1
|
Atienzar-Aroca S, Kat M, López-Castel A. Decoding Nucleotide Repeat Expansion Diseases: Novel Insights from Drosophila melanogaster Studies. Int J Mol Sci 2024; 25:11794. [PMID: 39519345 PMCID: PMC11546515 DOI: 10.3390/ijms252111794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/27/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Drosophila melanogaster usage has provided substantial insights into the pathogenesis of several nucleotide repeat expansion diseases (NREDs), a group of genetic diseases characterized by the abnormal expansion of DNA repeats. Leveraging the genetic simplicity and manipulability of Drosophila, researchers have successfully modeled close to 15 NREDs such as Huntington's disease (HD), several spinocerebellar ataxias (SCA), and myotonic dystrophies type 1 and 2 (DM1/DM2). These models have been instrumental in characterizing the principal associated molecular mechanisms: protein aggregation, RNA toxicity, and protein function loss, thus recapitulating key features of human disease. Used in chemical and genetic screenings, they also enable us to identify promising small molecules and genetic modifiers that mitigate the toxic effects of expanded repeats. This review summarizes the close to 150 studies performed in this area during the last seven years. The relevant highlights are the achievement of the first fly-based models for some NREDs, the incorporation of new technologies such as CRISPR for developing or evaluating transgenic flies containing repeat expanded motifs, and the evaluation of less understood toxic mechanisms in NREDs such as RAN translation. Overall, Drosophila melanogaster remains a powerful platform for research in NREDs.
Collapse
Affiliation(s)
- Sandra Atienzar-Aroca
- Department of Dentristy, Faculty of Health Sciences, European University of Valencia, 46010 Valencia, Spain;
| | - Marleen Kat
- Institute for Life Sciences and Chemistry, HU University of Applied Sciences Utrecht, NL-3584 Utrecht, The Netherlands;
| | - Arturo López-Castel
- Human Translational Genomics Group, University Research Institute for Biotechnology and Biomedicine (BIOTECMED), Universidad de Valencia, 46100 Burjasot, Spain
- INCLIVA Biomedical Research Institute, 46010 Valencia, Spain
- CIBERER, Centro de Investigación en Red de Enfermedades Raras, Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
2
|
Broniarek I, Niewiadomska D, Sobczak K. Contribution of DNA/RNA Structures Formed by Expanded CGG/CCG Repeats Within the FMR1 Locus in the Pathogenesis of Fragile X-Associated Disorders. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1874. [PMID: 39523485 DOI: 10.1002/wrna.1874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 11/16/2024]
Abstract
Repeat expansion disorders (REDs) encompass over 50 inherited neurological disorders and are characterized by the expansion of short tandem nucleotide repeats beyond a specific repeat length. Particularly intriguing among these are multiple fragile X-associated disorders (FXds), which arise from an expansion of CGG repeats in the 5' untranslated region of the FMR1 gene. Despite arising from repeat expansions in the same gene, the clinical manifestations of FXds vary widely, encompassing developmental delays, parkinsonism, dementia, and an increased risk of infertility. FXds also exhibit molecular mechanisms observed in other REDs, that is, gene- and protein-loss-of-function and RNA- and protein-gain-of-function. The heterogeneity of phenotypes and pathomechanisms in FXds results from the different lengths of the CGG tract. As the number of repeats increases, the structures formed by RNA and DNA fragments containing CGG repeats change significantly, contributing to the diversity of FXd phenotypes and mechanisms. In this review, we discuss the role of RNA and DNA structures formed by expanded CGG repeats in driving FXd pathogenesis and how the genetic instability of CGG repeats is mediated by the complex interplay between transcription, DNA replication, and repair. We also discuss therapeutic strategies, including small molecules, antisense oligonucleotides, and CRISPR-Cas systems, that target toxic RNA and DNA involved in the development of FXds.
Collapse
Affiliation(s)
- Izabela Broniarek
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| | - Daria Niewiadomska
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| | - Krzysztof Sobczak
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| |
Collapse
|
3
|
Méndez-Albelo NM, Sandoval SO, Xu Z, Zhao X. An in-depth review of the function of RNA-binding protein FXR1 in neurodevelopment. Cell Tissue Res 2024; 398:63-77. [PMID: 39155323 DOI: 10.1007/s00441-024-03912-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 07/30/2024] [Indexed: 08/20/2024]
Abstract
FMR1 autosomal homolog 1 (FXR1) is an RNA-binding protein that belongs to the Fragile X-related protein (FXR) family. FXR1 is critical for development, as its loss of function is intolerant in humans and results in neonatal death in mice. Although FXR1 is expressed widely including the brain, functional studies on FXR1 have been mostly performed in cancer cells. Limited studies have demonstrated the importance of FXR1 in the brain. In this review, we will focus on the roles of FXR1 in brain development and pathogenesis of brain disorders. We will summarize the current knowledge in FXR1 in the context of neural biology, including structural features, isoform diversity and nomenclature, expression patterns, post-translational modifications, regulatory mechanisms, and molecular functions. Overall, FXR1 emerges as an important regulator of RNA metabolism in the brain, with strong implications in neurodevelopmental and psychiatric disorders.
Collapse
Affiliation(s)
- Natasha M Méndez-Albelo
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Molecular Cellular Pharmacology Training Program, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Soraya O Sandoval
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Zhiyan Xu
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Xinyu Zhao
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA.
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA.
| |
Collapse
|
4
|
Sandoval SO, Méndez-Albelo NM, Xu Z, Zhao X. From wings to whiskers to stem cells: why every model matters in fragile X syndrome research. J Neurodev Disord 2024; 16:30. [PMID: 38872088 PMCID: PMC11177515 DOI: 10.1186/s11689-024-09545-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 05/21/2024] [Indexed: 06/15/2024] Open
Abstract
Fragile X syndrome (FXS) is caused by epigenetic silencing of the X-linked fragile X messenger ribonucleoprotein 1 (FMR1) gene located on chromosome Xq27.3, which leads to the loss of its protein product, fragile X messenger ribonucleoprotein (FMRP). It is the most prevalent inherited form of intellectual disability and the highest single genetic cause of autism. Since the discovery of the genetic basis of FXS, extensive studies using animal models and human pluripotent stem cells have unveiled the functions of FMRP and mechanisms underlying FXS. However, clinical trials have not yielded successful treatment. Here we review what we have learned from commonly used models for FXS, potential limitations of these models, and recommendations for future steps.
Collapse
Affiliation(s)
- Soraya O Sandoval
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Natasha M Méndez-Albelo
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Molecular Cellular Pharmacology Training Program, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Zhiyan Xu
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Graduate Program in Cell and Molecular Biology, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Xinyu Zhao
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA.
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA.
| |
Collapse
|
5
|
Deslauriers JC, Ghotkar RP, Russ LA, Jarman JA, Martin RM, Tippett RG, Sumathipala SH, Burton DF, Cole DC, Marsden KC. Cyfip2 controls the acoustic startle threshold through FMRP, actin polymerization, and GABA B receptor function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.22.573054. [PMID: 38187577 PMCID: PMC10769380 DOI: 10.1101/2023.12.22.573054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Animals process a constant stream of sensory input, and to survive they must detect and respond to dangerous stimuli while ignoring innocuous or irrelevant ones. Behavioral responses are elicited when certain properties of a stimulus such as its intensity or size reach a critical value, and such behavioral thresholds can be a simple and effective mechanism to filter sensory information. For example, the acoustic startle response is a conserved and stereotyped defensive behavior induced by sudden loud sounds, but dysregulation of the threshold to initiate this behavior can result in startle hypersensitivity that is associated with sensory processing disorders including schizophrenia and autism. Through a previous forward genetic screen for regulators of the startle threshold a nonsense mutation in Cytoplasmic Fragile X Messenger Ribonucleoprotein (FMRP)-interacting protein 2 (cyfip2) was found that causes startle hypersensitivity in zebrafish larvae, but the molecular mechanisms by which Cyfip2 establishes the acoustic startle threshold are unknown. Here we used conditional transgenic rescue and CRISPR/Cas9 to determine that Cyfip2 acts though both Rac1 and FMRP pathways, but not the closely related FXR1 or FXR2, to establish the acoustic startle threshold during early neurodevelopment. To identify proteins and pathways that may be downstream effectors of Rac1 and FMRP, we performed a candidate-based drug screen that indicated that Cyfip2 can also act acutely to maintain the startle threshold branched actin polymerization and N-methyl D-aspartate receptors (NMDARs). To complement this approach, we used unbiased discovery proteomics to determine that loss of Cyfip2 alters cytoskeletal and extracellular matrix components while also disrupting oxidative phosphorylation and GABA receptor signaling. Finally, we functionally validated our proteomics findings by showing that activating GABAB receptors, which like NMDARs are also FMRP targets, restores normal startle sensitivity in cyfip2 mutants. Together, these data reveal multiple mechanisms by which Cyfip2 regulates excitatory/inhibitory balance in the startle circuit to control the processing of acoustic information.
Collapse
Affiliation(s)
- Jacob C. Deslauriers
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Rohit P. Ghotkar
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA
- Current address: Putnam Associates, Boston, Massachusetts, USA
| | - Lindsey A. Russ
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA
- Current address: Department of Pharmacology & Physiology, Georgetown University, Washington D.C., USA
| | - Jordan A. Jarman
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA
- Current address: Department of Physiology and Biophysics, Boston University, Boston, MA, USA
| | - Rubia M. Martin
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA
- Current address: U.S. Environmental Protection Agency, Raleigh-Durham-Chapel Hill, North Carolina, USA
| | - Rachel G. Tippett
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Sureni H. Sumathipala
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Derek F. Burton
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - D. Chris Cole
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Kurt C. Marsden
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA
- Center for Human Health and the Environment (CHHE), North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
6
|
Song C, Broadie K. Dysregulation of BMP, Wnt, and Insulin Signaling in Fragile X Syndrome. Front Cell Dev Biol 2022; 10:934662. [PMID: 35880195 PMCID: PMC9307498 DOI: 10.3389/fcell.2022.934662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/06/2022] [Indexed: 01/21/2023] Open
Abstract
Drosophila models of neurological disease contribute tremendously to research progress due to the high conservation of human disease genes, the powerful and sophisticated genetic toolkit, and the rapid generation time. Fragile X syndrome (FXS) is the most prevalent heritable cause of intellectual disability and autism spectrum disorders, and the Drosophila FXS disease model has been critical for the genetic screening discovery of new intercellular secretion mechanisms. Here, we focus on the roles of three major signaling pathways: BMP, Wnt, and insulin-like peptides. We present Drosophila FXS model defects compared to mouse models in stem cells/embryos, the glutamatergic neuromuscular junction (NMJ) synapse model, and the developing adult brain. All three of these secreted signaling pathways are strikingly altered in FXS disease models, giving new mechanistic insights into impaired cellular outcomes and neurological phenotypes. Drosophila provides a powerful genetic screening platform to expand understanding of these secretory mechanisms and to test cellular roles in both peripheral and central nervous systems. The studies demonstrate the importance of exploring broad genetic interactions and unexpected regulatory mechanisms. We discuss a number of research avenues to pursue BMP, Wnt, and insulin signaling in future FXS investigations and the development of potential therapeutics.
Collapse
Affiliation(s)
- Chunzhu Song
- Department of Biological Sciences, College of Arts and Science, Vanderbilt University, Nashville, TN, United States
| | - Kendal Broadie
- Department of Biological Sciences, College of Arts and Science, Vanderbilt University, Nashville, TN, United States
- Department of Cell and Developmental Biology, School of Medicine, Vanderbilt University, Nashville, TN, United States
- Kennedy Center for Research on Human Development, Nashville, TN, United States
- Vanderbilt Brain Institute, School of Medicine, Vanderbilt University and Medical Center, Nashville, TN, United States
| |
Collapse
|
7
|
Flanagan K, Baradaran-Heravi A, Yin Q, Dao Duc K, Spradling AC, Greenblatt EJ. FMRP-dependent production of large dosage-sensitive proteins is highly conserved. Genetics 2022; 221:6613139. [PMID: 35731217 PMCID: PMC9339308 DOI: 10.1093/genetics/iyac094] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/07/2022] [Indexed: 12/01/2022] Open
Abstract
Mutations in FMR1 are the most common heritable cause of autism spectrum disorder. FMR1 encodes an RNA-binding protein, FMRP, which binds to long, autism-relevant transcripts and is essential for normal neuronal and ovarian development. In contrast to the prevailing model that FMRP acts to block translation elongation, we previously found that FMRP activates the translation initiation of large proteins in Drosophila oocytes. We now provide evidence that FMRP-dependent translation is conserved and occurs in the mammalian brain. Our comparisons of the mammalian cortex and Drosophila oocyte ribosome profiling data show that translation of FMRP-bound mRNAs decreases to a similar magnitude in FMRP-deficient tissues from both species. The steady-state levels of several FMRP targets were reduced in the Fmr1 KO mouse cortex, including a ∼50% reduction of Auts2, a gene implicated in an autosomal dominant autism spectrum disorder. To distinguish between effects on elongation and initiation, we used a novel metric to detect the rate-limiting ribosome stalling. We found no evidence that FMRP target protein production is governed by translation elongation rates. FMRP translational activation of large proteins may be critical for normal human development, as more than 20 FMRP targets including Auts2 are dosage sensitive and are associated with neurodevelopmental disorders caused by haploinsufficiency.
