1
|
Walther N, Anantakrishnan S, Graham TGW, Dailey GM, Tjian R, Darzacq X. Automated live-cell single-molecule tracking in enteroid monolayers reveals transcription factor dynamics probing lineage-determining function. Cell Rep 2024; 43:114914. [PMID: 39480809 DOI: 10.1016/j.celrep.2024.114914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/29/2024] [Accepted: 10/10/2024] [Indexed: 11/02/2024] Open
Abstract
Lineage transcription factors (TFs) provide one regulatory level of differentiation crucial for the generation and maintenance of healthy tissues. To probe TF function by measuring their dynamics during adult intestinal homeostasis, we established HILO-illumination-based live-cell single-molecule tracking (SMT) in mouse small intestinal enteroid monolayers recapitulating tissue differentiation hierarchies in vitro. To increase the throughput, capture cellular features, and correlate morphological characteristics with diffusion parameters, we developed an automated imaging and analysis pipeline, broadly applicable to two-dimensional culture systems. Studying two absorptive lineage-determining TFs, we found an expression level-independent contrasting diffusive behavior: while Hes1, key determinant of absorptive lineage commitment, displays a large cell-to-cell variability and an average fraction of DNA-bound molecules of ∼32%, Hnf4g, conferring enterocyte identity, exhibits more uniform dynamics and a bound fraction of ∼56%. Our results suggest that TF diffusive behavior could indicate the progression of differentiation and modulate early versus late differentiation within a lineage.
Collapse
Affiliation(s)
- Nike Walther
- Department of Molecular and Cell Biology, Li Ka Shing Center for Biomedical and Health Sciences, California Institute for Regenerative Medicine (CIRM) Center of Excellence, University of California, Berkeley, Berkeley, CA 94720, USA.
| | - Sathvik Anantakrishnan
- Department of Molecular and Cell Biology, Li Ka Shing Center for Biomedical and Health Sciences, California Institute for Regenerative Medicine (CIRM) Center of Excellence, University of California, Berkeley, Berkeley, CA 94720, USA; Biophysics Graduate Group, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Thomas G W Graham
- Department of Molecular and Cell Biology, Li Ka Shing Center for Biomedical and Health Sciences, California Institute for Regenerative Medicine (CIRM) Center of Excellence, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Gina M Dailey
- Department of Molecular and Cell Biology, Li Ka Shing Center for Biomedical and Health Sciences, California Institute for Regenerative Medicine (CIRM) Center of Excellence, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Robert Tjian
- Department of Molecular and Cell Biology, Li Ka Shing Center for Biomedical and Health Sciences, California Institute for Regenerative Medicine (CIRM) Center of Excellence, University of California, Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, Berkeley, CA 94720, USA.
| | - Xavier Darzacq
- Department of Molecular and Cell Biology, Li Ka Shing Center for Biomedical and Health Sciences, California Institute for Regenerative Medicine (CIRM) Center of Excellence, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
2
|
Fallacaro S, Mukherjee A, Ratchasanmuang P, Zinski J, Haloush YI, Shankta K, Mir M. A fine kinetic balance of interactions directs transcription factor hubs to genes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.16.589811. [PMID: 38659757 PMCID: PMC11042322 DOI: 10.1101/2024.04.16.589811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Eukaryotic gene regulation relies on the binding of sequence-specific transcription factors (TFs). TFs bind chromatin transiently yet occupy their target sites by forming high-local concentration microenvironments (hubs and condensates) that increase the frequency of binding. Despite their ubiquity, such microenvironments are difficult to study in endogenous contexts due to technical limitations. Here, we use live embryo light-sheet imaging, single-molecule tracking, and genomics to overcome these limitations and investigate how hubs are localized to target genes to drive TF occupancy and transcription. By examining mutants of a hub-forming TF, Zelda, in Drosophila embryos, we find that hub formation propensity, spatial distributions, and temporal stabilities are differentially regulated by DNA binding and disordered protein domains. We show that hub localization to genomic targets is driven by a finely-tuned kinetic balance of interactions between proteins and chromatin, and hubs can be redirected to new genomic sites when this balance is perturbed.
