1
|
Balekoglu N, Michaud JF, Sauvé R, Ayinde KS, Lin S, Liu Y, Kramer DA, Zhang K, Steffen A, Stradal T, Angers S, Chen B, Yam PT, Charron F. The WAVE regulatory complex interacts with Boc and is required for Shh-mediated axon guidance. iScience 2024; 27:111333. [PMID: 39640588 PMCID: PMC11617374 DOI: 10.1016/j.isci.2024.111333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/31/2024] [Accepted: 11/04/2024] [Indexed: 12/07/2024] Open
Abstract
During development, Shh attracts axons of spinal cord commissural neurons to the floor plate. Shh-mediated attraction of commissural axons requires the receptor Boc. How Boc regulates cytoskeletal changes in growth cones in response to Shh is not fully understood. To identify effectors of Boc in Shh-mediated axon guidance, we used BioID to screen for proteins in proximity to Boc. Top hits included members of the WAVE regulatory complex (WRC), which acts downstream of Rac1 to promote actin cytoskeleton assembly. Therefore, we hypothesized that the WRC is important for Shh-mediated growth cone turning. Using biochemical and cellular assays, we found that Boc directly interacts with the WRC and that this interaction can occur in live cells. Moreover, we found that knockdown of Nckap1 and Cyfip1/2, two subunits of the WRC, in commissural neurons, impairs axon attraction toward a Shh gradient. Our results demonstrate that the WRC is required for Shh-mediated axon attraction.
Collapse
Affiliation(s)
- Nursen Balekoglu
- Montreal Clinical Research Institute (IRCM), 110 Pine Avenue West, Montreal, Quebec H2W 1R7, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC H3A 2B4, Canada
| | - Jean-Francois Michaud
- Montreal Clinical Research Institute (IRCM), 110 Pine Avenue West, Montreal, Quebec H2W 1R7, Canada
| | - Rachelle Sauvé
- Montreal Clinical Research Institute (IRCM), 110 Pine Avenue West, Montreal, Quebec H2W 1R7, Canada
- Molecular Biology Program, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Kehinde S. Ayinde
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, 2437 Pammel Drive, Ames, IA 50011, USA
| | - Sichun Lin
- Donnelly Centre for Cellular and Biomolecular Research, Toronto, ON M5S 3E1, Canada
| | - Yijun Liu
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, 2437 Pammel Drive, Ames, IA 50011, USA
| | - Daniel A. Kramer
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, 2437 Pammel Drive, Ames, IA 50011, USA
| | - Kaiyue Zhang
- Montreal Clinical Research Institute (IRCM), 110 Pine Avenue West, Montreal, Quebec H2W 1R7, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC H3A 2B4, Canada
| | - Anika Steffen
- Department of Cell Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Theresia Stradal
- Department of Cell Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Stephane Angers
- Donnelly Centre for Cellular and Biomolecular Research, Toronto, ON M5S 3E1, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Baoyu Chen
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, 2437 Pammel Drive, Ames, IA 50011, USA
| | - Patricia T. Yam
- Montreal Clinical Research Institute (IRCM), 110 Pine Avenue West, Montreal, Quebec H2W 1R7, Canada
| | - Frédéric Charron
- Montreal Clinical Research Institute (IRCM), 110 Pine Avenue West, Montreal, Quebec H2W 1R7, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC H3A 2B4, Canada
- Molecular Biology Program, University of Montreal, Montreal, QC H3T 1J4, Canada
- Department of Medicine, University of Montreal, Montreal QC H3T 1J4, Canada
- Department of Anatomy and Cell Biology, Division of Experimental Medicine, McGill University, Montreal QC H3A 0G4, Canada
| |
Collapse
|
2
|
Franks NE, Allen BL. Hedgehog-dependent and hedgehog-independent roles for growth arrest specific 1 in mammalian kidney morphogenesis. Development 2024; 151:dev203012. [PMID: 39629522 PMCID: PMC11795293 DOI: 10.1242/dev.203012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 11/15/2024] [Indexed: 12/19/2024]
Abstract
Growth arrest specific 1 (GAS1) is a key regulator of mammalian embryogenesis, best known for its role in hedgehog (HH) signaling, but with additional described roles in the FGF, RET, and NOTCH pathways. Previous work indicated a later role for GAS1 in kidney development through FGF pathway modulation. Here, we demonstrate that GAS1 is essential for both mesonephrogenesis and metanephrogenesis - most notably, Gas1 deletion in mice results in renal agenesis in a genetic background-dependent fashion. Mechanistically, GAS1 promotes mesonephrogenesis in a HH-dependent fashion, performing a unique co-receptor function, while promoting metanephrogenesis in a HH-independent fashion, acting as a putative secreted RET co-receptor. Our data indicate that Gas1 deletion leads to renal agenesis through a transient reduction in metanephric mesenchyme proliferation - a phenotype that can be rescued by exogenous RET pathway stimulation. Overall, this study indicates that GAS1 contributes to early kidney development through the integration of multiple different signaling pathways.
Collapse
Affiliation(s)
- Nicole E. Franks
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Benjamin L. Allen
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
3
|
Deng Z, Ran Q, Chang W, Li C, Li B, Huang S, Huang J, Zhang K, Li Y, Liu X, Liang Y, Guo Z, Huang S. Cdon is essential for organ left-right patterning by regulating dorsal forerunner cells clustering and Kupffer's vesicle morphogenesis. Front Cell Dev Biol 2024; 12:1429782. [PMID: 39239564 PMCID: PMC11374761 DOI: 10.3389/fcell.2024.1429782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/02/2024] [Indexed: 09/07/2024] Open
Abstract
Cdon and boc are members of the cell adhesion molecule subfamily III Ig/fibronectin. Although they have been reported to be involved in muscle and neural development at late developmental stage, their early roles in embryonic development remain unknown. Here, we discovered that in zebrafish, cdon, but not boc, is expressed in dorsal forerunner cells (DFCs) and the epithelium of Kupffer's vesicle (KV), suggesting a potential role for cdon in organ left-right (LR) patterning. Further data showed that liver and heart LR patterning were disrupted in cdon morphants and cdon mutants. Mechanistically, we found that loss of cdon function led to defect in DFCs clustering, reduced KV lumen, and defective cilia, resulting in randomized Nodal/spaw signaling and subsequent organ LR patterning defects. Additionally, predominant distribution of a cdon morpholino (MO) in DFCs caused defects in DFC clustering, KV morphogenesis, cilia number/length, Nodal/spaw signaling, and organ LR asymmetry, similar to those observed in cdon morphants and cdon -/- embryos, indicating a cell-autonomous role for cdon in regulating KV formation during LR patterning. In conclusion, our data demonstrate that during gastrulation and early somitogenesis, cdon is essential for proper DFC clustering, KV formation, and normal cilia, thereby playing a critical role in establishing organ LR asymmetry.
Collapse
Affiliation(s)
- Zhilin Deng
- Development and Regeneration Key Laboratory of Sichuan Province, Department of Anatomy and Histology and Embryology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China
- Department of Ultrasound, Luzhou People's Hospital, Luzhou, China
| | - Qin Ran
- Department of Cardiology, Chengdu Seventh People's Hospital, Chengdu, Sichuan, China
| | - Wenqi Chang
- Development and Regeneration Key Laboratory of Sichuan Province, Department of Anatomy and Histology and Embryology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China
| | - Chengni Li
- Development and Regeneration Key Laboratory of Sichuan Province, Department of Anatomy and Histology and Embryology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China
| | - Botong Li
- Development and Regeneration Key Laboratory of Sichuan Province, Department of Anatomy and Histology and Embryology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China
| | - Shuying Huang
- Development and Regeneration Key Laboratory of Sichuan Province, Department of Anatomy and Histology and Embryology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China
| | - Jingtong Huang
- Development and Regeneration Key Laboratory of Sichuan Province, Department of Anatomy and Histology and Embryology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China
| | - Ke Zhang
- Development and Regeneration Key Laboratory of Sichuan Province, Department of Anatomy and Histology and Embryology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China
| | - Yuanyuan Li
- Department of Neurology, The Second Affiliated Hospital of Chengdu Medical College, (China National Nuclear Corporation 416 Hospital), Chengdu, China
| | - Xingdong Liu
- Department of Neurology, The Second Affiliated Hospital of Chengdu Medical College, (China National Nuclear Corporation 416 Hospital), Chengdu, China
| | - Yundan Liang
- Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China
| | - Zhenhua Guo
- Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Sizhou Huang
- Development and Regeneration Key Laboratory of Sichuan Province, Department of Anatomy and Histology and Embryology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China
- Department of Neurology, The Second Affiliated Hospital of Chengdu Medical College, (China National Nuclear Corporation 416 Hospital), Chengdu, China
| |
Collapse
|
4
|
Cai E, Barba MG, Ge X. Hedgehog Signaling in Cortical Development. Cells 2023; 13:21. [PMID: 38201225 PMCID: PMC10778342 DOI: 10.3390/cells13010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/14/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
The Hedgehog (Hh) pathway plays a crucial role in embryonic development, acting both as a morphogenic signal that organizes tissue formation and a potent mitogenic signal driving cell proliferation. Dysregulated Hh signaling leads to various developmental defects in the brain. This article aims to review the roles of Hh signaling in the development of the neocortex in the mammalian brain, focusing on its regulation of neural progenitor proliferation and neuronal production. The review will summarize studies on genetic mouse models that have targeted different components of the Hh pathway, such as the ligand Shh, the receptor Ptch1, the GPCR-like transducer Smo, the intracellular transducer Sufu, and the three Gli transcription factors. As key insights into the Hh signaling transduction mechanism were obtained from mouse models displaying neural tube defects, this review will also cover some studies on Hh signaling in neural tube development. The results from these genetic mouse models suggest an intriguing hypothesis that elevated Hh signaling may play a role in the gyrification of the brain in certain species. Additionally, the distinctive production of GABAergic interneurons in the dorsal cortex in the human brain may also be linked to the extension of Hh signaling from the ventral to the dorsal brain region. Overall, these results suggest key roles of Hh signaling as both a morphogenic and mitogenic signal during the forebrain development and imply the potential involvement of Hh signaling in the evolutionary expansion of the neocortex.
