1
|
Oliveira ECS, Hu P, Shook DR, Wallrabe H, Townsend NN, Bingham GC, Barker TH, Hinton BT. Biomechanical properties of the capsule and extracellular matrix play a major role during the Wolffian/epididymal duct development. Andrology 2024. [PMID: 38988181 DOI: 10.1111/andr.13692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/05/2024] [Accepted: 06/25/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND The epididymis is important for sperm maturation and without its proper development, male infertility will result. Biomechanical properties of tissues/organs play key roles during their morphogenesis, including the Wolffian duct. It is hypothesized that structural/bulk stiffness of the capsule and mesenchyme/extracellular matrix that surround the duct is a major biomechanical property that regulates Wolffian duct morphogenesis. These data will provide key information as to the mechanisms that regulate the development of this important organ. OBJECTIVES To measure the structural/bulk stiffness in Pascals (force/area) of the capsule and the capsule and mesenchyme together that surrounds the Wolffian duct during the development. To examine the relative membrane tension of mesenchymal cells during the Wolffian duct development. Since Ptk7 was previously shown to regulate ECM integrity and Wolffian duct elongation and coiling, the hypothesis that Ptk7 regulates structural/bulk stiffness and mesenchymal cell membrane tension was tested. MATERIALS AND METHODS Atomic force microscopy and a microsquisher compression apparatus were used to measure the structural stiffness. Biomechanical properties within the membranes of cells within the capsule and mesenchyme were examined using a membrane-tension fluorescent probe. RESULTS AND DISCUSSION The structural stiffness (Pascals) of the capsule and underlying mesenchyme was relatively constant during development, with a significant increase in the capsule at the later stages. However, this increase may reflect the ECM and associated mesenchyme being close to the capsule because the coiling of the duct pushed or compressed them into that space. Keeping the capsule and mesenchyme/ECM at constant stiffness would ensure that the duct will continue to coil under similar biomechanical forces throughout the development. Cells within the capsule and mesenchyme at different Wolffian duct regions during the development had varying degrees of membrane lipid tension. It is hypothesized that the dynamic changes ensure the duct is kept at a constant stiffness regardless of any external forces. Loss of Ptk7 resulted in an increase in stiffness at E18.5, which was presumable due to the loss of integrity of the ECM within the mesenchyme. CONCLUSION Biomechanical properties of the capsule and the mesenchyme/extracellular matrix that surround the Wolffian duct play an important role toward Wolffian duct morphogenesis, thereby allowing for the proper development of the epididymis and subsequent male fertility.
Collapse
Affiliation(s)
- Erika C S Oliveira
- Department of Cell Biology, School of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Ping Hu
- Department of Biomedical Engineering, School of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - David R Shook
- Department of Cell Biology, School of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Horst Wallrabe
- W.M. Keck Center for Cellular Imaging, Department of Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Natalie N Townsend
- Department of Cell Biology, School of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Grace C Bingham
- Department of Biomedical Engineering, School of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Thomas H Barker
- Department of Biomedical Engineering, School of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Barry T Hinton
- Department of Cell Biology, School of Medicine, University of Virginia, Charlottesville, Virginia, USA
- Department of Cell Biology, University of Virginia School of Medicine, Pinn Hall, Charlottesville, Virginia, USA
| |
Collapse
|
2
|
Lee V, Hinton BT, Hirashima T. Collective cell dynamics and luminal fluid flow in the epididymis: A mechanobiological perspective. Andrology 2024; 12:939-948. [PMID: 37415418 PMCID: PMC11278975 DOI: 10.1111/andr.13490] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/08/2023] [Accepted: 07/04/2023] [Indexed: 07/08/2023]
Abstract
BACKGROUND The mammalian epididymis is a specialized duct system that serves a critical role in sperm maturation and storage. Its distinctive, highly coiled tissue morphology provides a unique opportunity to investigate the link between form and function in reproductive biology. Although recent genetic studies have identified key genes and signaling pathways involved in the development and physiological functions of the epididymis, there has been limited discussion about the underlying dynamic and mechanical processes that govern these phenomena. AIMS In this review, we aim to address this gap by examining two key aspects of the epididymis across its developmental and physiological phases. RESULTS AND DISCUSSION First, we discuss how the complex morphology of the Wolffian/epididymal duct emerges through collective cell dynamics, including duct elongation, cell proliferation, and arrangement during embryonic development. Second, we highlight dynamic aspects of luminal fluid flow in the epididymis, essential for regulating the microenvironment for sperm maturation and motility, and discuss how this phenomenon emerges and interplays with epididymal epithelial cells. CONCLUSION This review not only aims to summarize current knowledge but also to provide a starting point for further exploration of mechanobiological aspects related to the cellular and extracellular fluid dynamics in the epididymis.
