1
|
Tian D, Zhang W, Wang L, Qi J, Xu T, Zuo M, Han B, Li X, Zhao K. Proteo-transcriptomic profiles reveal genetic mechanisms underlying primary hair follicle development in coarse sheep fetal skin. J Proteomics 2024; 310:105327. [PMID: 39395776 DOI: 10.1016/j.jprot.2024.105327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/29/2024] [Accepted: 10/02/2024] [Indexed: 10/14/2024]
Abstract
Long hair trait represents a valuable genetic asset in Qinghai Tibetan sheep, with its quality and yield being contingent upon the characteristics of hair follicles (HFs). This study aims to elucidate the genetic mechanism underlying primary hair follicles (PFs) formation through an integrated analysis of proteomics and transcriptomics. Samples were collected at key stages of fetal HF formation (E65 and E85) for histological observation, revealing significant alterations in the microstructure of PF (E65) during the developmental process. In this study, a comprehensive analysis revealed a total of 217 overlapping genes that exhibited concordant expression patterns at both the proteomic and transcriptomic levels. Furthermore, to ensure the reliability of our findings, we employed parallel response monitoring (PRM) to validate the obtained proteomic data. The protein-protein interaction (PPI) network diagram highlights five hub core proteins (TTN, IGTA2, F2, EGFR, and MYH14). These differentially expressed proteins (DEPs) play crucial roles in metabolic processes, cell adhesion, and diverse biological processes. The potential synergy between transcriptional regulation and post-translational modifications plays a pivotal role in governing the initiation PF development. The findings presented in this study offer innovative insights into the molecular mechanisms underlying HFs generation and establish a robust foundation for targeted breeding strategies aimed at augmenting wool traits in sheep. SIGNIFICANCE: The composition of coarse hair primarily consists of long, myelinated fibers originating from primary hair follicles. Sheep fetal skin initiates the formation of primary hair follicles around E65, followed by the development of secondary hair follicles around E85. Conducting differential proteomic and transcriptomic analyses during these developmental stages enhances our understanding of the molecular mechanisms underlying primary hair follicle development and offers valuable insights for sustainable utilization of high-quality germplasm resources.
Collapse
Affiliation(s)
- Dehong Tian
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 81000 0, Qinghai, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenkui Zhang
- Qinghai Sheep Breeding and Promotion Service Center, Gangcha 812300, Qinghai, China
| | - Lei Wang
- Qinghai Sheep Breeding and Promotion Service Center, Gangcha 812300, Qinghai, China
| | - Junying Qi
- Qinghai Sheep Breeding and Promotion Service Center, Gangcha 812300, Qinghai, China
| | - Teng Xu
- Qinghai Sheep Breeding and Promotion Service Center, Gangcha 812300, Qinghai, China
| | - Mingxing Zuo
- Qinghai Sheep Breeding and Promotion Service Center, Gangcha 812300, Qinghai, China
| | - Buying Han
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 81000 0, Qinghai, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xue Li
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 81000 0, Qinghai, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kai Zhao
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 81000 0, Qinghai, China.
| |
Collapse
|
2
|
Gaikwad HK, Jaswandkar SV, Katti KS, Haage A, Katti DR. Molecular basis of conformational changes and mechanics of integrins. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2023; 381:20220243. [PMID: 37211038 DOI: 10.1098/rsta.2022.0243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 01/13/2023] [Indexed: 05/23/2023]
Abstract
Integrin, as a mechanotransducer, establishes the mechanical reciprocity between the extracellular matrix (ECM) and cells at integrin-mediated adhesion sites. This study used steered molecular dynamics (SMD) simulations to investigate the mechanical responses of integrin αvβ3 with and without 10th type III fibronectin (FnIII10) binding for tensile, bending and torsional loading conditions. The ligand-binding integrin confirmed the integrin activation during equilibration and altered the integrin dynamics by changing the interface interaction between β-tail, hybrid and epidermal growth factor domains during initial tensile loading. The tensile deformation in integrin molecules indicated that fibronectin ligand binding modulates its mechanical responses in the folded and unfolded conformation states. The bending deformation responses of extended integrin models reveal the change in behaviour of integrin molecules in the presence of Mn2+ ion and ligand based on the application of force in the folding and unfolding directions of integrin. Furthermore, these SMD simulation results were used to predict the mechanical properties of integrin underlying the mechanism of integrin-based adhesion. The evaluation of integrin mechanics provides new insights into understanding the mechanotransmission (force transmission) between cells and ECM and contributes to developing an accurate model for integrin-mediated adhesion. This article is part of a discussion meeting issue 'Supercomputing simulations of advanced materials'.
