1
|
Mizuno K, Hirashima T, Toda S. Robust tissue pattern formation by coupling morphogen signal and cell adhesion. EMBO Rep 2024; 25:4803-4826. [PMID: 39333626 DOI: 10.1038/s44319-024-00261-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 08/23/2024] [Accepted: 08/29/2024] [Indexed: 09/29/2024] Open
Abstract
Morphogens, locally produced signaling molecules, form a concentration gradient to guide tissue patterning. Tissue patterns emerge as a collaboration between morphogen diffusion and responsive cell behaviors, but the mechanisms through which diffusing morphogens define precise spatial patterns amidst biological fluctuations remain unclear. To investigate how cells respond to diffusing proteins to generate tissue patterns, we develop SYMPLE3D, a 3D culture platform. By engineering gene expression responsive to artificial morphogens, we observe that coupling morphogen signals with cadherin-based adhesion is sufficient to convert a morphogen gradient into distinct tissue domains. Morphogen-induced cadherins gather activated cells into a single domain, removing ectopically activated cells. In addition, we reveal a switch-like induction of cadherin-mediated compaction and cell mixing, homogenizing activated cells within the morphogen gradient to form a uniformly activated domain with a sharp boundary. These findings highlight the cooperation between morphogen gradients and cell adhesion in robust tissue patterning and introduce a novel method for tissue engineering to develop new tissue domains in organoids.
Collapse
Affiliation(s)
- Kosuke Mizuno
- WPI Nano Life Science Institute (NanoLSI), Kanazawa University, Kanazawa, Ishikawa, Japan
- Graduate School of Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa, Japan
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Tsuyoshi Hirashima
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore.
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| | - Satoshi Toda
- WPI Nano Life Science Institute (NanoLSI), Kanazawa University, Kanazawa, Ishikawa, Japan.
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan.
| |
Collapse
|
2
|
Hao K, Barrett M, Samadi Z, Zarezadeh A, McGrath Y, Askary A. Reconstructing signaling history of single cells with imaging-based molecular recording. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.11.617908. [PMID: 39416000 PMCID: PMC11482953 DOI: 10.1101/2024.10.11.617908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The intensity and duration of biological signals encode information that allows a few pathways to regulate a wide array of cellular behaviors. Despite the central importance of signaling in biomedical research, our ability to quantify it in individual cells over time remains limited. Here, we introduce INSCRIBE, an approach for reconstructing signaling history in single cells using endpoint fluorescence images. By regulating a CRISPR base editor, INSCRIBE generates mutations in genomic target sequences, at a rate proportional to signaling activity. The number of edits is then recovered through a novel ratiometric readout strategy, from images of two fluorescence channels. We engineered human cell lines for recording WNT and BMP pathway activity, and demonstrated that INSCRIBE faithfully recovers both the intensity and duration of signaling. Further, we used INSCRIBE to study the variability of cellular response to WNT and BMP stimulation, and test whether the magnitude of response is a stable, heritable trait. We found a persistent memory in the BMP pathway. Progeny of cells with higher BMP response levels are likely to respond more strongly to a second BMP stimulation, up to 3 weeks later. Together, our results establish a scalable platform for genetic recording and in situ readout of signaling history in single cells, advancing quantitative analysis of cell-cell communication during development and disease.
Collapse
Affiliation(s)
- Kai Hao
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA
| | - Mykel Barrett
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA
| | - Zainalabedin Samadi
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA
| | - Amirhossein Zarezadeh
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA
| | - Yuka McGrath
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA
| | - Amjad Askary
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA
| |
Collapse
|
3
|
Ramirez Flores RO, Schäfer PSL, Küchenhoff L, Saez-Rodriguez J. Complementing Cell Taxonomies with a Multicellular Analysis of Tissues. Physiology (Bethesda) 2024; 39:0. [PMID: 38319138 DOI: 10.1152/physiol.00001.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 01/31/2024] [Indexed: 02/07/2024] Open
Abstract
The application of single-cell molecular profiling coupled with spatial technologies has enabled charting of cellular heterogeneity in reference tissues and in disease. This new wave of molecular data has highlighted the expected diversity of single-cell dynamics upon shared external queues and spatial organizations. However, little is known about the relationship between single-cell heterogeneity and the emergence and maintenance of robust multicellular processes in developed tissues and its role in (patho)physiology. Here, we present emerging computational modeling strategies that use increasingly available large-scale cross-condition single-cell and spatial datasets to study multicellular organization in tissues and complement cell taxonomies. This perspective should enable us to better understand how cells within tissues collectively process information and adapt synchronized responses in disease contexts and to bridge the gap between structural changes and functions in tissues.
Collapse
Affiliation(s)
- Ricardo Omar Ramirez Flores
- Faculty of Medicine, Heidelberg University and Institute for Computational Biomedicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Philipp Sven Lars Schäfer
- Faculty of Medicine, Heidelberg University and Institute for Computational Biomedicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Leonie Küchenhoff
- Faculty of Medicine, Heidelberg University and Institute for Computational Biomedicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Julio Saez-Rodriguez
- Faculty of Medicine, Heidelberg University and Institute for Computational Biomedicine, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
4
|
Gauquelin E, Kuromiya K, Namba T, Ikawa K, Fujita Y, Ishihara S, Sugimura K. Mechanical convergence in mixed populations of mammalian epithelial cells. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2024; 47:21. [PMID: 38538808 PMCID: PMC10973031 DOI: 10.1140/epje/s10189-024-00415-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/05/2024] [Indexed: 04/09/2024]
Abstract
Tissues consist of cells with different molecular and/or mechanical properties. Measuring the forces and stresses in mixed-cell populations is essential for understanding the mechanisms by which tissue development, homeostasis, and disease emerge from the cooperation of distinct cell types. However, many previous studies have primarily focused their mechanical measurements on dissociated cells or aggregates of a single-cell type, leaving the mechanics of mixed-cell populations largely unexplored. In the present study, we aimed to elucidate the influence of interactions between different cell types on cell mechanics by conducting in situ mechanical measurements on a monolayer of mammalian epithelial cells. Our findings revealed that while individual cell types displayed varying magnitudes of traction and intercellular stress before mixing, these mechanical values shifted in the mixed monolayer, becoming nearly indistinguishable between the cell types. Moreover, by analyzing a mixed-phase model of active tissues, we identified physical conditions under which such mechanical convergence is induced. Overall, the present study underscores the importance of in situ mechanical measurements in mixed-cell populations to deepen our understanding of the mechanics of multicellular systems.
Collapse
Affiliation(s)
- Estelle Gauquelin
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0032, Japan
| | - Keisuke Kuromiya
- Department of Molecular Oncology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Toshinori Namba
- Universal Biology Institute, The University of Tokyo, Tokyo, 113-0033, Japan
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, 153-0041, Japan
| | - Keisuke Ikawa
- Division of Biological Science, Graduate School of Science, Nagoya University, Aichi, 464-8602, Japan
| | - Yasuyuki Fujita
- Department of Molecular Oncology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Shuji Ishihara
- Universal Biology Institute, The University of Tokyo, Tokyo, 113-0033, Japan.
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, 153-0041, Japan.
| | - Kaoru Sugimura
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0032, Japan.
- Universal Biology Institute, The University of Tokyo, Tokyo, 113-0033, Japan.
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, 277-8561, Japan.
| |
Collapse
|
5
|
Rodrigues-Junior DM, Moustakas A. Unboxing the network among long non-coding RNAs and TGF-β signaling in cancer. Ups J Med Sci 2024; 129:10614. [PMID: 38571882 PMCID: PMC10989219 DOI: 10.48101/ujms.v129.10614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 02/24/2024] [Accepted: 02/24/2024] [Indexed: 04/05/2024] Open
Abstract
Deeper analysis of molecular mechanisms arising in tumor cells is an unmet need to provide new diagnostic and therapeutic strategies to prevent and treat tumors. The transforming growth factor β (TGF-β) signaling has been steadily featured in tumor biology and linked to poor prognosis of cancer patients. One pro-tumorigenic mechanism induced by TGF-β is the epithelial-to-mesenchymal transition (EMT), which can initiate cancer dissemination, enrich the tumor stem cell population, and increase chemoresistance. TGF-β signals via SMAD proteins, ubiquitin ligases, and protein kinases and modulates the expression of protein-coding and non-coding RNA genes, including those encoding larger than 500 nt transcripts, defined as long non-coding RNAs (lncRNAs). Several reports have shown lncRNAs regulating malignant phenotypes by directly affecting epigenetic processes, transcription, and post-transcriptional regulation. Thus, this review aims to update and summarize the impact of TGF-β signaling on the expression of lncRNAs and the function of such lncRNAs as regulators of TGF-β signaling, and how these networks might impact specific hallmarks of cancer.
Collapse
Affiliation(s)
| | - Aristidis Moustakas
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
6
|
Hu Q, Xu Y, Song M, Dai Y, Antebi A, Shen Y. BLMP-1 is a critical temporal regulator of dietary-restriction-induced response in Caenorhabditis elegans. Cell Rep 2024; 43:113959. [PMID: 38483903 DOI: 10.1016/j.celrep.2024.113959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 02/07/2024] [Accepted: 02/28/2024] [Indexed: 04/02/2024] Open
Abstract
The extrinsic diet and the intrinsic developmental programs are intertwined. Although extensive research has been conducted on how nutrition regulates development, whether and how developmental programs control the timing of nutritional responses remain barely known. Here, we report that a developmental timing regulator, BLMP-1/BLIMP1, governs the temporal response to dietary restriction (DR). At the end of larval development, BLMP-1 is induced and interacts with DR-activated PHA-4/FOXA, a key transcription factor responding to the reduced nutrition. By integrating temporal and nutritional signaling, the DR response regulates many development-related genes, including gska-3/GSK3β, through BLMP-1-PHA-4 at the onset of adulthood. Upon DR, a precocious activation of BLMP-1 in early larval stages impairs neuronal development through gska-3, whereas the increase of gska-3 by BLMP-1-PHA-4 at the last larval stage suppresses WNT signaling in adulthood for DR-induced longevity. Our findings reveal a temporal checkpoint of the DR response that protects larval development and promotes adult health.