Collapse
Affiliation(s)
- Veronica Lee
- Mechanobiology, Institute, National University of Singapore, Singapore, Singapore
| | - Barry T. Hinton
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Tsuyoshi Hirashima
- Mechanobiology, Institute, National University of Singapore, Singapore, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
3
|
Hirashima T, Matsuda M. ERK-mediated curvature feedback regulates branching morphogenesis in lung epithelial tissue. Curr Biol 2024; 34:683-696.e6. [PMID: 38228149 DOI: 10.1016/j.cub.2023.12.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/06/2023] [Accepted: 12/14/2023] [Indexed: 01/18/2024]
Abstract
Intricate branching patterns emerge in internal organs due to the recurrent occurrence of simple deformations in epithelial tissues. During murine lung development, epithelial cells in distal tips of the single tube require fibroblast growth factor (FGF) signals emanating from their surrounding mesenchyme to form repetitive tip bifurcations. However, it remains unknown how the cells employ FGF signaling to convert their behaviors to achieve the recursive branching processes. Here, we show a mechano-chemical regulatory system underlying lung branching morphogenesis, orchestrated by extracellular signal-regulated kinase (ERK) as a downstream driver of FGF signaling. We found that tissue-scale curvature regulated ERK activity in the lung epithelium using two-photon live cell imaging and mechanical perturbations. ERK activation occurs specifically in epithelial tissues exhibiting positive curvature, regardless of whether the change in curvature was attributable to morphogenesis or perturbations. Moreover, ERK activation accelerates actin polymerization preferentially at the apical side of cells, mechanically contributing to the extension of the apical membrane, culminating in a reduction of epithelial tissue curvature. These results indicate the existence of a negative feedback loop between tissue curvature and ERK activity that transcends spatial scales. Our mathematical model confirms that this regulatory mechanism is sufficient to generate the recursive branching processes. Taken together, we propose that ERK orchestrates a curvature feedback loop pivotal to the self-organized patterning of tissues.
Collapse
Affiliation(s)
- Tsuyoshi Hirashima
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 2 Medical Drive MD9, Singapore 117593, Singapore; The Hakubi Center, Kyoto University, Yoshida-honmachi, Kyoto 606-8501, Japan; Graduate School of Biostudies, Kyoto University, Yoshidakone-cho, Kyoto 606-8501, Japan; Japan Science and Technology Agency, PRESTO, 4-1-8 Honchō, Kawaguchi 332-0012, Japan.