Collapse
Affiliation(s)
| | | | - Xuecai Ge
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California Merced, Merced, CA 95340, USA
| |
Collapse
|
5
|
Lencer E, Rains A, Binne E, Prekeris R, Artinger KB. Mutations in cdon and boc affect trunk neural crest cell migration and slow-twitch muscle development in zebrafish. Development 2023; 150:dev201304. [PMID: 37390228 PMCID: PMC10357035 DOI: 10.1242/dev.201304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 06/22/2023] [Indexed: 07/02/2023]
Abstract
The transmembrane proteins cdon and boc are implicated in regulating hedgehog signaling during vertebrate development. Recent work showing roles for these genes in axon guidance and neural crest cell migration suggest that cdon and boc may play additional functions in regulating directed cell movements. We use newly generated and existing mutants to investigate a role for cdon and boc in zebrafish neural crest cell migration. We find that single mutant embryos exhibit normal neural crest phenotypes, but that neural crest migration is strikingly disrupted in double cdon;boc mutant embryos. We further show that this migration phenotype is associated with defects in the differentiation of slow-twitch muscle cells, and the loss of a Col1a1a-containing extracellular matrix, suggesting that neural crest defects may be a secondary consequence to defects in mesoderm development. Combined, our data add to a growing literature showing that cdon and boc act synergistically to promote hedgehog signaling during vertebrate development, and suggest that the zebrafish can be used to study the function of hedgehog receptor paralogs.
Collapse
Affiliation(s)
- Ezra Lencer
- Department of Cell and Developmental Biology, University of Colorado, Anschutz Medical Campus Aurora, CO 80045, USA
- Department of Craniofacial Biology, University of Colorado, Anschutz Medical Campus Aurora, CO 80045, USA
| | - Addison Rains
- Department of Craniofacial Biology, University of Colorado, Anschutz Medical Campus Aurora, CO 80045, USA
- Cell Biology, Stem Cells and Development Graduate Program, University of Colorado, Anschutz Medical Campus Aurora, CO 80045, USA
| | - Erin Binne
- Department of Craniofacial Biology, University of Colorado, Anschutz Medical Campus Aurora, CO 80045, USA
| | - Rytis Prekeris
- Department of Cell and Developmental Biology, University of Colorado, Anschutz Medical Campus Aurora, CO 80045, USA
| | - Kristin B. Artinger
- Department of Craniofacial Biology, University of Colorado, Anschutz Medical Campus Aurora, CO 80045, USA
- Department of Diagnostic and Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, MN 55455, USA
| |
Collapse
|
6
|
Echevarría-Andino ML, Franks NE, Schrader HE, Hong M, Krauss RS, Allen BL. CDON contributes to Hedgehog-dependent patterning and growth of the developing limb. Dev Biol 2023; 493:1-11. [PMID: 36265686 DOI: 10.1016/j.ydbio.2022.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 09/22/2022] [Accepted: 09/28/2022] [Indexed: 11/06/2022]
Abstract
Hedgehog (HH) signaling is a major driver of tissue patterning during embryonic development through the regulation of a multitude of cell behaviors including cell fate specification, proliferation, migration, and survival. HH ligands signal through the canonical receptor PTCH1 and three co-receptors, GAS1, CDON and BOC. While previous studies demonstrated an overlapping and collective requirement for these co-receptors in early HH-dependent processes, the early embryonic lethality of Gas1;Cdon;Boc mutants precluded an assessment of their collective contribution to later HH-dependent signaling events. Specifically, a collective role for these co-receptors during limb development has yet to be explored. Here, we investigate the combined contribution of these co-receptors to digit specification, limb patterning and long bone growth through limb-specific conditional deletion of Cdon in a Gas1;Boc null background. Combined deletion of Gas1, Cdon and Boc in the limb results in digit loss as well as defects in limb outgrowth and long bone patterning. Taken together, these data demonstrate that GAS1, CDON and BOC are collectively required for HH-dependent patterning and growth of the developing limb.
Collapse
Affiliation(s)
| | - Nicole E Franks
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Hannah E Schrader
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Mingi Hong
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Robert S Krauss
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Benjamin L Allen
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
7
|
Brain Organization and Human Diseases. Cells 2022; 11:cells11101642. [PMID: 35626679 PMCID: PMC9139716 DOI: 10.3390/cells11101642] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/09/2022] [Accepted: 05/12/2022] [Indexed: 02/06/2023] Open
Abstract
The cortex is a highly organized structure that develops from the caudal regions of the segmented neural tube. Its spatial organization sets the stage for future functional arealization. Here, we suggest using a developmental perspective to describe and understand the etiology of common cortical malformations and their manifestation in the human brain.
Collapse
|
8
|
Barratt KS, Drover KA, Thomas ZM, Arkell RM. Patterning of the antero-ventral mammalian brain: Lessons from holoprosencephaly comparative biology in man and mouse. WIREs Mech Dis 2022; 14:e1552. [PMID: 35137563 DOI: 10.1002/wsbm.1552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/30/2021] [Accepted: 12/21/2021] [Indexed: 12/13/2022]
Abstract
Adult form and function are dependent upon the activity of specialized signaling centers that act early in development at the embryonic midline. These centers instruct the surrounding cells to adopt a positional fate and to form the patterned structures of the phylotypic embryo. Abnormalities in these processes have devastating consequences for the individual, as exemplified by holoprosencephaly in which anterior midline development fails, leading to structural defects of the brain and/or face. In the 25 years since the first association between human holoprosencephaly and the sonic hedgehog gene, a combination of human and animal genetic studies have enhanced our understanding of the genetic and embryonic causation of this congenital defect. Comparative biology has extended the holoprosencephaly network via the inclusion of gene mutations from multiple signaling pathways known to be required for anterior midline formation. It has also clarified aspects of holoprosencephaly causation, showing that it arises when a deleterious variant is present within a permissive genome, and that environmental factors, as well as embryonic stochasticity, influence the phenotypic outcome of the variant. More than two decades of research can now be distilled into a framework of embryonic and genetic causation. This framework means we are poised to move beyond our current understanding of variants in signaling pathway molecules. The challenges now at the forefront of holoprosencephaly research include deciphering how the mutation of genes involved in basic cell processes can also cause holoprosencephaly, determining the important constituents of the holoprosencephaly permissive genome, and identifying environmental compounds that promote holoprosencephaly. This article is categorized under: Congenital Diseases > Stem Cells and Development Congenital Diseases > Genetics/Genomics/Epigenetics Congenital Diseases > Molecular and Cellular Physiology Congenital Diseases > Environmental Factors.