Collapse
Affiliation(s)
- Hanmant K Gaikwad
- Department of Civil, Construction and Environmental Engineering, North Dakota State University, Fargo, ND 58105, USA
| | - Sharad V Jaswandkar
- Department of Civil, Construction and Environmental Engineering, North Dakota State University, Fargo, ND 58105, USA
| | - Kalpana S Katti
- Department of Civil, Construction and Environmental Engineering, North Dakota State University, Fargo, ND 58105, USA
| | - Amanda Haage
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | - Dinesh R Katti
- Department of Civil, Construction and Environmental Engineering, North Dakota State University, Fargo, ND 58105, USA
| |
Collapse
|
3
|
Haage A, Tanentzapf G. Analysis of Integrin-Dependent Melanoblast Migration During Development. Methods Mol Biol 2023; 2608:207-221. [PMID: 36653710 DOI: 10.1007/978-1-0716-2887-4_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The neural crest is a transient embryonic structure that gives rise to a number of important cell types and tissues, including most of the peripheral and enteric nervous systems, pigment-producing skin cells known as melanocytes, and many craniofacial structures. Melanoblasts, the precursors of melanocytes, are derived from the so-called trunk neural crest cells. These cells delaminate and migrate along a dorsolateral pathway to colonize their final destination in the skin, and consequently, defects in melanoblast migration result in pigmentation defects. Studying melanocyte migration is a topic of great interest due to the involvement of melanocytes in highly metastatic skin cancer. A role for integrin-mediated adhesion is well established in neural crest migration, and our recent work has provided direct evidence for a key role for integrin-based adhesion in melanocyte migration. Imaging of melanoblast migration in the context of intact skin has proven to be a particularly powerful tool to study integrin-based adhesion during melanoblast migration. Here, we describe the use of skin explants combined with genetically encoded markers for melanocytes and high-resolution live imaging as a powerful and informative approach to analyze melanoblast migration in an ex vivo context.
Collapse
Affiliation(s)
- Amanda Haage
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND, USA.
| | - Guy Tanentzapf
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
4
|
Akkermans O, Delloye-Bourgeois C, Peregrina C, Carrasquero-Ordaz M, Kokolaki M, Berbeira-Santana M, Chavent M, Reynaud F, Raj R, Agirre J, Aksu M, White ES, Lowe E, Ben Amar D, Zaballa S, Huo J, Pakos I, McCubbin PTN, Comoletti D, Owens RJ, Robinson CV, Castellani V, Del Toro D, Seiradake E. GPC3-Unc5 receptor complex structure and role in cell migration. Cell 2022; 185:3931-3949.e26. [PMID: 36240740 PMCID: PMC9596381 DOI: 10.1016/j.cell.2022.09.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/22/2022] [Accepted: 09/15/2022] [Indexed: 11/09/2022]
Abstract
Neural migration is a critical step during brain development that requires the interactions of cell-surface guidance receptors. Cancer cells often hijack these mechanisms to disseminate. Here, we reveal crystal structures of Uncoordinated-5 receptor D (Unc5D) in complex with morphogen receptor glypican-3 (GPC3), forming an octameric glycoprotein complex. In the complex, four Unc5D molecules pack into an antiparallel bundle, flanked by four GPC3 molecules. Central glycan-glycan interactions are formed by N-linked glycans emanating from GPC3 (N241 in human) and C-mannosylated tryptophans of the Unc5D thrombospondin-like domains. MD simulations, mass spectrometry and structure-based mutants validate the crystallographic data. Anti-GPC3 nanobodies enhance or weaken Unc5-GPC3 binding and, together with mutant proteins, show that Unc5/GPC3 guide migrating pyramidal neurons in the mouse cortex, and cancer cells in an embryonic xenograft neuroblastoma model. The results demonstrate a conserved structural mechanism of cell guidance, where finely balanced Unc5-GPC3 interactions regulate cell migration.
