1
|
Liu Z, Lu C, Ma L, Li C, Luo H, Liu Y, Liu X, Li H, Cui Y, Zeng J, Bottasso-Arias N, Sinner D, Li L, Wang J, Stainier DYR, Yin W. The T-Type Calcium Channel CACNA1H is Required for Smooth Muscle Cytoskeletal Organization During Tracheal Tubulogenesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2308622. [PMID: 39360593 DOI: 10.1002/advs.202308622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 08/23/2024] [Indexed: 10/04/2024]
Abstract
Abnormalities of tracheal smooth muscle (SM) formation are associated with several clinical disorders including tracheal stenosis and tracheomalacia. However, the cellular and molecular mechanisms underlying tracheal SM formation remain poorly understood. Here, it is shown that the T-type calcium channel CACNA1H is a novel regulator of tracheal SM formation and contraction. Cacna1h in an ethylnitrosourea forward genetic screen for regulators of respiratory disease using the mouse as a model is identified. Cacna1h mutants exhibit tracheal stenosis, disorganized SM and compromised tracheal contraction. CACNA1H is essential to maintain actin polymerization, which is required for tracheal SM organization and tube formation. This process appears to be partially mediated through activation of the actin regulator RhoA, as pharmacological increase of RhoA activity ameliorates the Cacna1h-mutant trachea phenotypes. Analysis of human tracheal tissues indicates that a decrease in CACNA1H protein levels is associated with congenital tracheostenosis. These results provide insight into the role for the T-type calcium channel in cytoskeletal organization and SM formation during tracheal tube formation and suggest novel targets for congenital tracheostenosis intervention.
Collapse
Affiliation(s)
- Ziying Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, P. R. China
- Guangzhou National Laboratory, Guangzhou International Bio Island, No. 9 XingDaoHuanBei Road, Guangzhou, Guangdong Province, 510005, P. R. China
| | - Chunyan Lu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, P. R. China
| | - Li Ma
- Heart center & Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, 510623, P. R. China
| | - Changjiang Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, P. R. China
| | - Haiyun Luo
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, P. R. China
| | - Yiqi Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, P. R. China
| | - Xinyuan Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, P. R. China
| | - Haiqing Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, P. R. China
| | - Yachao Cui
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, P. R. China
| | - Jiahang Zeng
- Department of Thoracic Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, P. R. China
| | - Natalia Bottasso-Arias
- Division of Neonatology and Pulmonary Biology, CCHMC, College of Medicine, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Debora Sinner
- Division of Neonatology and Pulmonary Biology, CCHMC, College of Medicine, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Le Li
- Department of Thoracic Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, P. R. China
| | - Jian Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, P. R. China
| | - Didier Y R Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), 61231, Bad Nauheim, Germany
| | - Wenguang Yin
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, P. R. China
- Guangzhou National Laboratory, Guangzhou International Bio Island, No. 9 XingDaoHuanBei Road, Guangzhou, Guangdong Province, 510005, P. R. China
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, the Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510005, P. R. China
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| |
Collapse
|
2
|
Parslow VR, Elmore SA, Cochran RZ, Bolon B, Mahler B, Sabio D, Lubeck BA. Histology Atlas of the Developing Mouse Respiratory System From Prenatal Day 9.0 Through Postnatal Day 30. Toxicol Pathol 2024; 52:153-227. [PMID: 39096105 DOI: 10.1177/01926233241252114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Respiratory diseases are one of the leading causes of death and disability around the world. Mice are commonly used as models of human respiratory disease. Phenotypic analysis of mice with spontaneous, congenital, inherited, or treatment-related respiratory tract abnormalities requires investigators to discriminate normal anatomic features of the respiratory system from those that have been altered by disease. Many publications describe individual aspects of normal respiratory tract development, primarily focusing on morphogenesis of the trachea and lung. However, a single reference providing detailed low- and high-magnification, high-resolution images of routine hematoxylin and eosin (H&E)-stained sections depicting all major structures of the entire developing murine respiratory system does not exist. The purpose of this atlas is to correct this deficiency by establishing one concise reference of high-resolution color photomicrographs from whole-slide scans of H&E-stained tissue sections. The atlas has detailed descriptions and well-annotated images of the developing mouse upper and lower respiratory tracts emphasizing embryonic days (E) 9.0 to 18.5 and major early postnatal events. The selected images illustrate the main structures and events at key developmental stages and thus should help investigators both confirm the chronological age of mouse embryos and distinguish normal morphology as well as structural (cellular and organ) abnormalities.