Collapse
Affiliation(s)
- Keegan Flanagan
- Department of Biochemistry and Molecular Biology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia, V6T 1Z3 Canada.,Department of Mathematics, University of British Columbia, 1984 Mathematics Road, Vancouver, British Columbia, BC V6T 1Z2
| | - Alireza Baradaran-Heravi
- Department of Biochemistry and Molecular Biology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia, V6T 1Z3 Canada
| | - Qi Yin
- Howard Hughes Medical Institute Research Laboratories, Department of Embryology, Carnegie Institution for Science, 3520 San Martin Dr., Baltimore, Maryland 21218 USA
| | - Khanh Dao Duc
- Department of Mathematics, University of British Columbia, 1984 Mathematics Road, Vancouver, British Columbia, BC V6T 1Z2
| | - Allan C Spradling
- Howard Hughes Medical Institute Research Laboratories, Department of Embryology, Carnegie Institution for Science, 3520 San Martin Dr., Baltimore, Maryland 21218 USA
| | - Ethan J Greenblatt
- Department of Biochemistry and Molecular Biology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia, V6T 1Z3 Canada.,Howard Hughes Medical Institute Research Laboratories, Department of Embryology, Carnegie Institution for Science, 3520 San Martin Dr., Baltimore, Maryland 21218 USA
| |
Collapse
|
8
|
Ecovoiu AA, Ratiu AC, Micheu MM, Chifiriuc MC. Inter-Species Rescue of Mutant Phenotype-The Standard for Genetic Analysis of Human Genetic Disorders in Drosophila melanogaster Model. Int J Mol Sci 2022; 23:2613. [PMID: 35269756 PMCID: PMC8909942 DOI: 10.3390/ijms23052613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 11/16/2022] Open
Abstract
Drosophila melanogaster (the fruit fly) is arguably a superstar of genetics, an astonishing versatile experimental model which fueled no less than six Nobel prizes in medicine. Nowadays, an evolving research endeavor is to simulate and investigate human genetic diseases in the powerful D. melanogaster platform. Such a translational experimental strategy is expected to allow scientists not only to understand the molecular mechanisms of the respective disorders but also to alleviate or even cure them. In this regard, functional gene orthology should be initially confirmed in vivo by transferring human or vertebrate orthologous transgenes in specific mutant backgrounds of D. melanogaster. If such a transgene rescues, at least partially, the mutant phenotype, then it qualifies as a strong candidate for modeling the respective genetic disorder in the fruit fly. Herein, we review various examples of inter-species rescue of relevant mutant phenotypes of the fruit fly and discuss how these results recommend several human genes as candidates to study and validate genetic variants associated with human diseases. We also consider that a wider implementation of this evolutionist exploratory approach as a standard for the medicine of genetic disorders would allow this particular field of human health to advance at a faster pace.
Collapse
Affiliation(s)
- Alexandru Al. Ecovoiu
- Department of Genetics, Faculty of Biology, University of Bucharest, 060101 Bucharest, Romania;
| | - Attila Cristian Ratiu
- Department of Genetics, Faculty of Biology, University of Bucharest, 060101 Bucharest, Romania;
| | - Miruna Mihaela Micheu
- Department of Cardiology, Clinical Emergency Hospital of Bucharest, 014461 Bucharest, Romania;
| | - Mariana Carmen Chifiriuc
- The Research Institute of the University of Bucharest and Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania;
| |
Collapse
|
9
|
Worpenberg L, Paolantoni C, Longhi S, Mulorz MM, Lence T, Wessels HH, Dassi E, Aiello G, Sutandy FXR, Scheibe M, Edupuganti RR, Busch A, Möckel MM, Vermeulen M, Butter F, König J, Notarangelo M, Ohler U, Dieterich C, Quattrone A, Soldano A, Roignant JY. Ythdf is a N6-methyladenosine reader that modulates Fmr1 target mRNA selection and restricts axonal growth in Drosophila. EMBO J 2021; 40:e104975. [PMID: 33428246 PMCID: PMC7883056 DOI: 10.15252/embj.2020104975] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 11/18/2020] [Accepted: 11/30/2020] [Indexed: 12/19/2022] Open
Abstract
N6‐methyladenosine (m6A) regulates a variety of physiological processes through modulation of RNA metabolism. This modification is particularly enriched in the nervous system of several species, and its dysregulation has been associated with neurodevelopmental defects and neural dysfunctions. In Drosophila, loss of m6A alters fly behavior, albeit the underlying molecular mechanism and the role of m6A during nervous system development have remained elusive. Here we find that impairment of the m6A pathway leads to axonal overgrowth and misguidance at larval neuromuscular junctions as well as in the adult mushroom bodies. We identify Ythdf as the main m6A reader in the nervous system, being required to limit axonal growth. Mechanistically, we show that the m6A reader Ythdf directly interacts with Fmr1, the fly homolog of Fragile X mental retardation RNA binding protein (FMRP), to inhibit the translation of key transcripts involved in axonal growth regulation. Altogether, this study demonstrates that the m6A pathway controls development of the nervous system and modulates Fmr1 target transcript selection.
Collapse
Affiliation(s)
- Lina Worpenberg
- Center for Integrative Genomics, Génopode Building, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Chiara Paolantoni
- Center for Integrative Genomics, Génopode Building, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Sara Longhi
- Laboratory of Translational Genomics, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | | | - Tina Lence
- Institute of Molecular Biology (IMB), Mainz, Germany
| | - Hans-Hermann Wessels
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany.,Department of Biology, Humboldt University Berlin, Berlin, Germany
| | - Erik Dassi
- Laboratory of RNA Regulatory Networks, Department CIBIO, University of Trento, Trento, Italy
| | - Giuseppe Aiello
- Armenise-Harvard Laboratory of Brain Disorders and Cancer, Department CIBIO, University of Trento, Trento, Italy
| | | | | | - Raghu R Edupuganti
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Anke Busch
- Bioinformatics Core Facility, IMB, Mainz, Germany
| | | | - Michiel Vermeulen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Falk Butter
- Institute of Molecular Biology (IMB), Mainz, Germany
| | - Julian König
- Institute of Molecular Biology (IMB), Mainz, Germany
| | - Michela Notarangelo
- Laboratory of Translational Genomics, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Uwe Ohler
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany.,Department of Biology, Humboldt University Berlin, Berlin, Germany
| | - Christoph Dieterich
- Klaus Tschira Institute for Integrative Computational Cardiology and Department of Internal Medicine III, University Hospital Heidelberg, Heidelberg, Germany.,German Center for Cardiovascular Research (DZHK), Partner site Heidelberg-Mannheim, Heidelberg, Germany
| | - Alessandro Quattrone
- Center for Integrative Genomics, Génopode Building, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.,Laboratory of Translational Genomics, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Alessia Soldano
- Laboratory of Translational Genomics, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Jean-Yves Roignant
- Center for Integrative Genomics, Génopode Building, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.,Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|
10
|
Nguyen U, Tinsley B, Sen Y, Stein J, Palacios Y, Ceballos A, Welch C, Nzenkue K, Penn A, Murphy L, Leodones K, Casiquin J, Ivory I, Ghenta K, Danziger K, Widman E, Newman J, Triplehorn M, Hindi Z, Mulligan K. Exposure to bisphenol A differentially impacts neurodevelopment and behavior in Drosophila melanogaster from distinct genetic backgrounds. Neurotoxicology 2020; 82:146-157. [PMID: 33309840 DOI: 10.1016/j.neuro.2020.12.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/30/2020] [Accepted: 12/06/2020] [Indexed: 12/13/2022]
Abstract
Bisphenol A (BPA) is a ubiquitous environmental chemical that has been linked to behavioral differences in children and shown to impact critical neurodevelopmental processes in animal models. Though data is emerging, we still have an incomplete picture of how BPA disrupts neurodevelopment; in particular, how its impacts may vary across different genetic backgrounds. Given the genetic tractability of Drosophila melanogaster, they present a valuable model to address this question. Fruit flies are increasingly being used for assessment of neurotoxicants because of their relatively simple brain structure and variety of measurable behaviors. Here we investigated the neurodevelopmental impacts of BPA across two genetic strains of Drosophila-w1118 (control) and the Fragile X Syndrome (FXS) model-by examining both behavioral and neuronal phenotypes. We show that BPA induces hyperactivity in larvae, increases repetitive grooming behavior in adults, reduces courtship behavior, impairs axon guidance in the mushroom body, and disrupts neural stem cell development in the w1118 genetic strain. Remarkably, for every behavioral and neuronal phenotype examined, the impact of BPA in FXS flies was either insignificant or contrasted with the phenotypes observed in the w1118 strain. This data indicates that the neurodevelopmental impacts of BPA can vary widely depending on genetic background and suggests BPA may elicit a gene-environment interaction with Drosophila fragile X mental retardation 1 (dFmr1)-the ortholog of human FMR1, which causes Fragile X Syndrome and is associated with autism spectrum disorder.
Collapse
Affiliation(s)
- U Nguyen
- Department of Biological Sciences, California State University, Sacramento, 6000 J Street, Sacramento, CA, 95819, United States
| | - B Tinsley
- Department of Biological Sciences, California State University, Sacramento, 6000 J Street, Sacramento, CA, 95819, United States
| | - Y Sen
- Department of Biological Sciences, California State University, Sacramento, 6000 J Street, Sacramento, CA, 95819, United States
| | - J Stein
- Department of Biological Sciences, California State University, Sacramento, 6000 J Street, Sacramento, CA, 95819, United States
| | - Y Palacios
- Department of Biological Sciences, California State University, Sacramento, 6000 J Street, Sacramento, CA, 95819, United States
| | - A Ceballos
- Department of Biological Sciences, California State University, Sacramento, 6000 J Street, Sacramento, CA, 95819, United States
| | - C Welch
- Department of Biological Sciences, California State University, Sacramento, 6000 J Street, Sacramento, CA, 95819, United States
| | - K Nzenkue
- Department of Biological Sciences, California State University, Sacramento, 6000 J Street, Sacramento, CA, 95819, United States
| | - A Penn
- Department of Biological Sciences, California State University, Sacramento, 6000 J Street, Sacramento, CA, 95819, United States
| | - L Murphy
- Department of Biological Sciences, California State University, Sacramento, 6000 J Street, Sacramento, CA, 95819, United States
| | - K Leodones
- Department of Biological Sciences, California State University, Sacramento, 6000 J Street, Sacramento, CA, 95819, United States
| | - J Casiquin
- Department of Biological Sciences, California State University, Sacramento, 6000 J Street, Sacramento, CA, 95819, United States
| | - I Ivory
- Department of Biological Sciences, California State University, Sacramento, 6000 J Street, Sacramento, CA, 95819, United States
| | - K Ghenta
- Department of Biological Sciences, California State University, Sacramento, 6000 J Street, Sacramento, CA, 95819, United States
| | - K Danziger
- Department of Biological Sciences, California State University, Sacramento, 6000 J Street, Sacramento, CA, 95819, United States
| | - E Widman
- Department of Biological Sciences, California State University, Sacramento, 6000 J Street, Sacramento, CA, 95819, United States
| | - J Newman
- Department of Biological Sciences, California State University, Sacramento, 6000 J Street, Sacramento, CA, 95819, United States
| | - M Triplehorn
- Department of Biological Sciences, California State University, Sacramento, 6000 J Street, Sacramento, CA, 95819, United States
| | - Z Hindi
- Department of Biological Sciences, California State University, Sacramento, 6000 J Street, Sacramento, CA, 95819, United States
| | - K Mulligan
- Department of Biological Sciences, California State University, Sacramento, 6000 J Street, Sacramento, CA, 95819, United States.
| |
Collapse
|
11
|
Sears JC, Broadie K. FMRP-PKA Activity Negative Feedback Regulates RNA Binding-Dependent Fibrillation in Brain Learning and Memory Circuitry. Cell Rep 2020; 33:108266. [PMID: 33053340 PMCID: PMC7590955 DOI: 10.1016/j.celrep.2020.108266] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 09/07/2020] [Accepted: 09/22/2020] [Indexed: 11/29/2022] Open
Abstract
Fragile X mental retardation protein (FMRP) promotes cyclic AMP (cAMP) signaling. Using an in vivo protein kinase A activity sensor (PKA-SPARK), we find that Drosophila FMRP (dFMRP) and human FMRP (hFMRP) enhance PKA activity in a central brain learning and memory center. Increasing neuronal PKA activity suppresses FMRP in Kenyon cells, demonstrating an FMRP-PKA negative feedback loop. A patient-derived R140Q FMRP point mutation mislocalizes PKA-SPARK activity, whereas deletion of the RNA-binding argi-nine-glycine-glycine (RGG) box (hFMRP-ΔRGG) produces fibrillar PKA-SPARK assemblies colocalizing with ribonucleoprotein (RNP) and aggregation (thioflavin T) markers, demonstrating fibrillar partitioning of cytosolic protein aggregates. hFMRP-ΔRGG reduces dFMRP levels, indicating RGG-independent regulation. Short-term hFMRP-ΔRGG induction produces activated PKA-SPARK puncta, whereas long induction drives fibrillar assembly. Elevated temperature disassociates hFMRP-ΔRGG aggregates and blocks activated PKA-SPARK localization. These results suggest that FMRP regulates compartmentalized signaling via complex assembly, directing PKA activity localization, with FMRP RGG box RNA binding restricting separation via low-complexity interactions. FMRP is required for brain cAMP induction and cAMP-dependent PKA activation, but the FMRP mechanism is uncharacterized. Sears and Broadie test FXS patient-derived and FMRP domain-deficient mutants to reveal conserved FMRP functions regulating PKA activation, subcellular localization, and reversible partitioning into elongated fibrillar assemblies in brain learning/ memory circuit neurons.