| | - Michiyuki Matsuda
- Graduate School of Biostudies, Kyoto University, Yoshidakone-cho, Kyoto 606-8501, Japan; Graduate School of Medicine, Kyoto University, Yoshidakone-cho, Kyoto 606-8501, Japan; Institute for Integrated Cell-Material Sciences, Kyoto University, Yoshida-honmachi, Kyoto 606-8317, Japan
| |
Collapse
|
4
|
Iwasa Y. Mathematical modeling for developmental processes. Dev Growth Differ 2023; 65:272-281. [PMID: 37190873 PMCID: PMC11520983 DOI: 10.1111/dgd.12856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/27/2023] [Accepted: 05/07/2023] [Indexed: 05/17/2023]
Abstract
We review several mathematical models and concepts in developmental biology that have been established over the last decade. (1) Feedback vertex set: Ascidian embryos contain cells of seven types, and cell fate is controlled by ~100 interacting genes. The "feedback vertex set" of the directed graph of the gene regulatory network consists of a small number of genes. By experimentally manipulating them, we can differentiate cells into any cell type. (2) Tissue deformation: Describing morphological changes in tissues and relating them to gene expression and other cellular processes is key in understanding morphogenesis. Expansion and anisotropy of the tissue are described by a "deformation tensor" at each location. A study on chick limb bud formation revealed that both the volume growth rate and anisotropy in deformation differed significantly between locations and stages. (3) Mechanobiology: Forces operating on each cell may alter cell shape and gene expression, which may subsequently exert forces on their surroundings. Measurements of force, tissue shape, and gene expression help us understand autonomous tissue deformation. (4) Adaptive design of development: An optimal growth schedule in fluctuating environments explains the growth response to starvation in Drosophila larvae. Adaptive placement of morphogen sources makes development robust to noises.
Collapse
Affiliation(s)
- Yoh Iwasa
- Department of Biology, Faculty of ScienceKyushu UniversityFukuokaJapan
- Institute for Freshwater BiologyNagano UniversityUedaNaganoJapan
| |
Collapse
|
5
|
Gómez-Gálvez P, Vicente-Munuera P, Anbari S, Tagua A, Gordillo-Vázquez C, Andrés-San Román JA, Franco-Barranco D, Palacios AM, Velasco A, Capitán-Agudo C, Grima C, Annese V, Arganda-Carreras I, Robles R, Márquez A, Buceta J, Escudero LM. A quantitative biophysical principle to explain the 3D cellular connectivity in curved epithelia. Cell Syst 2022; 13:631-643.e8. [PMID: 35835108 DOI: 10.1016/j.cels.2022.06.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 02/15/2022] [Accepted: 06/15/2022] [Indexed: 01/26/2023]
Abstract
Epithelial cell organization and the mechanical stability of tissues are closely related. In this context, it has been recently shown that packing optimization in bended or folded epithelia is achieved by an energy minimization mechanism that leads to a complex cellular shape: the "scutoid". Here, we focus on the relationship between this shape and the connectivity between cells. We use a combination of computational, experimental, and biophysical approaches to examine how energy drivers affect the three-dimensional (3D) packing of tubular epithelia. We propose an energy-based stochastic model that explains the 3D cellular connectivity. Then, we challenge it by experimentally reducing the cell adhesion. As a result, we observed an increment in the appearance of scutoids that correlated with a decrease in the energy barrier necessary to connect with new cells. We conclude that tubular epithelia satisfy a quantitative biophysical principle that links tissue geometry and energetics with the average cellular connectivity.
Collapse
Affiliation(s)
- Pedro Gómez-Gálvez
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Biología Celular, Universidad de Sevilla, 41013 Seville, Spain; Biomedical Network Research Centre on Neurodegenerative Diseases (CIBERNED), Madrid, Spain.