Collapse
Affiliation(s)
- Kristen S Barratt
- John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Kyle A Drover
- John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Zoe M Thomas
- John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Ruth M Arkell
- John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
9
|
Lo HF, Hong M, Krauss RS. Concepts in Multifactorial Etiology of Developmental Disorders: Gene-Gene and Gene-Environment Interactions in Holoprosencephaly. Front Cell Dev Biol 2022; 9:795194. [PMID: 35004690 PMCID: PMC8727999 DOI: 10.3389/fcell.2021.795194] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 11/29/2021] [Indexed: 12/17/2022] Open
Abstract
Many common developmental disorders are thought to arise from a complex set of genetic and environmental risk factors. These factors interact with each other to affect the strength and duration of key developmental signaling pathways, thereby increasing the possibility that they fail to achieve the thresholds required for normal embryonic patterning. One such disorder, holoprosencephaly (HPE), serves as a useful model system in understanding various forms of multifactorial etiology. Genomic analysis of HPE cases, epidemiology, and mechanistic studies of animal models have illuminated multiple potential ways that risk factors interact to produce adverse developmental outcomes. Among these are: 1) interactions between driver and modifier genes; 2) oligogenic inheritance, wherein each parent provides predisposing variants in one or multiple distinct loci; 3) interactions between genetic susceptibilities and environmental risk factors that may be insufficient on their own; and 4) interactions of multiple genetic variants with multiple non-genetic risk factors. These studies combine to provide concepts that illuminate HPE and are also applicable to additional disorders with complex etiology, including neural tube defects, congenital heart defects, and oro-facial clefting.
Collapse
Affiliation(s)
- Hsiao-Fan Lo
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Mingi Hong
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Robert S Krauss
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
10
|
Lo HF, Hong M, Szutorisz H, Hurd YL, Krauss RS. Δ9-Tetrahydrocannabinol inhibits Hedgehog-dependent patterning during development. Development 2021; 148:272342. [PMID: 34610637 DOI: 10.1242/dev.199585] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 08/23/2021] [Indexed: 12/20/2022]
Abstract
Many developmental disorders are thought to arise from an interaction between genetic and environmental risk factors. The Hedgehog (HH) signaling pathway regulates myriad developmental processes, and pathway inhibition is associated with birth defects, including holoprosencephaly (HPE). Cannabinoids are HH pathway inhibitors, but little is known of their effects on HH-dependent processes in mammalian embryos, and their mechanism of action is unclear. We report that the psychoactive cannabinoid Δ9-tetrahydrocannabinol (THC) induces two hallmark HH loss-of-function phenotypes (HPE and ventral neural tube patterning defects) in Cdon mutant mice, which have a subthreshold deficit in HH signaling. THC therefore acts as a 'conditional teratogen', dependent on a complementary but insufficient genetic insult. In vitro findings indicate that THC is a direct inhibitor of the essential HH signal transducer smoothened. The canonical THC receptor, cannabinoid receptor-type 1, is not required for THC to inhibit HH signaling. Cannabis consumption during pregnancy may contribute to a combination of risk factors underlying specific developmental disorders. These findings therefore have significant public health relevance.
Collapse
Affiliation(s)
- Hsiao-Fan Lo
- Department of Cell, Developmental, and Regenerative Biology, New York, NY 10029, USA
| | - Mingi Hong
- Department of Cell, Developmental, and Regenerative Biology, New York, NY 10029, USA
| | - Henrietta Szutorisz
- Addiction Institute and Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yasmin L Hurd
- Addiction Institute and Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Robert S Krauss
- Department of Cell, Developmental, and Regenerative Biology, New York, NY 10029, USA
| |
Collapse
|
11
|
Alexander JI, Martinez E, Vargas A, Zinshteyn D, Sodi V, Connolly DC, Hartman TR, O'Reilly AM. Cholesterol and CDON Regulate Sonic Hedgehog Release from Pancreatic Cancer Cells. J Pancreat Cancer 2021; 7:39-47. [PMID: 34235374 PMCID: PMC8252898 DOI: 10.1089/pancan.2021.0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Sonic Hedgehog (Shh) is a tightly regulated membrane-associated morphogen and a known driver of tumorigenesis in pancreatic ductal adenocarcinoma (PDAC). After processing, Shh remains at the plasma membrane of Shh producing cells, thereby limiting its distribution and signal strength. In PDAC, the release of Shh from tumor cells is necessary to promote a tumor-permissive microenvironment. Mechanisms regulating Shh sequestration and/or release from tumor cells to signal distant stromal cells are not well known. Previously, our laboratory demonstrated that the Drosophila transmembrane protein Boi, sequesters Hh at the membrane of Hh-producing cells. In response to dietary cholesterol or in the absence of boi, Hh is constitutively released to promote proliferation in distant cells. In this study, we investigated the conservation of this mechanism in mammals by exploring the role of the human boi homolog, CDON, in PDAC. Methods: Using PDAC cell-lines BxPC-3, Capan-2, and MIA PaCa-2, along with normal pancreatic epithelial cells (PDEC), we investigated Shh expression via Immunoblot and real-time, quantitative polymerase chain reaction in addition to Shh release via enzyme-linked immunoassay following cholesterol treatment and/or transfection with either RNA interference to reduce CDON expression or with human CDON to increase expression. Results: Consistent with our Boi model, CDON suppresses Shh release, which is alleviated in response to dietary cholesterol. However, over-expressing CDON suppresses cholesterol-mediated Shh release in some PDAC contexts, which may be relative to the mutational burden of the cells. Conclusion: Identifying mechanisms that either sequester or stimulate Shh release from the tumor cell membrane may provide new avenues to reduce signaling between the tumor and its surrounding environment, which may restrain tumor development.
Collapse
Affiliation(s)
- Jennifer I Alexander
- Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - Esteban Martinez
- Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - Alberto Vargas
- Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - Daniel Zinshteyn
- Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - Valerie Sodi
- Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - Denise C Connolly
- Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - Tiffiney R Hartman
- Roberts Individualized Medical Genetics Center and the Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Alana M O'Reilly
- Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| |
Collapse
|
12
|
Echevarría-Andino ML, Allen BL. The hedgehog co-receptor BOC differentially regulates SHH signaling during craniofacial development. Development 2020; 147:dev.189076. [PMID: 33060130 DOI: 10.1242/dev.189076] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 10/06/2020] [Indexed: 12/31/2022]
Abstract
The Hedgehog (HH) pathway controls multiple aspects of craniofacial development. HH ligands signal through the canonical receptor PTCH1, and three co-receptors: GAS1, CDON and BOC. Together, these co-receptors are required during embryogenesis to mediate proper HH signaling. Here, we investigated the individual and combined contributions of GAS1, CDON and BOC to HH-dependent mammalian craniofacial development. Notably, individual deletion of either Gas1 or Cdon results in variable holoprosencephaly phenotypes in mice, even on a congenic background. In contrast, we find that Boc deletion results in facial widening that correlates with increased HH target gene expression. In addition, Boc deletion in a Gas1 null background partially ameliorates the craniofacial defects observed in Gas1 single mutants; a phenotype that persists over developmental time, resulting in significant improvements to a subset of craniofacial structures. This contrasts with HH-dependent phenotypes in other tissues that significantly worsen following combined deletion of Gas1 and Boc Together, these data indicate that BOC acts as a multi-functional regulator of HH signaling during craniofacial development, alternately promoting or restraining HH pathway activity in a tissue-specific fashion.
Collapse
Affiliation(s)
| | - Benjamin L Allen
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
13
|
Kim H, Lee SY, Jeong HJ, Kang JS, Cho H, Leem YE. Cdo Is Required for Efficient Motor Neuron Generation of Embryonic Stem Cells. Int J Stem Cells 2020; 13:342-352. [PMID: 32840224 PMCID: PMC7691856 DOI: 10.15283/ijsc20037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 06/08/2020] [Accepted: 06/23/2020] [Indexed: 11/12/2022] Open
Abstract
Background and Objectives The directed differentiation of pluripotent stem cells into motor neurons is critical for the development of disease modelling and therapeutics to intervene degenerative motor neuron diseases. Cell surface receptor Cdo functions as a coreceptor for Sonic hedgehog (Shh) with Boc and Gas1 in the patterning of ventral spinal cord neurons including motor neurons. However, the discrete function of Cdo is not fully understood. Methods and Results In this study, we examined the role of Cdo in motor neuron generation by utilizing in vitro differentiation of Cdo+/+ and Cdo−/− embryonic stem cells (ESCs). In response to Shh, Cdo−/− ESCs exhibited impaired expression of motor neuron specification markers while dorsal interneuron specification markers were significantly increased, compared to Cdo+/+ ESCs. Reactivation of Shh signalling pathway with Smoothened (Smo) agonist (SAG) restored motor neuron specification in Cdo−/− ESCs. In addition, electrophysiological analysis revealed the immature electrical features of Cdo−/− ESCs-derived neurons which was restored by SAG. Conclusions Taken together, these data suggest that Cdo as a Shh coreceptor is required for the induction of motor neuron generation by fully activating Shh signalling pathway and provide additional insights into the biology of motor neuron development.