Collapse
Affiliation(s)
- Qingyuan Hu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunpeng Xu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengjiao Song
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yumin Dai
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Adam Antebi
- Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50674 Cologne, Germany
| | - Yidong Shen
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
7
|
Rahman SMT, Singh A, Lowe S, Aqdas M, Jiang K, Vaidehi Narayanan H, Hoffmann A, Sung MH. Co-imaging of RelA and c-Rel reveals features of NF-κB signaling for ligand discrimination. Cell Rep 2024; 43:113940. [PMID: 38483906 PMCID: PMC11015162 DOI: 10.1016/j.celrep.2024.113940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 12/11/2023] [Accepted: 02/23/2024] [Indexed: 04/02/2024] Open
Abstract
Individual cell sensing of external cues has evolved through the temporal patterns in signaling. Since nuclear factor κB (NF-κB) signaling dynamics have been examined using a single subunit, RelA, it remains unclear whether more information might be transmitted via other subunits. Using NF-κB double-knockin reporter mice, we monitored both canonical NF-κB subunits, RelA and c-Rel, simultaneously in single macrophages by quantitative live-cell imaging. We show that signaling features of RelA and c-Rel convey more information about the stimuli than those of either subunit alone. Machine learning is used to predict the ligand identity accurately based on RelA and c-Rel signaling features without considering the co-activated factors. Ligand discrimination is achieved through selective non-redundancy of RelA and c-Rel signaling dynamics, as well as their temporal coordination. These results suggest a potential role of c-Rel in fine-tuning immune responses and highlight the need for approaches that will elucidate the mechanisms regulating NF-κB subunit specificity.
Collapse
Affiliation(s)
- Shah Md Toufiqur Rahman
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Apeksha Singh
- Institute for Quantitative and Computational Biosciences and Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Sarina Lowe
- Institute for Quantitative and Computational Biosciences and Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Mohammad Aqdas
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Kevin Jiang
- Institute for Quantitative and Computational Biosciences and Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Haripriya Vaidehi Narayanan
- Institute for Quantitative and Computational Biosciences and Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Alexander Hoffmann
- Institute for Quantitative and Computational Biosciences and Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Myong-Hee Sung
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| |
Collapse
|
8
|
Attrill H, Antonazzo G, Goodman JL, Thurmond J, Strelets VB, Brown NH, the FlyBase Consortium. A new experimental evidence-weighted signaling pathway resource in FlyBase. Development 2024; 151:dev202255. [PMID: 38230566 PMCID: PMC10911275 DOI: 10.1242/dev.202255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 01/09/2024] [Indexed: 01/18/2024]
Abstract
Research in model organisms is central to the characterization of signaling pathways in multicellular organisms. Here, we present the comprehensive and systematic curation of 17 Drosophila signaling pathways using the Gene Ontology framework to establish a dynamic resource that has been incorporated into FlyBase, providing visualization and data integration tools to aid research projects. By restricting to experimental evidence reported in the research literature and quantifying the amount of such evidence for each gene in a pathway, we captured the landscape of empirical knowledge of signaling pathways in Drosophila.
Collapse
Affiliation(s)
- Helen Attrill
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Giulia Antonazzo
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Joshua L. Goodman
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Jim Thurmond
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | | | - Nicholas H. Brown
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | | |
Collapse
|
9
|
Kögler AC, Müller P. Modes and motifs in multicellular communication. Cell Syst 2024; 15:1-3. [PMID: 38237550 DOI: 10.1016/j.cels.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 01/23/2024]
Abstract
Signaling pathways feature multiple interacting ligand and receptor variants, which are thought to act in a combinatorial manner to elicit different cellular responses. Transcriptome analyses now suggest that many signaling pathways use their components in combinations that are surprisingly often shared between otherwise dissimilar cell states.
Collapse
|
10
|
Granados AA, Kanrar N, Elowitz MB. Combinatorial expression motifs in signaling pathways. CELL GENOMICS 2024; 4:100463. [PMID: 38216284 PMCID: PMC10794782 DOI: 10.1016/j.xgen.2023.100463] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 08/02/2023] [Accepted: 11/15/2023] [Indexed: 01/14/2024]
Abstract
In animal cells, molecular pathways often comprise families of variant components, such as ligands or receptors. These pathway components are differentially expressed by different cell types, potentially tailoring pathway function to cell context. However, it has remained unclear how pathway expression profiles are distributed across cell types and whether similar profiles can occur in dissimilar cell types. Here, using single-cell gene expression datasets, we identified pathway expression motifs, defined as recurrent expression profiles that are broadly distributed across diverse cell types. Motifs appeared in core pathways, including TGF-β, Notch, Wnt, and the SRSF splice factors, and involved combinatorial co-expression of multiple components. Motif usage was weakly correlated between pathways in adult cell types and during dynamic developmental transitions. Together, these results suggest a mosaic view of cell type organization, in which different cell types operate many of the same pathways in distinct modes.
Collapse
Affiliation(s)
- Alejandro A Granados
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Howard Hughes Medical Institute and Department of Applied Physics, California Institute of Technology, Pasadena, CA 91125, USA
| | - Nivedita Kanrar
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Howard Hughes Medical Institute and Department of Applied Physics, California Institute of Technology, Pasadena, CA 91125, USA
| | - Michael B Elowitz
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Howard Hughes Medical Institute and Department of Applied Physics, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
11
|
Sanders JG, Akl H, Hagen SJ, Xue B. Crosstalk enables mutual activation of coupled quorum sensing pathways through "jump-start" and "push-start" mechanisms. Sci Rep 2023; 13:19230. [PMID: 37932382 PMCID: PMC10628186 DOI: 10.1038/s41598-023-46399-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 10/31/2023] [Indexed: 11/08/2023] Open
Abstract
Many quorum sensing microbes produce more than one chemical signal and detect them using interconnected pathways that crosstalk with each other. While there are many hypotheses for the advantages of sensing multiple signals, the prevalence and functional significance of crosstalk between pathways are much less understood. We explore the effect of intracellular signal crosstalk using a simple model that captures key features of typical quorum sensing pathways: multiple pathways in a hierarchical configuration, operating with positive feedback, with crosstalk at the receptor and promoter levels. We find that crosstalk enables activation or inhibition of one output by the non-cognate signal, broadens the dynamic range of the outputs, and allows one pathway to modulate the feedback circuit of the other. Our findings show how crosstalk between quorum sensing pathways can be viewed not as a detriment to the processing of information, but as a mechanism that enhances the functional range of the full regulatory system. When positive feedback systems are coupled through crosstalk, several new modes of activation or deactivation become possible.
Collapse
Affiliation(s)
| | - Hoda Akl
- Department of Physics, University of Florida, Gainesville, FL, 32611, USA
| | - Stephen J Hagen
- Department of Physics, University of Florida, Gainesville, FL, 32611, USA
| | - BingKan Xue
- Department of Physics, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
12
|
Jernvall J, Di-Poï N, Mikkola ML, Kratochwil CF. Toward a universal measure of robustness across model organs and systems. Evol Dev 2023; 25:410-417. [PMID: 37070415 DOI: 10.1111/ede.12436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 04/03/2023] [Accepted: 04/09/2023] [Indexed: 04/19/2023]
Abstract
The development of an individual must be capable of resisting the harmful effects of internal and external perturbations. This capacity, called robustness, can make the difference between normal variation and disease. Some systems and organs are more resilient in their capacity to correct the effects of internal disturbances such as mutations. Similarly, organs and organisms differ in their capacity to be resilient against external disturbances, such as changes in temperature. Furthermore, all developmental systems must be somewhat flexible to permit evolutionary change, and understanding robustness requires a comparative framework. Over the last decades, most research on developmental robustness has been focusing on specific model systems and organs. Hence, we lack tools that would allow cross-species and cross-organ comparisons. Here, we emphasize the need for a uniform framework to experimentally test and quantify robustness across study systems and suggest that the analysis of fluctuating asymmetry might be a powerful proxy to do so. Such a comparative framework will ultimately help to resolve why and how organs of the same and different species differ in their sensitivity to internal (e.g., mutations) and external (e.g., temperature) perturbations and at what level of biological organization buffering capacities exist and therefore create robustness of the developmental system.
Collapse
Affiliation(s)
- Jukka Jernvall
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
- Department of Geosciences and Geography, University of Helsinki, Helsinki, Finland
| | - Nicolas Di-Poï
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Marja L Mikkola
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | | |
Collapse
|
13
|
Kholodenko BN, Kolch W, Rukhlenko OS. Reversing pathological cell states: the road less travelled can extend the therapeutic horizon. Trends Cell Biol 2023; 33:913-923. [PMID: 37263821 PMCID: PMC10593090 DOI: 10.1016/j.tcb.2023.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/15/2023] [Accepted: 04/17/2023] [Indexed: 06/03/2023]
Abstract
Acquisition of omics data advances at a formidable pace. Yet, our ability to utilize these data to control cell phenotypes and design interventions that reverse pathological states lags behind. Here, we posit that cell states are determined by core networks that control cell-wide networks. To steer cell fate decisions, core networks connecting genotype to phenotype must be reconstructed and understood. A recent method, cell state transition assessment and regulation (cSTAR), applies perturbation biology to quantify causal connections and mechanistically models how core networks influence cell phenotypes. cSTAR models are akin to digital cell twins enabling us to purposefully convert pathological states back to physiologically normal states. While this capability has a range of applications, here we discuss reverting oncogenic transformation.
