1
|
Rodrigues RJ, Marques JM, Köfalvi A. Cannabis, Endocannabinoids and Brain Development: From Embryogenesis to Adolescence. Cells 2024; 13:1875. [PMID: 39594623 PMCID: PMC11593331 DOI: 10.3390/cells13221875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/06/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
The endocannabinoid signalling system (ECS) plays a critical role from the very beginning of embryogenesis. Accordingly, the ECS is engaged early on in nervous system development, starting from neurulation, supported by the identification of ECS components-both receptors and enzymes controlling endocannabinoid metabolism-at these early stages. In particular, regarding the brain, the ECS is involved in the tightly regulated sequence of events that comprise brain development, from neurogenesis to neuronal migration, morphological guidance for neuronal connectivity, and synaptic circuitry refinement. The importance of this broad role of the ECS across various brain development processes is further underscored by the growing understanding of the consequences of cannabis exposure at different developmental stages. Despite the considerable knowledge we have on the role of the ECS in brain development, significant gaps in our understanding remain, particularly regarding the long-term impact and underlying mechanisms of cannabis exposure at different developmental stages. This review provides an overview of the current state of knowledge on the role of the ECS throughout brain development, from embryogenesis to adulthood, and discusses the impact of cannabis exposure, especially during adolescence-a critical period of circuitry maturation and refinement coinciding with an increased risk of cannabis use.
Collapse
Affiliation(s)
- Ricardo J. Rodrigues
- CNC-UC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal;
- CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Joana M. Marques
- CNC-UC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal;
- CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Attila Köfalvi
- CNC-UC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal;
- CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| |
Collapse
|
2
|
Jahn K, Blumer N, Wieltsch C, Duzzi L, Fuchs H, Meister R, Groh A, Schulze Westhoff M, Krüger THC, Bleich S, Khan AQ, Frieling H. Impact of cannabinoids on synapse markers in an SH-SY5Y cell culture model. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2024; 10:96. [PMID: 39448630 PMCID: PMC11502758 DOI: 10.1038/s41537-024-00498-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/18/2024] [Indexed: 10/26/2024]
Abstract
Patients suffering from schizophrenic psychosis show reduced synaptic connectivity compared to healthy individuals, and often, the use of cannabis precedes the onset of schizophrenic psychosis. Therefore, we investigated if different types of cannabinoids impact methylation patterns and expression of schizophrenia candidate genes concerned with the development and preservation of synapses and synaptic function in a SH-SY5Y cell culture model. For this purpose, SH-SY5Y cells were differentiated into a neuron-like cell type as previously described. Effects of the cannabinoids delta-9-THC, HU-210, and Anandamide were investigated by analysis of cell morphology and measurement of neurite/dendrite lengths as well as determination of methylation pattern, expression (real time-qPCR, western blot) and localization (immunocytochemistry) of different target molecules concerned with the formation of synapses. Regarding the global impression of morphology, cells, and neurites appeared to be a bit more blunted/roundish and to have more structures that could be described a bit boldly as resembling transport vesicles under the application of the three cannabinoids in comparison to a sole application of retinoic acid (RA). However, there were no obvious differences between the three cannabinoids. Concerning dendrites or branch lengths, there was a significant difference with longer dendrites and branches in RA-treated cells than in undifferentiated control cells (as shown previously), but there were no differences between cannabinoid treatment and exclusive RA application. Methylation rates in the promoter regions of synapse candidate genes in cannabinoid-treated cells were in between those of differentiated cells and untreated controls, even though findings were significant only in some of the investigated genes. In other targets, the methylation rates of cannabinoid-treated cells did not only approach those of undifferentiated cells but were also valued even beyond. mRNA levels also showed the same tendency of values approaching those of undifferentiated controls under the application of the three cannabinoids for most investigated targets except for the structural molecules (NEFH, MAPT). Likewise, the quantification of expression via western blot analysis revealed a higher expression of targets in RA-treated cells compared to undifferentiated controls and, again, lower expression under the additional application of THC in trend. In line with our earlier findings, the application of RA led to higher fluorescence intensity and/or a differential signal distribution in the cell in most of the investigated targets in ICC. Under treatment with THC, fluorescence intensity decreased, or the signal distribution became similar to the dispersion in the undifferentiated control condition. Our findings point to a decline of neuronal differentiation markers in our in vitro cell-culture system under the application of cannabinoids.
Collapse
Affiliation(s)
- Kirsten Jahn
- Laboratory of Molecular Neurosciences, Department of Clinical Psychiatry, Medical School Hannover, Hanover, Germany.