Collapse
Affiliation(s)
- Hyebeen Kim
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Korea.,Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Seul-Yi Lee
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon, Korea.,Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Hyeon-Ju Jeong
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Korea.,Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Jong-Sun Kang
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Korea.,Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Hana Cho
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon, Korea.,Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Young-Eun Leem
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Korea.,Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, Korea
| |
Collapse
|
14
|
Mesman S, Smidt MP. Acquisition of the Midbrain Dopaminergic Neuronal Identity. Int J Mol Sci 2020; 21:ijms21134638. [PMID: 32629812 PMCID: PMC7369932 DOI: 10.3390/ijms21134638] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/22/2020] [Accepted: 06/26/2020] [Indexed: 02/06/2023] Open
Abstract
The mesodiencephalic dopaminergic (mdDA) group of neurons comprises molecularly distinct subgroups, of which the substantia nigra (SN) and ventral tegmental area (VTA) are the best known, due to the selective degeneration of the SN during Parkinson’s disease. However, although significant research has been conducted on the molecular build-up of these subsets, much is still unknown about how these subsets develop and which factors are involved in this process. In this review, we aim to describe the life of an mdDA neuron, from specification in the floor plate to differentiation into the different subsets. All mdDA neurons are born in the mesodiencephalic floor plate under the influence of both SHH-signaling, important for floor plate patterning, and WNT-signaling, involved in establishing the progenitor pool and the start of the specification of mdDA neurons. Furthermore, transcription factors, like Ngn2, Ascl1, Lmx1a, and En1, and epigenetic factors, like Ezh2, are important in the correct specification of dopamine (DA) progenitors. Later during development, mdDA neurons are further subdivided into different molecular subsets by, amongst others, Otx2, involved in the specification of subsets in the VTA, and En1, Pitx3, Lmx1a, and WNT-signaling, involved in the specification of subsets in the SN. Interestingly, factors involved in early specification in the floor plate can serve a dual function and can also be involved in subset specification. Besides the mdDA group of neurons, other systems in the embryo contain different subsets, like the immune system. Interestingly, many factors involved in the development of mdDA neurons are similarly involved in immune system development and vice versa. This indicates that similar mechanisms are used in the development of these systems, and that knowledge about the development of the immune system may hold clues for the factors involved in the development of mdDA neurons, which may be used in culture protocols for cell replacement therapies.
Collapse
|
15
|
Sonic Hedgehog Signaling Is Required for Cyp26 Expression during Embryonic Development. Int J Mol Sci 2019; 20:ijms20092275. [PMID: 31072004 PMCID: PMC6540044 DOI: 10.3390/ijms20092275] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/01/2019] [Accepted: 05/03/2019] [Indexed: 02/06/2023] Open
Abstract
Deciphering how signaling pathways interact during development is necessary for understanding the etiopathogenesis of congenital malformations and disease. In several embryonic structures, components of the Hedgehog and retinoic acid pathways, two potent players in development and disease are expressed and operate in the same or adjacent tissues and cells. Yet whether and, if so, how these pathways interact during organogenesis is, to a large extent, unclear. Using genetic and experimental approaches in the mouse, we show that during development of ontogenetically different organs, including the tail, genital tubercle, and secondary palate, Sonic hedgehog (SHH) loss-of-function causes anomalies phenocopying those induced by enhanced retinoic acid signaling and that SHH is required to prevent supraphysiological activation of retinoic signaling through maintenance and reinforcement of expression of the Cyp26 genes. Furthermore, in other tissues and organs, disruptions of the Hedgehog or the retinoic acid pathways during development generate similar phenotypes. These findings reveal that rigidly calibrated Hedgehog and retinoic acid activities are required for normal organogenesis and tissue patterning.
Collapse
|
16
|
Abstract
Cell-to-cell communication is fundamental for embryo development and subsequent tissue homeostasis. This communication is often mediated by a small number of signaling pathways in which a secreted ligand binds to the surface of a target cell, thereby activating signal transduction. In vertebrate neural development, these signaling mechanisms are repeatedly used to obtain different and context-dependent outcomes. Part of the versatility of these communication mechanisms depends on their finely tuned regulation that controls timing, spatial localization, and duration of the signaling. The existence of secreted antagonists, which prevent ligand–receptor interaction, is an efficient mechanism to regulate some of these pathways. The Hedgehog family of signaling proteins, however, activates a pathway that is controlled largely by the positive or negative activity of membrane-bound proteins such as Cdon, Boc, Gas1, or Megalin/LRP2. In this review, we will use the development of the vertebrate retina, from its early specification to neurogenesis, to discuss whether there is an advantage to the use of such regulators, pointing to unresolved or controversial issues.
Collapse
Affiliation(s)
- Viviana Gallardo
- Centro de Biología Molecular , CSIC-UAM, Madrid, 28049, Spain.,CIBER de Enfermedades Raras (CIBERER), Madrid, 28029, Spain
| | - Paola Bovolenta
- Centro de Biología Molecular , CSIC-UAM, Madrid, 28049, Spain.,CIBER de Enfermedades Raras (CIBERER), Madrid, 28029, Spain
| |
Collapse
|
17
|
Cavodeassi F, Creuzet S, Etchevers HC. The hedgehog pathway and ocular developmental anomalies. Hum Genet 2018; 138:917-936. [PMID: 30073412 PMCID: PMC6710239 DOI: 10.1007/s00439-018-1918-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 07/24/2018] [Indexed: 12/18/2022]
Abstract
Mutations in effectors of the hedgehog signaling pathway are responsible for a wide variety of ocular developmental anomalies. These range from massive malformations of the brain and ocular primordia, not always compatible with postnatal life, to subtle but damaging functional effects on specific eye components. This review will concentrate on the effects and effectors of the major vertebrate hedgehog ligand for eye and brain formation, Sonic hedgehog (SHH), in tissues that constitute the eye directly and also in those tissues that exert indirect influence on eye formation. After a brief overview of human eye development, the many roles of the SHH signaling pathway during both early and later morphogenetic processes in the brain and then eye and periocular primordia will be evoked. Some of the unique molecular biology of this pathway in vertebrates, particularly ciliary signal transduction, will also be broached within this developmental cellular context.
Collapse
Affiliation(s)
- Florencia Cavodeassi
- Institute for Medical and Biomedical Education, St. George´s University of London, Cranmer Terrace, London, SW17 0RE, UK
| | - Sophie Creuzet
- Institut des Neurosciences Paris-Saclay (Neuro-PSI), UMR 9197, CNRS, Université Paris-Sud, 1 Avenue de la Terrasse, 91198, Gif-sur-Yvette Cedex, France
| | - Heather C Etchevers
- Aix-Marseille Univ, Marseille Medical Genetics (MMG), INSERM, Faculté de Médecine, 27 boulevard Jean Moulin, 13005, Marseille, France.
| |
Collapse
|
18
|
Hong M, Krauss RS. Modeling the complex etiology of holoprosencephaly in mice. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2018; 178:140-150. [PMID: 29749693 DOI: 10.1002/ajmg.c.31611] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 03/28/2018] [Accepted: 04/02/2018] [Indexed: 12/14/2022]
Abstract
Holoprosencephaly (HPE) is a common developmental defect caused by failure to define the midline of the forebrain and/or midface. HPE is associated with heterozygous mutations in Nodal and Sonic hedgehog (SHH) pathway components, but clinical presentation is highly variable, and many mutation carriers are unaffected. It is therefore thought that such mutations interact with more common modifiers, genetic and/or environmental, to produce severe patterning defects. Modifiers are difficult to identify, as their effects are context-dependent and occur within the complex genetic and environmental landscapes that characterize human populations. This has made a full understanding of HPE etiology challenging. We discuss here the use of mice, a genetically tractable model sensitive to teratogens, as a system to address this challenge. Mice carrying mutations in human HPE genes often display wide variations in phenotypic penetrance and expressivity when placed on different genetic backgrounds, demonstrating the existence of silent HPE modifier genes. Studies with mouse lines carrying SHH pathway mutations on appropriate genetic backgrounds have led to identification of both genetic and environmental modifiers that synergize with the mutations to produce a spectrum of HPE phenotypes. These models favor a scenario in which multiple modifying influences-both genetic and environmental, sensitizing and protective-interact with bona fide HPE mutations to grade phenotypic outcomes. Despite the complex interplay of HPE risk factors, mouse models have helped establish some clear concepts in HPE etiology. A combination of mouse and human cohort studies should improve our understanding of this fascinating and medically important issue.
Collapse
Affiliation(s)
- Mingi Hong
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Robert S Krauss
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
19
|
Suzuki A, Jun G, Abdallah N, Gajera M, Iwata J. Gene datasets associated with mouse cleft palate. Data Brief 2018; 18:655-673. [PMID: 29896534 PMCID: PMC5996166 DOI: 10.1016/j.dib.2018.03.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 03/01/2018] [Indexed: 12/20/2022] Open
Abstract
This article presents data on genes associated with cleft palate (CP), retrieved through both a full-text systematic review and a mouse genome informatics (MGI) database search. In order to group CP-associated genes according to function, pathway, biological process, and cellular component, the genes were analyzed using category enrichment bioinformatics tools, the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO). This approach provides invaluable opportunities for the identification of candidate pathways and genes in CP research.