| | - Pablo Vicente-Munuera
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Biología Celular, Universidad de Sevilla, 41013 Seville, Spain; Biomedical Network Research Centre on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Samira Anbari
- Chemical and Biomolecular Engineering Department, Lehigh University, Bethlehem, PA 18018, USA
| | - Antonio Tagua
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Biología Celular, Universidad de Sevilla, 41013 Seville, Spain; Biomedical Network Research Centre on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Carmen Gordillo-Vázquez
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Biología Celular, Universidad de Sevilla, 41013 Seville, Spain; Biomedical Network Research Centre on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Jesús A Andrés-San Román
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Biología Celular, Universidad de Sevilla, 41013 Seville, Spain; Biomedical Network Research Centre on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Daniel Franco-Barranco
- Department of Computer Science and Artificial Intelligence, University of the Basque Country (UPV/EHU), San Sebastian, Spain; Donostia International Physics Center (DIPC), San Sebastian, Spain
| | - Ana M Palacios
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Biología Celular, Universidad de Sevilla, 41013 Seville, Spain; Biomedical Network Research Centre on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Antonio Velasco
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Biología Celular, Universidad de Sevilla, 41013 Seville, Spain
| | - Carlos Capitán-Agudo
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Biología Celular, Universidad de Sevilla, 41013 Seville, Spain
| | - Clara Grima
- Departamento de Matemática Aplicada I, Universidad de Sevilla, Seville 41012, Spain
| | - Valentina Annese
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Biología Celular, Universidad de Sevilla, 41013 Seville, Spain; Biomedical Network Research Centre on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Ignacio Arganda-Carreras
- Department of Computer Science and Artificial Intelligence, University of the Basque Country (UPV/EHU), San Sebastian, Spain; Donostia International Physics Center (DIPC), San Sebastian, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Rafael Robles
- Departamento de Matemática Aplicada I, Universidad de Sevilla, Seville 41012, Spain
| | - Alberto Márquez
- Departamento de Matemática Aplicada I, Universidad de Sevilla, Seville 41012, Spain
| | - Javier Buceta
- Institute for Integrative Systems Biology (I2SysBio), CSIC-UV, Paterna 46980, Spain.
| | - Luis M Escudero
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Biología Celular, Universidad de Sevilla, 41013 Seville, Spain; Biomedical Network Research Centre on Neurodegenerative Diseases (CIBERNED), Madrid, Spain.
| |
Collapse
|
6
|
Hirashima T. Mechanical Feedback Control for Multicellular Tissue Size Maintenance: A Minireview. Front Cell Dev Biol 2022; 9:820391. [PMID: 35096843 PMCID: PMC8795865 DOI: 10.3389/fcell.2021.820391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 12/27/2021] [Indexed: 11/13/2022] Open
Abstract
All living tissues and organs have their respective sizes, critical to various biological functions, such as development, growth, and homeostasis. As tissues and organs generally converge to a certain size, intrinsic regulatory mechanisms may be involved in the maintenance of size regulation. In recent years, important findings regarding size regulation have been obtained from diverse disciplines at the molecular and cellular levels. Here, I briefly review the size regulation of biological tissues from the perspective of control systems. This minireview focuses on how feedback systems engage in tissue size maintenance through the mechanical interactions of constituent cell collectives through intracellular signaling. I introduce a general framework of a feedback control system for tissue size regulation, followed by two examples: maintenance of epithelial tissue volume and epithelial tube diameter. The examples deliver the idea of how cellular mechano-response works for maintaining tissue size.
Collapse
Affiliation(s)
- Tsuyoshi Hirashima
- The Hakubi Center, Kyoto University, Kyoto, Japan
- Laboratory of Bioimaging and Cell Signaling, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Japan Science and Technology Agency, PRESTO, Kawaguchi, Japan
| |
Collapse
|
7
|
Ishii M, Tateya T, Matsuda M, Hirashima T. Stalling interkinetic nuclear migration in curved pseudostratified epithelium of developing cochlea. ROYAL SOCIETY OPEN SCIENCE 2021; 8:211024. [PMID: 34909216 PMCID: PMC8652271 DOI: 10.1098/rsos.211024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 11/05/2021] [Indexed: 05/15/2023]
Abstract
The bending of epithelial tubes is a fundamental process in organ morphogenesis, driven by various multicellular behaviours. The cochlea in the mammalian inner ear is a representative example of spiral tissue architecture where the continuous bending of the duct is a fundamental component of its morphogenetic process. Although the cochlear duct morphogenesis has been studied by genetic approaches extensively, it is still unclear how the cochlear duct morphology is physically formed. Here, we report that nuclear behaviour changes are associated with the curvature of the pseudostratified epithelium during murine cochlear development. Two-photon live-cell imaging reveals that the nuclei shuttle between the luminal and basal edges of the cell is in phase with cell-cycle progression, known as interkinetic nuclear migration, in the flat region of the pseudostratified epithelium. However, the nuclei become stationary on the luminal side following mitosis in the curved region. Mathematical modelling together with perturbation experiments shows that this nuclear stalling facilitates luminal-basal differential growth within the epithelium, suggesting that the nuclear stalling would contribute to the bending of the pseudostratified epithelium during the cochlear duct development. The findings suggest a possible scenario of differential growth which sculpts the tissue shape, driven by collective nuclear dynamics.