Collapse
Affiliation(s)
- James C Sears
- Vanderbilt Brain Institute, Vanderbilt University Medical Center, Nashville, TN 37235, USA; Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA.
| | - Kendal Broadie
- Vanderbilt Brain Institute, Vanderbilt University Medical Center, Nashville, TN 37235, USA; Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37235, USA; Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37235, USA.
| |
Collapse
|
12
|
Russo A, DiAntonio A. Wnd/DLK Is a Critical Target of FMRP Responsible for Neurodevelopmental and Behavior Defects in the Drosophila Model of Fragile X Syndrome. Cell Rep 2020; 28:2581-2593.e5. [PMID: 31484070 PMCID: PMC6746345 DOI: 10.1016/j.celrep.2019.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 07/02/2019] [Accepted: 07/30/2019] [Indexed: 01/23/2023] Open
Abstract
Fragile X syndrome (FXS) is the leading heritable cause of intellectual disability and commonly co-occurs with autism spectrum disorder. Silencing of the Fmr1 gene leads to the absence of the protein product, fragile X mental retardation protein (FMRP), which represses translation of many target mRNAs. Excess translation of these targets is one cause of neuronal dysfunction in FXS. Utilizing the Drosophila model of FXS, we identified the mitogen-activated protein kinase kinase kinase (MAP3K) Wallenda/dual leucine zipper kinase (DLK) as a critical target of FMRP. dFMRP binds Wallenda mRNA and is required to limit Wallenda protein levels. In dFmr1 mutants, Wallenda signaling drives defects in synaptic development, neuronal morphology, and behavior. Pharmacological inhibition of Wallenda in larvae suppresses dFmr1 neurodevelopmental phenotypes, while adult administration prevents dFmr1 behavioral defects. We propose that in dFmr1 mutants chronic Wallenda/DLK signaling disrupts nervous system development and function and that inhibition of this kinase cascade might be a candidate therapeutic intervention for the treatment of FXS. Russo and DiAntonio identify a dysregulated MAPK signaling pathway in the fly model of fragile X syndrome. MAP3K Wnd/DLK drives dFmr1 mutant phenotypes, and pharmacological inhibition of Wnd/DLK prevents neural dysfunction in this model, thus highlighting a possible role for Wnd/DLK in the pathophysiology of fragile X syndrome.
Collapse
Affiliation(s)
- Alexandra Russo
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Aaron DiAntonio
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; Needleman Center for Neurometabolism and Axonal Therapeutics, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA.
| |
Collapse
|
13
|
Mariano V, Achsel T, Bagni C, Kanellopoulos AK. Modelling Learning and Memory in Drosophila to Understand Intellectual Disabilities. Neuroscience 2020; 445:12-30. [PMID: 32730949 DOI: 10.1016/j.neuroscience.2020.07.034] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 07/19/2020] [Accepted: 07/20/2020] [Indexed: 12/24/2022]
Abstract
Neurodevelopmental disorders (NDDs) include a large number of conditions such as Fragile X syndrome, autism spectrum disorders and Down syndrome, among others. They are characterized by limitations in adaptive and social behaviors, as well as intellectual disability (ID). Whole-exome and whole-genome sequencing studies have highlighted a large number of NDD/ID risk genes. To dissect the genetic causes and underlying biological pathways, in vivo experimental validation of the effects of these mutations is needed. The fruit fly, Drosophila melanogaster, is an ideal model to study NDDs, with highly tractable genetics, combined with simple behavioral and circuit assays, permitting rapid medium-throughput screening of NDD/ID risk genes. Here, we review studies where the use of well-established assays to study mechanisms of learning and memory in Drosophila has permitted insights into molecular mechanisms underlying IDs. We discuss how technologies in the fly model, combined with a high degree of molecular and physiological conservation between flies and mammals, highlight the Drosophila system as an ideal model to study neurodevelopmental disorders, from genetics to behavior.
Collapse
Affiliation(s)
- Vittoria Mariano
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne 1005, Switzerland; Department of Human Genetics, KU Leuven, Leuven 3000, Belgium
| | - Tilmann Achsel
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne 1005, Switzerland
| | - Claudia Bagni
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne 1005, Switzerland; Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome 00133, Italy.
| | | |
Collapse
|
14
|
Khristich AN, Mirkin SM. On the wrong DNA track: Molecular mechanisms of repeat-mediated genome instability. J Biol Chem 2020; 295:4134-4170. [PMID: 32060097 PMCID: PMC7105313 DOI: 10.1074/jbc.rev119.007678] [Citation(s) in RCA: 171] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Expansions of simple tandem repeats are responsible for almost 50 human diseases, the majority of which are severe, degenerative, and not currently treatable or preventable. In this review, we first describe the molecular mechanisms of repeat-induced toxicity, which is the connecting link between repeat expansions and pathology. We then survey alternative DNA structures that are formed by expandable repeats and review the evidence that formation of these structures is at the core of repeat instability. Next, we describe the consequences of the presence of long structure-forming repeats at the molecular level: somatic and intergenerational instability, fragility, and repeat-induced mutagenesis. We discuss the reasons for gender bias in intergenerational repeat instability and the tissue specificity of somatic repeat instability. We also review the known pathways in which DNA replication, transcription, DNA repair, and chromatin state interact and thereby promote repeat instability. We then discuss possible reasons for the persistence of disease-causing DNA repeats in the genome. We describe evidence suggesting that these repeats are a payoff for the advantages of having abundant simple-sequence repeats for eukaryotic genome function and evolvability. Finally, we discuss two unresolved fundamental questions: (i) why does repeat behavior differ between model systems and human pedigrees, and (ii) can we use current knowledge on repeat instability mechanisms to cure repeat expansion diseases?
Collapse
Affiliation(s)
| | - Sergei M Mirkin
- Department of Biology, Tufts University, Medford, Massachusetts 02155.
| |
Collapse
|
15
|
Ueoka I, Pham HTN, Matsumoto K, Yamaguchi M. Autism Spectrum Disorder-Related Syndromes: Modeling with Drosophila and Rodents. Int J Mol Sci 2019; 20:E4071. [PMID: 31438473 PMCID: PMC6747505 DOI: 10.3390/ijms20174071] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/17/2019] [Accepted: 08/18/2019] [Indexed: 12/11/2022] Open
Abstract
Whole exome analyses have identified a number of genes associated with autism spectrum disorder (ASD) and ASD-related syndromes. These genes encode key regulators of synaptogenesis, synaptic plasticity, cytoskeleton dynamics, protein synthesis and degradation, chromatin remodeling, transcription, and lipid homeostasis. Furthermore, in silico studies suggest complex regulatory networks among these genes. Drosophila is a useful genetic model system for studies of ASD and ASD-related syndromes to clarify the in vivo roles of ASD-associated genes and the complex gene regulatory networks operating in the pathogenesis of ASD and ASD-related syndromes. In this review, we discuss what we have learned from studies with vertebrate models, mostly mouse models. We then highlight studies with Drosophila models. We also discuss future developments in the related field.
Collapse
Affiliation(s)
- Ibuki Ueoka
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 603-8585, Japan
| | - Hang Thi Nguyet Pham
- Department of Pharmacology and Biochemistry, National Institute of Medicinal Materials, Hanoi 110100, Vietnam
| | - Kinzo Matsumoto
- Division of Medicinal Pharmacology, Institute of Natural Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Masamitsu Yamaguchi
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 603-8585, Japan.
| |
Collapse
|
16
|
Bellosta P, Soldano A. Dissecting the Genetics of Autism Spectrum Disorders: A Drosophila Perspective. Front Physiol 2019; 10:987. [PMID: 31481894 PMCID: PMC6709880 DOI: 10.3389/fphys.2019.00987] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 07/18/2019] [Indexed: 01/10/2023] Open
Abstract
Autism Spectrum Disorder (ASD) is a complex group of multi-factorial developmental disorders that leads to communication and behavioral defects. Genetic alterations have been identified in around 20% of ASD patients and the use of genetic models, such as Drosophila melanogaster, has been of paramount importance in deciphering the significance of these alterations. In fact, many of the ASD associated genes, such as FMR1, Neurexin, Neuroligins and SHANK encode for proteins that have conserved functions in neurons and during synapse development, both in humans and in the fruit fly. Drosophila is a prominent model in neuroscience due to the conserved genetic networks that control neurodevelopmental processes and to the ease of manipulating its genetics. In the present review we will describe recent advances in the field of ASD with a particular focus on the characterization of genes where the use of Drosophila has been fundamental to better understand their function.
Collapse
Affiliation(s)
- Paola Bellosta
- Laboratory of Metabolism of Cell Growth and Neuronal Survival, Department of Cellular, Computational and Integrative Biology (CIBio), University of Trento, Trento, Italy.,Department of Medicine, New York University Langone Medical Center, New York, NY, United States
| | - Alessia Soldano
- Laboratory of Translational Genomics, Department of Cellular, Computational and Integrative Biology (CIBio), University of Trento, Trento, Italy
| |
Collapse
|
17
|
Bodaleo F, Tapia-Monsalves C, Cea-Del Rio C, Gonzalez-Billault C, Nunez-Parra A. Structural and Functional Abnormalities in the Olfactory System of Fragile X Syndrome Models. Front Mol Neurosci 2019; 12:135. [PMID: 31191246 PMCID: PMC6548058 DOI: 10.3389/fnmol.2019.00135] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 05/09/2019] [Indexed: 12/18/2022] Open
Abstract
Fragile X Syndrome (FXS) is the most common inherited form of intellectual disability. It is produced by mutation of the Fmr1 gene that encodes for the Fragile Mental Retardation Protein (FMRP), an important RNA-binding protein that regulates the expression of multiple proteins located in neuronal synapses. Individuals with FXS exhibit abnormal sensory information processing frequently leading to hypersensitivity across sensory modalities and consequently a wide array of behavioral symptoms. Insects and mammals engage primarily their sense of smell to create proper representations of the external world and guide adequate decision-making processes. This feature in combination with the exquisitely organized neuronal circuits found throughout the olfactory system (OS) and the wide expression of FMRP in brain regions that process olfactory information makes it an ideal model to study sensory alterations in FXS models. In the last decade several groups have taken advantage of these features and have used the OS of fruit fly and rodents to understand neuronal alteration giving rise to sensory perception issues. In this review article, we will discuss molecular, morphological and physiological aspects of the olfactory information processing in FXS models. We will highlight the decreased inhibitory/excitatory synaptic balance and the diminished synaptic plasticity found in this system resulting in behavioral alteration of individuals in the presence of odorant stimuli.