Collapse
Affiliation(s)
- Boris N Kholodenko
- Systems Biology Ireland, School of Medicine and Medical Science, University College Dublin, Dublin, Ireland; Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin, Ireland; Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA.
| | - Walter Kolch
- Systems Biology Ireland, School of Medicine and Medical Science, University College Dublin, Dublin, Ireland; Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin, Ireland
| | - Oleksii S Rukhlenko
- Systems Biology Ireland, School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
14
|
Zhu J, Chu P, Fu X. Unbalanced response to growth variations reshapes the cell fate decision landscape. Nat Chem Biol 2023; 19:1097-1104. [PMID: 36959461 DOI: 10.1038/s41589-023-01302-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 02/27/2023] [Indexed: 03/25/2023]
Abstract
The global regulation of cell growth rate on gene expression perturbs the performance of gene networks, which would impose complex variations on the cell-fate decision landscape. Here we use a simple synthetic circuit of mutual repression that allows a bistable landscape to examine how such global regulation would affect the stability of phenotypic landscape and the accompanying dynamics of cell-fate determination. We show that the landscape experiences a growth-rate-induced bifurcation between monostability and bistability. Theoretical and experimental analyses reveal that this bifurcating deformation of landscape arises from the unbalanced response of gene expression to growth variations. The path of growth transition across the bifurcation would reshape cell-fate decisions. These results demonstrate the importance of growth regulation on cell-fate determination processes, regardless of specific molecular signaling or regulation.
Collapse
Affiliation(s)
- Jingwen Zhu
- CAS Key Laboratory for Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Pan Chu
- CAS Key Laboratory for Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiongfei Fu
- CAS Key Laboratory for Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
15
|
Hu KH, Kuhn NF, Courau T, Tsui J, Samad B, Ha P, Kratz JR, Combes AJ, Krummel MF. Transcriptional space-time mapping identifies concerted immune and stromal cell patterns and gene programs in wound healing and cancer. Cell Stem Cell 2023; 30:885-903.e10. [PMID: 37267918 PMCID: PMC10843988 DOI: 10.1016/j.stem.2023.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 03/13/2023] [Accepted: 05/02/2023] [Indexed: 06/04/2023]
Abstract
Tissue repair responses in metazoans are highly coordinated by different cell types over space and time. However, comprehensive single-cell-based characterization covering this coordination is lacking. Here, we captured transcriptional states of single cells over space and time during skin wound closure, revealing choreographed gene-expression profiles. We identified shared space-time patterns of cellular and gene program enrichment, which we call multicellular "movements" spanning multiple cell types. We validated some of the discovered space-time movements using large-volume imaging of cleared wounds and demonstrated the value of this analysis to predict "sender" and "receiver" gene programs in macrophages and fibroblasts. Finally, we tested the hypothesis that tumors are like "wounds that never heal" and found conserved wound healing movements in mouse melanoma and colorectal tumor models, as well as human tumor samples, revealing fundamental multicellular units of tissue biology for integrative studies.
Collapse
Affiliation(s)
- Kenneth H Hu
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA; ImmunoX Initiative, University of California, San Francisco, San Francisco, CA 94143, USA.
| | - Nicholas F Kuhn
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA; ImmunoX Initiative, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Tristan Courau
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA; ImmunoX Initiative, University of California, San Francisco, San Francisco, CA 94143, USA; UCSF CoLabs, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jessica Tsui
- ImmunoX Initiative, University of California, San Francisco, San Francisco, CA 94143, USA; UCSF CoLabs, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Otolaryngology Head and Neck Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Bushra Samad
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA; ImmunoX Initiative, University of California, San Francisco, San Francisco, CA 94143, USA; UCSF CoLabs, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Patrick Ha
- Department of Otolaryngology Head and Neck Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Johannes R Kratz
- ImmunoX Initiative, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Alexis J Combes
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA; ImmunoX Initiative, University of California, San Francisco, San Francisco, CA 94143, USA; UCSF CoLabs, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Matthew F Krummel
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA; ImmunoX Initiative, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
16
|
Kirby D, Zilman A. Proofreading does not result in more reliable ligand discrimination in receptor signaling due to its inherent stochasticity. Proc Natl Acad Sci U S A 2023; 120:e2212795120. [PMID: 37192165 PMCID: PMC10214210 DOI: 10.1073/pnas.2212795120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 04/05/2023] [Indexed: 05/18/2023] Open
Abstract
Kinetic proofreading (KPR) has been used as a paradigmatic explanation for the high specificity of ligand discrimination by cellular receptors. KPR enhances the difference in the mean receptor occupancy between different ligands compared to a nonproofread receptor, thus potentially enabling better discrimination. On the other hand, proofreading also attenuates the signal and introduces additional stochastic receptor transitions relative to a nonproofreading receptor. This increases the relative magnitude of noise in the downstream signal, which can interfere with reliable ligand discrimination. To understand the effect of noise on ligand discrimination beyond the comparison of the mean signals, we formulate the task of ligand discrimination as a problem of statistical estimation of the receptor affinity of ligands based on the molecular signaling output. Our analysis reveals that proofreading typically worsens ligand resolution compared to a nonproofread receptor. Furthermore, the resolution decreases further with more proofreading steps under most commonly biologically considered conditions. This contrasts with the usual notion that KPR universally improves ligand discrimination with additional proofreading steps. Our results are consistent across a variety of different proofreading schemes and metrics of performance, suggesting that they are inherent to the KPR mechanism itself rather than any particular model of molecular noise. Based on our results, we suggest alternative roles for KPR schemes such as multiplexing and combinatorial encoding in multi-ligand/multi-output pathways.
Collapse
Affiliation(s)
- Duncan Kirby
- Department of Physics, University of Toronto, 60 St George St, Toronto, ONM5S 1A7, Canada
| | - Anton Zilman
- Department of Physics, University of Toronto, 60 St George St, Toronto, ONM5S 1A7, Canada
- Institute for Biomedical Engineering, University of Toronto, 164 college St, Toronto, ONM5S 1A7, Canada
| |
Collapse
|
17
|
Privalova V, Labecka AM, Szlachcic E, Sikorska A, Czarnoleski M. Systemic changes in cell size throughout the body of Drosophila melanogaster associated with mutations in molecular cell cycle regulators. Sci Rep 2023; 13:7565. [PMID: 37160985 PMCID: PMC10169805 DOI: 10.1038/s41598-023-34674-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/05/2023] [Indexed: 05/11/2023] Open
Abstract
Along with different life strategies, organisms have evolved dramatic cellular composition differences. Understanding the molecular basis and fitness effects of these differences is key to elucidating the fundamental characteristics of life. TOR/insulin pathways are key regulators of cell size, but whether their activity determines cell size in a systemic or tissue-specific manner awaits exploration. To that end, we measured cells in four tissues in genetically modified Drosophila melanogaster (rictorΔ2 and Mnt1) and corresponding controls. While rictorΔ2 flies lacked the Rictor protein in TOR complex 2, downregulating the functions of this element in TOR/insulin pathways, Mnt1 flies lacked the transcriptional regulator protein Mnt, weakening the suppression of downstream signalling from TOR/insulin pathways. rictorΔ2 flies had smaller epidermal (leg and wing) and ommatidial cells and Mnt1 flies had larger cells in these tissues than the controls. Females had consistently larger cells than males in the three tissue types. In contrast, dorsal longitudinal flight muscle cells (measured only in males) were not altered by mutations. We suggest that mutations in cell cycle control pathways drive the evolution of systemic changes in cell size throughout the body, but additional mechanisms shape the cellular composition of some tissues independent of these mutations.
Collapse
Affiliation(s)
- Valeriya Privalova
- Life History Evolution Group, Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Anna Maria Labecka
- Life History Evolution Group, Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Ewa Szlachcic
- Life History Evolution Group, Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Anna Sikorska
- Life History Evolution Group, Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Marcin Czarnoleski
- Life History Evolution Group, Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland.
| |
Collapse
|
18
|
Xie J, Chen Y, Chen S, Long H, Zhang W, Liu G. The potential value of Notch1 and DLL1 in the diagnosis and prognosis of patients with active TB. Front Immunol 2023; 14:1134123. [PMID: 37063841 PMCID: PMC10090694 DOI: 10.3389/fimmu.2023.1134123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/13/2023] [Indexed: 03/31/2023] Open
Abstract
ObjectivesThe Notch signaling pathway has been implicated in the pathogenesis of active tuberculosis (TB), and Th1-type cell-mediated immunity is essential for effective control of mycobacterial infection. However, it remains unclear whether Notch signaling molecules (Notch1, DLL1, and Hes1) and Th1-type factors (T-bet and IFN-γ) can serve as biomarkers for tracking the progression of active TB at different stages along with peripheral blood white blood cell (WBC) parameters.MethodsA total of 60 participants were enrolled in the study, including 37 confirmed TB patients (mild (n=17), moderate/severe (n=20)) and 23 healthy controls. The mRNA expression of Notch1, DLL1, Hes1, T-bet and IFN-γ in the peripheral blood mononuclear cells (PBMCs) of the subjects was measured by RT-qPCR, then analyzed for differences. Receiver Operating Characteristic curve (ROC) was used to assess the effectiveness of each factor as a biomarker in identifying lung injury.ResultsWe found that mRNA expression levels of Notch1, DLL1, and Hes1 were upregulated in active TB patients, with higher levels observed in those with moderate/severe TB than those with mild TB or without TB. In contrast, mRNA levels of T-bet and IFN-γ were downregulated and significantly lower in mild and moderate/severe cases. Furthermore, the combiROC analysis of IFN-γ and the percentage of lymphocytes (L%) among WBC parameters showed superior discriminatory ability compared to other factors for identifying individuals with active TB versus healthy individuals. Notably, Notch pathway molecules were more effective than Th1-type factors and WBC parameters in differentiating mild and moderate/severe cases of active TB, particularly in the combiROC model that included Notch1 and Hes1.ConclusionsOur study demonstrated that Notch1, Hes1, IFN-γ, and L% can be used as biomarkers to identify different stages of active TB patients and to monitor the effectiveness of treatment.
Collapse
|
19
|
Sarma U, Ripka L, Anyaegbunam UA, Legewie S. Modeling Cellular Signaling Variability Based on Single-Cell Data: The TGFβ-SMAD Signaling Pathway. Methods Mol Biol 2023; 2634:215-251. [PMID: 37074581 DOI: 10.1007/978-1-0716-3008-2_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
Nongenetic heterogeneity is key to cellular decisions, as even genetically identical cells respond in very different ways to the same external stimulus, e.g., during cell differentiation or therapeutic treatment of disease. Strong heterogeneity is typically already observed at the level of signaling pathways that are the first sensors of external inputs and transmit information to the nucleus where decisions are made. Since heterogeneity arises from random fluctuations of cellular components, mathematical models are required to fully describe the phenomenon and to understand the dynamics of heterogeneous cell populations. Here, we review the experimental and theoretical literature on cellular signaling heterogeneity, with special focus on the TGFβ/SMAD signaling pathway.