Collapse
Affiliation(s)
| | - Susan A Elmore
- Experimental Pathology Laboratories, Inc., Research Triangle Park, North Carolina, USA
| | - Robert Z Cochran
- National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | | | - Beth Mahler
- Experimental Pathology Laboratories, Inc., Research Triangle Park, North Carolina, USA
| | - David Sabio
- Experimental Pathology Laboratories, Inc., Research Triangle Park, North Carolina, USA
| | - Beth A Lubeck
- National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| |
Collapse
|
3
|
Kim J, Jozić A, Bloom E, Jones B, Marra M, Murthy NTV, Eygeris Y, Sahay G. Microfluidic Platform Enables Shearless Aerosolization of Lipid Nanoparticles for mRNA Inhalation. ACS NANO 2024; 18:11335-11348. [PMID: 38621181 DOI: 10.1021/acsnano.4c00768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Leveraging the extensive surface area of the lungs for gene therapy, the inhalation route offers distinct advantages for delivery. Clinical nebulizers that employ vibrating mesh technology are the standard choice for converting liquid medicines into aerosols. However, they have limitations when it comes to delivering mRNA through inhalation, including severe damage to nanoparticles due to shearing forces. Here, we introduce a microfluidic aerosolization platform (MAP) that preserves the structural and physicochemical integrity of lipid nanoparticles, enabling safe and efficient delivery of mRNA to the respiratory system. Our results demonstrated the superiority of the MAP over the conventional vibrating mesh nebulizer, as it avoided problems such as particle aggregation, loss of mRNA encapsulation, and deformation of the nanoparticle morphology. Notably, aerosolized nanoparticles generated by the microfluidic device led to enhanced transfection efficiency across various cell lines. In vivo experiments with mice that inhaled these aerosolized nanoparticles revealed successful lung-specific mRNA transfection without observable signs of toxicity. This MAP may represent an advancement for the pulmonary gene therapy, enabling precise and effective delivery of aerosolized nanoparticles.
Collapse
Affiliation(s)
- Jeonghwan Kim
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, Oregon 97201, United States
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Antony Jozić
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, Oregon 97201, United States
| | - Elissa Bloom
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, Oregon 97201, United States
| | - Brian Jones
- Funai Microfluidic Systems, Lexington, Kentucky 40508, United States
| | - Michael Marra
- Funai Microfluidic Systems, Lexington, Kentucky 40508, United States
| | | | - Yulia Eygeris
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, Oregon 97201, United States
| | - Gaurav Sahay
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, Oregon 97201, United States
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, Oregon 97201, United States
- Department of Biomedical Engineering, Robertson Life Sciences Building, Oregon Health & Science University, Portland, Oregon 97201, United States
- Center for Innovative Drug Delivery and Imaging, College of Pharmacy, Oregon State University, Portland, Oregon 97201, United States
| |
Collapse
|
4
|
Chiesa I, Esposito A, Vozzi G, Gottardi R, De Maria C. 4D bioprinted self-folding scaffolds enhance cartilage formation in the engineering of trachea. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.06.570378. [PMID: 38105967 PMCID: PMC10723422 DOI: 10.1101/2023.12.06.570378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Trachea defects that required surgical interventions are increasing in number in the recent years, especially for pediatric patients. However, current gold standards, such as biological grafts and synthetic prothesis, do not represent an effective solution, due to the lack of mimicry and regeneration capability. Bioprinting is a cutting-edge approach for the fabrication of biomimetic scaffold to empower tissue engineering toward trachea replacement. In this study, we developed a self-folding gelatin-based bilayer scaffold for trachea engineering, exploiting the 4D bioprinting approach, namely the fabrication of dynamic scaffolds, able to shape morph in a predefined way after the application of an environmental stimulus. Indeed, starting form a 2D flat position, upon hydration, this scaffold forms a closed tubular structure. An analytical model, based on Timoshenko's beam thermostats, was developed, and validated to predict the radius of curvature of the scaffold according to the material properties and the scaffold geometry. The 4D bioprinted structure was tested with airway fibroblast, lung endothelial cells and ear chondral progenitor cells (eCPCs) toward the development of a tissue engineered trachea. Cells were seeded on the scaffold in its initial flat position, maintained their position after the scaffold actuation and proliferated over or inside it. The ability of eCPCs to differentiate towards mature cartialge was evaluated. Interestingly, real-time PCR revealed that differentiating eCPCs on the 4D bioprinted scaffold promote healthy cartilage formation, if compared with eCPCs cultured on 2D static scaffold. Thus, eCPCs can perceive scaffold folding and its final curvature and to react to it, towards the formation of mature cartilage for the airway.