Collapse
Affiliation(s)
- Felipe Bodaleo
- Laboratory of Cellular and Neuronal Dynamics, Department of Biology, Faculty of Science, Universidad de Chile, Santiago, Chile.,Geroscience Center for Brain Health and Metabolism (GERO), Santiago, Chile
| | | | - Christian Cea-Del Rio
- Laboratory of Neurophysiopathology, Centro de Investigacion Biomedica y Aplicada (CIBAP), School of Medicine, Universidad de Santiago de Chile, Santiago, Chile
| | - Christian Gonzalez-Billault
- Laboratory of Cellular and Neuronal Dynamics, Department of Biology, Faculty of Science, Universidad de Chile, Santiago, Chile.,Geroscience Center for Brain Health and Metabolism (GERO), Santiago, Chile.,The Buck Institute for Research on Aging, Novato, CA, United States
| | - Alexia Nunez-Parra
- Department of Biology, Faculty of Science, Universidad de Chile, Santiago, Chile.,Cell Physiology Center, Universidad de Chile, Santiago, Chile
| |
Collapse
|
18
|
Specchia V, Puricella A, D'Attis S, Massari S, Giangrande A, Bozzetti MP. Drosophila melanogaster as a Model to Study the Multiple Phenotypes, Related to Genome Stability of the Fragile-X Syndrome. Front Genet 2019; 10:10. [PMID: 30815010 PMCID: PMC6381874 DOI: 10.3389/fgene.2019.00010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 01/11/2019] [Indexed: 12/14/2022] Open
Abstract
Fragile-X syndrome is one of the most common forms of inherited mental retardation and autistic behaviors. The reduction/absence of the functional FMRP protein, coded by the X-linked Fmr1 gene in humans, is responsible for the syndrome. Patients exhibit a variety of symptoms predominantly linked to the function of FMRP protein in the nervous system like autistic behavior and mild-to-severe intellectual disability. Fragile-X (FraX) individuals also display cellular and morphological traits including branched dendritic spines, large ears, and macroorchidism. The dFmr1 gene is the Drosophila ortholog of the human Fmr1 gene. dFmr1 mutant flies exhibit synaptic abnormalities, behavioral defects as well as an altered germline development, resembling the phenotypes observed in FraX patients. Therefore, Drosophila melanogaster is considered a good model to study the physiopathological mechanisms underlying the Fragile-X syndrome. In this review, we explore how the multifaceted roles of the FMRP protein have been addressed in the Drosophila model and how the gained knowledge may open novel perspectives for understanding the molecular defects causing the disease and for identifying novel therapeutical targets.
Collapse
Affiliation(s)
- Valeria Specchia
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, DiSTeBA, Università del Salento, Lecce, Italy
| | - Antonietta Puricella
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, DiSTeBA, Università del Salento, Lecce, Italy
| | - Simona D'Attis
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, DiSTeBA, Università del Salento, Lecce, Italy
| | - Serafina Massari
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, DiSTeBA, Università del Salento, Lecce, Italy
| | - Angela Giangrande
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Maria Pia Bozzetti
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, DiSTeBA, Università del Salento, Lecce, Italy
| |
Collapse
|
19
|
Sears JC, Choi WJ, Broadie K. Fragile X Mental Retardation Protein positively regulates PKA anchor Rugose and PKA activity to control actin assembly in learning/memory circuitry. Neurobiol Dis 2019; 127:53-64. [PMID: 30771457 DOI: 10.1016/j.nbd.2019.02.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 02/04/2019] [Indexed: 01/09/2023] Open
Abstract
Recent work shows Fragile X Mental Retardation Protein (FMRP) drives the translation of very large proteins (>2000 aa) mediating neurodevelopment. Loss of function results in Fragile X syndrome (FXS), the leading heritable cause of intellectual disability (ID) and autism spectrum disorder (ASD). Using the Drosophila FXS disease model, we discover FMRP positively regulates the translation of the very large A-Kinase Anchor Protein (AKAP) Rugose (>3000 aa), homolog of ASD-associated human Neurobeachin (NBEA). In the central brain Mushroom Body (MB) circuit, where Protein Kinase A (PKA) signaling is necessary for learning/memory, FMRP loss reduces Rugose levels and targeted FMRP overexpression elevates Rugose levels. Using a new in vivo transgenic PKA activity reporter (PKA-SPARK), we find FMRP loss reduces PKA activity in MB Kenyon cells whereas FMRP overexpression elevates PKA activity. Consistently, loss of Rugose reduces PKA activity, but Rugose overexpression has no independent effect. A well-established PKA output is regulation of F-actin cytoskeleton dynamics. In the FXS disease model, F-actin is aberrantly accumulated in MB lobes and single MB Kenyon cells. Consistently, Rugose loss results in similar F-actin accumulation. Moreover, targeted FMRP, Rugose and PKA overexpression all result in increased F-actin accumulation in the MB circuit. These findings uncover a FMRP-Rugose-PKA mechanism regulating actin cytoskeleton. This study reveals a novel FMRP mechanism controlling neuronal PKA activity, and demonstrates a shared mechanistic connection between FXS and NBEA associated ASD disease states, with a common link to PKA and F-actin misregulation in brain neural circuits. SIGNIFICANCE STATEMENT: Autism spectrum disorder (ASD) arises from a wide array of genetic lesions, and it is therefore critical to identify common underlying molecular mechanisms. Here, we link two ASD states; Neurobeachin (NBEA) associated ASD and Fragile X syndrome (FXS), the most common inherited ASD. Using established Drosophila disease models, we find Fragile X Mental Retardation Protein (FMRP) positively regulates translation of NBEA homolog Rugose, consistent with a recent advance showing FMRP promotes translation of very large proteins associated with ASD. FXS exhibits reduced cAMP induction, a potent activator of PKA, and Rugose/NBEA is a PKA anchor. Consistently, we find brain PKA activity strikingly reduced in both ASD models. We discover this pathway regulation controls actin cytoskeleton dynamics in brain neural circuits.
Collapse
Affiliation(s)
- James C Sears
- Vanderbilt Brain Institute, Departments of Biological Sciences, Vanderbilt University and Medical Center, Nashville, TN 37235, USA
| | - Woong Jae Choi
- Departments of Biological Sciences, Vanderbilt University and Medical Center, Nashville, TN 37235, USA
| | - Kendal Broadie
- Vanderbilt Brain Institute, Departments of Biological Sciences, Cell and Developmental Biology, and Pharmacology, Vanderbilt University and Medical Center, Nashville, TN 37235, USA.
| |
Collapse
|
20
|
Patzlaff NE, Shen M, Zhao X. Regulation of Adult Neurogenesis by the Fragile X Family of RNA Binding Proteins. Brain Plast 2018; 3:205-223. [PMID: 30151344 PMCID: PMC6091053 DOI: 10.3233/bpl-170061] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The fragile X mental retardation protein (FMRP) has an important role in neural development. Functional loss of FMRP in humans leads to fragile X syndrome, and it is the most common monogenetic contributor to intellectual disability and autism. FMRP is part of a larger family of RNA-binding proteins known as FXRs, which also includes fragile X related protein 1 (FXR1P) and fragile X related protein 2 (FXR2P). Despite the similarities of the family members, the functions of FXR1P and FXR2P in human diseases remain unclear. Although most studies focus on FMRP's role in mature neurons, all three FXRs regulate adult neurogenesis. Extensive studies have demonstrated important roles of adult neurogenesis in neuroplasticity, learning, and cognition. Impaired adult neurogenesis is implicated in neuropsychiatric disorders, neurodegenerative diseases, and neurodevelopmental disorders. Interventions aimed at regulating adult neurogenesis are thus being evaluated as potential therapeutic strategies. Here, we review and discuss the functions of FXRs in adult neurogenesis and their known similarities and differences. Understanding the overlapping regulatory functions of FXRs in adult neurogenesis can give us insights into the adult brain and fragile X syndrome.
Collapse
Affiliation(s)
- Natalie E. Patzlaff
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
- Molecular and Cellular Pharmacology Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Minjie Shen
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Xinyu Zhao
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
- Molecular and Cellular Pharmacology Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
21
|
Drozd M, Bardoni B, Capovilla M. Modeling Fragile X Syndrome in Drosophila. Front Mol Neurosci 2018; 11:124. [PMID: 29713264 PMCID: PMC5911982 DOI: 10.3389/fnmol.2018.00124] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 03/29/2018] [Indexed: 01/18/2023] Open
Abstract
Intellectual disability (ID) and autism are hallmarks of Fragile X Syndrome (FXS), a hereditary neurodevelopmental disorder. The gene responsible for FXS is Fragile X Mental Retardation gene 1 (FMR1) encoding the Fragile X Mental Retardation Protein (FMRP), an RNA-binding protein involved in RNA metabolism and modulating the expression level of many targets. Most cases of FXS are caused by silencing of FMR1 due to CGG expansions in the 5'-UTR of the gene. Humans also carry the FXR1 and FXR2 paralogs of FMR1 while flies have only one FMR1 gene, here called dFMR1, sharing the same level of sequence homology with all three human genes, but functionally most similar to FMR1. This enables a much easier approach for FMR1 genetic studies. Drosophila has been widely used to investigate FMR1 functions at genetic, cellular, and molecular levels since dFMR1 mutants have many phenotypes in common with the wide spectrum of FMR1 functions that underlay the disease. In this review, we present very recent Drosophila studies investigating FMRP functions at genetic, cellular, molecular, and electrophysiological levels in addition to research on pharmacological treatments in the fly model. These studies have the potential to aid the discovery of pharmacological therapies for FXS.
Collapse
Affiliation(s)
- Małgorzata Drozd
- Université Côte d'Azur, CNRS, IPMC, Valbonne, France.,CNRS LIA (Neogenex), Valbonne, France
| | - Barbara Bardoni
- CNRS LIA (Neogenex), Valbonne, France.,Université Côte d'Azur, INSERM, CNRS, IPMC, Valbonne, France
| | - Maria Capovilla
- Université Côte d'Azur, CNRS, IPMC, Valbonne, France.,CNRS LIA (Neogenex), Valbonne, France
| |
Collapse
|
22
|
Xing Z, Zeng M, Hu H, Zhang H, Hao Z, Long Y, Chen S, Su H, Yuan Z, Xu M, Chen J. Fragile X mental retardation protein promotes astrocytoma proliferation via the MEK/ERK signaling pathway. Oncotarget 2018; 7:75394-75406. [PMID: 27683117 PMCID: PMC5342749 DOI: 10.18632/oncotarget.12215] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Accepted: 09/12/2016] [Indexed: 12/16/2022] Open
Abstract
Objective To examine the association between fragile X mental retardation protein (FMRP) expression and astrocytoma characteristics. Methods Pathologic grade and expressions of glial fibrillary acidic protein (GFAP), Ki67 (proliferation marker), and FMRP were determined in astrocytoma specimens from 74 patients. Kaplan-Meier survival analysis was undertaken. Pathologic grade and protein levels of FMRP were determined in 24 additional patients with astrocytoma and 6 controls (cerebral trauma). In cultured U251 and U87 cell lines, the effects of FMRP knock-down on cell proliferation, AKT/mTOR/GSK-3β and MEK/ERK signaling were studied. The effects of FMRP knock-down on the volumes and weights of U251 cell-derived orthotopic tumors in mice were investigated. Results In patients, FMRP expression was increased in grade IV (5.1-fold, P<0.01) and grade III (3.2-fold, P<0.05) astrocytoma, compared with controls. FMRP and Ki67 expressions were positively correlated (R2=0.877, P<0.001). Up-regulation of FMRP was associated with poorer survival among patients with FMRP integrated optical density >30 (P<0.01). In astrocytoma cell lines, FMRP knock-down slowed proliferation (P<0.05), inhibited total MEK levels P<0.05, and reduced phosphorylation of MEK (Ser217/221) and ERK (Thr202/Tyr204) (P<0.05). In mice with orthotopic tumors, FMRP knock-down decreased FMRP and Ki67 expressions, and reduced tumor volume and weight (36.3% or 61.5% on day 15, both P<0.01). Also, phosphorylation of MEK (Ser217/221) and ERK (Thr202/Tyr204), and total MEK in xenografts were decreased in sh-FMRP xenografts compared with non-transfected ones (all P<0.05). Conclusion Enhanced FMRP expression in astrocytoma may promote proliferation through activation of MEK/ERK signaling.