Collapse
Affiliation(s)
- Uddipan Sarma
- Institute of Molecular Biology (IMB), Mainz, Germany
| | - Lorenz Ripka
- Institute of Molecular Biology (IMB), Mainz, Germany
- Department of Systems Biology, Institute for Biomedical Genetics, University of Stuttgart, Stuttgart, Germany
| | - Uchenna Alex Anyaegbunam
- Institute of Molecular Biology (IMB), Mainz, Germany
- Department of Systems Biology, Institute for Biomedical Genetics, University of Stuttgart, Stuttgart, Germany
| | - Stefan Legewie
- Institute of Molecular Biology (IMB), Mainz, Germany.
- Department of Systems Biology, Institute for Biomedical Genetics, University of Stuttgart, Stuttgart, Germany.
- Stuttgart Research Center for Systems Biology, University of Stuttgart, Stuttgart, Germany.
| |
Collapse
|
20
|
Thiemicke A, Neuert G. Rate thresholds in cell signaling have functional and phenotypic consequences in non-linear time-dependent environments. Front Cell Dev Biol 2023; 11:1124874. [PMID: 37025183 PMCID: PMC10072286 DOI: 10.3389/fcell.2023.1124874] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/08/2023] [Indexed: 04/08/2023] Open
Abstract
All cells employ signal transduction pathways to respond to physiologically relevant extracellular cytokines, stressors, nutrient levels, hormones, morphogens, and other stimuli that vary in concentration and rate in healthy and diseased states. A central unsolved fundamental question in cell signaling is whether and how cells sense and integrate information conveyed by changes in the rate of extracellular stimuli concentrations, in addition to the absolute difference in concentration. We propose that different environmental changes over time influence cell behavior in addition to different signaling molecules or different genetic backgrounds. However, most current biomedical research focuses on acute environmental changes and does not consider how cells respond to environments that change slowly over time. As an example of such environmental change, we review cell sensitivity to environmental rate changes, including the novel mechanism of rate threshold. A rate threshold is defined as a threshold in the rate of change in the environment in which a rate value below the threshold does not activate signaling and a rate value above the threshold leads to signal activation. We reviewed p38/Hog1 osmotic stress signaling in yeast, chemotaxis and stress response in bacteria, cyclic adenosine monophosphate signaling in Amoebae, growth factors signaling in mammalian cells, morphogen dynamics during development, temporal dynamics of glucose and insulin signaling, and spatio-temproral stressors in the kidney. These reviewed examples from the literature indicate that rate thresholds are widespread and an underappreciated fundamental property of cell signaling. Finally, by studying cells in non-linear environments, we outline future directions to understand cell physiology better in normal and pathophysiological conditions.
Collapse
Affiliation(s)
- Alexander Thiemicke
- Department of Molecular Physiology and Biophysics, School of Medicine, Vanderbilt University, Nashville, TN, United States
- Program in Chemical and Physical Biology, Vanderbilt University, Nashville, TN, United States
| | - Gregor Neuert
- Department of Molecular Physiology and Biophysics, School of Medicine, Vanderbilt University, Nashville, TN, United States
- Program in Chemical and Physical Biology, Vanderbilt University, Nashville, TN, United States
- Department of Biomedical Engineering, School of Engineering, Vanderbilt University, Nashville, TN, United States
- Department of Pharmacology, School of Medicine, Vanderbilt University, Nashville, TN, United States
- *Correspondence: Gregor Neuert,
| |
Collapse
|
21
|
Schnirman RE, Kuo SJ, Kelly RC, Yamaguchi TP. The role of Wnt signaling in the development of the epiblast and axial progenitors. Curr Top Dev Biol 2023; 153:145-180. [PMID: 36967193 DOI: 10.1016/bs.ctdb.2023.01.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Understanding how the body plan is established during embryogenesis remains a fundamental biological question. The Wnt/β-catenin signaling pathway plays a crucial and highly conserved role in body plan formation, functioning to polarize the primary anterior-posterior (AP) or head-to-tail body axis in most metazoans. In this chapter, we focus on the roles that the mammalian Wnt/β-catenin pathway plays to prepare the pluripotent epiblast for gastrulation, and to elicit the emergence of multipotent axial progenitors from the caudal epiblast. Interactions between Wnt and retinoic acid (RA), another powerful family of developmental signaling molecules, in axial progenitors will also be discussed. Gastrulation movements and somitogenesis result in the anterior displacement of the RA source (the rostral somites and lateral plate mesoderm (LPM)), from the posterior Wnt source (the primitive streak (PS)), leading to the establishment of antiparallel gradients of RA and Wnt that control the self-renewal and successive differentiation of neck, trunk and tail progenitors.
Collapse
Affiliation(s)
| | - Samuel J Kuo
- NCI-Frederick, NIH, Frederick, MD, United States
| | - Ryan C Kelly
- NCI-Frederick, NIH, Frederick, MD, United States
| | | |
Collapse
|
22
|
Abstract
Metazoan embryos develop from a single cell into three-dimensional structured organisms while groups of genetically identical cells attain specialized identities. Cells of the developing embryo both create and accurately interpret morphogen gradients to determine their positions and make specific decisions in response. Here, we first cover intellectual roots of morphogen and positional information concepts. Focusing on animal embryos, we then provide a review of current understanding on how morphogen gradients are established and how their spans are controlled. Lastly, we cover how gradients evolve in time and space during development, and how they encode information to control patterning. In sum, we provide a list of patterning principles for morphogen gradients and review recent advances in quantitative methodologies elucidating information provided by morphogens.
Collapse
Affiliation(s)
- M. Fethullah Simsek
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Ertuğrul M. Özbudak
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| |
Collapse
|
23
|
Casani-Galdon P, Garcia-Ojalvo J. Signaling oscillations: Molecular mechanisms and functional roles. Curr Opin Cell Biol 2022; 78:102130. [PMID: 36130445 DOI: 10.1016/j.ceb.2022.102130] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/21/2022] [Accepted: 08/19/2022] [Indexed: 01/31/2023]
Abstract
Mounting evidence shows that oscillatory activity is widespread in cell signaling. Here, we review some of this recent evidence, focusing on both the molecular mechanisms that potentially underlie such dynamical behavior, and the potential advantages that signaling oscillations might have in cell function. The biological processes considered include cellular differentiation and tissue maintenance, intermittent responses in pluripotent stem cells, and collective cell migration during wound healing. With the aid of mathematical modeling, we review recent examples in which delayed negative feedback has been seen to act as a unifying principle that underpins this wide variety of phenomena.
Collapse
Affiliation(s)
- Pablo Casani-Galdon
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona Biomedical Research Park, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Jordi Garcia-Ojalvo
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona Biomedical Research Park, Dr. Aiguader 88, 08003 Barcelona, Spain.
| |
Collapse
|
24
|
Copeland J, Wilson K, Simoes-Costa M. Micromanaging pattern formation: miRNA regulation of signaling systems in vertebrate development. FEBS J 2022; 289:5166-5175. [PMID: 34310060 DOI: 10.1111/febs.16139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/14/2021] [Accepted: 07/23/2021] [Indexed: 11/29/2022]
Abstract
Early embryogenesis requires the establishment of fields of progenitor cells with distinct molecular signatures. A balance of intrinsic and extrinsic cues determines the boundaries of embryonic territories and pushes progenitor cells toward different fates. This process involves multiple layers of regulation, including signaling systems, transcriptional networks, and post-transcriptional control. In recent years, microRNAs (miRNAs) have emerged as undisputed regulators of developmental processes. Here, we discuss how miRNAs regulate pattern formation during vertebrate embryogenesis. We survey how miRNAs modulate the activity of signaling pathways to optimize transcriptional responses in embryonic cells. We also examine how localized RNA interference can generate spatial complexity during early development. Unraveling the complex crosstalk between miRNAs, signaling systems and cell fate decisions will be crucial for our understanding of developmental outcomes and disease.
Collapse
Affiliation(s)
- Jacqueline Copeland
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Kayla Wilson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Marcos Simoes-Costa
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| |
Collapse
|
25
|
Abstract
Embryonic development hinges on effective coordination of molecular events across space and time. Waves have recently emerged as constituting an ubiquitous mechanism that ensures rapid spreading of regulatory signals across embryos, as well as reliable control of their patterning, namely, for the emergence of body plan structures. In this article, we review a selection of recent quantitative work on signaling waves and present an overview of the theory of waves. Our aim is to provide a succinct yet comprehensive guiding reference for the theoretical frameworks by which signaling waves can arise in embryos. We start, then, from reaction-diffusion systems, both static and time dependent; move to excitable dynamics; and conclude with systems of coupled oscillators. We link these theoretical models to molecular mechanisms recently elucidated for the control of mitotic waves in early embryos, patterning of the vertebrate body axis, micropattern cultures, and bone regeneration. Our goal is to inspire experimental work that will advance theory in development and connect its predictions to quantitative biological observations.