| | - Nina Blumer
- Laboratory of Molecular Neurosciences, Department of Clinical Psychiatry, Medical School Hannover, Hanover, Germany
| | - Caroline Wieltsch
- Laboratory of Molecular Neurosciences, Department of Clinical Psychiatry, Medical School Hannover, Hanover, Germany
| | - Laura Duzzi
- Laboratory of Molecular Neurosciences, Department of Clinical Psychiatry, Medical School Hannover, Hanover, Germany
| | - Heiko Fuchs
- Laboratory for Experimental Eye Research, Department of Ophthalmology, Medical School Hannover, Hanover, Germany
| | - Roland Meister
- Laboratory for Experimental Eye Research, Department of Ophthalmology, Medical School Hannover, Hanover, Germany
| | - Adrian Groh
- Laboratory of Molecular Neurosciences, Department of Clinical Psychiatry, Medical School Hannover, Hanover, Germany
| | - Martin Schulze Westhoff
- Laboratory of Molecular Neurosciences, Department of Clinical Psychiatry, Medical School Hannover, Hanover, Germany
| | - Tillmann Horst Christoph Krüger
- Department of Clinical Psychiatry, Division of clinical psychology and sexual medicine, Medical School Hannover, Hanover, Germany
- Center for Systems Neurosciences Hannover, Hanover, Germany
| | - Stefan Bleich
- Laboratory of Molecular Neurosciences, Department of Clinical Psychiatry, Medical School Hannover, Hanover, Germany
- Center for Systems Neurosciences Hannover, Hanover, Germany
| | - Abdul Qayyum Khan
- Laboratory of Molecular Neurosciences, Department of Clinical Psychiatry, Medical School Hannover, Hanover, Germany
| | - Helge Frieling
- Laboratory of Molecular Neurosciences, Department of Clinical Psychiatry, Medical School Hannover, Hanover, Germany
- Center for Systems Neurosciences Hannover, Hanover, Germany
| |
Collapse
|
3
|
Li S, Guo Y, Takahashi M, Suzuki H, Kosaki K, Ohshima T. Forebrain commissure formation in zebrafish embryo requires the binding of KLC1 to CRMP2. Dev Neurobiol 2024; 84:203-216. [PMID: 38830696 DOI: 10.1002/dneu.22948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/17/2024] [Accepted: 05/18/2024] [Indexed: 06/05/2024]
Abstract
Formation of the corpus callosum (CC), anterior commissure (AC), and postoptic commissure (POC), connecting the left and right cerebral hemispheres, is crucial for cerebral functioning. Collapsin response mediator protein 2 (CRMP2) has been suggested to be associated with the mechanisms governing this formation, based on knockout studies in mice and knockdown/knockout studies in zebrafish. Previously, we reported two cases of non-synonymous CRMP2 variants with S14R and R565C substitutions. Among the, the R565C substitution (p.R565C) was caused by the novel CRMP2 mutation c.1693C > T, and the patient presented with intellectual disability accompanied by CC hypoplasia. In this study, we demonstrate that crmp2 mRNA could rescue AC and POC formation in crmp2-knockdown zebrafish, whereas the mRNA with the R566C mutation could not. Zebrafish CRMP2 R566C corresponds to human CRMP2 R565C. Further experiments with transfected cultured cells indicated that CRMP2 with the R566C mutation could not bind to kinesin light chain 1 (KLC1). Knockdown of klc1a in zebrafish resulted in defective AC and POC formation, revealing a genetic interaction with crmp2. These findings suggest that the CRMP2 R566C mutant fails to bind to KLC1, preventing axonal elongation and leading to defective AC and POC formation in zebrafish and CC formation defects in humans. Our study highlights the importance of the interaction between CRMP2 and KLC1 in the formation of the forebrain commissures, revealing a novel mechanism associated with CRMP2 mutations underlying human neurodevelopmental abnormalities.
Collapse
Affiliation(s)
- Simo Li
- Department of Life Science and Medical Bio-Science, Waseda University, Tokyo, Japan
| | - Youjia Guo
- Department of Life Science and Medical Bio-Science, Waseda University, Tokyo, Japan
| | - Miyuki Takahashi
- Department of Life Science and Medical Bio-Science, Waseda University, Tokyo, Japan
| | - Hisato Suzuki
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| | - Kenjiro Kosaki
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| | - Toshio Ohshima
- Department of Life Science and Medical Bio-Science, Waseda University, Tokyo, Japan
| |
Collapse
|
4
|
Fletcher-Jones A, Spackman E, Craig TJ, Nakamura Y, Wilkinson KA, Henley JM. SGIP1 binding to the α-helical H9 domain of cannabinoid receptor 1 promotes axonal surface expression. J Cell Sci 2024; 137:jcs261551. [PMID: 38864427 PMCID: PMC11213518 DOI: 10.1242/jcs.261551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 04/30/2024] [Indexed: 06/13/2024] Open
Abstract
Endocannabinoid signalling mediated by cannabinoid receptor 1 (CB1R, also known as CNR1) is critical for homeostatic neuromodulation of both excitatory and inhibitory synapses. This requires highly polarised axonal surface expression of CB1R, but how this is achieved remains unclear. We previously reported that the α-helical H9 domain in the intracellular C terminus of CB1R contributes to axonal surface expression by an unknown mechanism. Here, we show in rat primary neuronal cultures that the H9 domain binds to the endocytic adaptor protein SGIP1 to promote CB1R expression in the axonal membrane. Overexpression of SGIP1 increases CB1R axonal surface localisation but has no effect on CB1R lacking the H9 domain (CB1RΔH9). Conversely, SGIP1 knockdown reduces axonal surface expression of CB1R but does not affect CB1RΔH9. Furthermore, SGIP1 knockdown diminishes CB1R-mediated inhibition of presynaptic Ca2+ influx in response to neuronal activity. Taken together, these data advance mechanistic understanding of endocannabinoid signalling by demonstrating that SGIP1 interaction with the H9 domain underpins axonal CB1R surface expression to regulate presynaptic responsiveness.