Collapse
|
5
|
Hu J, Wang H, Du X, Zhu L, Wang S, Zhang H, Xu Z, Chen H. Morphologic classification of tracheobronchial arborization in children with congenital tracheobronchial stenosis and the associated cardiovascular defects. Front Pediatr 2023; 11:1123237. [PMID: 37287629 PMCID: PMC10242125 DOI: 10.3389/fped.2023.1123237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 04/28/2023] [Indexed: 06/09/2023] Open
Abstract
Background We sought to classify patients with congenital tracheal stenosis (CTS) according to tracheobronchial morphology and determine anatomic features associated with tracheobronchial anomalies (TBAs) and concurrent cardiovascular defects (CVDs). Methods We enrolled 254 patients who underwent tracheoplasty between November 1, 2009 and December 30, 2018. The anatomic features of the tracheobronchial tree and cardiovascular system were abstracted from bronchoscopy, echocardiography, computerized tomography, and operative reports. Results Four types of tracheobronchial morphology were identified: Type-1, which included normal tracheobronchial arborization (Type-1A, n = 29) and tracheal bronchus (Type-1B, n = 22); Type-2 (tracheal trifurcation; n = 49), and Type-3 (typical bridging bronchus; n = 47). Type-4 (bronchus with an untypical bridging pattern) was divided into Type-4A (involving bronchial diverticulum; n = 52) and Type-4B (absent bronchus; n = 55). Carinal compression and tracheomalacia were significantly more frequent in Type-4 patients than in the other patients (P < 0.01). CVDs were common in patients with CTS, especially in patients with Type-3 and Type-4 (P < 0.01). Persistent left superior vena cava was most common among patients with Type-3 (P < 0.01), and pulmonary artery sling was most frequent among those with Type-4 (P < 0.01). Outflow tract defects were most likely to occur in Type-1B. Early mortality was detected in 12.2% of all patients, and young age (P = 0.02), operation in the early era (P < 0.01), and bronchial stenosis (P = 0.03) were proven to be risk factors. Conclusions We demonstrated a useful morphological classification for CTS. Bridging bronchus was most closely linked with vascular anomalies, while tracheal bronchus was frequently associated with outflow tract defects. These results may provide a clue to CTS pathogenesis.