Collapse
Affiliation(s)
- Stefano Di Talia
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, USA
| | - Massimo Vergassola
- Laboratoire de physique de l'École Normale Supérieure, CNRS, PSL Research University, Sorbonne Université, Paris, France;
- Department of Physics, University of California, San Diego, California, USA
| |
Collapse
|
26
|
Akiyama T, Seidel CW, Gibson MC. The feedback regulator nord controls Dpp/BMP signaling via extracellular interaction with dally in the Drosophila wing. Dev Biol 2022; 488:91-103. [DOI: 10.1016/j.ydbio.2022.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 11/27/2022]
|
27
|
Sears KE, Gullapalli K, Trivedi D, Mihas A, Bukys MA, Jensen J. Controlling neural territory patterning from pluripotency using a systems developmental biology approach. iScience 2022; 25:104133. [PMID: 35434550 PMCID: PMC9010746 DOI: 10.1016/j.isci.2022.104133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 06/09/2021] [Accepted: 03/17/2022] [Indexed: 11/18/2022] Open
Abstract
Successful manufacture of specialized human cells requires process understanding of directed differentiation. Here, we apply high-dimensional Design of Experiments (HD-DoE) methodology to identify critical process parameters (CPPs) that govern neural territory patterning from pluripotency—the first stage toward specification of central nervous system (CNS) cell fates. Using computerized experimental design, 7 developmental signaling pathways were simultaneously perturbed in human pluripotent stem cell culture. Regionally specific genes spanning the anterior-posterior and dorsal-ventral axes of the developing embryo were measured after 3 days and mathematical models describing pathway control were developed using regression analysis. High-dimensional models revealed particular combinations of signaling inputs that induce expression profiles consistent with emerging CNS territories and defined CPPs for anterior and posterior neuroectoderm patterning. The results demonstrate the importance of combinatorial control during neural induction and challenge the use of generic neural induction strategies such as dual-SMAD inhibition, when seeking to specify particular lineages from pluripotency. Mathematical models describe pathway control of neuroectoderm marker expression Stage 1 media conditions optimized for regionally specific neuroectoderm in 3 days Optimized conditions are more consistent than dual-SMADi across hiPSC lines
Collapse
|
28
|
Ma Y, Budde MW, Mayalu MN, Zhu J, Lu AC, Murray RM, Elowitz MB. Synthetic mammalian signaling circuits for robust cell population control. Cell 2022; 185:967-979.e12. [PMID: 35235768 PMCID: PMC8995209 DOI: 10.1016/j.cell.2022.01.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/18/2021] [Accepted: 01/28/2022] [Indexed: 01/23/2023]
Abstract
In multicellular organisms, cells actively sense and control their own population density. Synthetic mammalian quorum-sensing circuits could provide insight into principles of population control and extend cell therapies. However, a key challenge is reducing their inherent sensitivity to "cheater" mutations that evade control. Here, we repurposed the plant hormone auxin to enable orthogonal mammalian cell-cell communication and quorum sensing. We designed a paradoxical population control circuit, termed "Paradaux," in which auxin stimulates and inhibits net cell growth at different concentrations. This circuit limited population size over extended timescales of up to 42 days of continuous culture. By contrast, when operating in a non-paradoxical regime, population control became more susceptible to mutational escape. These results establish auxin as a versatile "private" communication system and demonstrate that paradoxical circuit architectures can provide robust population control.
Collapse
Affiliation(s)
- Yitong Ma
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Mark W Budde
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Primordium Labs, Arcadia, CA 91006, USA
| | - Michaëlle N Mayalu
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125, USA
| | - Junqin Zhu
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Andrew C Lu
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Richard M Murray
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125, USA
| | - Michael B Elowitz
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125, USA; Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
29
|
Raina D, Fabris F, Morelli LG, Schröter C. Intermittent ERK oscillations downstream of FGF in mouse embryonic stem cells. Development 2022; 149:dev199710. [PMID: 35175328 PMCID: PMC8918804 DOI: 10.1242/dev.199710] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 12/31/2021] [Indexed: 01/20/2023]
Abstract
Signal transduction networks generate characteristic dynamic activities to process extracellular signals and guide cell fate decisions such as to divide or differentiate. The differentiation of pluripotent cells is controlled by FGF/ERK signaling. However, only a few studies have addressed the dynamic activity of the FGF/ERK signaling network in pluripotent cells at high time resolution. Here, we use live cell sensors in wild-type and Fgf4-mutant mouse embryonic stem cells to measure dynamic ERK activity in single cells, for defined ligand concentrations and differentiation states. These sensors reveal pulses of ERK activity. Pulsing patterns are heterogeneous between individual cells. Consecutive pulse sequences occur more frequently than expected from simple stochastic models. Sequences become more prevalent with higher ligand concentration, but are rarer in more differentiated cells. Our results suggest that FGF/ERK signaling operates in the vicinity of a transition point between oscillatory and non-oscillatory dynamics in embryonic stem cells. The resulting heterogeneous dynamic signaling activities add a new dimension to cellular heterogeneity that may be linked to divergent fate decisions in stem cell cultures.
Collapse
Affiliation(s)
- Dhruv Raina
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227 Dortmund, Germany
| | - Fiorella Fabris
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)–CONICET–Partner Institute of the Max Planck Society, Polo Científico Tecnológico, Godoy Cruz 2390, C1425FQD Buenos Aires, Argentina
| | - Luis G. Morelli
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227 Dortmund, Germany
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)–CONICET–Partner Institute of the Max Planck Society, Polo Científico Tecnológico, Godoy Cruz 2390, C1425FQD Buenos Aires, Argentina
- Departamento de Física, FCEyN UBA, Ciudad Universitaria, 1428 Buenos Aires, Argentina
| | - Christian Schröter
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227 Dortmund, Germany
| |
Collapse
|
30
|
Heydari T, A. Langley M, Fisher CL, Aguilar-Hidalgo D, Shukla S, Yachie-Kinoshita A, Hughes M, M. McNagny K, Zandstra PW. IQCELL: A platform for predicting the effect of gene perturbations on developmental trajectories using single-cell RNA-seq data. PLoS Comput Biol 2022; 18:e1009907. [PMID: 35213533 PMCID: PMC8906617 DOI: 10.1371/journal.pcbi.1009907] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 03/09/2022] [Accepted: 02/08/2022] [Indexed: 01/03/2023] Open
Abstract
The increasing availability of single-cell RNA-sequencing (scRNA-seq) data from various developmental systems provides the opportunity to infer gene regulatory networks (GRNs) directly from data. Herein we describe IQCELL, a platform to infer, simulate, and study executable logical GRNs directly from scRNA-seq data. Such executable GRNs allow simulation of fundamental hypotheses governing developmental programs and help accelerate the design of strategies to control stem cell fate. We first describe the architecture of IQCELL. Next, we apply IQCELL to scRNA-seq datasets from early mouse T-cell and red blood cell development, and show that the platform can infer overall over 74% of causal gene interactions previously reported from decades of research. We will also show that dynamic simulations of the generated GRN qualitatively recapitulate the effects of known gene perturbations. Finally, we implement an IQCELL gene selection pipeline that allows us to identify candidate genes, without prior knowledge. We demonstrate that GRN simulations based on the inferred set yield results similar to the original curated lists. In summary, the IQCELL platform offers a versatile tool to infer, simulate, and study executable GRNs in dynamic biological systems.
Collapse
Affiliation(s)
- Tiam Heydari
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Matthew A. Langley
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Cynthia L. Fisher
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Daniel Aguilar-Hidalgo
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Shreya Shukla
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Notch Therapeutics, Vancouver, British Columbia, Canada
| | - Ayako Yachie-Kinoshita
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Michael Hughes
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Kelly M. McNagny
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Peter W. Zandstra
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
31
|
Signalling dynamics in embryonic development. Biochem J 2021; 478:4045-4070. [PMID: 34871368 PMCID: PMC8718268 DOI: 10.1042/bcj20210043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/10/2021] [Accepted: 11/15/2021] [Indexed: 02/08/2023]
Abstract
In multicellular organisms, cellular behaviour is tightly regulated to allow proper embryonic development and maintenance of adult tissue. A critical component in this control is the communication between cells via signalling pathways, as errors in intercellular communication can induce developmental defects or diseases such as cancer. It has become clear over the last years that signalling is not static but varies in activity over time. Feedback mechanisms present in every signalling pathway lead to diverse dynamic phenotypes, such as transient activation, signal ramping or oscillations, occurring in a cell type- and stage-dependent manner. In cells, such dynamics can exert various functions that allow organisms to develop in a robust and reproducible way. Here, we focus on Erk, Wnt and Notch signalling pathways, which are dynamic in several tissue types and organisms, including the periodic segmentation of vertebrate embryos, and are often dysregulated in cancer. We will discuss how biochemical processes influence their dynamics and how these impact on cellular behaviour within multicellular systems.
Collapse
|
32
|
Kirby D, Parmar B, Fathi S, Marwah S, Nayak CR, Cherepanov V, MacParland S, Feld JJ, Altan-Bonnet G, Zilman A. Determinants of Ligand Specificity and Functional Plasticity in Type I Interferon Signaling. Front Immunol 2021; 12:748423. [PMID: 34691060 PMCID: PMC8529159 DOI: 10.3389/fimmu.2021.748423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/14/2021] [Indexed: 11/13/2022] Open
Abstract
The Type I Interferon family of cytokines all act through the same cell surface receptor and induce phosphorylation of the same subset of response regulators of the STAT family. Despite their shared receptor, different Type I Interferons have different functions during immune response to infection. In particular, they differ in the potency of their induced anti-viral and anti-proliferative responses in target cells. It remains not fully understood how these functional differences can arise in a ligand-specific manner both at the level of STAT phosphorylation and the downstream function. We use a minimal computational model of Type I Interferon signaling, focusing on Interferon-α and Interferon-β. We validate the model with quantitative experimental data to identify the key determinants of specificity and functional plasticity in Type I Interferon signaling. We investigate different mechanisms of signal discrimination, and how multiple system components such as binding affinity, receptor expression levels and their variability, receptor internalization, short-term negative feedback by SOCS1 protein, and differential receptor expression play together to ensure ligand specificity on the level of STAT phosphorylation. Based on these results, we propose phenomenological functional mappings from STAT activation to downstream anti-viral and anti-proliferative activity to investigate differential signal processing steps downstream of STAT phosphorylation. We find that the negative feedback by the protein USP18, which enhances differences in signaling between Interferons via ligand-dependent refractoriness, can give rise to functional plasticity in Interferon-α and Interferon-β signaling, and explore other factors that control functional plasticity. Beyond Type I Interferon signaling, our results have a broad applicability to questions of signaling specificity and functional plasticity in signaling systems with multiple ligands acting through a bottleneck of a small number of shared receptors.