Collapse
Affiliation(s)
- Alexandra Fletcher-Jones
- School of Biochemistry, Centre for Synaptic Plasticity, University of Bristol, Biomedical Sciences Building, Bristol, BS8 1TD, UK
| | - Ellen Spackman
- School of Biochemistry, Centre for Synaptic Plasticity, University of Bristol, Biomedical Sciences Building, Bristol, BS8 1TD, UK
| | - Tim J. Craig
- School of Applied Sciences, University of the West of England, Coldharbour Lane, Bristol, BS16 1QY, UK
| | - Yasuko Nakamura
- School of Biochemistry, Centre for Synaptic Plasticity, University of Bristol, Biomedical Sciences Building, Bristol, BS8 1TD, UK
| | - Kevin A. Wilkinson
- School of Physiology, Pharmacology and Neuroscience, Centre for Synaptic Plasticity, University of Bristol, Biomedical Sciences Building, Bristol, BS8 1TD, UK
| | - Jeremy M. Henley
- School of Biochemistry, Centre for Synaptic Plasticity, University of Bristol, Biomedical Sciences Building, Bristol, BS8 1TD, UK
| |
Collapse
|
5
|
Santos R, Lokmane L, Ozdemir D, Traoré C, Agesilas A, Hakibilen C, Lenkei Z, Zala D. Local glycolysis fuels actomyosin contraction during axonal retraction. J Cell Biol 2023; 222:e202206133. [PMID: 37902728 PMCID: PMC10616508 DOI: 10.1083/jcb.202206133] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 04/04/2023] [Accepted: 10/02/2023] [Indexed: 10/31/2023] Open
Abstract
In response to repulsive cues, axonal growth cones can quickly retract. This requires the prompt activity of contractile actomyosin, which is formed by the non-muscle myosin II (NMII) bound to actin filaments. NMII is a molecular motor that provides the necessary mechanical force at the expense of ATP. Here, we report that this process is energetically coupled to glycolysis and is independent of cellular ATP levels. Induction of axonal retraction requires simultaneous generation of ATP by glycolysis, as shown by chemical inhibition and genetic knock-down of GAPDH. Co-immunoprecipitation and proximal-ligation assay showed that actomyosin associates with ATP-generating glycolytic enzymes and that this association is strongly enhanced during retraction. Using microfluidics, we confirmed that the energetic coupling between glycolysis and actomyosin necessary for axonal retraction is localized to the growth cone and near axonal shaft. These results indicate a tight coupling between on-demand energy production by glycolysis and energy consumption by actomyosin contraction suggesting a function of glycolysis in axonal guidance.
Collapse
Affiliation(s)
- Renata Santos
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, Laboratory of Dynamics of Neuronal Structure in Health and Disease, Paris, France
- Institut des Sciences Biologiques, Centre national de la recherche scientifique, Paris, France
| | - Ludmilla Lokmane
- Institut de Biologie de l’Ecole Normale Supérieure, École Normale Supérieure, Centre national de la recherche scientifique, Paris Sciences et Lettres Research University, Paris, France
| | - Dersu Ozdemir
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, Laboratory of Dynamics of Neuronal Structure in Health and Disease, Paris, France
| | - Clément Traoré
- Brain Plasticity Unit, École Supérieure de Physique et de Chimie Industrielles–ParisTech, Paris, France
| | - Annabelle Agesilas
- Brain Plasticity Unit, École Supérieure de Physique et de Chimie Industrielles–ParisTech, Paris, France
| | - Coralie Hakibilen
- Brain Plasticity Unit, École Supérieure de Physique et de Chimie Industrielles–ParisTech, Paris, France
| | - Zsolt Lenkei
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, Laboratory of Dynamics of Neuronal Structure in Health and Disease, Paris, France
- Brain Plasticity Unit, École Supérieure de Physique et de Chimie Industrielles–ParisTech, Paris, France
- GHU-Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, Paris, France
| | - Diana Zala
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, Laboratory of Dynamics of Neuronal Structure in Health and Disease, Paris, France
- Brain Plasticity Unit, École Supérieure de Physique et de Chimie Industrielles–ParisTech, Paris, France
| |
Collapse
|
6
|
Drozd CJ, Quinn CC. UNC-116 and UNC-16 function with the NEKL-3 kinase to promote axon targeting. Development 2023; 150:dev201654. [PMID: 37756604 PMCID: PMC10561693 DOI: 10.1242/dev.201654] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023]
Abstract
KIF5C is a kinesin-1 heavy chain that has been associated with neurodevelopmental disorders. Although the roles of kinesin-1 in axon transport are well known, little is known about how it regulates axon targeting. We report that UNC-116/KIF5C functions with the NEKL-3/NEK6/7 kinase to promote axon targeting in Caenorhabditis elegans. Loss of UNC-116 causes the axon to overshoot its target and UNC-116 gain-of-function causes premature axon termination. We find that loss of the UNC-16/JIP3 kinesin-1 cargo adaptor disrupts axon termination, but loss of kinesin-1 light chain function does not affect axon termination. Genetic analysis indicates that UNC-16 functions with the NEKL-3 kinase to promote axon termination. Consistent with this observation, imaging experiments indicate that loss of UNC-16 and UNC-116 disrupt localization of NEKL-3 in the axon. Moreover, genetic interactions suggest that NEKL-3 promotes axon termination by functioning with RPM-1, a ubiquitin ligase that regulates microtubule stability in the growth cone. These observations support a model where UNC-116 functions with UNC-16 to promote localization of NEKL-3 in the axon. NEKL-3, in turn, functions with the RPM-1 ubiquitin ligase to promote axon termination.