Collapse
Affiliation(s)
- Jie Hu
- Department of Cardiothoracic Surgery, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Department of Pediatric Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hao Wang
- Department of Cardiothoracic Surgery, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xinwei Du
- Department of Cardiothoracic Surgery, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Limin Zhu
- Department of Cardiothoracic Surgery, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shunmin Wang
- Department of Cardiothoracic Surgery, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Haibo Zhang
- Department of Cardiothoracic Surgery, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhiwei Xu
- Department of Cardiothoracic Surgery, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hao Chen
- Department of Cardiothoracic Surgery, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
6
|
Li MH, Kuetemeyer JM, Yallowitz AR, Wellik DM. Characterization of a novel Hoxa5eGFP mouse line. Dev Dyn 2023; 252:536-546. [PMID: 36577717 PMCID: PMC10066829 DOI: 10.1002/dvdy.563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Hox genes encode transcription factors that are important for establishing the body plan. Hoxa5 is a member of the mammalian Hox5 paralogous group that regulates the patterning and morphology of the cervical-thoracic region of the axial skeleton. Hoxa5 also plays crucial functions in lung morphogenesis. RESULTS We generated a Hoxa5eGFP reporter mouse line using CRISPR technology, allowing real-time visualization of Hoxa5 expression. Hoxa5eGFP recapitulates reported embryonic Hoxa5 mRNA expression patterns. Specifically, Hoxa5eGFP can be visualized in the developing mouse neural tube, somites, lung, diaphragm, foregut, and midgut, among other organs. In the stomach, posteriorly biased Hoxa5eGFP expression correlates with a drastic morphological reduction of the corpus in Hox5 paralogous mutants. Expression of Hoxa5eGFP in the lung continues in all lung fibroblast populations through postnatal and adult stages. CONCLUSIONS We identified cell types that express Hoxa5 in postnatal and adult mouse lungs, including various fibroblasts and vascular endothelial cells. This reporter line will be a powerful tool for studies of the function of Hoxa5 during mouse development, homeostasis, and disease processes.
Collapse
Affiliation(s)
- Mu-Hang Li
- Genetics Training Program, University of Wisconsin-Madison, Madison, WI, United States
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, United States
| | - Julia M. Kuetemeyer
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, United States
| | - Alisha R. Yallowitz
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Deneen M. Wellik
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, United States
| |
Collapse
|
7
|
Manser M, Jeyanathan V, Jeyanathan M, Feng X, Dolovich MB, Xing Z, Cranston ED, Thompson MR. Design Considerations for Intratracheal Delivery Devices to Achieve Proof-of-Concept Dry Powder Biopharmaceutical Delivery in Mice. Pharm Res 2023; 40:1165-1176. [PMID: 36991226 PMCID: PMC10057681 DOI: 10.1007/s11095-023-03492-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 02/26/2023] [Indexed: 03/31/2023]
Abstract
PURPOSE Intratracheal delivery and consistent dosing of dry powder vaccines is especially challenging in mice. To address this issue, device design of positive pressure dosators and actuation parameters were assessed for their impacts on powder flowability and in vivo dry powder delivery. METHODS A chamber-loading dosator assembled with stainless-steel, polypropylene or polytetrafluoroethylene needle-tips was used to determine optimal actuation parameters. Powder loading methods including tamp-loading, chamber-loading and pipette tip-loading were compared to assess performance of the dosator delivery device in mice. RESULTS Available dose was highest (45%) with a stainless-steel tip loaded with an optimal mass and syringe air volume, primarily due to the ability of this configuration to dissipate static charge. However, this tip encouraged more agglomeration along its flow path in the presence of humidity and was too rigid for intubation of mice compared to a more flexible polypropylene tip. Using optimized actuation parameters, the polypropylene pipette tip-loading dosator achieved an acceptable in vivo emitted dose of 50% in mice. After administering two doses of a spray dried adenovirus encapsulated in mannitol-dextran, high bioactivity was observed in excised mouse lung tissue three days post-infection. CONCLUSIONS This proof-of-concept study demonstrates for the first time that intratracheal delivery of a thermally stable, viral-vectored dry powder can achieve equivalent bioactivity to the same powder, reconstituted and delivered intratracheally. This work may guide the design and device selection process for murine intratracheal delivery of dry powder vaccines to help progress this promising area of inhalable therapeutics.
Collapse
Affiliation(s)
- Myla Manser
- Department of Chemical Engineering, McMaster University, Hamilton, ON, L8S 4L7, Canada
| | - Vidthiya Jeyanathan
- McMaster Immunology Research Centre and Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, L8S 4L7, Canada
| | - Mangalakumari Jeyanathan
- McMaster Immunology Research Centre and Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, L8S 4L7, Canada
| | - Xueya Feng
- McMaster Immunology Research Centre and Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, L8S 4L7, Canada
| | - Myrna B Dolovich
- Firestone Research Aerosol Laboratory, Research Institute of St Joseph's Hospital, St. Joseph's Healthcare and Faculty of Health Sciences, Department of Medicine, McMaster University, Hamilton, ON, L8N 4A6, Canada
| | - Zhou Xing
- McMaster Immunology Research Centre and Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, L8S 4L7, Canada
| | - Emily D Cranston
- Department of Chemical Engineering, McMaster University, Hamilton, ON, L8S 4L7, Canada
- Department of Wood Science, University of British Columbia, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
- Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Michael R Thompson
- Department of Chemical Engineering, McMaster University, Hamilton, ON, L8S 4L7, Canada.