Collapse
Affiliation(s)
- Duncan Kirby
- Department of Physics, University of Toronto, Toronto, ON, Canada
| | - Baljyot Parmar
- Department of Physics, University of Toronto, Toronto, ON, Canada
| | - Sepehr Fathi
- Department of Physics, University of Toronto, Toronto, ON, Canada
| | - Sagar Marwah
- Ajmera Family Transplant Centre, Toronto General Research Institute, Departments of Laboratory Medicine and Pathobiology and Immunology, University of Toronto, Toronto, ON, Canada
| | - Chitra R Nayak
- Department of Physics, University of Toronto, Toronto, ON, Canada.,Department of Physics, Tuskegee University, Tuskegee, AL, United States
| | - Vera Cherepanov
- Sandra Rotman Centre for Global Health, Toronto General Research Institute, University of Toronto, Toronto, ON, Canada
| | - Sonya MacParland
- Ajmera Family Transplant Centre, Toronto General Research Institute, Departments of Laboratory Medicine and Pathobiology and Immunology, University of Toronto, Toronto, ON, Canada
| | - Jordan J Feld
- Toronto Centre for Liver Disease, University Health Network, Toronto, ON, Canada
| | - Grégoire Altan-Bonnet
- Immunodynamics Group, Laboratory of Integrative Cancer Immunology, Center for Cancer Research (CCR), National Cancer Institute (NCI), Bethesda, MD, United States
| | - Anton Zilman
- Department of Physics, University of Toronto, Toronto, ON, Canada.,Institute for Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
33
|
Stimulus-specific responses in innate immunity: Multilayered regulatory circuits. Immunity 2021; 54:1915-1932. [PMID: 34525335 DOI: 10.1016/j.immuni.2021.08.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 03/07/2021] [Accepted: 08/16/2021] [Indexed: 12/24/2022]
Abstract
Immune sentinel cells initiate immune responses to pathogens and tissue injury and are capable of producing highly stimulus-specific responses. Insight into the mechanisms underlying such specificity has come from the identification of regulatory factors and biochemical pathways, as well as the definition of signaling circuits that enable combinatorial and temporal coding of information. Here, we review the multi-layered molecular mechanisms that underlie stimulus-specific gene expression in macrophages. We categorize components of inflammatory and anti-pathogenic signaling pathways into five layers of regulatory control and discuss unifying mechanisms determining signaling characteristics at each layer. In this context, we review mechanisms that enable combinatorial and temporal encoding of information, identify recurring regulatory motifs and principles, and present strategies for integrating experimental and computational approaches toward the understanding of signaling specificity in innate immunity.
Collapse
|
34
|
Abstract
Micropatterning encompasses a set of methods aimed at precisely controlling the spatial distribution of molecules onto the surface of materials. Biologists have borrowed the idea and adapted these methods, originally developed for electronics, to impose physical constraints on biological systems with the aim of addressing fundamental questions across biological scales from molecules to multicellular systems. Here, I approach this topic from a developmental biologist's perspective focusing specifically on how and why micropatterning has gained in popularity within the developmental biology community in recent years. Overall, this Primer provides a concise overview of how micropatterns are used to study developmental processes and emphasises how micropatterns are a useful addition to the developmental biologist's toolbox.
Collapse
Affiliation(s)
- Guillaume Blin
- Institute for Regeneration and Repair, Institute for Stem Cell Research, School of Biological Sciences, The University of Edinburgh, 5 Little France Drive, Edinburgh BioQuarter, Edinburgh EH16 4UU, UK
| |
Collapse
|
35
|
Yadav V, Tolwinski N, Saunders TE. Spatiotemporal sensitivity of mesoderm specification to FGFR signalling in the Drosophila embryo. Sci Rep 2021; 11:14091. [PMID: 34238963 PMCID: PMC8266908 DOI: 10.1038/s41598-021-93512-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/22/2021] [Indexed: 02/06/2023] Open
Abstract
Development of the Drosophila embryonic mesoderm is controlled through both internal and external inputs to the mesoderm. One such factor is Heartless (Htl), a Fibroblast Growth Factor Receptor (FGFR) expressed in the mesoderm. Although Htl has been extensively studied, the dynamics of its action are poorly understood after the initial phases of mesoderm formation and spreading. To begin to address this challenge, we have developed an optogenetic version of the FGFR Heartless in Drosophila (Opto-htl). Opto-htl enables us to activate the FGFR pathway in selective spatial (~ 35 μm section from one of the lateral sides of the embryo) and temporal domains (ranging from 40 min to 14 h) during embryogenesis. Importantly, the effects can be tuned by the intensity of light-activation, making this approach significantly more flexible than other genetic approaches. We performed controlled perturbations to the FGFR pathway to define the contribution of Htl signalling to the formation of the developing embryonic heart and somatic muscles. We find a direct correlation between Htl signalling dosage and number of Tinman-positive heart cells specified. Opto-htl activation favours the specification of Tinman positive cardioblasts and eliminates Eve-positive DA1 muscles. This effect is seen to increase progressively with increasing light intensity. Therefore, fine tuning of phenotypic responses to varied Htl signalling dosage can be achieved more conveniently than with other genetic approaches. Overall, Opto-htl is a powerful new tool for dissecting the role of FGFR signalling during development.
Collapse
Affiliation(s)
- V. Yadav
- grid.4280.e0000 0001 2180 6431Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - N. Tolwinski
- grid.4280.e0000 0001 2180 6431Yale-NUS, National University of Singapore, Singapore, Singapore ,grid.4280.e0000 0001 2180 6431Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - T. E. Saunders
- grid.4280.e0000 0001 2180 6431Mechanobiology Institute, National University of Singapore, Singapore, Singapore ,grid.4280.e0000 0001 2180 6431Department of Biological Sciences, National University of Singapore, Singapore, Singapore ,grid.185448.40000 0004 0637 0221Institute of Molecular and Cell Biology, A*Star, Singapore, Singapore ,grid.7372.10000 0000 8809 1613Warwick Medical School, University of Warwick, Coventry, UK
| |
Collapse
|
36
|
Kirby D, Rothschild J, Smart M, Zilman A. Pleiotropy enables specific and accurate signaling in the presence of ligand cross talk. Phys Rev E 2021; 103:042401. [PMID: 34005921 DOI: 10.1103/physreve.103.042401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 02/22/2021] [Indexed: 12/27/2022]
Abstract
Living cells sense their environment through the binding of extracellular molecular ligands to cell surface receptors. Puzzlingly, vast numbers of signaling pathways exhibit a high degree of cross talk between different signals whereby different ligands act through the same receptor or shared components downstream. It remains unclear how a cell can accurately process information from the environment in such cross-wired pathways. We show that a feature which commonly accompanies cross talk-signaling pleiotropy (the ability of a receptor to produce multiple outputs)-offers a solution to the cross-talk problem. In a minimal model we show that a single pleiotropic receptor can simultaneously identify and accurately sense the concentrations of arbitrary unknown ligands present individually or in a mixture. We calculate the fundamental limits of the signaling specificity and accuracy of such signaling schemes. The model serves as an elementary "building block" toward understanding more complex cross-wired receptor-ligand signaling networks.
Collapse
Affiliation(s)
- Duncan Kirby
- Department of Physics, University of Toronto, Toronto, Ontario M5S 1A7, Canada
| | - Jeremy Rothschild
- Department of Physics, University of Toronto, Toronto, Ontario M5S 1A7, Canada
| | - Matthew Smart
- Department of Physics, University of Toronto, Toronto, Ontario M5S 1A7, Canada
| | - Anton Zilman
- Department of Physics, University of Toronto, Toronto, Ontario M5S 1A7, Canada.,Institute for Bioengineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| |
Collapse
|
37
|
Klymkowsky MW. Making mechanistic sense: are we teaching students what they need to know? Dev Biol 2021; 476:308-313. [PMID: 33930394 DOI: 10.1016/j.ydbio.2021.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 09/30/2022]
Abstract
Evaluating learning outcomes depends upon objective and actionable measures of what students know - that is, what can they do with what they have learned. In the context of a developmental biology course, a capstone of many molecular biology degree programs, I asked students to predict the behaviors of temporal and spatial signaling gradients. Their responses led me to consider an alternative to conventional assessments, namely a process in which students are asked to build and apply plausible explanatory mechanistic models ("PEMMs"). A salient point is not whether students' models are correct, but whether they "work" in a manner consistent with underlying scientific principles. Analyzing such models can reveal the extent to which students recognize and accurately apply relevant ideas. An emphasis on model building, analysis and revision, an authentic scientific practice, can be expected to have transformative effects on course and curricular design as well as on student engagement and learning outcomes.
Collapse
Affiliation(s)
- Michael W Klymkowsky
- Molecular, Cellular Developmental Biology, University of Colorado Boulder, Boulder, CO, 80309, USA.
| |
Collapse
|
38
|
Ebata K, Yamashiro S, Iida K, Okada M. Building patient-specific models for receptor tyrosine kinase signaling networks. FEBS J 2021; 289:90-101. [PMID: 33755310 DOI: 10.1111/febs.15831] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/26/2021] [Accepted: 03/19/2021] [Indexed: 12/16/2022]
Abstract
Cancer progresses due to changes in the dynamic interactions of multidimensional factors associated with gene mutations. Cancer research has actively adopted computational methods, including data-driven and mathematical model-driven approaches, to identify causative factors and regulatory rules that can explain the complexity and diversity of cancers. A data-driven, statistics-based approach revealed correlations between gene alterations and clinical outcomes in many types of cancers. A model-driven mathematical approach has elucidated the dynamic features of cancer networks and identified the mechanisms of drug efficacy and resistance. More recently, machine learning methods have emerged that can be used for mining omics data and classifying patient. However, as the strengths and weaknesses of each method becoming apparent, new analytical tools are emerging to combine and improve the methodologies and maximize their predictive power for classifying cancer subtypes and prognosis. Here, we introduce recent advances in cancer systems biology aimed at personalized medicine, with focus on the receptor tyrosine kinase signaling network.
