratory of Molecular Biology, Cambridge Biomedical Campus, United Kingdom (M.H.K., R.S.H.)
| | - Leontine M A van Unen
- Department of Clinical Genetics (J.M.A.V., M.v.d.B., H.C.v.d.L., L.M.A.v.U., M.H.-W., M.A.v.S., M.W.W., F.W.V., R.M.W.H., T.J.v.H., I.M.B.H.v.d.L.), Erasmus MC, University Medical Center Rotterdam
| | - Annette F Baas
- Department of Genetics (A.F.B.), University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Henriette Ter Heide
- Department of Pediatric Cardiology (H.t.H.), University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Lennie van Osch-Gevers
- Department of Pediatric Cardiology (L.v.O.-G.), Erasmus MC, University Medical Center Rotterdam
| | - Marianne Hoogeveen-Westerveld
- Department of Clinical Genetics (J.M.A.V., M.v.d.B., H.C.v.d.L., L.M.A.v.U., M.H.-W., M.A.v.S., M.W.W., F.W.V., R.M.W.H., T.J.v.H., I.M.B.H.v.d.L.), Erasmus MC, University Medical Center Rotterdam
| | - Johanna C Herkert
- Department of Genetics, University of Groningen, University Medical Center Groningen, the Netherlands (J.C.H.)
| | | | - Marjon A van Slegtenhorst
- Department of Clinical Genetics (J.M.A.V., M.v.d.B., H.C.v.d.L., L.M.A.v.U., M.H.-W., M.A.v.S., M.W.W., F.W.V., R.M.W.H., T.J.v.H., I.M.B.H.v.d.L.), Erasmus MC, University Medical Center Rotterdam
| | - Marja W Wessels
- Department of Clinical Genetics (J.M.A.V., M.v.d.B., H.C.v.d.L., L.M.A.v.U., M.H.-W., M.A.v.S., M.W.W., F.W.V., R.M.W.H., T.J.v.H., I.M.B.H.v.d.L.), Erasmus MC, University Medical Center Rotterdam
| | - Frans W Verheijen
- Department of Clinical Genetics (J.M.A.V., M.v.d.B., H.C.v.d.L., L.M.A.v.U., M.H.-W., M.A.v.S., M.W.W., F.W.V., R.M.W.H., T.J.v.H., I.M.B.H.v.d.L.), Erasmus MC, University Medical Center Rotterdam
| | - David Hassel
- Department of Medicine III, University Hospital Heidelberg, Germany (D.H.)
| | - Robert M W Hofstra
- Department of Clinical Genetics (J.M.A.V., M.v.d.B., H.C.v.d.L., L.M.A.v.U., M.H.-W., M.A.v.S., M.W.W., F.W.V., R.M.W.H., T.J.v.H., I.M.B.H.v.d.L.), Erasmus MC, University Medical Center Rotterdam
| | - Ramanujan S Hegde
- Medical Research Council Laboratory of Molecular Biology, Cambridge Biomedical Campus, United Kingdom (M.H.K., R.S.H.)
| | - Peter M van Hasselt
- Department of Pediatrics (P.M.v.H.), University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Tjakko J van Ham
- Department of Clinical Genetics (J.M.A.V., M.v.d.B., H.C.v.d.L., L.M.A.v.U., M.H.-W., M.A.v.S., M.W.W., F.W.V., R.M.W.H., T.J.v.H., I.M.B.H.v.d.L.), Erasmus MC, University Medical Center Rotterdam
| | - Ingrid M B H van de Laar
- Department of Clinical Genetics (J.M.A.V., M.v.d.B., H.C.v.d.L., L.M.A.v.U., M.H.-W., M.A.v.S., M.W.W., F.W.V., R.M.W.H., T.J.v.H., I.M.B.H.v.d.L.), Erasmus MC, University Medical Center Rotterdam
| |
Collapse
|
5
|
Coy-Vergara J, Rivera-Monroy J, Urlaub H, Lenz C, Schwappach B. A trap mutant reveals the physiological client spectrum of TRC40. J Cell Sci 2019; 132:jcs.230094. [PMID: 31182645 PMCID: PMC6633398 DOI: 10.1242/jcs.230094] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 05/31/2019] [Indexed: 12/13/2022] Open
Abstract
The transmembrane recognition complex (TRC) pathway targets tail-anchored (TA) proteins to the membrane of the endoplasmic reticulum (ER). While many TA proteins are known to be able to use this pathway, it is essential for the targeting of only a few. Here, we uncover a large number of TA proteins that engage with TRC40 when other targeting machineries are fully operational. We use a dominant-negative ATPase-impaired mutant of TRC40 in which aspartate 74 was replaced by a glutamate residue to trap TA proteins in the cytoplasm. Manipulation of the hydrophobic TA-binding groove in TRC40 (also known as ASNA1) reduces interaction with most, but not all, substrates suggesting that co-purification may also reflect interactions unrelated to precursor protein targeting. We confirm known TRC40 substrates and identify many additional TA proteins interacting with TRC40. By using the trap approach in combination with quantitative mass spectrometry, we show that Golgi-resident TA proteins such as the golgins golgin-84, CASP and giantin as well as the vesicle-associated membrane-protein-associated proteins VAPA and VAPB interact with TRC40. Thus, our results provide new avenues to assess the essential role of TRC40 in metazoan organisms. This article has an associated First Person interview with the first author of the paper. Summary: A strategy to decipher which tail-anchored proteins do (as opposed to can or must) use the TRC pathway in intact cells generates a comprehensive list of human TRC40 clients.
Collapse
Affiliation(s)
- Javier Coy-Vergara
- Department of Molecular Biology, University Medical Center Göttingen, Göttingen 37073, Germany
| | - Jhon Rivera-Monroy
- Department of Molecular Biology, University Medical Center Göttingen, Göttingen 37073, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Göttingen 37077, Germany.,Bioanalytics Group, Institute of Clinical Chemistry, University Medical Center Göttingen, Göttingen 37077, Germany
| | - Christof Lenz
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Göttingen 37077, Germany.,Bioanalytics Group, Institute of Clinical Chemistry, University Medical Center Göttingen, Göttingen 37077, Germany
| | - Blanche Schwappach
- Department of Molecular Biology, University Medical Center Göttingen, Göttingen 37073, Germany .,Max Planck Institute for Biophysical Chemistry, Göttingen 37077, Germany
| |
Collapse
|