Collapse
Affiliation(s)
- Cody J. Drozd
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA
| | - Christopher C. Quinn
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA
| |
Collapse
|
7
|
Qiao S, Jiang Y, Li N, Zhu X. The kinesin light chain-2, a target of mRNA stabilizing protein HuR, inhibits p53 protein phosphorylation to promote radioresistance in NSCLC. Thorac Cancer 2023. [PMID: 37055376 DOI: 10.1111/1759-7714.14886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 04/15/2023] Open
Abstract
BACKGROUND Radioresistance hinders radiotherapy for the treatment of lung cancer. Kinesin light chain-2 (KLC2) has been found to be upregulated in lung cancer and also to be associated with poor prognosis. This study aimed to investigate the effect of KLC2 on radiosensitivity in lung cancer. METHODS The radioresistant role of KLC2 was determined by colony formation, neutral comet assay, and γH2AX immunofluorescent staining assay. We further verified the function of KLC2 in a xenograft tumor model. The downstream of KLC2 was identified through gene set enrichment analysis and validated by western blot. Finally, we analyzed clinical data from the TCGA database to reveal the upstream transcription factor of KLC2, which was validated by RNA binding protein immunoprecipitation assay. RESULTS Here, we found that downregulation of KLC2 could significantly reduce colony formation, increase γH2AX level, and double-stranded DNA breaks in vitro. Meanwhile, overexpressed KLC2 significantly increased the proportion of the S phase in lung cancer cells. KLC2 knockdown could activate P53 pathway, and ultimately promoting radiosensitivity. The mRNA of KLC2 was observed to bind with Hu-antigen R (HuR). The mRNA and protein expression of KLC2 in lung cancer cells was significantly reduced when combined with siRNA-HuR. Interestingly, KLC2 overexpression significantly increased the expression of HuR in lung cancer cells. CONCLUSION Taken together, these results indicated that HuR-KLC2 forms a positive feedback loop, which decreases the phosphorylation of p53 and thereby weaken the radiosensitivity of lung cancer cells. Our findings highlight the potential prognosis and therapeutic target value of KLC2 in lung cancer patients treated with radiotherapy.
Collapse
Affiliation(s)
- Simiao Qiao
- Department of Radiation Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yuhang Jiang
- Department of Radiation Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Na Li
- Department of Radiation Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoxia Zhu
- Department of Radiation Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
8
|
Anchesi I, Betto F, Chiricosta L, Gugliandolo A, Pollastro F, Salamone S, Mazzon E. Cannabigerol Activates Cytoskeletal Remodeling via Wnt/PCP in NSC-34: An In Vitro Transcriptional Study. PLANTS (BASEL, SWITZERLAND) 2023; 12:193. [PMID: 36616322 PMCID: PMC9823669 DOI: 10.3390/plants12010193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/19/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Cannabigerol (CBG) is a non-psychoactive phytocannabinoid present in the Cannabis sativa L. plant. In our study, CBG at the concentration of 10 µM was used to treat NSC-34 motor neuron-like cells. The aim of the study was to evaluate the effects of CBG on NSC-34 cells, using next-generation sequencing (NGS) technology. Analysis showed the activation of the WNT/planar cell polarity (PCP) pathway and Ephrin-Eph signaling. The results revealed that CBG increases the expression of genes associated with the onset process of cytoskeletal remodeling and axon guidance.
Collapse
Affiliation(s)
- Ivan Anchesi
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| | - Federica Betto
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| | - Luigi Chiricosta
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| | - Agnese Gugliandolo
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| | - Federica Pollastro
- Department of Pharmaceutical Sciences, University of Eastern Piedmont, Largo Donegani 2, 28100 Novara, Italy
| | - Stefano Salamone
- Department of Pharmaceutical Sciences, University of Eastern Piedmont, Largo Donegani 2, 28100 Novara, Italy
| | - Emanuela Mazzon
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| |
Collapse
|
9
|
Kupczyk P, Rykala M, Serek P, Pawlak A, Slowikowski B, Holysz M, Chodaczek G, Madej JP, Ziolkowski P, Niedzwiedz A. The cannabinoid receptors system in horses: Tissue distribution and cellular identification in skin. J Vet Intern Med 2022; 36:1508-1524. [PMID: 35801813 PMCID: PMC9308437 DOI: 10.1111/jvim.16467] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 05/27/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND The endocannabinoid system (ECS) is composed of cannabinoid receptors type 1 (CBR1) and type 2 (CBR2), cannabinoid-based ligands (endogenous chemically synthesized phytocannabinoids), and endogenous enzymes controlling their concentrations. Cannabinoid receptors (CBRs) have been identified in invertebrates and in almost all vertebrate species in the central and peripheral nervous system as well as in immune cells, where they control neuroimmune homeostasis. In humans, rodents, dogs, and cats, CBRs expression has been confirmed in the skin, and their expression and tissue distribution become disordered in pathological conditions. Cannabinoid receptors may be a possible therapeutic target in skin diseases. OBJECTIVES To characterize the distribution and cellular expression of CBRs in the skin of horses under normal conditions. ANIMALS Fifteen healthy horses. METHODS Using full-thickness skin punch biopsy samples, skin-derived primary epidermal keratinocytes and dermal-derived cells, we performed analysis of Cnr1 and Cnr2 genes using real-time PCR and CBR1 and CBR2 protein expression by confocal microscopy and Western blotting. RESULTS Normal equine skin, including equine epidermal keratinocytes and dermal fibroblast-like cells, all exhibited constant gene and protein expression of CBRs. CONCLUSIONS AND CLINICAL IMPORTANCE Our results represent a starting point for developing and translating new veterinary medicine-based pharmacotherapies using ECS as a possible target.