Collapse
Affiliation(s)
- Kyoichi Ebata
- Institute for Protein Research, Osaka University, Suita, Japan
| | - Sawa Yamashiro
- Institute for Protein Research, Osaka University, Suita, Japan
| | - Keita Iida
- Institute for Protein Research, Osaka University, Suita, Japan
| | - Mariko Okada
- Institute for Protein Research, Osaka University, Suita, Japan.,Center for Drug Design and Research, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Japan.,Institute for Chemical Research, Kyoto University, Japan
| |
Collapse
|
39
|
Wadkin LE, Orozco-Fuentes S, Neganova I, Lako M, Barrio RA, Baggaley AW, Parker NG, Shukurov A. OCT4 expression in human embryonic stem cells: spatio-temporal dynamics and fate transitions. Phys Biol 2021; 18:026003. [PMID: 33296887 DOI: 10.1088/1478-3975/abd22b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The improved in vitro regulation of human embryonic stem cell (hESC) pluripotency and differentiation trajectories is required for their promising clinical applications. The temporal and spatial quantification of the molecular interactions controlling pluripotency is also necessary for the development of successful mathematical and computational models. Here we use time-lapse experimental data of OCT4-mCherry fluorescence intensity to quantify the temporal and spatial dynamics of the pluripotency transcription factor OCT4 in a growing hESC colony in the presence and absence of BMP4. We characterise the internal self-regulation of OCT4 using the Hurst exponent and autocorrelation analysis, quantify the intra-cellular fluctuations and consider the diffusive nature of OCT4 evolution for individual cells and pairs of their descendants. We find that OCT4 abundance in the daughter cells fluctuates sub-diffusively, showing anti-persistent self-regulation. We obtain the stationary probability distributions governing hESC transitions amongst the different cell states and establish the times at which pro-fate cells (which later give rise to pluripotent or differentiated cells) cluster in the colony. By quantifying the similarities between the OCT4 expression amongst neighbouring cells, we show that hESCs express similar OCT4 to cells within their local neighbourhood within the first two days of the experiment and before BMP4 treatment. Our framework allows us to quantify the relevant properties of proliferating hESC colonies and the procedure is widely applicable to other transcription factors and cell populations.
Collapse
Affiliation(s)
- L E Wadkin
- School of Mathematics, Statistics and Physics, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Hansen AS, Zechner C. Promoters adopt distinct dynamic manifestations depending on transcription factor context. Mol Syst Biol 2021; 17:e9821. [PMID: 33595925 PMCID: PMC7888307 DOI: 10.15252/msb.20209821] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/15/2020] [Accepted: 08/25/2020] [Indexed: 01/22/2023] Open
Abstract
Cells respond to external signals and stresses by activating transcription factors (TF), which induce gene expression changes. Prior work suggests that signal-specific gene expression changes are partly achieved because different gene promoters exhibit distinct induction dynamics in response to the same TF input signal. Here, using high-throughput quantitative single-cell measurements and a novel statistical method, we systematically analyzed transcriptional responses to a large number of dynamic TF inputs. In particular, we quantified the scaling behavior among different transcriptional features extracted from the measured trajectories such as the gene activation delay or duration of promoter activity. Surprisingly, we found that even the same gene promoter can exhibit qualitatively distinct induction and scaling behaviors when exposed to different dynamic TF contexts. While it was previously known that promoters fall into distinct classes, here we show that the same promoter can switch between different classes depending on context. Thus, promoters can adopt context-dependent "manifestations". Our analysis suggests that the full complexity of signal processing by genetic circuits may be significantly underestimated when studied in only specific contexts.
Collapse
Affiliation(s)
- Anders S Hansen
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMAUSA
| | - Christoph Zechner
- Max Planck Institute of Molecular Cell Biology & GeneticsDresdenGermany
- Center for Systems Biology DresdenDresdenGermany
- Cluster of Excellence Physics of LifeTU DresdenDresdenGermany
| |
Collapse
|
41
|
Kim N. pH variation impacts molecular pathways associated with somatic cell reprogramming and differentiation of pluripotent stem cells. Reprod Med Biol 2021; 20:20-26. [PMID: 33488280 PMCID: PMC7812493 DOI: 10.1002/rmb2.12346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/27/2020] [Accepted: 08/10/2020] [Indexed: 12/19/2022] Open
Abstract
RATIONALE The study of somatic cell reprogramming and cell differentiation is essential for the application of recent techniques in regenerative medicine. It is, specifically, necessary to determine the appropriate conditions required for the induction of reprogramming and cell differentiation. METHODS Based on a comprehensive literature review, the effects of pH fluctuation on alternative splicing, mitochondria, plasma membrane, and phase separation, in several cell types are discussed. Additionally, the associated molecular pathways important for the induction of differentiation and reprogramming are reviewed. RESULTS While cells change their state, several factors such as cytokines and physical parameters affect cellular reprogramming and differentiation. As the extracellular and intracellular pH affects biophysical phenomena in a cell, the effects of pH fluctuation can ultimately decide the cell fate through molecular pathways. Though few studies have reported on the direct effects of culture pH on cell state, there is substantial information on the pathways related to stem cell differentiation and somatic cell reprogramming that can be stimulated by environmental pH. CONCLUSION Environmental pH fluctuations may decide cell fate through the molecular pathways associated with somatic cell reprogramming and cell differentiation.
Collapse
Affiliation(s)
- Narae Kim
- Nucleic Acid Chemistry and EngineeringOkinawa Institute of Science and Technology Graduate UniversityOkinawaJapan
| |
Collapse
|
42
|
Ray AT, Mazot P, Brewer JR, Catela C, Dinsmore CJ, Soriano P. FGF signaling regulates development by processes beyond canonical pathways. Genes Dev 2020; 34:1735-1752. [PMID: 33184218 PMCID: PMC7706708 DOI: 10.1101/gad.342956.120] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 10/13/2020] [Indexed: 01/06/2023]
Abstract
FGFs are key developmental regulators that engage a signal transduction cascade through receptor tyrosine kinases, prominently engaging ERK1/2 but also other pathways. However, it remains unknown whether all FGF activities depend on this canonical signal transduction cascade. To address this question, we generated allelic series of knock-in Fgfr1 and Fgfr2 mouse strains, carrying point mutations that disrupt binding of signaling effectors, and a kinase dead allele of Fgfr2 that broadly phenocopies the null mutant. When interrogated in cranial neural crest cells, we identified discrete functions for signaling pathways in specific craniofacial contexts, but point mutations, even when combined, failed to recapitulate the single or double null mutant phenotypes. Furthermore, the signaling mutations abrogated established FGF-induced signal transduction pathways, yet FGF functions such as cell-matrix and cell-cell adhesion remained unaffected, though these activities did require FGFR kinase activity. Our studies establish combinatorial roles of Fgfr1 and Fgfr2 in development and uncouple novel FGFR kinase-dependent cell adhesion properties from canonical intracellular signaling.
Collapse
MESH Headings
- Animals
- Cell Adhesion/genetics
- Cell Death/genetics
- Cells, Cultured
- Fibroblast Growth Factors/physiology
- Gene Expression Regulation, Developmental/genetics
- Mice
- Mutation
- Neural Crest/cytology
- Protein Kinases/metabolism
- Receptor, Fibroblast Growth Factor, Type 1/genetics
- Receptor, Fibroblast Growth Factor, Type 1/metabolism
- Receptor, Fibroblast Growth Factor, Type 2/genetics
- Receptor, Fibroblast Growth Factor, Type 2/metabolism
- Receptors, Fibroblast Growth Factor/genetics
- Receptors, Fibroblast Growth Factor/metabolism
- Signal Transduction/genetics
Collapse
Affiliation(s)
- Ayan T Ray
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Pierre Mazot
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - J Richard Brewer
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Catarina Catela
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Colin J Dinsmore
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Philippe Soriano
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| |
Collapse
|
43
|
Simon CS, Rahman S, Raina D, Schröter C, Hadjantonakis AK. Live Visualization of ERK Activity in the Mouse Blastocyst Reveals Lineage-Specific Signaling Dynamics. Dev Cell 2020; 55:341-353.e5. [PMID: 33091370 PMCID: PMC7658048 DOI: 10.1016/j.devcel.2020.09.030] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 06/05/2020] [Accepted: 09/28/2020] [Indexed: 01/16/2023]
Abstract
FGF/ERK signaling is crucial for the patterning and proliferation of cell lineages that comprise the mouse blastocyst. However, ERK signaling dynamics have never been directly visualized in live embryos. To address whether differential signaling is associated with particular cell fates and states, we generated a targeted mouse line expressing an ERK-kinase translocation reporter (KTR) that enables live quantification of ERK activity at single-cell resolution. 3D time-lapse imaging of this biosensor in embryos revealed spatially graded ERK activity in the trophectoderm prior to overt polar versus mural differentiation. Within the inner cell mass (ICM), all cells relayed FGF/ERK signals with varying durations and magnitude. Primitive endoderm cells displayed higher overall levels of ERK activity, while pluripotent epiblast cells exhibited lower basal activity with sporadic pulses. These results constitute a direct visualization of signaling events during mammalian pre-implantation development and reveal the existence of spatial and temporal lineage-specific dynamics.
Collapse
Affiliation(s)
- Claire S Simon
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Shahadat Rahman
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Dhruv Raina
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | - Christian Schröter
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | - Anna-Katerina Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
44
|
F M, M V, C B, O G, M M, N E. Development of a microfluidic approach for the real-time analysis of extrinsic TGF-β signalling. Biochem Biophys Res Commun 2020; 532:32-39. [PMID: 32826061 DOI: 10.1016/j.bbrc.2020.07.137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 10/23/2022]
Abstract
Autocrine and paracrine signalling are traditionally difficult to study due to the sub-micromolar concentrations involved. This has proven to be especially limiting in the study of embryonic stem cells that rely on such signalling for viability, self-renewal, and proliferation. Microfluidics allows to achieve local concentrations of ligands representative of the in vivo stem cell niche, gaining more precise control over the cell microenvironment, as well as to manipulate ligands availability with high temporal resolution and minimal amount of reagents. Here we developed a microfluidics-based system for monitoring the dynamics of TGF-β pathway activity by means of a SMAD2/3-dependent luciferase reporter. We first validated our system by showing dose-dependent transcriptional activation. We then tested the effects of pulsatile stimulation and delayed inhibition of TGF-β activity on signalling dynamics. Finally, we show that our microfluidic system, unlike conventional culture systems, can detect TGF-β ligands secreted in the conditioned medium from hESCs.