Collapse
Affiliation(s)
- Zhou Xing
- Department of Oncology, The First Affiliated Hospital, Jinan University, Guangzhou 510632, People's Republic of China.,Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, People's Republic of China
| | - Minling Zeng
- Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, People's Republic of China
| | - Huixian Hu
- Translational Medicine Center, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, People's Republic of China
| | - Hui Zhang
- Translational Medicine Center, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, People's Republic of China
| | - Zhuofang Hao
- Department of Pathology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, People's Republic of China
| | - Yuesheng Long
- Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and Ministry of Education of China, Guangzhou Medical University, Guangzhou 510260, People's Republic of China
| | - Shengqiang Chen
- Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and Ministry of Education of China, Guangzhou Medical University, Guangzhou 510260, People's Republic of China
| | - Hang Su
- Translational Medicine Center, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, People's Republic of China
| | - Zhongmin Yuan
- Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, People's Republic of China.,Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and Ministry of Education of China, Guangzhou Medical University, Guangzhou 510260, People's Republic of China
| | - Meng Xu
- Department of Oncology, The First Affiliated Hospital, Jinan University, Guangzhou 510632, People's Republic of China
| | - Jingqi Chen
- Translational Medicine Center, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, People's Republic of China.,Department of Medical Oncology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, People's Republic of China
| |
Collapse
|
23
|
Sears JC, Broadie K. Fragile X Mental Retardation Protein Regulates Activity-Dependent Membrane Trafficking and Trans-Synaptic Signaling Mediating Synaptic Remodeling. Front Mol Neurosci 2018; 10:440. [PMID: 29375303 PMCID: PMC5770364 DOI: 10.3389/fnmol.2017.00440] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 12/18/2017] [Indexed: 12/31/2022] Open
Abstract
Fragile X syndrome (FXS) is the leading monogenic cause of autism and intellectual disability. The disease arises through loss of fragile X mental retardation protein (FMRP), which normally exhibits peak expression levels in early-use critical periods, and is required for activity-dependent synaptic remodeling during this transient developmental window. FMRP canonically binds mRNA to repress protein translation, with targets that regulate cytoskeleton dynamics, membrane trafficking, and trans-synaptic signaling. We focus here on recent advances emerging in these three areas from the Drosophila disease model. In the well-characterized central brain mushroom body (MB) olfactory learning/memory circuit, FMRP is required for activity-dependent synaptic remodeling of projection neurons innervating the MB calyx, with function tightly restricted to an early-use critical period. FMRP loss is phenocopied by conditional removal of FMRP only during this critical period, and rescued by FMRP conditional expression only during this critical period. Consistent with FXS hyperexcitation, FMRP loss defects are phenocopied by heightened sensory experience and targeted optogenetic hyperexcitation during this critical period. FMRP binds mRNA encoding Drosophila ESCRTIII core component Shrub (human CHMP4 homolog) to restrict Shrub translation in an activity-dependent mechanism only during this same critical period. Shrub mediates endosomal membrane trafficking, and perturbing Shrub expression is known to interfere with neuronal process pruning. Consistently, FMRP loss and Shrub overexpression targeted to projection neurons similarly causes endosomal membrane trafficking defects within synaptic boutons, and genetic reduction of Shrub strikingly rescues Drosophila FXS model defects. In parallel work on the well-characterized giant fiber (GF) circuit, FMRP limits iontophoretic dye loading into central interneurons, demonstrating an FMRP role controlling core neuronal properties through the activity-dependent repression of translation. In the well-characterized Drosophila neuromuscular junction (NMJ) model, developmental synaptogenesis and activity-dependent synaptic remodeling both require extracellular matrix metalloproteinase (MMP) enzymes interacting with the heparan sulfate proteoglycan (HSPG) glypican dally-like protein (Dlp) to restrict trans-synaptic Wnt signaling, with FXS synaptogenic defects alleviated by both MMP and HSPG reduction. This new mechanistic axis spanning from activity to FMRP to HSPG-dependent MMP regulation modulates activity-dependent synaptogenesis. We discuss future directions for these mechanisms, and intersecting research priorities for FMRP in glial and signaling interactions.
Collapse
Affiliation(s)
- James C. Sears
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
| | - Kendal Broadie
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
- Vanderbilt Kennedy Center for Research on Human Development, Nashville, TN, United States
- Vanderbilt Brain Institute, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
24
|
Hutson RL, Thompson RL, Bantel AP, Tessier CR. Acamprosate rescues neuronal defects in the Drosophila model of Fragile X Syndrome. Life Sci 2018; 195:65-70. [PMID: 29317220 DOI: 10.1016/j.lfs.2018.01.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 01/04/2018] [Accepted: 01/05/2018] [Indexed: 10/18/2022]
Abstract
AIMS Several off-label studies have shown that acamprosate can provide some clinical benefits in youth with Fragile X Syndrome (FXS), an autism spectrum disorder caused by loss of function of the highly conserved FMR1 gene. This study investigated the ability of acamprosate to rescue cellular, molecular and behavioral defects in the Drosophila model of FXS. MAIN METHODS A high (100μM) and low (10μM) dose of acamprosate was fed to Drosophila FXS (dfmr1 null) or genetic control (w1118) larvae and then analyzed in multiple paradigms. A larval crawling assay was used to monitor aberrant FXS behavior, overgrowth of the neuromuscular junction (NMJ) was quantified to assess neuronal development, and quantitative RT-PCR was used to evaluate expression of deregulated cbp53E mRNA. KEY FINDINGS Acamprosate treatment partially or completely rescued all of the FXS phenotypes analyzed, according to dose. High doses rescued cellular overgrowth and dysregulated cbp53E mRNA expression, but aberrant crawling behavior was not affected. Low doses of acamprosate, however, did not affect synapse number at the NMJ, but could rescue NMJ overgrowth, locomotor defects, and cbp53E mRNA expression. This dual nature of acamprosate suggests multiple molecular mechanisms may be involved in acamprosate function depending on the dosage used. SIGNIFICANCE Acamprosate may be a useful therapy for FXS and potentially other autism spectrum disorders. However, understanding the molecular mechanisms involved with different doses of this drug will likely be necessary to obtain optimal results.
Collapse
Affiliation(s)
- Russell L Hutson
- Department of Biological Sciences, University of Notre Dame, South Bend, IN, United States
| | - Rachel L Thompson
- Department of Biological Sciences, University of Notre Dame, South Bend, IN, United States
| | - Andrew P Bantel
- Department of Medical and Molecular Genetics, Indiana University School of Medicine-South Bend, South Bend, IN, United States
| | - Charles R Tessier
- Department of Medical and Molecular Genetics, Indiana University School of Medicine-South Bend, South Bend, IN, United States.
| |
Collapse
|
25
|
Doll CA, Vita DJ, Broadie K. Fragile X Mental Retardation Protein Requirements in Activity-Dependent Critical Period Neural Circuit Refinement. Curr Biol 2017; 27:2318-2330.e3. [PMID: 28756946 PMCID: PMC5572839 DOI: 10.1016/j.cub.2017.06.046] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/30/2017] [Accepted: 06/19/2017] [Indexed: 12/22/2022]
Abstract
Activity-dependent synaptic remodeling occurs during early-use critical periods, when naive juveniles experience sensory input. Fragile X mental retardation protein (FMRP) sculpts synaptic refinement in an activity sensor mechanism based on sensory cues, with FMRP loss causing the most common heritable autism spectrum disorder (ASD), fragile X syndrome (FXS). In the well-mapped Drosophila olfactory circuitry, projection neurons (PNs) relay peripheral sensory information to the central brain mushroom body (MB) learning/memory center. FMRP-null PNs reduce synaptic branching and enlarge boutons, with ultrastructural and synaptic reconstitution MB connectivity defects. Critical period activity modulation via odorant stimuli, optogenetics, and transgenic tetanus toxin neurotransmission block show that elevated PN activity phenocopies FMRP-null defects, whereas PN silencing causes opposing changes. FMRP-null PNs lose activity-dependent synaptic modulation, with impairments restricted to the critical period. We conclude that FMRP is absolutely required for experience-dependent changes in synaptic connectivity during the developmental critical period of neural circuit optimization for sensory input.
Collapse
Affiliation(s)
- Caleb A Doll
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37203, USA
| | - Dominic J Vita
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37203, USA
| | - Kendal Broadie
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37203, USA; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37203, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN 37203, USA; Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37203, USA.
| |
Collapse
|
26
|
Patzlaff NE, Nemec KM, Malone SG, Li Y, Zhao X. Fragile X related protein 1 (FXR1P) regulates proliferation of adult neural stem cells. Hum Mol Genet 2017; 26:1340-1352. [PMID: 28204491 PMCID: PMC6075589 DOI: 10.1093/hmg/ddx034] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 01/16/2017] [Accepted: 01/19/2017] [Indexed: 11/14/2022] Open
Abstract
Fragile X related protein 1 (FXR1P) is a member of the fragile X family of RNA-binding proteins, which includes FMRP and FXR2P. Both FMRP and FXR2P regulate neurogenesis, a process affected in a number of neurological and neuropsychiatric disorders, including fragile X syndrome. Although FXR1P has been implicated in various developmental processes and neuropsychiatric diseases, its role in neurodevelopment is not well understood. The goal of the present study was to elucidate the function of FXR1P in adult neurogenesis. We used an inducible mouse model that allows us to investigate how FXR1P deficiency in adult neural stem cells (aNSCs) affects proliferation and neuronal differentiation. Deletion of FXR1 in aNSCs resulted in fewer adult-born cells in the dentate gyrus (DG) overall, reducing populations across different stages of neurogenesis, including radial glia-like cells, intermediate progenitors, neuroblasts, immature neurons and neurons. We hypothesized that this reduction in new cell numbers resulted from impaired proliferation, which we confirmed both in vivo and in vitro. We discovered that FXR1P-deficient aNSCs have altered expression of a select number of cell-cycle genes, and we identified the mRNA of cyclin-dependent kinase inhibitor 1A (Cdkn1a, p21) as a direct target of FXR1P. Restoration of p21 mRNA to wild-type levels rescued the proliferation deficit in cells lacking FXR1P, demonstrating that p21 is a mediator of FXR1P in aNSCs. These results indicate that FXR1P plays an important role in regulating aNSC self-renewal and maintenance in the adult brain, which may have implications for a number of neurodevelopmental and psychiatric disorders.
Collapse
Affiliation(s)
- Natalie E. Patzlaff
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
- Molecular and Cellular Pharmacology Graduate Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Kelsey M. Nemec
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Sydney G. Malone
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Yue Li
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Xinyu Zhao
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
- Molecular and Cellular Pharmacology Graduate Program, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
27
|
Koon AC, Chan HYE. Drosophila melanogaster As a Model Organism to Study RNA Toxicity of Repeat Expansion-Associated Neurodegenerative and Neuromuscular Diseases. Front Cell Neurosci 2017; 11:70. [PMID: 28377694 PMCID: PMC5359753 DOI: 10.3389/fncel.2017.00070] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 02/27/2017] [Indexed: 12/14/2022] Open
Abstract
For nearly a century, the fruit fly, Drosophila melanogaster, has proven to be a valuable tool in our understanding of fundamental biological processes, and has empowered our discoveries, particularly in the field of neuroscience. In recent years, Drosophila has emerged as a model organism for human neurodegenerative and neuromuscular disorders. In this review, we highlight a number of recent studies that utilized the Drosophila model to study repeat-expansion associated diseases (READs), such as polyglutamine diseases, fragile X-associated tremor/ataxia syndrome (FXTAS), myotonic dystrophy type 1 (DM1) and type 2 (DM2), and C9ORF72-associated amyotrophic lateral sclerosis/frontotemporal dementia (C9-ALS/FTD). Discoveries regarding the possible mechanisms of RNA toxicity will be focused here. These studies demonstrate Drosophila as an excellent in vivo model system that can reveal novel mechanistic insights into human disorders, providing the foundation for translational research and therapeutic development.
Collapse
Affiliation(s)
- Alex C Koon
- Laboratory of Drosophila ResearchHong Kong, Hong Kong; Biochemistry ProgramHong Kong, Hong Kong
| | - Ho Yin Edwin Chan
- Laboratory of Drosophila ResearchHong Kong, Hong Kong; Biochemistry ProgramHong Kong, Hong Kong; Cell and Molecular Biology ProgramHong Kong, Hong Kong; Molecular Biotechnology Program, Faculty of Science, School of Life SciencesHong Kong, Hong Kong; School of Life Sciences, Gerald Choa Neuroscience Centre, The Chinese University of Hong KongHong Kong, Hong Kong
| |
Collapse
|
28
|
O'Connor RM, Stone EF, Wayne CR, Marcinkevicius EV, Ulgherait M, Delventhal R, Pantalia MM, Hill VM, Zhou CG, McAllister S, Chen A, Ziegenfuss JS, Grueber WB, Canman JC, Shirasu-Hiza MM. A Drosophila model of Fragile X syndrome exhibits defects in phagocytosis by innate immune cells. J Cell Biol 2017; 216:595-605. [PMID: 28223318 PMCID: PMC5350515 DOI: 10.1083/jcb.201607093] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 11/22/2016] [Accepted: 01/30/2017] [Indexed: 11/22/2022] Open
Abstract
Fragile X syndrome, the most common known monogenic cause of autism, results from the loss of FMR1, a conserved, ubiquitously expressed RNA-binding protein. Recent evidence suggests that Fragile X syndrome and other types of autism are associated with immune system defects. We found that Drosophila melanogaster Fmr1 mutants exhibit increased sensitivity to bacterial infection and decreased phagocytosis of bacteria by systemic immune cells. Using tissue-specific RNAi-mediated knockdown, we showed that Fmr1 plays a cell-autonomous role in the phagocytosis of bacteria. Fmr1 mutants also exhibit delays in two processes that require phagocytosis by glial cells, the immune cells in the brain: neuronal clearance after injury in adults and the development of the mushroom body, a brain structure required for learning and memory. Delayed neuronal clearance is associated with reduced recruitment of activated glia to the site of injury. These results suggest a previously unrecognized role for Fmr1 in regulating the activation of phagocytic immune cells both in the body and the brain.