Collapse
Affiliation(s)
- Piotr Kupczyk
- Division of General and Experimental Pathology, Department of Clinical and Experimental Pathology, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Marta Rykala
- Department of Internal Medicine and Clinic for Horses, Dogs and Cats, Faculty of Veterinary Medicine, University of Environmental and Life Sciences, Wroclaw, Poland
| | - Pawel Serek
- Department of Biochemistry and Immunochemistry, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Aleksandra Pawlak
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Environmental and Life Sciences, Wroclaw, Poland
| | - Bartosz Slowikowski
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Karol Marcinkowski Poznan University of Medical Sciences, Poznan, Poland
| | - Marcin Holysz
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Karol Marcinkowski Poznan University of Medical Sciences, Poznan, Poland
| | - Grzegorz Chodaczek
- Bioimaging Laboratory, Lukasiewicz Research Network - PORT Polish Center for Technology Development, Wroclaw, Poland
| | - Jan P Madej
- Department of Immunology, Pathophysiology and Veterinary Preventive Medicine, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Piotr Ziolkowski
- Division of General and Experimental Pathology, Department of Clinical and Experimental Pathology, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Artur Niedzwiedz
- Department of Internal Medicine and Clinic for Horses, Dogs and Cats, Faculty of Veterinary Medicine, University of Environmental and Life Sciences, Wroclaw, Poland
| |
Collapse
|
10
|
Yao M, Qu H, Han Y, Cheng CY, Xiao X. Kinesins in Mammalian Spermatogenesis and Germ Cell Transport. Front Cell Dev Biol 2022; 10:837542. [PMID: 35547823 PMCID: PMC9083010 DOI: 10.3389/fcell.2022.837542] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/25/2022] [Indexed: 11/13/2022] Open
Abstract
In mammalian testes, the apical cytoplasm of each Sertoli cell holds up to several dozens of germ cells, especially spermatids that are transported up and down the seminiferous epithelium. The blood-testis barrier (BTB) established by neighboring Sertoli cells in the basal compartment restructures on a regular basis to allow preleptotene/leptotene spermatocytes to pass through. The timely transfer of germ cells and other cellular organelles such as residual bodies, phagosomes, and lysosomes across the epithelium to facilitate spermatogenesis is important and requires the microtubule-based cytoskeleton in Sertoli cells. Kinesins, a superfamily of the microtubule-dependent motor proteins, are abundantly and preferentially expressed in the testis, but their functions are poorly understood. This review summarizes recent findings on kinesins in mammalian spermatogenesis, highlighting their potential role in germ cell traversing through the BTB and the remodeling of Sertoli cell-spermatid junctions to advance spermatid transport. The possibility of kinesins acting as a mediator and/or synchronizer for cell cycle progression, germ cell transit, and junctional rearrangement and turnover is also discussed. We mostly cover findings in rodents, but we also make special remarks regarding humans. We anticipate that this information will provide a framework for future research in the field.
Collapse
Affiliation(s)
- Mingxia Yao
- Center for Reproductive Health, School of Pharmaceutical Sciences, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, China
| | - Haoyang Qu
- Center for Reproductive Health, School of Pharmaceutical Sciences, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, China
| | - Yating Han
- Center for Reproductive Health, School of Pharmaceutical Sciences, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, China
| | - C Yan Cheng
- Department of Urology and Andrology, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiang Xiao
- Center for Reproductive Health, School of Pharmaceutical Sciences, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, China.,Zhejiang Provincial Laboratory of Experimental Animal's & Nonclinical Laboratory Studies, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
11
|
Cannabinoid Receptor 1 Is Required for Neurodevelopment of Striosome-Dendron Bouquets. eNeuro 2022; 9:ENEURO.0318-21.2022. [PMID: 35361667 PMCID: PMC9007419 DOI: 10.1523/eneuro.0318-21.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 03/10/2022] [Accepted: 03/16/2022] [Indexed: 11/21/2022] Open
Abstract
Cannabinoid receptor 1 (CB1R) has strong effects on neurogenesis and axon pathfinding in the prenatal brain. Endocannabinoids that activate CB1R are abundant in the early postnatal brain and in mother's milk, but few studies have investigated their function in newborns. We examined postnatal CB1R expression in the major striatonigral circuit from striosomes of the striatum to the dopamine-containing neurons of the substantia nigra. CB1R enrichment was first detectable between postnatal day (P)5 and P7, and this timing coincided with the formation of "striosome-dendron bouquets," the elaborate anatomic structures by which striosomal neurons control dopaminergic cell activity through inhibitory synapses. In Cnr1-/- knock-out mice lacking CB1R expression, striosome-dendron bouquets were markedly disorganized by P11 and at adulthood, suggesting a postnatal pathfinding connectivity function for CB1R in connecting striosomal axons and dopaminergic neurons analogous to CB1R's prenatal function in other brain regions. Our finding that CB1R plays a major role in postnatal wiring of the striatonigral dopamine-control system, with lasting consequences at least in mice, points to a crucial need to determine whether lactating mothers' use of CB1R agonists (e.g., in marijuana) or antagonists (e.g., type 2 diabetes therapies) can disrupt brain development in nursing offspring.