Collapse
Affiliation(s)
- Samantha Fallacaro
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA 19104, USA
- Center for Computational and Genomic Medicine, Children’s Hospital of Philadelphia; Philadelphia, PA 19104, USA
- Developmental, Stem Cell, and Regenerative Biology Graduate Group, Perelman School of Medicine; Philadelphia, PA 19104, USA
| | - Apratim Mukherjee
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA 19104, USA
- Center for Computational and Genomic Medicine, Children’s Hospital of Philadelphia; Philadelphia, PA 19104, USA
| | - Puttachai Ratchasanmuang
- Center for Computational and Genomic Medicine, Children’s Hospital of Philadelphia; Philadelphia, PA 19104, USA
- Howard Hughes Medical Institute, Children’s Hospital of Philadelphia; Philadelphia, PA 19104, USA
| | - Joseph Zinski
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA 19104, USA
- Center for Computational and Genomic Medicine, Children’s Hospital of Philadelphia; Philadelphia, PA 19104, USA
| | - Yara I Haloush
- Center for Computational and Genomic Medicine, Children’s Hospital of Philadelphia; Philadelphia, PA 19104, USA
| | - Kareena Shankta
- Center for Computational and Genomic Medicine, Children’s Hospital of Philadelphia; Philadelphia, PA 19104, USA
- Roy and Diana Vagelos Program in Life Sciences and Management, University of Pennsylvania; Philadelphia, PA 19104, USA
| | - Mustafa Mir
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA 19104, USA
- Center for Computational and Genomic Medicine, Children’s Hospital of Philadelphia; Philadelphia, PA 19104, USA
- Howard Hughes Medical Institute, Children’s Hospital of Philadelphia; Philadelphia, PA 19104, USA
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA 19104, USA
| |
Collapse
|
3
|
Wagh K, Stavreva DA, Hager GL. Transcription dynamics and genome organization in the mammalian nucleus: Recent advances. Mol Cell 2024:S1097-2765(24)00778-0. [PMID: 39413793 DOI: 10.1016/j.molcel.2024.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/31/2024] [Accepted: 09/19/2024] [Indexed: 10/18/2024]
Abstract
Single-molecule tracking (SMT) has emerged as the dominant technology to investigate the dynamics of chromatin-transcription factor (TF) interactions. How long a TF needs to bind to a regulatory site to elicit a transcriptional response is a fundamentally important question. However, highly divergent estimates of TF binding have been presented in the literature, stemming from differences in photobleaching correction and data analysis. TF movement is often interpreted as specific or non-specific association with chromatin, yet the dynamic nature of the chromatin polymer is often overlooked. In this perspective, we highlight how recent SMT studies have reshaped our understanding of TF dynamics, chromatin mobility, and genome organization in the mammalian nucleus, focusing on the technical details and biological implications of these approaches. In a remarkable convergence of fixed and live-cell imaging, we show how super-resolution and SMT studies of chromatin have dovetailed to provide a convincing nanoscale view of genome organization.
Collapse
Affiliation(s)
- Kaustubh Wagh
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Diana A Stavreva
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gordon L Hager
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
4
|
Whitney PH, Lionnet T. The method in the madness: Transcriptional control from stochastic action at the single-molecule scale. Curr Opin Struct Biol 2024; 87:102873. [PMID: 38954990 PMCID: PMC11373363 DOI: 10.1016/j.sbi.2024.102873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/07/2024] [Accepted: 06/05/2024] [Indexed: 07/04/2024]
Abstract
Cell states result from the ordered activation of gene expression by transcription factors. Transcription factors face opposing design constraints: they need to be dynamic to trigger rapid cell state transitions, but also stable enough to maintain terminal cell identities indefinitely. Recent progress in live-cell single-molecule microscopy has helped define the biophysical principles underlying this paradox. Beyond transcription factor activity, single-molecule experiments have revealed that at nearly every level of transcription regulation, control emerges from multiple short-lived stochastic interactions, rather than deterministic, stable interactions typical of other biochemical pathways. This architecture generates consistent outcomes that can be rapidly choreographed. Here, we highlight recent results that demonstrate how order in transcription regulation emerges from the apparent molecular-scale chaos and discuss remaining conceptual challenges.