Collapse
Affiliation(s)
- Reed M O'Connor
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032
| | - Elizabeth F Stone
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032
| | - Charlotte R Wayne
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032
| | - Emily V Marcinkevicius
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032
| | - Matt Ulgherait
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032
| | - Rebecca Delventhal
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032
| | - Meghan M Pantalia
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032
| | - Vanessa M Hill
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032
| | - Clarice G Zhou
- Department of Biological Sciences, Columbia University, New York, NY 10025
| | - Sophie McAllister
- Department of Biological Sciences, Columbia University, New York, NY 10025
| | - Anna Chen
- Department of Biological Sciences, Columbia University, New York, NY 10025
| | - Jennifer S Ziegenfuss
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, NY 10032
| | - Wesley B Grueber
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, NY 10032
| | - Julie C Canman
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032
| | - Mimi M Shirasu-Hiza
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032
| |
Collapse
|
29
|
Dear ML, Dani N, Parkinson W, Zhou S, Broadie K. Two classes of matrix metalloproteinases reciprocally regulate synaptogenesis. Development 2015; 143:75-87. [PMID: 26603384 DOI: 10.1242/dev.124461] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 11/18/2015] [Indexed: 01/10/2023]
Abstract
Synaptogenesis requires orchestrated intercellular communication between synaptic partners, with trans-synaptic signals necessarily traversing the extracellular synaptomatrix separating presynaptic and postsynaptic cells. Extracellular matrix metalloproteinases (Mmps) regulated by secreted tissue inhibitors of metalloproteinases (Timps), cleave secreted and membrane-associated targets to sculpt the extracellular environment and modulate intercellular signaling. Here, we test the roles of Mmp at the neuromuscular junction (NMJ) model synapse in the reductionist Drosophila system, which contains just two Mmps (secreted Mmp1 and GPI-anchored Mmp2) and one secreted Timp. We found that all three matrix metalloproteome components co-dependently localize in the synaptomatrix and show that both Mmp1 and Mmp2 independently restrict synapse morphogenesis and functional differentiation. Surprisingly, either dual knockdown or simultaneous inhibition of the two Mmp classes together restores normal synapse development, identifying a reciprocal suppression mechanism. The two Mmp classes co-regulate a Wnt trans-synaptic signaling pathway modulating structural and functional synaptogenesis, including the GPI-anchored heparan sulfate proteoglycan (HSPG) Wnt co-receptor Dally-like protein (Dlp), cognate receptor Frizzled-2 (Frz2) and Wingless (Wg) ligand. Loss of either Mmp1 or Mmp2 reciprocally misregulates Dlp at the synapse, with normal signaling restored by co-removal of both Mmp classes. Correcting Wnt co-receptor Dlp levels in both Mmp mutants prevents structural and functional synaptogenic defects. Taken together, these results identify an Mmp mechanism that fine-tunes HSPG co-receptor function to modulate Wnt signaling to coordinate synapse structural and functional development.
Collapse
Affiliation(s)
- Mary Lynn Dear
- Department of Biological Sciences, Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37235-1634, USA
| | - Neil Dani
- Department of Biological Sciences, Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37235-1634, USA
| | - William Parkinson
- Department of Biological Sciences, Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37235-1634, USA
| | - Scott Zhou
- Department of Biological Sciences, Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37235-1634, USA
| | - Kendal Broadie
- Department of Biological Sciences, Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37235-1634, USA
| |
Collapse
|
30
|
Crystal structure reveals specific recognition of a G-quadruplex RNA by a β-turn in the RGG motif of FMRP. Proc Natl Acad Sci U S A 2015; 112:E5391-400. [PMID: 26374839 DOI: 10.1073/pnas.1515737112] [Citation(s) in RCA: 140] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Fragile X Mental Retardation Protein (FMRP) is a regulatory RNA binding protein that plays a central role in the development of several human disorders including Fragile X Syndrome (FXS) and autism. FMRP uses an arginine-glycine-rich (RGG) motif for specific interactions with guanine (G)-quadruplexes, mRNA elements implicated in the disease-associated regulation of specific mRNAs. Here we report the 2.8-Å crystal structure of the complex between the human FMRP RGG peptide bound to the in vitro selected G-rich RNA. In this model system, the RNA adopts an intramolecular K(+)-stabilized G-quadruplex structure composed of three G-quartets and a mixed tetrad connected to an RNA duplex. The RGG peptide specifically binds to the duplex-quadruplex junction, the mixed tetrad, and the duplex region of the RNA through shape complementarity, cation-π interactions, and multiple hydrogen bonds. Many of these interactions critically depend on a type I β-turn, a secondary structure element whose formation was not previously recognized in the RGG motif of FMRP. RNA mutagenesis and footprinting experiments indicate that interactions of the peptide with the duplex-quadruplex junction and the duplex of RNA are equally important for affinity and specificity of the RGG-RNA complex formation. These results suggest that specific binding of cellular RNAs by FMRP may involve hydrogen bonding with RNA duplexes and that RNA duplex recognition can be a characteristic RNA binding feature for RGG motifs in other proteins.
Collapse
|
31
|
Copf T. Importance of gene dosage in controlling dendritic arbor formation during development. Eur J Neurosci 2015; 42:2234-49. [PMID: 26108333 DOI: 10.1111/ejn.13002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 06/05/2015] [Accepted: 06/18/2015] [Indexed: 12/11/2022]
Abstract
Proper dendrite morphology is crucial for normal nervous system functioning. While a number of genes have been implicated in dendrite morphogenesis in both invertebrates and mammals, it remains unclear how developing dendrites respond to changes in gene dosage and what type of patterns their responses may follow. To understand this, I review here evidence from the recent literature, focusing on the genetic studies performed in the Drosophila larval dendritic arborization class IV neuron, an excellent cell type to understand dendrite morphogenesis. I summarize how class IV arbors change morphology in response to developmental fluctuations in the expression levels of 47 genes, studied by means of genetic manipulations such as loss-of-function and gain-of-function, and for which sufficient information is available. I find that arbors can respond to changing gene dosage in several distinct ways, each characterized by a singular dose-response curve. Interestingly, in 72% of cases arbors are sensitive, and thus adjust their morphology, in response to both decreases and increases in the expression of a given gene, indicating that dendrite morphogenesis is a process particularly sensitive to gene dosage. By summarizing the parallels between Drosophila and mammals, I show that many Drosophila dendrite morphogenesis genes have orthologs in mammals, and that some of these are associated with mammalian dendrite outgrowth and human neurodevelopmental disorders. One notable disease-related molecule is kinase Dyrk1A, thought to be a causative factor in Down syndrome. Both increases and decreases in Dyrk1A gene dosage lead to impaired dendrite morphogenesis, which may contribute to Down syndrome pathoetiology.
Collapse
Affiliation(s)
- Tijana Copf
- Institute of Molecular Biology and Biotechnology, Nikolaou Plastira 100, PO Box 1385, Heraklion, GR-70013, Crete, Greece
| |
Collapse
|
32
|
Srivastava A. A novel link between FMR gene and the JNK pathway provides clues to possible role in malignant pleural mesothelioma. FEBS Open Bio 2015; 5:705-11. [PMID: 26425438 PMCID: PMC4564369 DOI: 10.1016/j.fob.2015.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 07/23/2015] [Accepted: 07/27/2015] [Indexed: 12/18/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is an aggressive form of thoracic cancer with poor prognosis. While some studies have identified the molecular alterations associated with MPM, little is known about their role in MPM. For example, fragile X mental retardation (FMR) gene is up-regulated in MPM but its role in MPM is unknown. Here, utilizing Drosophila genetics, I investigate the possible role FMR may be playing in MPM. I provide evidence which suggests that FMR may contribute to tumorigenesis by up-regulating a matrix metalloprotease (MMP) and by degrading the basement membrane (BM), both important for tumor metastasis. I also demonstrate a novel link between FMR and the JNK pathway and suggest that the effects of FMR in MPM could in part be mediated by up-regulation of the JNK pathway.
Collapse
Affiliation(s)
- Ajay Srivastava
- Department of Biology and Biotechnology Center, Western Kentucky University, 1906 College Heights Boulevard, TCCW 351, Bowling Green, KY 42101, USA
| |
Collapse
|
33
|
Hagel KR, Beriont J, Tessier CR. Drosophila Cbp53E Regulates Axon Growth at the Neuromuscular Junction. PLoS One 2015; 10:e0132636. [PMID: 26167908 PMCID: PMC4500412 DOI: 10.1371/journal.pone.0132636] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 06/16/2015] [Indexed: 11/19/2022] Open
Abstract
Calcium is a primary second messenger in all cells that functions in processes ranging from cellular proliferation to synaptic transmission. Proper regulation of calcium is achieved through numerous mechanisms involving channels, sensors, and buffers notably containing one or more EF-hand calcium binding domains. The Drosophila genome encodes only a single 6 EF-hand domain containing protein, Cbp53E, which is likely the prototypic member of a small family of related mammalian proteins that act as calcium buffers and calcium sensors. Like the mammalian homologs, Cbp53E is broadly though discretely expressed throughout the nervous system. Despite the importance of calcium in neuronal function and growth, nothing is known about Cbp53E's function in neuronal development. To address this deficiency, we generated novel null alleles of Drosophila Cbp53E and examined neuronal development at the well-characterized larval neuromuscular junction. Loss of Cbp53E resulted in increases in axonal branching at both peptidergic and glutamatergic neuronal terminals. This overgrowth could be completely rescued by expression of exogenous Cbp53E. Overexpression of Cbp53E, however, only affected the growth of peptidergic neuronal processes. These findings indicate that Cbp53E plays a significant role in neuronal growth and suggest that it may function in both local synaptic and global cellular mechanisms.
Collapse
Affiliation(s)
- Kimberly R. Hagel
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Jane Beriont
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Charles R. Tessier
- Department of Medical and Molecular Genetics, Indiana University School of Medicine-South Bend, South Bend, Indiana, United States of America
- * E-mail:
| |
Collapse
|
34
|
Bonaccorso CM, Spatuzza M, Di Marco B, Gloria A, Barrancotto G, Cupo A, Musumeci SA, D'Antoni S, Bardoni B, Catania MV. Fragile X mental retardation protein (FMRP) interacting proteins exhibit different expression patterns during development. Int J Dev Neurosci 2015; 42:15-23. [PMID: 25681562 DOI: 10.1016/j.ijdevneu.2015.02.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 01/30/2015] [Accepted: 02/10/2015] [Indexed: 11/26/2022] Open
Abstract
Fragile X syndrome is caused by the lack of expression of fragile X mental retardation protein (FMRP), an RNA-binding protein involved in mRNA transport and translation. FMRP is a component of mRNA ribonucleoprotein complexes and it can interact with a range of proteins either directly or indirectly, as demonstrated by two-hybrid selection and co-immunoprecipitation, respectively. Most of FMRP-interacting proteins are RNA-binding proteins such as FXR1P, FXR2P and 82-FIP. Interestingly, FMRP can also interact directly with the cytoplasmic proteins CYFIP1 and CYFIP2, which do not bind RNA and link FMRP to the RhoGTPase pathway. The interaction with these different proteins may modulate the functions of FMRP by influencing its affinity to RNA and by affecting the FMRP ability of cytoskeleton remodeling through Rho/Rac GTPases. To better define the relationship of FMRP with its interacting proteins during brain development, we have analyzed the expression pattern of FMRP and its interacting proteins in the cortex, striatum, hippocampus and cerebellum at different ages in wild type (WT) mice. FMRP and FXR2P were strongly expressed during the first week and gradually decreased thereafter, more rapidly in the cerebellum than in the cortex. FXR1P was also expressed early and showed a reduction at later stages of development with a similar developmental pattern in these two regions. CYFIP1 was expressed at all ages and peaked in the third post-natal week. In contrast, CYFIP2 and 82-FIP (only in forebrain regions) were moderately expressed at P3 and gradually increased after P7. In general, the expression pattern of each protein was similar in the regions examined, except for 82-FIP, which exhibited a strong expression at P3 and low levels at later developmental stages in the cerebellum. Our data indicate that FMRP and its interacting proteins have distinct developmental patterns of expression and suggest that FMRP may be preferentially associated to certain proteins in early and late developmental periods. In particular, the RNA-binding and cytoskeleton remodeling functions of FMRP may be differently modulated during development.