Collapse
|
12
|
Haynes EM, Burnett KH, He J, Jean-Pierre MW, Jarzyna M, Eliceiri KW, Huisken J, Halloran MC. KLC4 shapes axon arbors during development and mediates adult behavior. eLife 2022; 11:74270. [PMID: 36222498 PMCID: PMC9596160 DOI: 10.7554/elife.74270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 10/11/2022] [Indexed: 11/13/2022] Open
Abstract
Development of elaborate and polarized neuronal morphology requires precisely regulated transport of cellular cargos by motor proteins such as kinesin-1. Kinesin-1 has numerous cellular cargos which must be delivered to unique neuronal compartments. The process by which this motor selectively transports and delivers cargo to regulate neuronal morphogenesis is poorly understood, although the cargo-binding kinesin light chain (KLC) subunits contribute to specificity. Our work implicates one such subunit, KLC4, as an essential regulator of axon branching and arborization pattern of sensory neurons during development. Using live imaging approaches in klc4 mutant zebrafish, we show that KLC4 is required for stabilization of nascent axon branches, proper microtubule (MT) dynamics, and endosomal transport. Furthermore, KLC4 is required for proper tiling of peripheral axon arbors: in klc4 mutants, peripheral axons showed abnormal fasciculation, a behavior characteristic of central axons. This result suggests that KLC4 patterns axonal compartments and helps establish molecular differences between central and peripheral axons. Finally, we find that klc4 mutant larva are hypersensitive to touch and adults show anxiety-like behavior in a novel tank test, implicating klc4 as a new gene involved in stress response circuits.
Collapse
Affiliation(s)
- Elizabeth M Haynes
- Department of Integrative Biology, University of Wisconsin-MadisonMadisonUnited States,Center for Quantitative Cell Imaging, University of Wisconsin-MadisonMadisonUnited States,Department of Neuroscience, University of Wisconsin-MadisonMadisonUnited States,Morgridge Institute for ResearchMadisonUnited States
| | - Korri H Burnett
- Department of Integrative Biology, University of Wisconsin-MadisonMadisonUnited States,Department of Neuroscience, University of Wisconsin-MadisonMadisonUnited States
| | - Jiaye He
- Morgridge Institute for ResearchMadisonUnited States,National Innovation Center for Advanced Medical DevicesShenzenChina
| | - Marcel W Jean-Pierre
- Department of Integrative Biology, University of Wisconsin-MadisonMadisonUnited States,Department of Neuroscience, University of Wisconsin-MadisonMadisonUnited States
| | - Martin Jarzyna
- Department of Integrative Biology, University of Wisconsin-MadisonMadisonUnited States,Department of Neuroscience, University of Wisconsin-MadisonMadisonUnited States
| | - Kevin W Eliceiri
- Center for Quantitative Cell Imaging, University of Wisconsin-MadisonMadisonUnited States,Morgridge Institute for ResearchMadisonUnited States
| | - Jan Huisken
- Department of Integrative Biology, University of Wisconsin-MadisonMadisonUnited States,Morgridge Institute for ResearchMadisonUnited States,Department of Biology and Psychology, Georg-August-UniversityGöttingenGermany
| | - Mary C Halloran
- Department of Integrative Biology, University of Wisconsin-MadisonMadisonUnited States,Department of Neuroscience, University of Wisconsin-MadisonMadisonUnited States
| |
Collapse
|
13
|
DeGiorgis JA, Jang M, Bearer EL. The Giant Axon of the Squid: A Simple System for Axonal Transport Studies. Methods Mol Biol 2022; 2431:3-22. [PMID: 35412269 DOI: 10.1007/978-1-0716-1990-2_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The squid giant axon has a long history of being a superb experimental system in which to investigate a wide range of questions concerning intracellular transport. In this protocol we describe the method used for dissecting the axon to preserve its viability in vitro, and the technique for injecting exogenous materials into the living axon. Now that the squid genome is emerging, and the CRISPR/cas9 system has been successfully applied to knock-out squid genes, the giant axon will resume its place in the scientific pantheon of powerful experimental systems in which to address biological questions pertaining to all eukaryotes.
Collapse
Affiliation(s)
- Joseph A DeGiorgis
- Biology Department, Providence College, Providence, RI, USA
- Marine Biological Laboratory, Woods Hole, MA, USA
- Brown University, Providence, RI, USA
| | | | - Elaine L Bearer
- Marine Biological Laboratory, Woods Hole, MA, USA.
- Brown University, Providence, RI, USA.
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA.