| |
Collapse
|
8
|
In Vitro Characteristics of Canine Primary Tracheal Epithelial Cells Maintained at an Air-Liquid Interface Compared to In Vivo Morphology. Int J Mol Sci 2023; 24:ijms24054987. [PMID: 36902418 PMCID: PMC10003254 DOI: 10.3390/ijms24054987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/28/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
Culturing respiratory epithelial cells at an air-liquid interface (ALI) represents an established method for studies on infection or toxicology by the generation of an in vivo-like respiratory tract epithelial cellular layer. Although primary respiratory cells from a variety of animals have been cultured, an in-depth characterization of canine tracheal ALI cultures is lacking despite the fact that canines are a highly relevant animal species susceptible to various respiratory agents, including zoonotic pathogens such as severe acute respiratory coronavirus 2 (SARS-CoV-2). In this study, canine primary tracheal epithelial cells were cultured under ALI conditions for four weeks, and their development was characterized during the entire culture period. Light and electron microscopy were performed to evaluate cell morphology in correlation with the immunohistological expression profile. The formation of tight junctions was confirmed using transepithelial electrical resistance (TEER) measurements and immunofluorescence staining for the junctional protein ZO-1. After 21 days of culture at the ALI, a columnar epithelium containing basal, ciliated and goblet cells was seen, resembling native canine tracheal samples. However, cilia formation, goblet cell distribution and epithelial thickness differed significantly from the native tissue. Despite this limitation, tracheal ALI cultures could be used to investigate the pathomorphological interactions of canine respiratory diseases and zoonotic agents.
Collapse
|
9
|
Ginzel M, Huber N, Bauer L, Kluth D, Metzger R. Development of the foregut and the formation of the trachea and esophagus in rat embryos. A symphony of confusion. Front Cell Dev Biol 2023; 11:1092753. [PMID: 36824366 PMCID: PMC9941168 DOI: 10.3389/fcell.2023.1092753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/23/2023] [Indexed: 02/10/2023] Open
Abstract
Introduction: During embryonic development, the trachea emerges from an area of the foregut, which is often referred to as "anterior" or "common" foregut tube or simply foregut. To explain this process of differentiation, four competing models exist to date. The outgrowth and watershed models propose a foregut that remains constant in length. In the outgrowth model, the trachea buds off and elongates from the foregut, while in the watershed model, a mesenchymal wedge splits the growing foregut into the trachea and esophagus. In contrast, the septation model proposes a cranial splitting and thus a shortening of the "common" foregut tube into the trachea and esophagus by an emerging septum. Finally, the splitting and extension model describes an interaction of cranial splitting of the foregut and simultaneous caudal tracheal and esophageal growth. Methods: Here we examine the development of the undifferentiated foregut by micro computed tomography, which allows precise measurements. Results: Our results show that this area of the foregut transforms into the larynx, a process, which is independent from tracheal and esophageal development. Discussion: These observations are only consistent with the outgrowth model.