Collapse
Affiliation(s)
- Akiko Suzuki
- Department of Diagnostic & Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, USA.,Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Goo Jun
- Department of Epidemiology, Human Genetics & Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA.,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Nada Abdallah
- Department of Diagnostic & Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Mona Gajera
- Department of Diagnostic & Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, USA.,Department of Epidemiology, Human Genetics & Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Junichi Iwata
- Department of Diagnostic & Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, USA.,Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX, USA.,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| |
Collapse
|
20
|
Xavier GM, Seppala M, Papageorgiou SN, Fan CM, Cobourne MT. Genetic interactions between the hedgehog co-receptors Gas1 and Boc regulate cell proliferation during murine palatogenesis. Oncotarget 2018; 7:79233-79246. [PMID: 27811357 PMCID: PMC5346710 DOI: 10.18632/oncotarget.13011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 10/05/2016] [Indexed: 12/26/2022] Open
Abstract
Abnormal regulation of Sonic hedgehog (Shh) signaling has been described in a variety of human cancers and developmental anomalies, which highlights the essential role of this signaling molecule in cell cycle regulation and embryonic development. Gas1 and Boc are membrane co-receptors for Shh, which demonstrate overlapping domains of expression in the early face. This study aims to investigate potential interactions between these co-receptors during formation of the secondary palate. Mice with targeted mutation in Gas1 and Boc were used to generate Gas1; Boc compound mutants. The expression of key Hedgehog signaling family members was examined in detail during palatogenesis via radioactive in situ hybridization. Morphometric analysis involved computational quantification of BrdU-labeling and cell packing; whilst TUNEL staining was used to assay cell death. Ablation of Boc in a Gas1 mutant background leads to reduced Shh activity in the palatal shelves and an increase in the penetrance and severity of cleft palate, associated with failed elevation, increased proliferation and reduced cell death. Our findings suggest a dual requirement for Boc and Gas1 during early development of the palate, mediating cell cycle regulation during growth and subsequent fusion of the palatal shelves.
Collapse
Affiliation(s)
- Guilherme M Xavier
- Department of Craniofacial Development and Stem Cell Biology, King's College London Dental Institute, Guy's Hospital, SE1 9RT, London, UK.,Department of Orthodontics, King's College London Dental Institute, Guy's Hospital, SE1 9RT, London, UK
| | - Maisa Seppala
- Department of Craniofacial Development and Stem Cell Biology, King's College London Dental Institute, Guy's Hospital, SE1 9RT, London, UK.,Department of Orthodontics, King's College London Dental Institute, Guy's Hospital, SE1 9RT, London, UK
| | - Spyridon N Papageorgiou
- Department of Orthodontics, School of Dentistry, University of Bonn, 53111, Bonn, Germany.,Department of Oral Technology, School of Dentistry, University of Bonn, 53111, Bonn, Germany
| | - Chen-Ming Fan
- Department of Embryology, Carnegie Institution of Washington, Baltimore, MD 21218, USA
| | - Martyn T Cobourne
- Department of Craniofacial Development and Stem Cell Biology, King's College London Dental Institute, Guy's Hospital, SE1 9RT, London, UK.,Department of Orthodontics, King's College London Dental Institute, Guy's Hospital, SE1 9RT, London, UK
| |
Collapse
|
21
|
Geoghegan F, Xavier GM, Birjandi AA, Seppala M, Cobourne MT. Vax1 Plays an Indirect Role in the Etiology of Murine Cleft Palate. J Dent Res 2017; 96:1555-1562. [PMID: 28771384 DOI: 10.1177/0022034517724145] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Cleft lip with or without palate (CLP) and isolated cleft palate (CP) are common human developmental malformations with a complex etiology that reflects a failure of normal facial development. VAX1 encodes a homeobox-containing transcription factor identified as a candidate gene for CLP in human populations, with targeted deletion in mice associated with multiple anomalies, including disruption of the visual apparatus and basal forebrain, lobar holoprosencephaly, and CP. We have investigated Vax1 function during murine palatogenesis but found no evidence for a direct role in this process. Vax1 is not expressed in the developing palate and mutant palatal shelves elevate above the tongue, demonstrating morphology and proliferation indices indistinguishable from wild type. However, mutant mice did have a large midline cavity originating from the embryonic forebrain situated beneath the floor of the hypothalamus and extending through the nasal cavity to expand this region and prevent approximation of the palatal shelves. Interestingly, despite strong expression of Vax1 in ectoderm of the medial nasal processes, the upper lip remained intact in mutant mice. We found further evidence of disrupted craniofacial morphology in Vax1 mutants, including truncation of the midface associated with reduced cell proliferation in forebrain neuroectoderm and frontonasal mesenchyme. Sonic hedgehog (Shh) signal transduction was downregulated in the mutant forebrain, consistent with a role for Vax1 in mediating transduction of this pathway. However, Shh was also reduced in this region, suggestive of a Shh-Vax1 feedback loop during early development of the forebrain and a likely mechanism for the underlying lobar holoprosencephaly. Despite significant associations between VAX1 and human forms of CLP, we find no evidence of a direct role for this transcription factor in development of this region in a mutant mouse model.
Collapse
Affiliation(s)
- F Geoghegan
- 1 Centre for Craniofacial Development and Regeneration, King's College London Dental Institute, London, UK.,2 Department of Orthodontics, King's College London Dental Institute, London, UK
| | - G M Xavier
- 1 Centre for Craniofacial Development and Regeneration, King's College London Dental Institute, London, UK.,2 Department of Orthodontics, King's College London Dental Institute, London, UK
| | - A A Birjandi
- 1 Centre for Craniofacial Development and Regeneration, King's College London Dental Institute, London, UK
| | - M Seppala
- 1 Centre for Craniofacial Development and Regeneration, King's College London Dental Institute, London, UK.,2 Department of Orthodontics, King's College London Dental Institute, London, UK
| | - M T Cobourne
- 1 Centre for Craniofacial Development and Regeneration, King's College London Dental Institute, London, UK.,2 Department of Orthodontics, King's College London Dental Institute, London, UK
| |
Collapse
|
22
|
Hong M, Srivastava K, Kim S, Allen BL, Leahy DJ, Hu P, Roessler E, Krauss RS, Muenke M. BOC is a modifier gene in holoprosencephaly. Hum Mutat 2017; 38:1464-1470. [PMID: 28677295 DOI: 10.1002/humu.23286] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 06/20/2017] [Accepted: 06/28/2017] [Indexed: 12/18/2022]
Abstract
Holoprosencephaly (HPE), a common developmental defect of the forebrain and midface, has a complex etiology. Heterozygous, loss-of-function mutations in the sonic hedgehog (SHH) pathway are associated with HPE. However, mutation carriers display highly variable clinical presentation, leading to an "autosomal dominant with modifier" model, in which the penetrance and expressivity of a predisposing mutation is graded by genetic or environmental modifiers. Such modifiers have not been identified. Boc encodes a SHH coreceptor and is a silent HPE modifier gene in mice. Here, we report the identification of missense BOC variants in HPE patients. Consistent with these alleles functioning as HPE modifiers, individual variant BOC proteins had either loss- or gain-of-function properties in cell-based SHH signaling assays. Therefore, in addition to heterozygous loss-of-function mutations in specific SHH pathway genes and an ill-defined environmental component, our findings identify a third variable in HPE: low-frequency modifier genes, BOC being the first identified.
Collapse
Affiliation(s)
- Mingi Hong
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Kshitij Srivastava
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Sungjin Kim
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Benjamin L Allen
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan
| | - Daniel J Leahy
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas
| | - Ping Hu
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Erich Roessler
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Robert S Krauss
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Maximilian Muenke
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
23
|
Hong M, Krauss RS. Ethanol itself is a holoprosencephaly-inducing teratogen. PLoS One 2017; 12:e0176440. [PMID: 28441416 PMCID: PMC5404885 DOI: 10.1371/journal.pone.0176440] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 04/10/2017] [Indexed: 02/05/2023] Open
Abstract
Ethanol is a teratogen, inducing a variety of structural defects in developing humans and animals that are exposed in utero. Mechanisms of ethanol teratogenicity in specific defects are not well understood. Oxidative metabolism of ethanol by alcohol dehydrogenase or cytochrome P450 2E1 has been implicated in some of ethanol's teratogenic effects, either via production of acetaldehyde or competitive inhibition of retinoic acid synthesis. Generalized oxidative stress in response to ethanol may also play a role in its teratogenicity. Among the developmental defects that ethanol has been implicated in is holoprosencephaly, a failure to define the midline of the forebrain and midface that is associated with a deficiency in Sonic hedgehog pathway function. Etiologically, holoprosencephaly is thought to arise from a complex combination of genetic and environmental factors. We have developed a gene-environment interaction model of holoprosencephaly in mice, in which mutation of the Sonic hedgehog coreceptor, Cdon, synergizes with transient in utero exposure to ethanol. This system was used to address whether oxidative metabolism is required for ethanol's teratogenic activity in holoprosencephaly. We report here that t-butyl alcohol, which is neither a substrate nor an inhibitor of alcohol dehydrogenases or Cyp2E1, is a potent inducer of holoprosencephaly in Cdon mutant mice. Additionally, antioxidant treatment did not prevent ethanol- or t-butyl alcohol-induced HPE in these mice. These findings are consistent with the conclusion that ethanol itself, rather than a consequence of its metabolism, is a holoprosencephaly-inducing teratogen.