- California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
14
|
Atkins M, Hazan J, Fassier C. In Vivo Live Imaging of Axonal Transport in Developing Zebrafish Axons. Methods Mol Biol 2022; 2431:325-350. [PMID: 35412285 DOI: 10.1007/978-1-0716-1990-2_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Axonal transport is crucial for neuronal homeostasis, survival, and development. Indeed, axonal transport needs to be precisely regulated for developing axons to swiftly and accurately respond to their complex and evolving environment in space and time. A growing number of studies have started to unravel the diversity of regulatory and adaptor proteins required to orchestrate the axonal transport machinery. Despite some discrepancies between in vitro and in vivo axonal transport studies, most analyses aiming at deciphering these regulatory complexes, as well as their mode of action, were carried out in vitro in primary cultures of neurons, and mainly focused on their impact on axon specification and elongation, but rarely on axon navigation per se. Given the clear influence of the in vivo environment on axonal transport, including chemical and physical interactions with neighboring cells, it is essential to develop in vivo models to identify and characterize the molecular complexes involved in this key process. Here, we describe an experimental system to monitor axonal transport in vivo in developing axons of live zebrafish embryos with high spatial and temporal resolution. Due to its optical transparency and easy genetic manipulation, the zebrafish embryo is ideally suited to study such cellular dynamics at a single axon scale. Using this approach, we were able to unravel the key role of Fidgetin-like 1 in the regulation of bidirectional axonal transport required for motor axon targeting. Moreover, this protocol can be easily adapted to characterize a wide range of axonal transport regulators and components in physiological conditions and may additionally be used to screen new therapeutic compounds based on their ability to recue axonal transport defects in pathological conditions.
Collapse
Affiliation(s)
- Melody Atkins
- Sorbonne Université, UPMC-Université Paris 6, INSERM U1130, CNRS UMR8246, Neuroscience Paris Seine-Institut de Biologie Paris-Seine (NPS-IBPS), Paris, France
- INSERM, UMR-S 1270, Institut du Fer à Moulin, UMR-S 1270 Sorbonne Université, Paris, France
| | - Jamilé Hazan
- Sorbonne Université, UPMC-Université Paris 6, INSERM U1130, CNRS UMR8246, Neuroscience Paris Seine-Institut de Biologie Paris-Seine (NPS-IBPS), Paris, France
| | - Coralie Fassier
- Sorbonne Université, UPMC-Université Paris 6, INSERM U1130, CNRS UMR8246, Neuroscience Paris Seine-Institut de Biologie Paris-Seine (NPS-IBPS), Paris, France.
- Sorbonne Université, INSERM UMR_S 968, CNRS UMR_7210, Institut de la Vision, Paris, France.
| |
Collapse
|
15
|
Sánchez-Huertas C, Herrera E. With the Permission of Microtubules: An Updated Overview on Microtubule Function During Axon Pathfinding. Front Mol Neurosci 2021; 14:759404. [PMID: 34924953 PMCID: PMC8675249 DOI: 10.3389/fnmol.2021.759404] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 11/01/2021] [Indexed: 01/27/2023] Open
Abstract
During the establishment of neural circuitry axons often need to cover long distances to reach remote targets. The stereotyped navigation of these axons defines the connectivity between brain regions and cellular subtypes. This chemotrophic guidance process mostly relies on the spatio-temporal expression patterns of extracellular proteins and the selective expression of their receptors in projection neurons. Axon guidance is stimulated by guidance proteins and implemented by neuronal traction forces at the growth cones, which engage local cytoskeleton regulators and cell adhesion proteins. Different layers of guidance signaling regulation, such as the cleavage and processing of receptors, the expression of co-receptors and a wide variety of intracellular cascades downstream of receptors activation, have been progressively unveiled. Also, in the last decades, the regulation of microtubule (MT) assembly, stability and interactions with the submembranous actin network in the growth cone have emerged as crucial effector mechanisms in axon pathfinding. In this review, we will delve into the intracellular signaling cascades downstream of guidance receptors that converge on the MT cytoskeleton of the growing axon. In particular, we will focus on the microtubule-associated proteins (MAPs) network responsible of MT dynamics in the axon and growth cone. Complementarily, we will discuss new evidences that connect defects in MT scaffold proteins, MAPs or MT-based motors and axon misrouting during brain development.
Collapse
Affiliation(s)
- Carlos Sánchez-Huertas
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández (CSIC-UMH), Alicante, Spain
| | | |
Collapse
|
16
|
Effects of Cannabinoid Exposure during Neurodevelopment on Future Effects of Drugs of Abuse: A Preclinical Perspective. Int J Mol Sci 2021; 22:ijms22189989. [PMID: 34576153 PMCID: PMC8472179 DOI: 10.3390/ijms22189989] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/30/2021] [Accepted: 09/09/2021] [Indexed: 12/29/2022] Open
Abstract
The endocannabinoid system plays a central role in the earliest stages of embryonic, postnatal and adolescent neurodevelopment. Aberrant activity of this system at key developmental phases has been shown to affect neural development. The aim of this review is to synthesise and analyse preclinical insights within rodent populations, focusing on the effects that perinatal (embryonic, gestational and early postnatal developmental stages) and adolescent (postnatal day 21–60) cannabinoid exposure impose across time on the subsequent activity of various drugs of abuse. Results in rodents show that exposure to cannabinoids during the perinatal and adolescent period can lead to multifaceted behavioural and molecular changes. In the perinatal period, significant effects of Δ9-THC exposure on subsequent opiate and amphetamine reward-related behaviours were observed primarily in male rodents. These effects were not extended to include cocaine or alcohol. In adolescence, various cannabinoid agonists were used experimentally. This array of cannabinoids demonstrated consistent effects on opioids across sex. In contrast, no significant effects were observed regarding the future activity of amphetamines and cocaine. However, these studies focused primarily on male rodents. In conclusion, numerous gaps and limitations are apparent in the current body of research. The sparsity of studies analysing the perinatal period must be addressed. Future research within both periods must also focus on delineating sex-specific effects, moving away from a male-centric focus. Studies should also aim to utilise more clinically relevant cannabinoid treatments.