Collapse
Affiliation(s)
- Mamoru Ishii
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Tomoko Tateya
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Speech and Hearing Sciences and Disorders, Faculty of Health and Medical Sciences, Kyoto University of Advanced Science, Kyoto, Japan
| | - Michiyuki Matsuda
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto, Japan
| | - Tsuyoshi Hirashima
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- The Hakubi Center, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
- Japan Science and Technology Agency, PRESTO, Kawaguchi, Japan
| |
Collapse
|
8
|
Gómez-Gálvez P, Anbari S, Escudero LM, Buceta J. Mechanics and self-organization in tissue development. Semin Cell Dev Biol 2021; 120:147-159. [PMID: 34417092 DOI: 10.1016/j.semcdb.2021.07.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/25/2021] [Accepted: 07/01/2021] [Indexed: 01/01/2023]
Abstract
Self-organization is an all-important feature of living systems that provides the means to achieve specialization and functionality at distinct spatio-temporal scales. Herein, we review this concept by addressing the packing organization of cells, the sorting/compartmentalization phenomenon of cell populations, and the propagation of organizing cues at the tissue level through traveling waves. We elaborate on how different theoretical models and tools from Topology, Physics, and Dynamical Systems have improved the understanding of self-organization by shedding light on the role played by mechanics as a driver of morphogenesis. Altogether, by providing a historical perspective, we show how ideas and hypotheses in the field have been revisited, developed, and/or rejected and what are the open questions that need to be tackled by future research.
Collapse
Affiliation(s)
- Pedro Gómez-Gálvez
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla and Departamento de Biologia Celular, Universidad de Sevilla, 41013 Seville, Spain; Biomedical Network Research Centre on Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain
| | - Samira Anbari
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Luis M Escudero
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla and Departamento de Biologia Celular, Universidad de Sevilla, 41013 Seville, Spain; Biomedical Network Research Centre on Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain
| | - Javier Buceta
- Institute for Integrative Systems Biology (I2SysBio), CSIC-UV, Paterna, 46980 Valencia, Spain.
| |
Collapse
|
9
|
Dye NA, Popović M, Iyer KV, Fuhrmann JF, Piscitello-Gómez R, Eaton S, Jülicher F. Self-organized patterning of cell morphology via mechanosensitive feedback. eLife 2021; 10:e57964. [PMID: 33769281 PMCID: PMC8133777 DOI: 10.7554/elife.57964] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 03/25/2021] [Indexed: 01/19/2023] Open
Abstract
Tissue organization is often characterized by specific patterns of cell morphology. How such patterns emerge in developing tissues is a fundamental open question. Here, we investigate the emergence of tissue-scale patterns of cell shape and mechanical tissue stress in the Drosophila wing imaginal disc during larval development. Using quantitative analysis of the cellular dynamics, we reveal a pattern of radially oriented cell rearrangements that is coupled to the buildup of tangential cell elongation. Developing a laser ablation method, we map tissue stresses and extract key parameters of tissue mechanics. We present a continuum theory showing that this pattern of cell morphology and tissue stress can arise via self-organization of a mechanical feedback that couples cell polarity to active cell rearrangements. The predictions of this model are supported by knockdown of MyoVI, a component of mechanosensitive feedback. Our work reveals a mechanism for the emergence of cellular patterns in morphogenesis.