Collapse
Affiliation(s)
- Marco Ginzel
- Department of Pediatric and Adolescent Surgery, Paracelsus Medical University Hospital, Salzburg, Austria,*Correspondence: Marco Ginzel,
| | - Nana Huber
- Department of Pediatric and Adolescent Surgery, Paracelsus Medical University Hospital, Salzburg, Austria
| | - Leopold Bauer
- Department of Pediatric and Adolescent Surgery, Paracelsus Medical University Hospital, Salzburg, Austria
| | - Dietrich Kluth
- Department of Pediatric Surgery, University Hospital Leipzig, Leipzig, Germany
| | - Roman Metzger
- Department of Pediatric and Adolescent Surgery, Paracelsus Medical University Hospital, Salzburg, Austria
| |
Collapse
|
10
|
Kishimoto K, Iwasawa K, Sorel A, Ferran-Heredia C, Han L, Morimoto M, Wells JM, Takebe T, Zorn AM. Directed differentiation of human pluripotent stem cells into diverse organ-specific mesenchyme of the digestive and respiratory systems. Nat Protoc 2022; 17:2699-2719. [PMID: 35978039 PMCID: PMC9633385 DOI: 10.1038/s41596-022-00733-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/10/2022] [Indexed: 12/20/2022]
Abstract
Development of visceral organs such as the esophagus, lung, liver and stomach are coordinated by reciprocal signaling interactions between the endoderm and adjacent mesoderm cells in the fetal foregut. Although the recent successes in recapitulating developmental signaling in vitro has enabled the differentiation of human pluripotent stem cells (hPSCs) into various types of organ-specific endodermal epithelium, the generation of organ-specific mesenchyme has received much less attention. This is a major limitation in ongoing efforts to engineer complex human tissue. Here, we describe a protocol to differentiate hPSCs into different types of organ-specific mesoderm, leveraging signaling networks and molecular markers elucidated from single-cell transcriptomics of mouse foregut organogenesis. Building on established methods, hPSC-derived lateral plate mesoderm treated with either retinoic acid (RA) or RA together with a Hedgehog (HH) agonist generates posterior or anterior foregut splanchnic mesoderm, respectively, after 4-d cultures. These are directed into organ-specific mesenchyme lineages by the combinatorial activation or inhibition of WNT, BMP, RA or HH pathways from days 4 to 7 in cultures. By day 7, the cultures are enriched for different types of mesoderm with distinct molecular signatures: 60-90% pure liver septum transversum/mesothelium-like, 70-80% pure liver-like fibroblasts and populations of ~35% respiratory-like mesoderm, gastric-like mesoderm or esophageal-like mesoderm. This protocol can be performed by anyone with moderate experience differentiating hPSCs, provides a novel platform to study human mesoderm development and can be used to engineer more complex foregut tissue for disease modeling and regenerative medicine.
Collapse
Affiliation(s)
- Keishi Kishimoto
- Center for Stem Cell and Organoid Medicine (CuSTOM), Perinatal Institute, Division of Developmental Biology, Cincinnati Children's Hospital, Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH, USA
- Laboratory for Lung Development and Regeneration, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
- CuSTOM-RIKEN BDR Collaborative Laboratory, Cincinnati Children's Hospital, Cincinnati, OH, USA
| | - Kentaro Iwasawa
- Center for Stem Cell and Organoid Medicine (CuSTOM), Perinatal Institute, Division of Developmental Biology, Cincinnati Children's Hospital, Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH, USA
- CuSTOM, Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital, Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH, USA
| | - Alice Sorel
- Center for Stem Cell and Organoid Medicine (CuSTOM), Perinatal Institute, Division of Developmental Biology, Cincinnati Children's Hospital, Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH, USA
| | - Carlos Ferran-Heredia
- Center for Stem Cell and Organoid Medicine (CuSTOM), Perinatal Institute, Division of Developmental Biology, Cincinnati Children's Hospital, Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH, USA
| | - Lu Han
- Center for Stem Cell and Organoid Medicine (CuSTOM), Perinatal Institute, Division of Developmental Biology, Cincinnati Children's Hospital, Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH, USA
| | - Mitsuru Morimoto
- Laboratory for Lung Development and Regeneration, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
- CuSTOM-RIKEN BDR Collaborative Laboratory, Cincinnati Children's Hospital, Cincinnati, OH, USA
| | - James M Wells
- Center for Stem Cell and Organoid Medicine (CuSTOM), Perinatal Institute, Division of Developmental Biology, Cincinnati Children's Hospital, Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH, USA
| | - Takanori Takebe
- Center for Stem Cell and Organoid Medicine (CuSTOM), Perinatal Institute, Division of Developmental Biology, Cincinnati Children's Hospital, Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH, USA
- CuSTOM, Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital, Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH, USA
- Institute of Research, Tokyo Medical and Dental University, Tokyo, Japan
| | - Aaron M Zorn
- Center for Stem Cell and Organoid Medicine (CuSTOM), Perinatal Institute, Division of Developmental Biology, Cincinnati Children's Hospital, Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH, USA.