Collapse
Affiliation(s)
- Mingi Hong
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Robert S. Krauss
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| |
Collapse
|
24
|
Vuong TA, Leem YE, Kim BG, Cho H, Lee SJ, Bae GU, Kang JS. A Sonic hedgehog coreceptor, BOC regulates neuronal differentiation and neurite outgrowth via interaction with ABL and JNK activation. Cell Signal 2016; 30:30-40. [PMID: 27871935 DOI: 10.1016/j.cellsig.2016.11.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 11/17/2016] [Indexed: 12/21/2022]
Abstract
Neurite outgrowth is a critical step for neurogenesis and remodeling synaptic circuitry during neuronal development and regeneration. An immunoglobulin superfamily member, BOC functions as Sonic hedgehog (Shh) coreceptor in canonical and noncanonical Shh signaling in neuronal development and axon outgrowth/guidance. However signaling mechanisms responsible for BOC action during these processes remain unknown. In our previous studies, a multiprotein complex containing BOC and a closely related protein CDO promotes myogenic differentiation through activation of multiple signaling pathways, including non-receptor tyrosine kinase ABL. Given that ABL and Jun. N-terminal kinase (JNK) are implicated in actin cytoskeletal dynamics required for neurogenesis, we investigated the relationship between BOC, ABL and JNK during neuronal differentiation. Here, we demonstrate that BOC and ABL are induced in P19 embryonal carcinoma (EC) cells and cortical neural progenitor cells (NPCs) during neuronal differentiation. BOC-depleted EC cells or Boc-/- NPCs exhibit impaired neuronal differentiation with shorter neurite formation. BOC interacts with ABL through its putative SH2 binding domain and seems to be phosphorylated in an ABL activity-dependent manner. Unlike wildtype BOC, ABL-binding defective BOC mutants exhibit impaired JNK activation and neuronal differentiation. Finally, Shh treatment enhances JNK activation which is diminished by BOC depletion. These data suggest that BOC interacts with ABL and activates JNK thereby promoting neuronal differentiation and neurite outgrowth.
Collapse
Affiliation(s)
- Tuan Anh Vuong
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Samsung Biomedical Research Institute, Suwon 16419, Republic of Korea
| | - Young-Eun Leem
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Samsung Biomedical Research Institute, Suwon 16419, Republic of Korea
| | - Bok-Geon Kim
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Samsung Biomedical Research Institute, Suwon 16419, Republic of Korea
| | - Hana Cho
- Department of Physiology, Sungkyunkwan University School of Medicine, Samsung Biomedical Research Institute, Suwon 16419, Republic of Korea
| | - Sang-Jin Lee
- Research Center for Cell Fate Control, College of Pharmacy, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Gyu-Un Bae
- Research Center for Cell Fate Control, College of Pharmacy, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Jong-Sun Kang
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Samsung Biomedical Research Institute, Suwon 16419, Republic of Korea.
| |
Collapse
|
25
|
Mesocortical Dopamine Phenotypes in Mice Lacking the Sonic Hedgehog Receptor Cdon. eNeuro 2016; 3:eN-NWR-0009-16. [PMID: 27419218 PMCID: PMC4942720 DOI: 10.1523/eneuro.0009-16.2016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 06/22/2016] [Accepted: 06/22/2016] [Indexed: 12/21/2022] Open
Abstract
Motivated behaviors and many psychopathologies typically involve changes in dopamine release from the projections of the ventral tegmental area (VTA) and/or the substantia nigra pars compacta (SNc). The morphogen Sonic Hedgehog (Shh) specifies fates of midbrain dopamine neurons, but VTA-specific effects of Shh signaling are also being uncovered. In this study, we assessed the role of the Shh receptor Cdon in the development of VTA and SNc dopamine neurons. We find that Cdon is expressed in the proliferating progenitor zone of the embryonic ventral midbrain and that the number of proliferating cells in this region is increased in mouse Cdon(-/-) embryos. Consistent with a role of Shh in the regulation of neuronal proliferation in this region, we find that the number of tyrosine hydroxylase (TH)-positive neurons is increased in the VTA of Cdon(-/-) mice at birth and that this effect endures into adulthood. In contrast, the number of TH-positive neurons in the SNc is not altered in Cdon(-/-) mice at either age. Moreover, adult Cdon(-/-) mice have a greater number of medial prefrontal cortex (mPFC) dopamine presynaptic sites, and increased baseline concentrations of dopamine and dopamine metabolites selectively in this region. Finally, consistent with increased dopamine function in the mPFC, we find that adult Cdon(-/-) mice fail to exhibit behavioral plasticity upon repeated amphetamine treatment. Based on these data, we suggest that Cdon plays an important role encoding the diversity of dopamine neurons in the midbrain, influencing both the development of the mesocortical dopamine pathway and behavioral outputs that involve this neural circuitry.
Collapse
|
26
|
Christ A, Herzog K, Willnow TE. LRP2, an auxiliary receptor that controls sonic hedgehog signaling in development and disease. Dev Dyn 2016; 245:569-79. [PMID: 26872844 DOI: 10.1002/dvdy.24394] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 02/03/2016] [Accepted: 02/07/2016] [Indexed: 12/31/2022] Open
Abstract
To fulfill their multiple roles in organ development and adult tissue homeostasis, hedgehog (HH) morphogens act through their receptor Patched (PTCH) on target cells. However, HH actions also require HH binding proteins, auxiliary cell surface receptors that agonize or antagonize morphogen signaling in a context-dependent manner. Here, we discuss recent findings on the LDL receptor-related protein 2 (LRP2), an exemplary HH binding protein that modulates sonic hedgehog activities in stem and progenitor cell niches in embryonic and adult tissues. LRP2 functions are crucial for developmental processes in a number of tissues, including the brain, the eye, and the heart, and defects in this receptor pathway are the cause of devastating congenital diseases in humans. Developmental Dynamics 245:569-579, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Annabel Christ
- Max-Delbrueck-Center for Molecular Medicine, 13125, Berlin, Germany
| | - Katja Herzog
- Max-Delbrueck-Center for Molecular Medicine, 13125, Berlin, Germany
| | - Thomas E Willnow
- Max-Delbrueck-Center for Molecular Medicine, 13125, Berlin, Germany
| |
Collapse
|
27
|
Xavier GM, Seppala M, Barrell W, Birjandi AA, Geoghegan F, Cobourne MT. Hedgehog receptor function during craniofacial development. Dev Biol 2016; 415:198-215. [PMID: 26875496 DOI: 10.1016/j.ydbio.2016.02.009] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 02/09/2016] [Accepted: 02/10/2016] [Indexed: 01/20/2023]
Abstract
The Hedgehog signalling pathway plays a fundamental role in orchestrating normal craniofacial development in vertebrates. In particular, Sonic hedgehog (Shh) is produced in three key domains during the early formation of the head; neuroectoderm of the ventral forebrain, facial ectoderm and the pharyngeal endoderm; with signal transduction evident in both ectodermal and mesenchymal tissue compartments. Shh signalling from the prechordal plate and ventral midline of the diencephalon is required for appropriate division of the eyefield and forebrain, with mutation in a number of pathway components associated with Holoprosencephaly, a clinically heterogeneous developmental defect characterized by a failure of the early forebrain vesicle to divide into distinct halves. In addition, signalling from the pharyngeal endoderm and facial ectoderm plays an essential role during development of the face, influencing cranial neural crest cells that migrate into the early facial processes. In recent years, the complexity of Shh signalling has been highlighted by the identification of multiple novel proteins that are involved in regulating both the release and reception of this protein. Here, we review the contributions of Shh signalling during early craniofacial development, focusing on Hedgehog receptor function and describing the consequences of disruption for inherited anomalies of this region in both mouse models and human populations.