Collapse
Affiliation(s)
- Onno Akkermans
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Céline Delloye-Bourgeois
- MeLis, University of Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5284, INSERM U1314, Institut NeuroMyoGène, 8 avenue Rockefeller 69008 Lyon, Lyon, France
| | - Claudia Peregrina
- Department of Biological Sciences, Institute of Neurosciences, IDIBAPS, CIBERNED, University of Barcelona, Barcelona, Spain
| | - Maria Carrasquero-Ordaz
- Department of Biochemistry, University of Oxford, Oxford, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Maria Kokolaki
- Department of Biochemistry, University of Oxford, Oxford, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Miguel Berbeira-Santana
- Department of Biochemistry, University of Oxford, Oxford, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Matthieu Chavent
- Institut de Pharmacologie et Biologie Structurale, Université de Toulouse, Toulouse, France
| | - Florie Reynaud
- MeLis, University of Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5284, INSERM U1314, Institut NeuroMyoGène, 8 avenue Rockefeller 69008 Lyon, Lyon, France
| | - Ritu Raj
- Department of Chemistry, University of Oxford, Oxford, UK
| | - Jon Agirre
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, UK
| | - Metin Aksu
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Eleanor S White
- Department of Biochemistry, University of Oxford, Oxford, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Edward Lowe
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Dounia Ben Amar
- MeLis, University of Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5284, INSERM U1314, Institut NeuroMyoGène, 8 avenue Rockefeller 69008 Lyon, Lyon, France
| | - Sofia Zaballa
- Department of Biological Sciences, Institute of Neurosciences, IDIBAPS, CIBERNED, University of Barcelona, Barcelona, Spain
| | - Jiandong Huo
- Structural Biology, The Rosalind Franklin Institute, Harwell Science Campus, Didcot, UK; Division of Structural Biology, University of Oxford, Oxford, UK
| | - Irene Pakos
- Child Health Institute of New Jersey, New Brunswick, NJ 08901, USA
| | - Patrick T N McCubbin
- Department of Biochemistry, University of Oxford, Oxford, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Davide Comoletti
- Child Health Institute of New Jersey, New Brunswick, NJ 08901, USA; School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Raymond J Owens
- Structural Biology, The Rosalind Franklin Institute, Harwell Science Campus, Didcot, UK; Division of Structural Biology, University of Oxford, Oxford, UK
| | - Carol V Robinson
- Department of Chemistry, University of Oxford, Oxford, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Valérie Castellani
- MeLis, University of Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5284, INSERM U1314, Institut NeuroMyoGène, 8 avenue Rockefeller 69008 Lyon, Lyon, France.
| | - Daniel Del Toro
- Department of Biological Sciences, Institute of Neurosciences, IDIBAPS, CIBERNED, University of Barcelona, Barcelona, Spain.
| | - Elena Seiradake
- Department of Biochemistry, University of Oxford, Oxford, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK.
| |
Collapse
|
5
|
Liu Y, Ding Y, Liu Z, Chen Q, Li X, Xue X, Pu Y, Ma Y, Zhao Q. Integration Analysis of Transcriptome and Proteome Reveal the Mechanisms of Goat Wool Bending. Front Cell Dev Biol 2022; 10:836913. [PMID: 35433706 PMCID: PMC9011194 DOI: 10.3389/fcell.2022.836913] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/08/2022] [Indexed: 12/20/2022] Open
Abstract
Zhongwei goat is a unique Chinese native goat breed for excellent lamb fur. The pattern of flower spikes of the lamb fur was significantly reduced due to the reduction of the bending of the hair strands with growth. In order to explore the molecular mechanism underlying hair bending with growth, we performed the comprehensive analysis of transcriptome and proteome of skins from 45-days, 108-days and 365-days goat based on TMT-based quantitative proteomics and RNA-seq methods. In the three comparison groups, 356, 592 and 282 differentially expressed proteins (DEPs) were screened, respectively. KEGG pathway analysis indicated that DEPs were significantly enriched in a set of signaling pathways related to wool growth and bending, such as ECM-receptor interaction, PI3K-Akt signaling pathway, PPAR signaling pathway, protein digestion and absorption, and metabolic pathways. In addition, 20 DEPs abundance of goat skin at three development stages were examined by PRM method, which validated the reliability of proteomic data. Among them, KRT and collagen alpha family may play an important role in the development of goat hair follicle and wool bending. COL6A1, COL6A2, CRNN, TNC and LOC102178129 were identified as candidate genes based on combined analysis of transcriptome and proteome data and PRM quantification. Our results identify the differential expressed proteins as well as pathways related to the wool bending of Zhongwei goats and provide a theoretical basis for further revealing the molecular mechanism underlying wool bending of goats.