- CuSTOM-RIKEN BDR Collaborative Laboratory, Cincinnati Children's Hospital, Cincinnati, OH, USA.
| |
Collapse
|
11
|
Abstract
The trachea is a long tube that enables air passage between the larynx and the bronchi. C-shaped cartilage rings on the ventral side stabilise the structure. On its esophagus-facing dorsal side, deformable smooth muscle facilitates the passage of food in the esophagus. While the symmetry break along the dorsal-ventral axis is well understood, the molecular mechanism that results in the periodic Sox9 expression pattern that translates into the cartilage rings has remained elusive. Here, we review the molecular regulatory interactions that have been elucidated, and discuss possible patterning mechanisms. Understanding the principles of self-organisation is important, both to define biomedical interventions and to enable tissue engineering.
Collapse
Affiliation(s)
- Dagmar Iber
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
- Swiss Institute of Bioinformatics, Basel, Switzerland
- *Correspondence: Dagmar Iber,
| | - Malte Mederacke
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
- Swiss Institute of Bioinformatics, Basel, Switzerland
| |
Collapse
|
12
|
Bottasso-Arias N, Leesman L, Burra K, Snowball J, Shah R, Mohanakrishnan M, Xu Y, Sinner D. BMP4 and Wnt signaling interact to promote mouse tracheal mesenchyme morphogenesis. Am J Physiol Lung Cell Mol Physiol 2022; 322:L224-L242. [PMID: 34851738 PMCID: PMC8794023 DOI: 10.1152/ajplung.00255.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Tracheobronchomalacia and complete tracheal rings are congenital malformations of the trachea associated with morbidity and mortality for which the etiology remains poorly understood. Epithelial expression of Wls (a cargo receptor mediating Wnt ligand secretion) by tracheal cells is essential for patterning the embryonic mouse trachea's cartilage and muscle. RNA sequencing indicated that Wls differentially modulated the expression of BMP signaling molecules. We tested whether BMP signaling, induced by epithelial Wnt ligands, mediates cartilage formation. Deletion of Bmp4 from respiratory tract mesenchyme impaired tracheal cartilage formation that was replaced by ectopic smooth muscle, recapitulating the phenotype observed after epithelial deletion of Wls in the embryonic trachea. Ectopic muscle was caused in part by anomalous differentiation and proliferation of smooth muscle progenitors rather than tracheal cartilage progenitors. Mesenchymal deletion of Bmp4 impaired expression of Wnt/β-catenin target genes, including targets of WNT signaling: Notum and Axin2. In vitro, recombinant (r)BMP4 rescued the expression of Notum in Bmp4-deficient tracheal mesenchymal cells and induced Notum promoter activity via SMAD1/5. RNA sequencing of Bmp4-deficient tracheas identified genes essential for chondrogenesis and muscle development coregulated by BMP and WNT signaling. During tracheal morphogenesis, WNT signaling induces Bmp4 in mesenchymal progenitors to promote cartilage differentiation and restrict trachealis muscle. In turn, Bmp4 differentially regulates the expression of Wnt/β-catenin targets to attenuate mesenchymal WNT signaling and to further support chondrogenesis.