Collapse
Affiliation(s)
- Michielin F
- Department of Industrial Engineering, University of Padova, Padova, Italy; Veneto Institute of Molecular Medicine (VIMM), Padova, Italy; Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Vetralla M
- Department of Industrial Engineering, University of Padova, Padova, Italy; Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Bolego C
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Italy
| | - Gagliano O
- Department of Industrial Engineering, University of Padova, Padova, Italy; Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Montagner M
- Department of Molecular Medicine, University of Padova, Italy
| | - Elvassore N
- Department of Industrial Engineering, University of Padova, Padova, Italy; Veneto Institute of Molecular Medicine (VIMM), Padova, Italy; Great Ormond Street Institute of Child Health, University College London, London, United Kingdom; Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai, China.
| |
Collapse
|
45
|
Cell Communications among Microorganisms, Plants, and Animals: Origin, Evolution, and Interplays. Int J Mol Sci 2020; 21:ijms21218052. [PMID: 33126770 PMCID: PMC7663094 DOI: 10.3390/ijms21218052] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/17/2020] [Accepted: 10/27/2020] [Indexed: 02/06/2023] Open
Abstract
Cellular communications play pivotal roles in multi-cellular species, but they do so also in uni-cellular species. Moreover, cells communicate with each other not only within the same individual, but also with cells in other individuals belonging to the same or other species. These communications occur between two unicellular species, two multicellular species, or between unicellular and multicellular species. The molecular mechanisms involved exhibit diversity and specificity, but they share common basic features, which allow common pathways of communication between different species, often phylogenetically very distant. These interactions are possible by the high degree of conservation of the basic molecular mechanisms of interaction of many ligand-receptor pairs in evolutionary remote species. These inter-species cellular communications played crucial roles during Evolution and must have been positively selected, particularly when collectively beneficial in hostile environments. It is likely that communications between cells did not arise after their emergence, but were part of the very nature of the first cells. Synchronization of populations of non-living protocells through chemical communications may have been a mandatory step towards their emergence as populations of living cells and explain the large commonality of cell communication mechanisms among microorganisms, plants, and animals.
Collapse
|
46
|
Zinner M, Lukonin I, Liberali P. Design principles of tissue organisation: How single cells coordinate across scales. Curr Opin Cell Biol 2020; 67:37-45. [PMID: 32889170 DOI: 10.1016/j.ceb.2020.07.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/13/2020] [Accepted: 07/30/2020] [Indexed: 12/18/2022]
Abstract
Cells act as building blocks of multicellular organisms, forming higher-order structures at different biological scales. Niches, tissues and, ultimately, entire organisms consist of single cells that remain in constant communication. Emergence of developmental patterns and tissue architecture thus relies on single cells acting as a collective, coordinating growth, migration, cell fate transitions and cell type sorting. For this, information has to be transmitted forward from cells to tissues and fed back to the individual cell to allow dynamic and robust coordination. Here, we define the design principles of tissue organisation integrating chemical, genetic and mechanical cues. We also review the state-of-the-art technologies used for dissecting collective cellular behaviours at single cell- and tissue-level resolution. We finally outline future challenges that lie in a comprehensive understanding of how single cells coordinate across biological scales to insure robust development, homoeostasis and regeneration of tissues.
Collapse
Affiliation(s)
- Marietta Zinner
- Friedrich Miescher Institute for Biomedical Research (FMI), Maulbeerstrasse 66, 4058, Basel, Switzerland; University of Basel, Petersplatz 1, 4001, Basel, Switzerland
| | - Ilya Lukonin
- Friedrich Miescher Institute for Biomedical Research (FMI), Maulbeerstrasse 66, 4058, Basel, Switzerland; University of Basel, Petersplatz 1, 4001, Basel, Switzerland
| | - Prisca Liberali
- Friedrich Miescher Institute for Biomedical Research (FMI), Maulbeerstrasse 66, 4058, Basel, Switzerland; University of Basel, Petersplatz 1, 4001, Basel, Switzerland.
| |
Collapse
|
47
|
Alibardi L. Appendage regeneration in anamniotes utilizes genes active during larval-metamorphic stages that have been lost or altered in amniotes: The case for studying lizard tail regeneration. J Morphol 2020; 281:1358-1381. [PMID: 32865265 DOI: 10.1002/jmor.21251] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 07/20/2020] [Accepted: 07/25/2020] [Indexed: 12/17/2022]
Abstract
This review elaborates the idea that organ regeneration derives from specific evolutionary histories of vertebrates. Regenerative ability depends on genomic regulation of genes specific to the life-cycles that have differentially evolved in anamniotes and amniotes. In aquatic environments, where fish and amphibians live, one or multiple metamorphic transitions occur before the adult stage is reached. Each transition involves the destruction and remodeling of larval organs that are replaced with adult organs. After organ injury or loss in adult anamniotes, regeneration uses similar genes and developmental process than those operating during larval growth and metamorphosis. Therefore, the broad presence of regenerative capability across anamniotes is possible because generating new organs is included in their life history at metamorphic stages. Soft hyaluronate-rich regenerative blastemas grow in submersed or in hydrated environments, that is, essential conditions for regeneration, like during development. In adult anamniotes, the ability to regenerate different organs decreases in comparison to larval stages and becomes limited during aging. Comparisons of genes activated during metamorphosis and regeneration in anamniotes identify key genes unique to these processes, and include thyroid, wnt and non-coding RNAs developmental pathways. In the terrestrial environment, some genes or developmental pathways for metamorphic transitions were lost during amniote evolution, determining loss of regeneration. Among amniotes, the formation of soft and hydrated blastemas only occurs in lizards, a morphogenetic process that evolved favoring their survival through tail autotomy, leading to a massive although imperfect regeneration of the tail. Deciphering genes activity during lizard tail regeneration would address future attempts to recreate in other amniotes regenerative blastemas that grow into variably completed organs.
Collapse
|
48
|
Regulation of the Mammalian SWI/SNF Family of Chromatin Remodeling Enzymes by Phosphorylation during Myogenesis. BIOLOGY 2020; 9:biology9070152. [PMID: 32635263 PMCID: PMC7407365 DOI: 10.3390/biology9070152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/24/2020] [Accepted: 07/01/2020] [Indexed: 11/16/2022]
Abstract
Myogenesis is the biological process by which skeletal muscle tissue forms. Regulation of myogenesis involves a variety of conventional, epigenetic, and epigenomic mechanisms that control chromatin remodeling, DNA methylation, histone modification, and activation of transcription factors. Chromatin remodeling enzymes utilize ATP hydrolysis to alter nucleosome structure and/or positioning. The mammalian SWItch/Sucrose Non-Fermentable (mSWI/SNF) family of chromatin remodeling enzymes is essential for myogenesis. Here we review diverse and novel mechanisms of regulation of mSWI/SNF enzymes by kinases and phosphatases. The integration of classic signaling pathways with chromatin remodeling enzyme function impacts myoblast viability and proliferation as well as differentiation. Regulated processes include the assembly of the mSWI/SNF enzyme complex, choice of subunits to be incorporated into the complex, and sub-nuclear localization of enzyme subunits. Together these processes influence the chromatin remodeling and gene expression events that control myoblast function and the induction of tissue-specific genes during differentiation.
Collapse
|
49
|
Huizar F, Soundarrajan D, Paravitorghabeh R, Zartman J. Interplay between morphogen-directed positional information systems and physiological signaling. Dev Dyn 2020; 249:328-341. [PMID: 31794137 PMCID: PMC7328709 DOI: 10.1002/dvdy.140] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/20/2019] [Accepted: 11/22/2019] [Indexed: 12/16/2022] Open
Abstract
The development of an organism from an undifferentiated single cell into a spatially complex structure requires spatial patterning of cell fates across tissues. Positional information, proposed by Lewis Wolpert in 1969, has led to the characterization of many components involved in regulating morphogen signaling activity. However, how morphogen gradients are established, maintained, and interpreted by cells still is not fully understood. Quantitative and systems-based approaches are increasingly needed to define general biological design rules that govern positional information systems in developing organisms. This short review highlights a selective set of studies that have investigated the roles of physiological signaling in modulating and mediating morphogen-based pattern formation. Similarities between neural transmission and morphogen-based pattern formation mechanisms suggest underlying shared principles of active cell-based communication. Within larger tissues, neural networks provide directed information, via physiological signaling, that supplements positional information through diffusion. Further, mounting evidence demonstrates that physiological signaling plays a role in ensuring robustness of morphogen-based signaling. We conclude by highlighting several outstanding questions regarding the role of physiological signaling in morphogen-based pattern formation. Elucidating how physiological signaling impacts positional information is critical for understanding the close coupling of developmental and cellular processes in the context of development, disease, and regeneration.
Collapse
Affiliation(s)
- Francisco Huizar
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, South Bend, Indiana
- Bioengineering Graduate Program, University of Notre Dame, South Bend, Indiana
| | - Dharsan Soundarrajan
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, South Bend, Indiana
| | - Ramezan Paravitorghabeh
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, South Bend, Indiana
| | - Jeremiah Zartman
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, South Bend, Indiana
- Bioengineering Graduate Program, University of Notre Dame, South Bend, Indiana
| |
Collapse
|
50
|
Grall E, Tschopp P. A sense of place, many times over ‐ pattern formation and evolution of repetitive morphological structures. Dev Dyn 2019; 249:313-327. [DOI: 10.1002/dvdy.131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/30/2019] [Accepted: 11/04/2019] [Indexed: 12/14/2022] Open
|