Collapse
Affiliation(s)
- Peter H Whitney
- Institute for Systems Genetics, New York University School of Medicine, New York, NY 10016, USA; Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA
| | - Timothée Lionnet
- Institute for Systems Genetics, New York University School of Medicine, New York, NY 10016, USA; Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA; Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY 11201, USA.
| |
Collapse
|
5
|
Rudnizky S, Murray PJ, Wolfe CH, Ha T. Single-Macromolecule Studies of Eukaryotic Genomic Maintenance. Annu Rev Phys Chem 2024; 75:209-230. [PMID: 38382570 DOI: 10.1146/annurev-physchem-090722-010601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Genomes are self-organized and self-maintained as long, complex macromolecules of chromatin. The inherent heterogeneity, stochasticity, phase separation, and chromatin dynamics of genome operation make it challenging to study genomes using ensemble methods. Various single-molecule force-, fluorescent-, and sequencing-based techniques rooted in different disciplines have been developed to fill critical gaps in the capabilities of bulk measurements, each providing unique, otherwise inaccessible, insights into the structure and maintenance of the genome. Capable of capturing molecular-level details about the organization, conformational changes, and packaging of genetic material, as well as processive and stochastic movements of maintenance factors, a single-molecule toolbox provides an excellent opportunity for collaborative research to understand how genetic material functions in health and malfunctions in disease. In this review, we discuss novel insights brought to genomic sciences by single-molecule techniques and their potential to continue to revolutionize the field-one molecule at a time.
Collapse
Affiliation(s)
- Sergei Rudnizky
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Peter J Murray
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts, USA;
| | - Clara H Wolfe
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Taekjip Ha
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts, USA;
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
6
|
Dahal L, Graham TGW, Dailey GM, Heckert A, Tjian R, Darzacq X. Surprising Features of Nuclear Receptor Interaction Networks Revealed by Live Cell Single Molecule Imaging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.16.558083. [PMID: 37745337 PMCID: PMC10516011 DOI: 10.1101/2023.09.16.558083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Type 2 Nuclear Receptors (T2NRs) require heterodimerization with a common partner, the Retinoid X Receptor (RXR), to bind cognate DNA recognition sites in chromatin. Based on previous biochemical and over-expression studies, binding of T2NRs to chromatin is proposed to be regulated by competition for a limiting pool of the core RXR subunit. However, this mechanism has not yet been tested for endogenous proteins in live cells. Using single molecule tracking (SMT) and proximity-assisted photoactivation (PAPA), we monitored interactions between endogenously tagged retinoid X receptor (RXR) and retinoic acid receptor (RAR) in live cells. Unexpectedly, we find that higher expression of RAR, but not RXR increases heterodimerization and chromatin binding in U2OS cells. This surprising finding indicates the limiting factor is not RXR but likely its cadre of obligate dimer binding partners. SMT and PAPA thus provide a direct way to probe which components are functionally limiting within a complex TF interaction network providing new insights into mechanisms of gene regulation in vivo with implications for drug development targeting nuclear receptors.