Collapse
Affiliation(s)
- Natalie A Dye
- Max Planck Institute for Molecular Cell Biology and GeneticsDresdenGermany
- Cluster of Excellence Physics of Life, Technische Universität DresdenDresdenGermany
- Mildred Scheel Nachwuchszentrum (MSNZ) P2, Medical Faculty, Technische Universität DresdenDresdenGermany
| | - Marko Popović
- Institute of Physics, École Polytechnique Fédérale de LausanneLausanneSwitzerland
- Max Planck Institute for the Physics of Complex SystemsDresdenGermany
- Center for Systems Biology DresdenDresdenGermany
| | - K Venkatesan Iyer
- Max Planck Institute for Molecular Cell Biology and GeneticsDresdenGermany
- Cluster of Excellence Physics of Life, Technische Universität DresdenDresdenGermany
| | - Jana F Fuhrmann
- Max Planck Institute for Molecular Cell Biology and GeneticsDresdenGermany
- Cluster of Excellence Physics of Life, Technische Universität DresdenDresdenGermany
| | - Romina Piscitello-Gómez
- Max Planck Institute for Molecular Cell Biology and GeneticsDresdenGermany
- Cluster of Excellence Physics of Life, Technische Universität DresdenDresdenGermany
| | - Suzanne Eaton
- Max Planck Institute for Molecular Cell Biology and GeneticsDresdenGermany
- Cluster of Excellence Physics of Life, Technische Universität DresdenDresdenGermany
| | - Frank Jülicher
- Cluster of Excellence Physics of Life, Technische Universität DresdenDresdenGermany
- Max Planck Institute for the Physics of Complex SystemsDresdenGermany
- Center for Systems Biology DresdenDresdenGermany
| |
Collapse
|
10
|
Ishii M, Tateya T, Matsuda M, Hirashima T. Retrograde ERK activation waves drive base-to-apex multicellular flow in murine cochlear duct morphogenesis. eLife 2021; 10:e61092. [PMID: 33667159 PMCID: PMC7935486 DOI: 10.7554/elife.61092] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 02/23/2021] [Indexed: 12/17/2022] Open
Abstract
A notable example of spiral architecture in organs is the mammalian cochlear duct, where the morphology is critical for hearing function. Genetic studies have revealed necessary signaling molecules, but it remains unclear how cellular dynamics generate elongating, bending, and coiling of the cochlear duct. Here, we show that extracellular signal-regulated kinase (ERK) activation waves control collective cell migration during the murine cochlear duct development using deep tissue live-cell imaging, Förster resonance energy transfer (FRET)-based quantitation, and mathematical modeling. Long-term FRET imaging reveals that helical ERK activation propagates from the apex duct tip concomitant with the reverse multicellular flow on the lateral side of the developing cochlear duct, resulting in advection-based duct elongation. Moreover, model simulations, together with experiments, explain that the oscillatory wave trains of ERK activity and the cell flow are generated by mechanochemical feedback. Our findings propose a regulatory mechanism to coordinate the multicellular behaviors underlying the duct elongation during development.
Collapse
Affiliation(s)
- Mamoru Ishii
- Graduate School of Biostudies, Kyoto UniversityKyotoJapan
| | - Tomoko Tateya
- Department of Speech and Hearing Sciences and Disorders, Faculty of Health and Medical Sciences, Kyoto University of Advanced ScienceKyotoJapan
| | - Michiyuki Matsuda
- Graduate School of Biostudies, Kyoto UniversityKyotoJapan
- Graduate School of Medicine, Kyoto UniversityKyotoJapan
| | - Tsuyoshi Hirashima
- Graduate School of Biostudies, Kyoto UniversityKyotoJapan
- The Hakubi Center, Kyoto UniversityKyotoJapan
- Japan Science and Technology Agency, PRESTOKawaguchiJapan
| |
Collapse
|
11
|
Gómez-Gálvez P, Vicente-Munuera P, Anbari S, Buceta J, Escudero LM. The complex three-dimensional organization of epithelial tissues. Development 2021; 148:148/1/dev195669. [PMID: 33408064 DOI: 10.1242/dev.195669] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Understanding the cellular organization of tissues is key to developmental biology. In order to deal with this complex problem, researchers have taken advantage of reductionist approaches to reveal fundamental morphogenetic mechanisms and quantitative laws. For epithelia, their two-dimensional representation as polygonal tessellations has proved successful for understanding tissue organization. Yet, epithelial tissues bend and fold to shape organs in three dimensions. In this context, epithelial cells are too often simplified as prismatic blocks with a limited plasticity. However, there is increasing evidence that a realistic approach, even from a reductionist perspective, must include apico-basal intercalations (i.e. scutoidal cell shapes) for explaining epithelial organization convincingly. Here, we present an historical perspective about the tissue organization problem. Specifically, we analyze past and recent breakthroughs, and discuss how and why simplified, but realistic, in silico models require scutoidal features to address key morphogenetic events.