Collapse
|
17
|
Weaver CJ, Poulain FE. From whole organism to ultrastructure: progress in axonal imaging for decoding circuit development. Development 2021; 148:271122. [PMID: 34328171 DOI: 10.1242/dev.199717] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Since the pioneering work of Ramón y Cajal, scientists have sought to unravel the complexities of axon development underlying neural circuit formation. Micrometer-scale axonal growth cones navigate to targets that are often centimeters away. To reach their targets, growth cones react to dynamic environmental cues that change in the order of seconds to days. Proper axon growth and guidance are essential to circuit formation, and progress in imaging has been integral to studying these processes. In particular, advances in high- and super-resolution microscopy provide the spatial and temporal resolution required for studying developing axons. In this Review, we describe how improved microscopy has revolutionized our understanding of axonal development. We discuss how novel technologies, specifically light-sheet and super-resolution microscopy, led to new discoveries at the cellular scale by imaging axon outgrowth and circuit wiring with extreme precision. We next examine how advanced microscopy broadened our understanding of the subcellular dynamics driving axon growth and guidance. We finally assess the current challenges that the field of axonal biology still faces for imaging axons, and examine how future technology could meet these needs.
Collapse
Affiliation(s)
- Cory J Weaver
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Fabienne E Poulain
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
18
|
Guo C, Zhou J, Li D. New Insights Into Functions of IQ67-Domain Proteins. FRONTIERS IN PLANT SCIENCE 2021; 11:614851. [PMID: 33679817 PMCID: PMC7930834 DOI: 10.3389/fpls.2020.614851] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/21/2020] [Indexed: 05/31/2023]
Abstract
IQ67-domain (IQD) proteins, first identified in Arabidopsis and rice, are plant-specific calmodulin-binding proteins containing highly conserved motifs. They play a critical role in plant defenses, organ development and shape, and drought tolerance. Driven by comprehensive genome identification and analysis efforts, IQDs have now been characterized in several species and have been shown to act as microtubule-associated proteins, participating in microtubule-related signaling pathways. However, the precise molecular mechanisms underpinning their biological functions remain incompletely understood. Here we review current knowledge on how IQD family members are thought to regulate plant growth and development by affecting microtubule dynamics or participating in microtubule-related signaling pathways in different plant species and propose some new insights.
Collapse
Affiliation(s)
- Chunyue Guo
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Jun Zhou
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Dengwen Li
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
19
|
Lu HC, Mackie K. Review of the Endocannabinoid System. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2020; 6:607-615. [PMID: 32980261 DOI: 10.1016/j.bpsc.2020.07.016] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/27/2020] [Accepted: 07/27/2020] [Indexed: 01/02/2023]
Abstract
The endocannabinoid system (ECS) is a widespread neuromodulatory network involved in the developing central nervous system as well as playing a major role in tuning many cognitive and physiological processes. The ECS is composed of endogenous cannabinoids, cannabinoid receptors, and the enzymes responsible for the synthesis and degradation of endocannabinoids. In addition to its endogenous roles, cannabinoid receptors are the primary target of Δ9-tetrahydrocannabinol, the intoxicating component of cannabis. In this review, we summarize our current understanding of the ECS. We start with a description of ECS components and their role in synaptic plasticity and neurodevelopment, and then discuss how phytocannabinoids and other exogenous compounds may perturb the ECS, emphasizing examples relevant to psychosis.
Collapse
Affiliation(s)
- Hui-Chen Lu
- Gill Center for Biomolecular Science and the Department of Psychological and Brain Sciences, Indiana University Bloomington, Bloomington, Indiana
| | - Ken Mackie
- Gill Center for Biomolecular Science and the Department of Psychological and Brain Sciences, Indiana University Bloomington, Bloomington, Indiana.
| |
Collapse
|
20
|
Trans-Axonal Signaling in Neural Circuit Wiring. Int J Mol Sci 2020; 21:ijms21145170. [PMID: 32708320 PMCID: PMC7404203 DOI: 10.3390/ijms21145170] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/15/2020] [Accepted: 07/17/2020] [Indexed: 12/24/2022] Open
Abstract
The development of neural circuits is a complex process that relies on the proper navigation of axons through their environment to their appropriate targets. While axon–environment and axon–target interactions have long been known as essential for circuit formation, communication between axons themselves has only more recently emerged as another crucial mechanism. Trans-axonal signaling governs many axonal behaviors, including fasciculation for proper guidance to targets, defasciculation for pathfinding at important choice points, repulsion along and within tracts for pre-target sorting and target selection, repulsion at the target for precise synaptic connectivity, and potentially selective degeneration for circuit refinement. This review outlines the recent advances in identifying the molecular mechanisms of trans-axonal signaling and discusses the role of axon–axon interactions during the different steps of neural circuit formation.
Collapse
|