Collapse
Affiliation(s)
- Yue Liu
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affffairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Yangyang Ding
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affffairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Zhanfa Liu
- The Ningxia Hui Autonomous Region Breeding Ground of Zhongwei Goat, Zhongwei, China
| | - Qian Chen
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affffairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- Department of Animal Breeding and Reproduction, College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Xiaobo Li
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affffairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- Department of Animal Breeding and Reproduction, College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Xianglan Xue
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affffairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Yabin Pu
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affffairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Yuehui Ma
- CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- *Correspondence: Qianjun Zhao, ; Yuehui Ma,
| | - Qianjun Zhao
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affffairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- *Correspondence: Qianjun Zhao, ; Yuehui Ma,
| |
Collapse
|
6
|
Moritz MN, Merkel AR, Feldman EG, Selistre-de-Araujo HS, Rhoades (Sterling) JA. Biphasic α2β1 Integrin Expression in Breast Cancer Metastasis to Bone. Int J Mol Sci 2021; 22:6906. [PMID: 34199096 PMCID: PMC8269289 DOI: 10.3390/ijms22136906] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/22/2021] [Accepted: 06/22/2021] [Indexed: 12/23/2022] Open
Abstract
Integrins participate in the pathogenesis and progression of tumors at many stages during the metastatic cascade. However, current evidence for the role of integrins in breast cancer progression is contradictory and seems to be dependent on tumor stage, differentiation status, and microenvironmental influences. While some studies suggest that loss of α2β1 enhances cancer metastasis, other studies suggest that this integrin is pro-tumorigenic. However, few studies have looked at α2β1 in the context of bone metastasis. In this study, we aimed to understand the role of α2β1 integrin in breast cancer metastasis to bone. To address this, we utilized in vivo models of breast cancer metastasis to bone using MDA-MB-231 cells transfected with an α2 expression plasmid (MDA-OEα2). MDA cells overexpressing the α2 integrin subunit had increased primary tumor growth and dissemination to bone but had no change in tumor establishment and bone destruction. Further in vitro analysis revealed that tumors in the bone have decreased α2β1 expression and increased osteolytic signaling compared to primary tumors. Taken together, these data suggest an inverse correlation between α2β1 expression and bone-metastatic potential. Inhibiting α2β1 expression may be beneficial to limit the expansion of primary tumors but could be harmful once tumors have established in bone.
Collapse
Affiliation(s)
- Milene N.O. Moritz
- Program in Evolutionary Genetics and Molecular Biology, Federal University of Sao Carlos, Sao Carlos, SP 13565-905, Brazil; (M.N.O.M.); (H.S.S.-d.-A.)
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
| | - Alyssa R. Merkel
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
- Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Ean G. Feldman
- Vanderbilt Graduate School Program in Biomedical Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
| | - Heloisa S. Selistre-de-Araujo
- Program in Evolutionary Genetics and Molecular Biology, Federal University of Sao Carlos, Sao Carlos, SP 13565-905, Brazil; (M.N.O.M.); (H.S.S.-d.-A.)
- Department of Physiological Sciences, Federal University of Sao Carlos, Sao Carlos, SP 13565-905, Brazil
| | - Julie A. Rhoades (Sterling)
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
- Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Veterans’ Affairs Tennessee Valley Healthcare System, Nashville, TN 37232, USA
| |
Collapse
|
7
|
Peregrina C, Del Toro D. FLRTing Neurons in Cortical Migration During Cerebral Cortex Development. Front Cell Dev Biol 2020; 8:578506. [PMID: 33043013 PMCID: PMC7527468 DOI: 10.3389/fcell.2020.578506] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/17/2020] [Indexed: 01/26/2023] Open
Abstract
During development, two coordinated events shape the morphology of the mammalian cerebral cortex, leading to the cortex's columnar and layered structure: the proliferation of neuronal progenitors and cortical migration. Pyramidal neurons originating from germinal zones migrate along radial glial fibers to their final position in the cortical plate by both radial migration and tangential dispersion. These processes rely on the delicate balance of intercellular adhesive and repulsive signaling that takes place between neurons interacting with different substrates and guidance cues. Here, we focus on the function of the cell adhesion molecules fibronectin leucine-rich repeat transmembrane proteins (FLRTs) in regulating both the radial migration of neurons, as well as their tangential spread, and the impact these processes have on cortex morphogenesis. In combining structural and functional analysis, recent studies have begun to reveal how FLRT-mediated responses are precisely tuned - from forming different protein complexes to modulate either cell adhesion or repulsion in neurons. These approaches provide a deeper understanding of the context-dependent interactions of FLRTs with multiple receptors involved in axon guidance and synapse formation that contribute to finely regulated neuronal migration.
Collapse
Affiliation(s)
- Claudia Peregrina
- Department of Biological Sciences, Faculty of Medicine, Institute of Neurosciences, University of Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Daniel Del Toro
- Department of Biological Sciences, Faculty of Medicine, Institute of Neurosciences, University of Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| |
Collapse
|