Collapse
Affiliation(s)
- Natalia Bottasso-Arias
- 1Neonatology and Pulmonary Biology Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Lauren Leesman
- 1Neonatology and Pulmonary Biology Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Kaulini Burra
- 1Neonatology and Pulmonary Biology Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - John Snowball
- 1Neonatology and Pulmonary Biology Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Ronak Shah
- 1Neonatology and Pulmonary Biology Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio,2University of Cincinnati Honors Program, Cincinnati, Ohio
| | - Megha Mohanakrishnan
- 1Neonatology and Pulmonary Biology Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio,2University of Cincinnati Honors Program, Cincinnati, Ohio
| | - Yan Xu
- 1Neonatology and Pulmonary Biology Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio,3Universtiy of Cincinnati, College of Medicine, Cincinnati, Ohio
| | - Debora Sinner
- 1Neonatology and Pulmonary Biology Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio,3Universtiy of Cincinnati, College of Medicine, Cincinnati, Ohio
| |
Collapse
|
13
|
Live imaging approach of dynamic multicellular responses in ERK signaling during vertebrate tissue development. Biochem J 2022; 479:129-143. [PMID: 35050327 PMCID: PMC8883488 DOI: 10.1042/bcj20210557] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/28/2021] [Accepted: 01/05/2022] [Indexed: 11/17/2022]
Abstract
The chemical and mechanical responses of cells via the exchange of information during growth and development result in the formation of biological tissues. Information processing within the cells through the signaling pathways and networks inherent to the constituent cells has been well-studied. However, the cell signaling mechanisms responsible for generating dynamic multicellular responses in developing tissues remain unclear. Here, I review the dynamic multicellular response systems during the development and growth of vertebrate tissues based on the extracellular signal-regulated kinase (ERK) pathway. First, an overview of the function of the ERK signaling network in cells is provided, followed by descriptions of biosensors essential for live imaging of the quantification of ERK activity in tissues. Then adducing four examples, I highlight the contribution of live imaging techniques for studying the involvement of spatio-temporal patterns of ERK activity change in tissue development and growth. In addition, theoretical implications of ERK signaling are also discussed from the viewpoint of dynamic systems. This review might help in understanding ERK-mediated dynamic multicellular responses and tissue morphogenesis.
Collapse
|
14
|
Yogosawa S, Ohkido M, Horii T, Okazaki Y, Nakayama J, Yoshida S, Toyokuni S, Hatada I, Morimoto M, Yoshida K. Mice lacking DYRK2 exhibit congenital malformations with lung hypoplasia and altered Foxf1 expression gradient. Commun Biol 2021; 4:1204. [PMID: 34671097 PMCID: PMC8528819 DOI: 10.1038/s42003-021-02734-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 09/28/2021] [Indexed: 12/19/2022] Open
Abstract
Congenital malformations cause life-threatening diseases in pediatrics, yet the molecular mechanism of organogenesis is poorly understood. Here we show that Dyrk2-deficient mice display congenital malformations in multiple organs. Transcriptome analysis reveals molecular pathology of Dyrk2-deficient mice, particularly with respect to Foxf1 reduction. Mutant pups exhibit sudden death soon after birth due to respiratory failure. Detailed analyses of primordial lungs at the early developmental stage demonstrate that Dyrk2 deficiency leads to altered airway branching and insufficient alveolar development. Furthermore, the Foxf1 expression gradient in mutant lung mesenchyme is disrupted, reducing Foxf1 target genes, which are necessary for proper airway and alveolar development. In ex vivo lung culture system, we rescue the expression of Foxf1 and its target genes in Dyrk2-deficient lung by restoring Shh signaling activity. Taken together, we demonstrate that Dyrk2 is essential for embryogenesis and its disruption results in congenital malformation.
Collapse
Affiliation(s)
- Satomi Yogosawa
- Department of Biochemistry, The Jikei University School of Medicine, Tokyo, Japan
| | - Makiko Ohkido
- Department of Molecular Biology, The Jikei University School of Medicine, Tokyo, Japan
| | - Takuro Horii
- Laboratory of Genome Science, Biosignal Genome Resource Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan
| | - Yasumasa Okazaki
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Jun Nakayama
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Saishu Yoshida
- Department of Biochemistry, The Jikei University School of Medicine, Tokyo, Japan
| | - Shinya Toyokuni
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Izuho Hatada
- Laboratory of Genome Science, Biosignal Genome Resource Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan
- Viral Vector Core, Gunma University Initiative for Advanced Research (GIAR), Maebashi, Gunma, Japan
| | - Mitsuru Morimoto
- Laboratory for Lung Development and Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Kiyotsugu Yoshida
- Department of Biochemistry, The Jikei University School of Medicine, Tokyo, Japan.
| |
Collapse
|