Collapse
Affiliation(s)
- Guilherme M Xavier
- Department of Craniofacial Development and Stem Cell Biology, King's College London Dental Institute, Floor 27, Guy's Hospital, London SE1 9RT, UK; Department of Orthodontics, King's College London Dental Institute, Floor 27, Guy's Hospital, London SE1 9RT, UK
| | - Maisa Seppala
- Department of Craniofacial Development and Stem Cell Biology, King's College London Dental Institute, Floor 27, Guy's Hospital, London SE1 9RT, UK; Department of Orthodontics, King's College London Dental Institute, Floor 27, Guy's Hospital, London SE1 9RT, UK
| | - William Barrell
- Department of Craniofacial Development and Stem Cell Biology, King's College London Dental Institute, Floor 27, Guy's Hospital, London SE1 9RT, UK
| | - Anahid A Birjandi
- Department of Craniofacial Development and Stem Cell Biology, King's College London Dental Institute, Floor 27, Guy's Hospital, London SE1 9RT, UK
| | - Finn Geoghegan
- Department of Craniofacial Development and Stem Cell Biology, King's College London Dental Institute, Floor 27, Guy's Hospital, London SE1 9RT, UK
| | - Martyn T Cobourne
- Department of Craniofacial Development and Stem Cell Biology, King's College London Dental Institute, Floor 27, Guy's Hospital, London SE1 9RT, UK; Department of Orthodontics, King's College London Dental Institute, Floor 27, Guy's Hospital, London SE1 9RT, UK.
| |
Collapse
|
28
|
Abstract
It is thought that most structural birth defects are caused by a complex combination of genetic and environmental factors that interact to interfere with morphogenetic processes. It is important not only to identify individual genetic and environmental risk factors for particular defects but also to identify which environmental factors interact specifically with which genetic variants that predispose to the same defect. Genomic and epidemiological studies are critical to this end. Development and analysis of model systems will also be essential for this goal, as well as for understanding the mechanisms that underlie specific gene-environment interactions.
Collapse
|
29
|
Chihara D, Romer AI, Bentzinger CF, Rudnicki MA, Krauss RS. PAX7 is required for patterning the esophageal musculature. Skelet Muscle 2015; 5:39. [PMID: 26635949 PMCID: PMC4668666 DOI: 10.1186/s13395-015-0068-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 11/07/2015] [Indexed: 12/12/2022] Open
Abstract
Background The mammalian esophageal musculature is unique in that it makes a transition from smooth to skeletal muscle, with most of this process occurring after birth. In order to better understand the mechanisms that control esophageal musculature development, we investigated the roles in this process of the paired box transcription factor, PAX7, a principal regulator of skeletal myogenic progenitor cells. Previous studies showed that Pax7 is important for determining the esophageal muscle composition. Results We characterized the postnatal development of the esophageal musculature in Pax7−/− mice by analyzing morphology, muscle composition, and the expression of markers of myogenesis, cell proliferation, and apoptosis. Pax7−/− mice displayed megaesophagus with a severe defect in the postnatal developmental process whereby esophageal smooth muscle is replaced by skeletal muscle. Pax7−/− esophagi have substantially reduced skeletal muscle, most likely due to diminished proliferation and premature differentiation of skeletal muscle precursor cells. This impaired the proximal-to-distal progression of skeletal myogenesis and indirectly affected the patterning of the smooth muscle-containing portion of the esophageal musculature. Conclusions Postnatal patterning of the esophageal musculature appears to require robust, PAX7-dependent cell proliferation to drive the proximal-to-distal progression of skeletal myogenesis. This process in turn influences distal smooth muscle morphogenesis and development of the mature pattern of the esophageal musculature. Electronic supplementary material The online version of this article (doi:10.1186/s13395-015-0068-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Daisuke Chihara
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, NY 10029 USA
| | - Anthony I Romer
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, NY 10029 USA ; Graduate School of Biological Sciences, One Gustave L. Levy Place, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA ; Present address: Department of Genetics and Development, Columbia University, 701 West 168th Street, HHSC 1602, New York, NY 10032 USA
| | - C Florian Bentzinger
- Regenerative Medicine Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, K1H 8L6 ON Canada ; Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, K1H 8M5 ON Canada ; Present address: Nestlé Institute of Health Sciences, EPFL Campus, 1015 Lausanne, Switzerland
| | - Michael A Rudnicki
- Regenerative Medicine Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, K1H 8L6 ON Canada ; Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, K1H 8M5 ON Canada
| | - Robert S Krauss
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, NY 10029 USA ; Graduate School of Biological Sciences, One Gustave L. Levy Place, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| |
Collapse
|
30
|
Facial Morphogenesis: Physical and Molecular Interactions Between the Brain and the Face. Curr Top Dev Biol 2015; 115:299-320. [PMID: 26589930 DOI: 10.1016/bs.ctdb.2015.09.001] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Morphogenesis of the brain and face is intrinsically linked by a number of factors. These include: origins of tissues, adjacency allowing their physical interactions, and molecular cross talk controlling growth. Neural crest cells that form the facial primordia originate on the dorsal neural tube. In the caudal pharyngeal arches, a Homeobox code regulates arch identity. In anterior regions, positional information is acquired locally. Second, the brain is a structural platform that influences positioning of the facial primordia, and brain growth influences the timing of primordia fusion. Third, the brain helps induce a signaling center, the frontonasal ectodermal zone, in the ectoderm, which participates in patterned growth of the upper jaw. Similarly, signals from neural crest cells regulate expression of fibroblast growth factor 8 in the anterior neural ridge, which controls growth of the anterior forebrain. Disruptions to these interactions have significant consequences for normal development of the craniofacial complex, leading to structural malformations and birth defects.
Collapse
|
31
|
Lee HJ, Jo SB, Romer AI, Lim HJ, Kim MJ, Koo SH, Krauss RS, Kang JS. Overweight in mice and enhanced adipogenesis in vitro are associated with lack of the hedgehog coreceptor boc. Diabetes 2015; 64:2092-103. [PMID: 25576054 PMCID: PMC4439556 DOI: 10.2337/db14-1017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 01/01/2015] [Indexed: 12/27/2022]
Abstract
Obesity arises from a combination of genetic, environmental, and behavioral factors. However, the processes that regulate white adipose tissue (WAT) expansion at the level of the adipocyte are not well understood. The Hedgehog (HH) pathway plays a conserved role in adipogenesis, inhibiting fat formation in vivo and in vitro, but it has not been shown that mice with reduced HH pathway activity have enhanced adiposity. We report that mice lacking the HH coreceptor BOC displayed age-related overweight and excess WAT. They also displayed alterations in some metabolic parameters but normal food intake. Furthermore, they had an exacerbated response to a high-fat diet, including enhanced weight gain and adipocyte hypertrophy, livers with greater fat accumulation, and elevated expression of genes related to adipogenesis, lipid metabolism, and adipokine production. Cultured Boc(-/-) mouse embryo fibroblasts showed enhanced adipogenesis relative to Boc(+/+) cells, and they expressed reduced levels of HH pathway target genes. Therefore, a loss-of-function mutation in an HH pathway component is associated with WAT accumulation and overweight in mice. Variant alleles of such HH regulators may contribute to WAT accumulation in human individuals with additional genetic or lifestyle-based predisposition to obesity.
Collapse
Affiliation(s)
- Hye-Jin Lee
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Samsung Biomedical Research Institute, Suwon, Republic of Korea
| | - Shin-Bum Jo
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Samsung Biomedical Research Institute, Suwon, Republic of Korea
| | - Anthony I Romer
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY Graduate School of Biological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Hyo-Jeong Lim
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Samsung Biomedical Research Institute, Suwon, Republic of Korea
| | - Min-Jung Kim
- Division of Life Sciences, Korea University, Seoul, Republic of Korea
| | - Seung-Hoi Koo
- Division of Life Sciences, Korea University, Seoul, Republic of Korea
| | - Robert S Krauss
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY Graduate School of Biological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Jong-Sun Kang
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Samsung Biomedical Research Institute, Suwon, Republic of Korea
| |
Collapse
|
32
|
Song JY, Holtz AM, Pinskey JM, Allen BL. Distinct structural requirements for CDON and BOC in the promotion of Hedgehog signaling. Dev Biol 2015; 402:239-52. [PMID: 25848697 DOI: 10.1016/j.ydbio.2015.03.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 03/03/2015] [Accepted: 03/25/2015] [Indexed: 01/20/2023]
Abstract
Proper levels of Hedgehog (HH) signaling are essential during embryonic development and adult tissue homeostasis. A central mechanism to control HH pathway activity is through the regulation of secreted HH ligands at the plasma membrane. Recent studies have revealed a collective requirement for the cell surface co-receptors GAS1, CDON and BOC in HH signal transduction. Despite their requirement in HH pathway function, the mechanisms by which these proteins act to promote HH signaling remain poorly understood. Here we focus on the function of the two structurally related co-receptors, CDON and BOC. We utilized an in vivo gain-of-function approach in the developing chicken spinal cord to dissect the structural requirements for CDON and BOC function in HH signal transduction. Notably, we find that although CDON and BOC display functional redundancy during HH-dependent ventral neural patterning, these molecules utilize distinct molecular mechanisms to execute their HH-promoting effects. Specifically, we define distinct membrane attachment requirements for CDON and BOC function in HH signal transduction. Further, we identify novel and separate extracellular motifs in CDON and BOC that are required to promote HH signaling. Together, these data suggest that HH co-receptors employ distinct mechanisms to mediate HH pathway activity.