Collapse
Affiliation(s)
- Pedro Gómez-Gálvez
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Biología Celular, Universidad de Sevilla, 41013 Seville, Spain.,Biomedical Network Research Centre on Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain
| | - Pablo Vicente-Munuera
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Biología Celular, Universidad de Sevilla, 41013 Seville, Spain.,Biomedical Network Research Centre on Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain
| | - Samira Anbari
- Chemical and Biomolecular Engineering Department, Lehigh University, Bethlehem, PA 18018, USA
| | - Javier Buceta
- Institute for Integrative Systems Biology (I2SysBio), CSIC-UV, 46980 Paterna (Valencia), Spain
| | - Luis M Escudero
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Biología Celular, Universidad de Sevilla, 41013 Seville, Spain .,Biomedical Network Research Centre on Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain
| |
Collapse
|
12
|
Hirashima T. Mechanical Tissue Compression and Whole-mount Imaging at Single CellResolution for Developing Murine Epididymal Tubules. Bio Protoc 2020; 10:e3694. [PMID: 33659362 DOI: 10.21769/bioprotoc.3694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/19/2020] [Accepted: 05/21/2020] [Indexed: 11/02/2022] Open
Abstract
Cells inside the body are subjected to various mechanical stress, such as stretch or compression provided by surrounding cells, shear stresses by blood or lymph flows, and normal stresses by luminal liquids. Force loading to the biological tissues is a fundamental method to better understand cellular responses to such mechanical stimuli. There have been many studies on compression or stretch experiments that target culture cells attached to a flexible extensible material including polydimethylsiloxane (PDMS); however, the know-how of those targeting to tissues is still incomplete. Here we present the protocol for mechanical tissue compression and image-based analysis by focusing on developing murine epididymis as an example. We show a series of steps including tissue dissection from murine embryos, hydrogel-based compression method using a manual device, and non-destructive volumetric tissue imaging. This protocol is useful for quantifying and exploring the biological mechanoresponse system at tissue level.
Collapse
Affiliation(s)
- Tsuyoshi Hirashima
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Japan Science and Technology Agency, PRESTO, Sakyo-ku, Kyoto, Japan
| |
Collapse
|
13
|
Stern T, Shvartsman SY, Wieschaus EF. Template-based mapping of dynamic motifs in tissue morphogenesis. PLoS Comput Biol 2020; 16:e1008049. [PMID: 32822341 PMCID: PMC7442231 DOI: 10.1371/journal.pcbi.1008049] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 06/12/2020] [Indexed: 12/18/2022] Open
Abstract
Tissue morphogenesis relies on repeated use of dynamic behaviors at the levels of intracellular structures, individual cells, and cell groups. Rapidly accumulating live imaging datasets make it increasingly important to formalize and automate the task of mapping recurrent dynamic behaviors (motifs), as it is done in speech recognition and other data mining applications. Here, we present a "template-based search" approach for accurate mapping of sub- to multi-cellular morphogenetic motifs using a time series data mining framework. We formulated the task of motif mapping as a subsequence matching problem and solved it using dynamic time warping, while relying on high throughput graph-theoretic algorithms for efficient exploration of the search space. This formulation allows our algorithm to accurately identify the complete duration of each instance and automatically label different stages throughout its progress, such as cell cycle phases during cell division. To illustrate our approach, we mapped cell intercalations during germband extension in the early Drosophila embryo. Our framework enabled statistical analysis of intercalary cell behaviors in wild-type and mutant embryos, comparison of temporal dynamics in contracting and growing junctions in different genotypes, and the identification of a novel mode of iterative cell intercalation. Our formulation of tissue morphogenesis using time series opens new avenues for systematic decomposition of tissue morphogenesis.