Collapse
Affiliation(s)
| | - M Spatuzza
- Institute of Neurological Sciences, CNR, Catania, Italy
| | - B Di Marco
- Institute of Neurological Sciences, CNR, Catania, Italy; International PhD Program in Neuropharmacology, Department of Clinical and Molecular Biomedicine, University of Catania, Italy
| | - A Gloria
- IRCCS Oasi Maria SS, Troina, EN, Italy
| | | | - A Cupo
- CNRS UMR 7275, Institute of Molecular and Cellular Pharmacology, Valbonne Sophia-Antipolis, France; University of Nice Sophia-Antipolis, Nice, France
| | | | - S D'Antoni
- Institute of Neurological Sciences, CNR, Catania, Italy
| | - B Bardoni
- CNRS UMR 7275, Institute of Molecular and Cellular Pharmacology, Valbonne Sophia-Antipolis, France; University of Nice Sophia-Antipolis, Nice, France; CNRS LIA "NEOGENEX", Valbonne Sophia-Antipolis, France
| | - M V Catania
- IRCCS Oasi Maria SS, Troina, EN, Italy; Institute of Neurological Sciences, CNR, Catania, Italy.
| |
Collapse
|
35
|
Santos AR, Kanellopoulos AK, Bagni C. Learning and behavioral deficits associated with the absence of the fragile X mental retardation protein: what a fly and mouse model can teach us. ACTA ACUST UNITED AC 2014; 21:543-55. [PMID: 25227249 PMCID: PMC4175497 DOI: 10.1101/lm.035956.114] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The Fragile X syndrome (FXS) is the most frequent form of inherited mental disability and is considered a monogenic cause of autism spectrum disorder. FXS is caused by a triplet expansion that inhibits the expression of the FMR1 gene. The gene product, the Fragile X Mental Retardation Protein (FMRP), regulates mRNA metabolism in brain and nonneuronal cells. During brain development, FMRP controls the expression of key molecules involved in receptor signaling, cytoskeleton remodeling, protein synthesis and, ultimately, spine morphology. Symptoms associated with FXS include neurodevelopmental delay, cognitive impairment, anxiety, hyperactivity, and autistic-like behavior. Twenty years ago the first Fmr1 KO mouse to study FXS was generated, and several years later other key models including the mutant Drosophila melanogaster, dFmr1, have further helped the understanding of the cellular and molecular causes behind this complex syndrome. Here, we review to which extent these biological models are affected by the absence of FMRP, pointing out the similarities with the observed human dysfunction. Additionally, we discuss several potential treatments under study in animal models that are able to partially revert some of the FXS abnormalities.
Collapse
Affiliation(s)
- Ana Rita Santos
- VIB Center for the Biology of Disease, 3000 Leuven, Belgium Center for Human Genetics, KU Leuven, 3000 Leuven, Belgium Leuven Institute for Neurodegenerative Diseases (LIND), KU Leuven, 3000 Leuven, Belgium
| | - Alexandros K Kanellopoulos
- VIB Center for the Biology of Disease, 3000 Leuven, Belgium Center for Human Genetics, KU Leuven, 3000 Leuven, Belgium Leuven Institute for Neurodegenerative Diseases (LIND), KU Leuven, 3000 Leuven, Belgium
| | - Claudia Bagni
- VIB Center for the Biology of Disease, 3000 Leuven, Belgium Center for Human Genetics, KU Leuven, 3000 Leuven, Belgium Leuven Institute for Neurodegenerative Diseases (LIND), KU Leuven, 3000 Leuven, Belgium Department of Biomedicine and Prevention, University of Rome "Tor Vergata" 00133, Rome, Italy
| |
Collapse
|
36
|
Fragile X mental retardation protein regulates translation by binding directly to the ribosome. Mol Cell 2014; 54:407-417. [PMID: 24746697 DOI: 10.1016/j.molcel.2014.03.023] [Citation(s) in RCA: 177] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 02/18/2014] [Accepted: 03/10/2014] [Indexed: 11/23/2022]
Abstract
Fragile X syndrome (FXS) is the most common form of inherited mental retardation, and it is caused by loss of function of the fragile X mental retardation protein (FMRP). FMRP is an RNA-binding protein that is involved in the translational regulation of several neuronal mRNAs. However, the precise mechanism of translational inhibition by FMRP is unknown. Here, we show that FMRP inhibits translation by binding directly to the L5 protein on the 80S ribosome. Furthermore, cryoelectron microscopic reconstruction of the 80S ribosome⋅FMRP complex shows that FMRP binds within the intersubunit space of the ribosome such that it would preclude the binding of tRNA and translation elongation factors on the ribosome. These findings suggest that FMRP inhibits translation by blocking the essential components of the translational machinery from binding to the ribosome.
Collapse
|
37
|
Fragile X syndrome: a preclinical review on metabotropic glutamate receptor 5 (mGluR5) antagonists and drug development. Psychopharmacology (Berl) 2014; 231:1217-26. [PMID: 24232444 DOI: 10.1007/s00213-013-3330-3] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 10/14/2013] [Indexed: 10/26/2022]
Abstract
RATIONALE Fragile X syndrome (FXS) is considered the leading inherited cause of intellectual disability and autism. In FXS, the fragile X mental retardation 1 (FMR1) gene is silenced and the fragile X mental retardation protein (FMRP) is not expressed, resulting in the characteristic features of the syndrome. Despite recent advances in understanding the pathophysiology of FXS, there is still no cure for this condition; current treatment is symptomatic. Preclinical research is essential in the development of potential therapeutic agents. OBJECTIVES This review provides an overview of the preclinical evidence supporting metabotropic glutamate receptor 5 (mGluR5) antagonists as therapeutic agents for FXS. RESULTS According to the mGluR theory of FXS, the absence of FMRP leads to enhanced glutamatergic signaling via mGluR5, which leads to increased protein synthesis and defects in synaptic plasticity including enhanced long-term depression. As such, efforts to develop agents that target the underlying pathophysiology of FXS have focused on mGluR5 modulation. Animal models, particularly the Fmr1 knockout mouse model, have become invaluable in exploring therapeutic approaches on an electrophysiological, behavioral, biochemical, and neuroanatomical level. Two direct approaches are currently being investigated for FXS treatment: reactivating the FMR1 gene and compensating for the lack of FMRP. The latter approach has yielded promising results, with mGluR5 antagonists showing efficacy in clinical trials. CONCLUSIONS Targeting mGluR5 is a valid approach for the development of therapeutic agents that target the underlying pathophysiology of FXS. Several compounds are currently in development, with encouraging results.
Collapse
|
38
|
Doll CA, Broadie K. Impaired activity-dependent neural circuit assembly and refinement in autism spectrum disorder genetic models. Front Cell Neurosci 2014; 8:30. [PMID: 24570656 PMCID: PMC3916725 DOI: 10.3389/fncel.2014.00030] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 01/21/2014] [Indexed: 01/23/2023] Open
Abstract
Early-use activity during circuit-specific critical periods refines brain circuitry by the coupled processes of eliminating inappropriate synapses and strengthening maintained synapses. We theorize these activity-dependent (A-D) developmental processes are specifically impaired in autism spectrum disorders (ASDs). ASD genetic models in both mouse and Drosophila have pioneered our insights into normal A-D neural circuit assembly and consolidation, and how these developmental mechanisms go awry in specific genetic conditions. The monogenic fragile X syndrome (FXS), a common cause of heritable ASD and intellectual disability, has been particularly well linked to defects in A-D critical period processes. The fragile X mental retardation protein (FMRP) is positively activity-regulated in expression and function, in turn regulates excitability and activity in a negative feedback loop, and appears to be required for the A-D remodeling of synaptic connectivity during early-use critical periods. The Drosophila FXS model has been shown to functionally conserve the roles of human FMRP in synaptogenesis, and has been centrally important in generating our current mechanistic understanding of the FXS disease state. Recent advances in Drosophila optogenetics, transgenic calcium reporters, highly-targeted transgenic drivers for individually-identified neurons, and a vastly improved connectome of the brain are now being combined to provide unparalleled opportunities to both manipulate and monitor A-D processes during critical period brain development in defined neural circuits. The field is now poised to exploit this new Drosophila transgenic toolbox for the systematic dissection of A-D mechanisms in normal versus ASD brain development, particularly utilizing the well-established Drosophila FXS disease model.
Collapse
Affiliation(s)
- Caleb A Doll
- Department of Biological Sciences, Vanderbilt University Nashville, TN, USA
| | - Kendal Broadie
- Department of Biological Sciences, Vanderbilt University Nashville, TN, USA ; Kennedy Center for Research on Human Development, Vanderbilt University Nashville, TN, USA
| |
Collapse
|
39
|
Gatto CL, Pereira D, Broadie K. GABAergic circuit dysfunction in the Drosophila Fragile X syndrome model. Neurobiol Dis 2014; 65:142-59. [PMID: 24423648 DOI: 10.1016/j.nbd.2014.01.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 11/26/2013] [Accepted: 01/07/2014] [Indexed: 10/25/2022] Open
Abstract
Fragile X syndrome (FXS), caused by loss of FMR1 gene function, is the most common heritable cause of intellectual disability and autism spectrum disorders. The FMR1 protein (FMRP) translational regulator mediates activity-dependent control of synapses. In addition to the metabotropic glutamate receptor (mGluR) hyperexcitation FXS theory, the GABA theory postulates that hypoinhibition is causative for disease state symptoms. Here, we use the Drosophila FXS model to assay central brain GABAergic circuitry, especially within the Mushroom Body (MB) learning center. All 3 GABAA receptor (GABAAR) subunits are reportedly downregulated in dfmr1 null brains. We demonstrate parallel downregulation of glutamic acid decarboxylase (GAD), the rate-limiting GABA synthesis enzyme, although GABAergic cell numbers appear unaffected. Mosaic analysis with a repressible cell marker (MARCM) single-cell clonal studies show that dfmr1 null GABAergic neurons innervating the MB calyx display altered architectural development, with early underdevelopment followed by later overelaboration. In addition, a new class of extra-calyx terminating GABAergic neurons is shown to include MB intrinsic α/β Kenyon Cells (KCs), revealing a novel level of MB inhibitory regulation. Functionally, dfmr1 null GABAergic neurons exhibit elevated calcium signaling and altered kinetics in response to acute depolarization. To test the role of these GABAergic changes, we attempted to pharmacologically restore GABAergic signaling and assay effects on the compromised MB-dependent olfactory learning in dfmr1 mutants, but found no improvement. Our results show that GABAergic circuit structure and function are impaired in the FXS disease state, but that correction of hypoinhibition alone is not sufficient to rescue a behavioral learning impairment.
Collapse
Affiliation(s)
- Cheryl L Gatto
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA; Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37203, USA
| | - Daniel Pereira
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA; Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37203, USA
| | - Kendal Broadie
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA; Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37203, USA.
| |
Collapse
|
40
|
Bagni C, Oostra BA. Fragile X syndrome: From protein function to therapy. Am J Med Genet A 2013; 161A:2809-21. [PMID: 24115651 DOI: 10.1002/ajmg.a.36241] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 08/28/2013] [Indexed: 12/23/2022]
Abstract
Fragile X syndrome (FXS) is the leading monogenic cause of intellectual disability and autism. The FMR1 gene contains a CGG repeat present in the 5'-untranslated region which can be unstable upon transmission to the next generation. The repeat is up to 55 CGGs long in the normal population. In patients with fragile X syndrome (FXS), a repeat length exceeding 200 CGGs generally leads to methylation of the repeat and the promoter region, which is accompanied by silencing of the FMR1 gene. The disease is a result of lack of expression of the fragile X mental retardation protein leading to severe symptoms, including intellectual disability, hyperactivity, and autistic-like behavior. The FMR1 protein (FMRP) has a number of functions. The translational dysregulation of a subset of mRNAs targeted by FMRP is probably the major contribution to FXS. FMRP is also involved in mRNA transport to synapses where protein synthesis occurs. For some FMRP-bound mRNAs, FMRP is a direct modulator of mRNA stability either by sustaining or preventing mRNA decay. Increased knowledge about the role of FMRP has led to the identification of potential treatments for fragile X syndrome that were often tested first in the different animal models. This review gives an overview about the present knowledge of the function of FMRP and the therapeutic strategies in mouse and man.
Collapse
Affiliation(s)
- Claudia Bagni
- VIB Center for the Biology of Disease, Catholic University of Leuven, Leuven, Belgium; Department of Biomedicine and Prevention, University of Rome, Tor Vergata, Italy
| | | |
Collapse
|
41
|
Friedman SH, Dani N, Rushton E, Broadie K. Fragile X mental retardation protein regulates trans-synaptic signaling in Drosophila. Dis Model Mech 2013; 6:1400-13. [PMID: 24046358 PMCID: PMC3820263 DOI: 10.1242/dmm.012229] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Fragile X syndrome (FXS), the most common inherited determinant of intellectual disability and autism spectrum disorders, is caused by loss of the fragile X mental retardation 1 (FMR1) gene product (FMRP), an mRNA-binding translational repressor. A number of conserved FMRP targets have been identified in the well-characterized Drosophila FXS disease model, but FMRP is highly pleiotropic in function and the full spectrum of FMRP targets has yet to be revealed. In this study, screens for upregulated neural proteins in Drosophila fmr1 (dfmr1) null mutants reveal strong elevation of two synaptic heparan sulfate proteoglycans (HSPGs): GPI-anchored glypican Dally-like protein (Dlp) and transmembrane Syndecan (Sdc). Our recent work has shown that Dlp and Sdc act as co-receptors regulating extracellular ligands upstream of intracellular signal transduction in multiple trans-synaptic pathways that drive synaptogenesis. Consistently, dfmr1 null synapses exhibit altered WNT signaling, with changes in both Wingless (Wg) ligand abundance and downstream Frizzled-2 (Fz2) receptor C-terminal nuclear import. Similarly, a parallel anterograde signaling ligand, Jelly belly (Jeb), and downstream ERK phosphorylation (dpERK) are depressed at dfmr1 null synapses. In contrast, the retrograde BMP ligand Glass bottom boat (Gbb) and downstream signaling via phosphorylation of the transcription factor MAD (pMAD) seem not to be affected. To determine whether HSPG upregulation is causative for synaptogenic defects, HSPGs were genetically reduced to control levels in the dfmr1 null background. HSPG correction restored both (1) Wg and Jeb trans-synaptic signaling, and (2) synaptic architecture and transmission strength back to wild-type levels. Taken together, these data suggest that FMRP negatively regulates HSPG co-receptors controlling trans-synaptic signaling during synaptogenesis, and that loss of this regulation causes synaptic structure and function defects characterizing the FXS disease state.