Collapse
Affiliation(s)
- Liza Dahal
- Department of Molecular and Cell Biology, University of California, Berkeley, United States
- Howard Hughes Medical Institute, University of California, Berkeley, United States
| | - Thomas GW Graham
- Department of Molecular and Cell Biology, University of California, Berkeley, United States
- Howard Hughes Medical Institute, University of California, Berkeley, United States
| | - Gina M Dailey
- Department of Molecular and Cell Biology, University of California, Berkeley, United States
| | - Alec Heckert
- Eikon Therapeutics Inc., Hayward, California, United States
| | - Robert Tjian
- Department of Molecular and Cell Biology, University of California, Berkeley, United States
- Howard Hughes Medical Institute, University of California, Berkeley, United States
| | - Xavier Darzacq
- Department of Molecular and Cell Biology, University of California, Berkeley, United States
| |
Collapse
|
7
|
Galbraith JA, Galbraith CG. Using single molecule imaging to explore intracellular heterogeneity. Int J Biochem Cell Biol 2023; 163:106455. [PMID: 37586643 PMCID: PMC10528986 DOI: 10.1016/j.biocel.2023.106455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 08/14/2023] [Accepted: 08/14/2023] [Indexed: 08/18/2023]
Abstract
Despite more than 100 years of study, it is unclear if the movement of proteins inside the cell is best described as a mosh pit or an exquisitely choreographed dance. Recent studies suggest the latter. Local interactions induce molecular condensates such as liquid-liquid phase separations (LLPSs) or non-liquid, functionally significant molecular aggregates, including synaptic densities, nucleoli, and Amyloid fibrils. Molecular condensates trigger intracellular signaling and drive processes ranging from gene expression to cell division. However, the descriptions of condensates tend to be qualitative and correlative. Here, we indicate how single-molecule imaging and analyses can be applied to quantify condensates. We discuss the pros and cons of different techniques for measuring differences between transient molecular behaviors inside and outside condensates. Finally, we offer suggestions for how imaging and analyses from different time and space regimes can be combined to identify molecular behaviors indicative of condensates within the dynamic high-density intracellular environment.
Collapse
Affiliation(s)
- James A Galbraith
- Oregon Health and Science University, Quantitative and Systems Biology Program in BME and The Knight Cancer Institute, Portland, OR 97239, USA.
| | - Catherine G Galbraith
- Oregon Health and Science University, Quantitative and Systems Biology Program in BME and The Knight Cancer Institute, Portland, OR 97239, USA.
| |
Collapse
|
8
|
Kilic Z, Schweiger M, Moyer C, Shepherd D, Pressé S. Gene expression model inference from snapshot RNA data using Bayesian non-parametrics. NATURE COMPUTATIONAL SCIENCE 2023; 3:174-183. [PMID: 38125199 PMCID: PMC10732567 DOI: 10.1038/s43588-022-00392-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2023]
Abstract
Gene expression models, which are key towards understanding cellular regulatory response, underlie observations of single-cell transcriptional dynamics. Although RNA expression data encode information on gene expression models, existing computational frameworks do not perform simultaneous Bayesian inference of gene expression models and parameters from such data. Rather, gene expression models-composed of gene states, their connectivities and associated parameters-are currently deduced by pre-specifying gene state numbers and connectivity before learning associated rate parameters. Here we propose a method to learn full distributions over gene states, state connectivities and associated rate parameters, simultaneously and self-consistently from single-molecule RNA counts. We propagate noise from fluctuating RNA counts over models by treating models themselves as random variables. We achieve this within a Bayesian non-parametric paradigm. We demonstrate our method on the Escherichia coli lacZ pathway and the Saccharomyces cerevisiae STL1 pathway, and verify its robustness on synthetic data.
Collapse
Affiliation(s)
- Zeliha Kilic
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
- These authors contributed equally: Zeliha Kilic, Max Schweiger
| | - Max Schweiger
- Center for Biological Physics, ASU, Tempe, AZ, USA
- Department of Physics, ASU, Tempe, AZ, USA
- These authors contributed equally: Zeliha Kilic, Max Schweiger
| | - Camille Moyer
- Center for Biological Physics, ASU, Tempe, AZ, USA
- School of Mathematics and Statistical Sciences, ASU, Tempe, AZ, USA
| | - Douglas Shepherd
- Center for Biological Physics, ASU, Tempe, AZ, USA
- Department of Physics, ASU, Tempe, AZ, USA
| | - Steve Pressé
- Center for Biological Physics, ASU, Tempe, AZ, USA
- Department of Physics, ASU, Tempe, AZ, USA
- School of Molecular Sciences, ASU, Tempe, AZ, USA
| |
Collapse
|
9
|
Lakadamyali M. Single nucleosome tracking to study chromatin plasticity. Curr Opin Cell Biol 2022; 74:23-28. [PMID: 35033775 PMCID: PMC9064914 DOI: 10.1016/j.ceb.2021.12.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 02/03/2023]
Abstract
The dynamic spatial organization of chromatin within the nucleus is emerging as a key regulator of gene activity and cell phenotype. This review will focus on single molecule tracking as an enabling tool to study chromatin dynamics at the level of individual nucleosomes.