Collapse
Affiliation(s)
- Tomer Stern
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey, United States of America
| | - Stanislav Y. Shvartsman
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey, United States of America
- The Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
- Center for Computational Biology, Flatiron Institute - Simons Foundation, New York, United States of America
| | - Eric F. Wieschaus
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
- The Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| |
Collapse
|
14
|
Nakajima T, Sasaki K, Yamamori A, Sakurai K, Miyata K, Watanabe T, Matsunaga YT. A simple three-dimensional gut model constructed in a restricted ductal microspace induces intestinal epithelial cell integrity and facilitates absorption assays. Biomater Sci 2020; 8:5615-5627. [DOI: 10.1039/d0bm00763c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A new 3D gut-on-a-chip on a ductal scaffold induced a differentiated epithelial layer and allowed permeability and absorption assay.
Collapse
Affiliation(s)
- Tadaaki Nakajima
- Institute of Industrial Science
- The University of Tokyo
- Tokyo 153-8505
- Japan
| | | | | | | | | | | | | |
Collapse
|
15
|
Varma R, Soleas JP, Waddell TK, Karoubi G, McGuigan AP. Current strategies and opportunities to manufacture cells for modeling human lungs. Adv Drug Deliv Rev 2020; 161-162:90-109. [PMID: 32835746 PMCID: PMC7442933 DOI: 10.1016/j.addr.2020.08.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/17/2020] [Accepted: 08/14/2020] [Indexed: 02/07/2023]
Abstract
Chronic lung diseases remain major healthcare burdens, for which the only curative treatment is lung transplantation. In vitro human models are promising platforms for identifying and testing novel compounds to potentially decrease this burden. Directed differentiation of pluripotent stem cells is an important strategy to generate lung cells to create such models. Current lung directed differentiation protocols are limited as they do not 1) recapitulate the diversity of respiratory epithelium, 2) generate consistent or sufficient cell numbers for drug discovery platforms, and 3) establish the histologic tissue-level organization critical for modeling lung function. In this review, we describe how lung development has formed the basis for directed differentiation protocols, and discuss the utility of available protocols for lung epithelial cell generation and drug development. We further highlight tissue engineering strategies for manipulating biophysical signals during directed differentiation such that future protocols can recapitulate both chemical and physical cues present during lung development.
Collapse
Affiliation(s)
- Ratna Varma
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON M5S 3G9, Canada; Latner Thoracic Surgery Research Laboratories, Toronto General Hospital, 101 College St., Toronto, ON M5G 1L7, Canada
| | - John P Soleas
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON M5S 3G9, Canada; Latner Thoracic Surgery Research Laboratories, Toronto General Hospital, 101 College St., Toronto, ON M5G 1L7, Canada
| | - Thomas K Waddell
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON M5S 3G9, Canada; Latner Thoracic Surgery Research Laboratories, Toronto General Hospital, 101 College St., Toronto, ON M5G 1L7, Canada; Institute of Medical Science, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Golnaz Karoubi
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital, 101 College St., Toronto, ON M5G 1L7, Canada; Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, ON M5S 3G8, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada.
| | - Alison P McGuigan
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON M5S 3G9, Canada; Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College St., Toronto, ON M5S 3E5, Canada.
| |
Collapse
|