Collapse
Affiliation(s)
- Samuel H Friedman
- Department of Biological Sciences, Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37212, USA
| | | | | | | |
Collapse
|
42
|
Nahm M, Lee MJ, Parkinson W, Lee M, Kim H, Kim YJ, Kim S, Cho YS, Min BM, Bae YC, Broadie K, Lee S. Spartin regulates synaptic growth and neuronal survival by inhibiting BMP-mediated microtubule stabilization. Neuron 2013; 77:680-95. [PMID: 23439121 DOI: 10.1016/j.neuron.2012.12.015] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2012] [Indexed: 01/06/2023]
Abstract
Troyer syndrome is a hereditary spastic paraplegia caused by human spartin (SPG20) gene mutations. We have generated a Drosophila disease model showing that Spartin functions presynaptically with endocytic adaptor Eps15 to regulate synaptic growth and function. Spartin inhibits bone morphogenetic protein (BMP) signaling by promoting endocytic degradation of BMP receptor wishful thinking (Wit). Drosophila fragile X mental retardation protein (dFMRP) and Futsch/MAP1B are downstream effectors of Spartin and BMP signaling in regulating microtubule stability and synaptic growth. Loss of Spartin or elevation of BMP signaling induces age-dependent progressive defects resembling hereditary spastic paraplegias, including motor dysfunction and brain neurodegeneration. Null spartin phenotypes are prevented by administration of the microtubule-destabilizing drug vinblastine. Together, these results demonstrate that Spartin regulates both synaptic development and neuronal survival by controlling microtubule stability via the BMP-dFMRP-Futsch pathway, suggesting that impaired regulation of microtubule stability is a core pathogenic component in Troyer syndrome.
Collapse
Affiliation(s)
- Minyeop Nahm
- Department of Cell and Developmental Biology, Dental Research Institute, Seoul National University, Seoul 110-749, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Altmäe S, Martinez-Conejero JA, Esteban FJ, Ruiz-Alonso M, Stavreus-Evers A, Horcajadas JA, Salumets A. MicroRNAs miR-30b, miR-30d, and miR-494 regulate human endometrial receptivity. Reprod Sci 2013; 20:308-17. [PMID: 22902743 PMCID: PMC4077381 DOI: 10.1177/1933719112453507] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
MicroRNAs (miRNAs) act as important epigenetic posttranscriptional regulators of gene expression. We aimed to gain more understanding of the complex gene expression regulation of endometrial receptivity by analyzing miRNA signatures of fertile human endometria. We set up to analyze miRNA signatures of receptive (LH + 7, n = 4) versus prereceptive (LH + 2, n = 5) endometrium from healthy fertile women. We found hsa-miR-30b and hsa-miR-30d to be significantly upregulated, and hsa-miR-494 and hsa-miR-923 to be downregulated in receptive endometrium. Three algorithms (miRanda, PicTar, and TargetScan) were used for target gene prediction. Functional analyses of the targets using Ingenuity Pathways Analysis and The Database for Annotation, Visualization and Integrated Discovery indicated roles in transcription, cell proliferation and apoptosis, and significant involvement in several relevant pathways, such as axon guidance, Wnt/β-catenin, ERK/MAPK, transforming growth factor β (TGF-β), p53 and leukocyte extravasation. Comparison of predicted miRNA target genes and our previous messenger RNA microarray data resulted in a list of 12 genes, including CAST, CFTR, FGFR2, and LIF that could serve as a panel of genes important for endometrial receptivity. In conclusion, we suggest that a subset of miRNAs and their target genes may play important roles in endometrial receptivity.
Collapse
Affiliation(s)
- Signe Altmäe
- Competence Centre on Reproductive Medicine and Biology, Tartu, Estonia.
| | | | | | | | | | | | | |
Collapse
|
44
|
Matrix metalloproteinases and minocycline: therapeutic avenues for fragile X syndrome. Neural Plast 2012; 2012:124548. [PMID: 22685676 PMCID: PMC3364018 DOI: 10.1155/2012/124548] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 02/24/2012] [Indexed: 12/22/2022] Open
Abstract
Fragile X syndrome (FXS) is the most common known genetic form of intellectual disability and autism spectrum disorders. FXS patients suffer a broad range of other neurological symptoms, including hyperactivity, disrupted circadian activity cycles, obsessive-compulsive behavior, and childhood seizures. The high incidence and devastating effects of this disease state make finding effective pharmacological treatments imperative. Recently, reports in both mouse and Drosophila FXS disease models have indicated that the tetracycline derivative minocycline may hold great therapeutic promise for FXS patients. Both models strongly suggest that minocycline acts on the FXS disease state via inhibition of matrix metalloproteinases (MMPs), a class of zinc-dependent extracellular proteases important in tissue remodeling and cell-cell signaling. Recent FXS clinical trials indicate that minocycline may be effective in treating human patients. In this paper, we summarize the recent studies in Drosophila and mouse FXS disease models and human FXS patients, which indicate that minocycline may be an effective FXS therapeutic treatment, and discuss the data forming the basis for the proposed minocycline mechanism of action as an MMP inhibitor.
Collapse
|
45
|
Huot ME, Bisson N, Moss T, Khandjian EW. Manipulating the Fragile X Mental Retardation Proteins in the Frog. Results Probl Cell Differ 2012; 54:165-79. [DOI: 10.1007/978-3-642-21649-7_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
|
46
|
Molecular and genetic analysis of the Drosophila model of fragile X syndrome. Results Probl Cell Differ 2012; 54:119-56. [PMID: 22009350 DOI: 10.1007/978-3-642-21649-7_7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The Drosophila genome contains most genes known to be involved in heritable disease. The extraordinary genetic malleability of Drosophila, coupled to sophisticated imaging, electrophysiology, and behavioral paradigms, has paved the way for insightful mechanistic studies on the causes of developmental and neurological disease as well as many possible interventions. Here, we focus on one of the most advanced examples of Drosophila genetic disease modeling, the Drosophila model of Fragile X Syndrome, which for the past decade has provided key advances into the molecular, cellular, and behavioral defects underlying this devastating disorder. We discuss the multitude of RNAs and proteins that interact with the disease-causing FMR1 gene product, whose function is conserved from Drosophila to human. In turn, we consider FMR1 mechanistic relationships in non-neuronal tissues (germ cells and embryos), peripheral motor and sensory circuits, and central brain circuits involved in circadian clock activity and learning/memory.
Collapse
|
47
|
Coffee RL, Williamson AJ, Adkins CM, Gray MC, Page TL, Broadie K. In vivo neuronal function of the fragile X mental retardation protein is regulated by phosphorylation. Hum Mol Genet 2011; 21:900-15. [PMID: 22080836 DOI: 10.1093/hmg/ddr527] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Fragile X syndrome (FXS), caused by loss of the Fragile X Mental Retardation 1 (FMR1) gene product (FMRP), is the most common heritable cause of intellectual disability and autism spectrum disorders. It has been long hypothesized that the phosphorylation of serine 500 (S500) in human FMRP controls its function as an RNA-binding translational repressor. To test this hypothesis in vivo, we employed neuronally targeted expression of three human FMR1 transgenes, including wild-type (hFMR1), dephosphomimetic (S500A-hFMR1) and phosphomimetic (S500D-hFMR1), in the Drosophila FXS disease model to investigate phosphorylation requirements. At the molecular level, dfmr1 null mutants exhibit elevated brain protein levels due to loss of translational repressor activity. This defect is rescued for an individual target protein and across the population of brain proteins by the phosphomimetic, whereas the dephosphomimetic phenocopies the null condition. At the cellular level, dfmr1 null synapse architecture exhibits increased area, branching and bouton number. The phosphomimetic fully rescues these synaptogenesis defects, whereas the dephosphomimetic provides no rescue. The presence of Futsch-positive (microtubule-associated protein 1B) supernumerary microtubule loops is elevated in dfmr1 null synapses. The human phosphomimetic restores normal Futsch loops, whereas the dephosphomimetic provides no activity. At the behavioral level, dfmr1 null mutants exhibit strongly impaired olfactory associative learning. The human phosphomimetic targeted only to the brain-learning center restores normal learning ability, whereas the dephosphomimetic provides absolutely no rescue. We conclude that human FMRP S500 phosphorylation is necessary for its in vivo function as a neuronal translational repressor and regulator of synaptic architecture, and for the manifestation of FMRP-dependent learning behavior.
Collapse
Affiliation(s)
- R Lane Coffee
- Department of Biological Sciences, Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37232, USA
| | | | | | | | | | | |
Collapse
|
48
|
Winograd C, Ceman S. Fragile X family members have important and non-overlapping functions. Biomol Concepts 2011; 2:343-52. [DOI: 10.1515/bmc.2011.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Accepted: 06/29/2011] [Indexed: 01/15/2023] Open
Abstract
AbstractThe fragile X family of genes encodes a small family of RNA binding proteins including FMRP, FXR1P and FXR2P that were identified in the 1990s. All three members are encoded by 17 exons and show alternative splicing at the 3′ ends of their respective transcripts. They share significant homology in the protein functional domains, including the Tudor domains, the nuclear localization sequence, a protein-protein interaction domain, the KH1 and KH2 domains and the nuclear export sequence. Fragile X family members are found throughout the animal kingdom, although all three members are not consistently present in species outside of mammals: only two family members are present in the avian species examined, Gallus gallus and Taeniopygia guttata, and in the frog Xenopus tropicalis. Although present in many tissues, the functions of the fragile X family members differ, which are particularly evident in knockout studies performed in animals. The fragile X family members play roles in normal neuronal function and in the case of FXR1, in muscle function.
Collapse
Affiliation(s)
- Claudia Winograd
- 2Neuroscience Program and College of Medicine, University of Illinois, 601 S. Goodwin Avenue, Urbana–Champaign, IL 61801, USA
| | | |
Collapse
|
49
|
Blackwell E, Ceman S. A new regulatory function of the region proximal to the RGG box in the fragile X mental retardation protein. J Cell Sci 2011; 124:3060-5. [PMID: 21868366 DOI: 10.1242/jcs.086751] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fragile X mental retardation protein (FMRP) is required for normal cognition. FMRP has two autosomal paralogs, which although similar to FMRP, cannot compensate for the loss of FMRP expression in brain. The arginine- and glycine-rich region of FMRP (the RGG box) is unique; it is the high-affinity RNA-binding motif in FMRP and is encoded by exon 15. Alternative splicing occurs in the 5' end of exon 15, which is predicted to affect the structure of the distally encoded RGG box. Here, we provide evidence that isoform 3, which removes 25 amino acids from the 5' end of exon 15, has an altered conformation that reduces binding of a specific antibody and renders the RGG box unable to efficiently associate with polyribosomes. Isoform 3 is also compromised in its ability to form granules and to associate with a key messenger ribonucleoprotein Yb1 (also known as p50, NSEP1 and YBX1). Significantly, these functions are similarly compromised when the RGG box is absent from FMRP, suggesting an important regulatory role of the N-terminal region encoded by exon 15.
Collapse
Affiliation(s)
- Ernest Blackwell
- Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, IL 61801, USA
| | | |
Collapse
|
50
|
Guo W, Zhang L, Christopher DM, Teng ZQ, Fausett SR, Liu C, George OL, Klingensmith J, Jin P, Zhao X. RNA-binding protein FXR2 regulates adult hippocampal neurogenesis by reducing Noggin expression. Neuron 2011; 70:924-38. [PMID: 21658585 DOI: 10.1016/j.neuron.2011.03.027] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2011] [Indexed: 10/18/2022]
Abstract
In adult mammalian brains, neurogenesis persists in the subventricular zone of the lateral ventricles (SVZ) and the dentate gyrus (DG) of the hippocampus. Although evidence suggest that adult neurogenesis in these two regions is subjected to differential regulation, the underlying mechanism is unclear. Here, we show that the RNA-binding protein FXR2 specifically regulates DG neurogenesis by reducing the stability of Noggin mRNA. FXR2 deficiency leads to increased Noggin expression and subsequently reduced BMP signaling, which results in increased proliferation and altered fate specification of neural stem/progenitor cells in DG. In contrast, Noggin is not regulated by FXR2 in the SVZ, because Noggin expression is restricted to the ependymal cells of the lateral ventricles, where FXR2 is not expressed. Differential regulation of SVZ and DG stem cells by FXR2 may be a key component of the mechanism that governs the different neurogenic processes in these two adult germinal zones.
Collapse
Affiliation(s)
- Weixiang Guo
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|