Collapse
Affiliation(s)
- Melike Lakadamyali
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA,Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA,Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA,Correspondence should be sent to M.L.:
| |
Collapse
|
10
|
Yoshimura H. Triple-color single-molecule imaging for analysis of the role of receptor oligomers in signal transduction. Biophys Physicobiol 2022; 19:1-9. [PMID: 35435651 PMCID: PMC8968032 DOI: 10.2142/biophysico.bppb-v19.0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/08/2022] [Indexed: 12/01/2022] Open
Abstract
Membrane receptors provide interfaces of various extracellular stimuli to transduce the signal into the cell. Receptors are required to possess such conflicting properties as high sensitivity and noise reduction for the cell to keep its homeostasis and appropriate responses. To understand the mechanisms by which these functions are achieved, single-molecule monitoring of the motilities of receptors and signaling molecules on the plasma membrane is one of the most direct approaches. This review article introduces several recent single-molecule imaging studies of receptors, including the author’s recent work on triple-color single-molecule imaging of G protein-coupled receptors. Based on these researches, advantages and perspectives of the single-molecule imaging approach to solving the mechanisms of receptor functions are illustrated.
Collapse
|
11
|
Stower MJ, Srinivas S. Advances in live imaging early mouse development: exploring the researcher's interdisciplinary toolkit. Development 2021; 148:dev199433. [PMID: 34897401 PMCID: PMC7615354 DOI: 10.1242/dev.199433] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Live imaging is an important part of the developmental biologist's armoury of methods. In the case of the mouse embryo, recent advances in several disciplines including embryo culture, microscopy hardware and computational analysis have all contributed to our ability to probe dynamic events during early development. Together, these advances have provided us with a versatile and powerful 'toolkit', enabling us not only to image events during mouse embryogenesis, but also to intervene with them. In this short Spotlight article, we summarise advances and challenges in using live imaging specifically for understanding early mouse embryogenesis.
Collapse
Affiliation(s)
- Matthew J. Stower
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| | - Shankar Srinivas
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| |
Collapse
|
12
|
Hallou A, Yevick HG, Dumitrascu B, Uhlmann V. Deep learning for bioimage analysis in developmental biology. Development 2021; 148:dev199616. [PMID: 34490888 PMCID: PMC8451066 DOI: 10.1242/dev.199616] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Deep learning has transformed the way large and complex image datasets can be processed, reshaping what is possible in bioimage analysis. As the complexity and size of bioimage data continues to grow, this new analysis paradigm is becoming increasingly ubiquitous. In this Review, we begin by introducing the concepts needed for beginners to understand deep learning. We then review how deep learning has impacted bioimage analysis and explore the open-source resources available to integrate it into a research project. Finally, we discuss the future of deep learning applied to cell and developmental biology. We analyze how state-of-the-art methodologies have the potential to transform our understanding of biological systems through new image-based analysis and modelling that integrate multimodal inputs in space and time.
Collapse
Affiliation(s)
- Adrien Hallou
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, CB3 0HE, UK
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, CB2 1QN, UK
- Wellcome Trust/Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, CB2 1QR, UK
| | - Hannah G. Yevick
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Bianca Dumitrascu
- Computer Laboratory, Cambridge, University of Cambridge, Cambridge, CB3 0FD, UK
| | - Virginie Uhlmann
- European Bioinformatics Institute, European Molecular Biology Laboratory, Cambridge, CB10 1SD, UK
| |
Collapse
|