Collapse
Affiliation(s)
- Jane Y Song
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Alexander M Holtz
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA; Medical Scientist Training Program, University of Michigan, Ann Arbor, MI 48109, USA; Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Justine M Pinskey
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Benjamin L Allen
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
33
|
Zhulyn O, Nieuwenhuis E, Liu YC, Angers S, Hui CC. Ptch2 shares overlapping functions with Ptch1 in Smo regulation and limb development. Dev Biol 2015; 397:191-202. [DOI: 10.1016/j.ydbio.2014.10.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 10/04/2014] [Accepted: 10/27/2014] [Indexed: 10/24/2022]
|
34
|
Hoffmeister M, Prelle C, Küchler P, Kovacevic I, Moser M, Müller-Esterl W, Oess S. The ubiquitin E3 ligase NOSIP modulates protein phosphatase 2A activity in craniofacial development. PLoS One 2014; 9:e116150. [PMID: 25546391 PMCID: PMC4278855 DOI: 10.1371/journal.pone.0116150] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 12/05/2014] [Indexed: 02/05/2023] Open
Abstract
Holoprosencephaly is a common developmental disorder in humans characterised by incomplete brain hemisphere separation and midface anomalies. The etiology of holoprosencephaly is heterogeneous with environmental and genetic causes, but for a majority of holoprosencephaly cases the genes associated with the pathogenesis could not be identified so far. Here we report the generation of knockout mice for the ubiquitin E3 ligase NOSIP. The loss of NOSIP in mice causes holoprosencephaly and facial anomalies including cleft lip/palate, cyclopia and facial midline clefting. By a mass spectrometry based protein interaction screen we identified NOSIP as a novel interaction partner of protein phosphatase PP2A. NOSIP mediates the monoubiquitination of the PP2A catalytic subunit and the loss of NOSIP results in an increase in PP2A activity in craniofacial tissue in NOSIP knockout mice. We conclude, that NOSIP is a critical modulator of brain and craniofacial development in mice and a candidate gene for holoprosencephaly in humans.
Collapse
Affiliation(s)
- Meike Hoffmeister
- Institute for Biochemistry II, Goethe University Frankfurt Medical School, Frankfurt/Main, Germany
| | - Carola Prelle
- Institute for Biochemistry II, Goethe University Frankfurt Medical School, Frankfurt/Main, Germany
| | - Philipp Küchler
- Institute for Biochemistry II, Goethe University Frankfurt Medical School, Frankfurt/Main, Germany
| | - Igor Kovacevic
- Institute for Biochemistry II, Goethe University Frankfurt Medical School, Frankfurt/Main, Germany
| | - Markus Moser
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Werner Müller-Esterl
- Institute for Biochemistry II, Goethe University Frankfurt Medical School, Frankfurt/Main, Germany
| | - Stefanie Oess
- Institute for Biochemistry II, Goethe University Frankfurt Medical School, Frankfurt/Main, Germany
- * E-mail:
| |
Collapse
|
35
|
Petryk A, Graf D, Marcucio R. Holoprosencephaly: signaling interactions between the brain and the face, the environment and the genes, and the phenotypic variability in animal models and humans. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2014; 4:17-32. [PMID: 25339593 DOI: 10.1002/wdev.161] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 09/08/2014] [Accepted: 09/19/2014] [Indexed: 01/17/2023]
Abstract
Holoprosencephaly (HPE) is the most common developmental defect of the forebrain characterized by inadequate or absent midline division of the forebrain into cerebral hemispheres, with concomitant midline facial defects in the majority of cases. Understanding the pathogenesis of HPE requires knowledge of the relationship between the developing brain and the facial structures during embryogenesis. A number of signaling pathways control and coordinate the development of the brain and face, including Sonic hedgehog, Bone morphogenetic protein, Fibroblast growth factor, and Nodal signaling. Mutations in these pathways have been identified in animal models of HPE and human patients. Because of incomplete penetrance and variable expressivity of HPE, patients carrying defined mutations may not manifest the disease at all, or have a spectrum of defects. It is currently unknown what drives manifestation of HPE in genetically at-risk individuals, but it has been speculated that other gene mutations and environmental factors may combine as cumulative insults. HPE can be diagnosed in utero by a high-resolution prenatal ultrasound or a fetal magnetic resonance imaging, sometimes in combination with molecular testing from chorionic villi or amniotic fluid sampling. Currently, there are no effective preventive methods for HPE. Better understanding of the mechanisms of gene-environment interactions in HPE would provide avenues for such interventions.
Collapse
Affiliation(s)
- Anna Petryk
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | | | | |
Collapse
|
36
|
Mathew E, Zhang Y, Holtz AM, Kane KT, Song JY, Allen BL, Pasca di Magliano M. Dosage-dependent regulation of pancreatic cancer growth and angiogenesis by hedgehog signaling. Cell Rep 2014; 9:484-94. [PMID: 25310976 DOI: 10.1016/j.celrep.2014.09.010] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 07/18/2014] [Accepted: 09/07/2014] [Indexed: 02/04/2023] Open
Abstract
Pancreatic cancer, a hypovascular and highly desmoplastic cancer, is characterized by tumor expression of Hedgehog (HH) ligands that signal to fibroblasts in the surrounding stroma that in turn promote tumor survival and growth. However, the mechanisms and consequences of stromal HH pathway activation are not well understood. Here, we show that the HH coreceptors GAS1, BOC, and CDON are expressed in cancer-associated fibroblasts. Deletion of two coreceptors (Gas1 and Boc) in fibroblasts reduces HH responsiveness. Strikingly, these fibroblasts promote greater tumor growth in vivo that correlates with increased tumor-associated vascularity. In contrast, deletion of all three coreceptors (Gas1, Boc, and Cdon) results in the near complete abrogation of HH signaling and a corresponding failure to promote tumorigenesis and angiogenesis. Collectively, these data identify a role for HH dosage in pancreatic cancer promotion and may explain the clinical failure of HH pathway blockade as a therapeutic approach in pancreatic cancer.
Collapse
Affiliation(s)
- Esha Mathew
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yaqing Zhang
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Alexander M Holtz
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI 48109, USA; Medical Scientist Training Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kevin T Kane
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jane Y Song
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Benjamin L Allen
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI 48109, USA; Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Marina Pasca di Magliano
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI 48109, USA; Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA; Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
37
|
Camp D, Haitian He B, Li S, Althaus IW, Holtz AM, Allen BL, Charron F, van Meyel DJ. Ihog and Boi elicit Hh signaling via Ptc but do not aid Ptc in sequestering the Hh ligand. Development 2014; 141:3879-88. [PMID: 25231763 DOI: 10.1242/dev.103564] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Hedgehog (Hh) proteins are secreted molecules essential for tissue development in vertebrates and invertebrates. Hh reception via the 12-pass transmembrane protein Patched (Ptc) elicits intracellular signaling through Smoothened (Smo). Hh binding to Ptc is also proposed to sequester the ligand, limiting its spatial range of activity. In Drosophila, Interference hedgehog (Ihog) and Brother of ihog (Boi) are two conserved and redundant transmembrane proteins that are essential for Hh pathway activation. How Ihog and Boi activate signaling in response to Hh remains unknown; each can bind both Hh and Ptc and so it has been proposed that they are essential for both Hh reception and sequestration. Using genetic epistasis we established here that Ihog and Boi, and their orthologs in mice, act upstream or at the level of Ptc to allow Hh signal transduction. In the Drosophila developing wing model we found that it is through Hh pathway activation that Ihog and Boi maintain the boundary between the anterior and posterior compartments. We dissociated the contributions of Ptc from those of Ihog/Boi and, surprisingly, found that cells expressing Ptc can retain and sequester the Hh ligand without Ihog and Boi, but that Ihog and Boi cannot do so without Ptc. Together, these results reinforce the central role for Ptc in Hh binding in vivo and demonstrate that, although Ihog and Boi are dispensable for Hh sequestration, they are essential for pathway activation because they allow Hh to inhibit Ptc and thereby relieve its repression of Smo.
Collapse
Affiliation(s)
- Darius Camp
- McGill Centre for Research in Neuroscience and the McGill University Health Centre Research Institute, 1650 Cedar Avenue, Montreal, Quebec, Canada H3G 1A4 Molecular Biology of Neural Development, Institut de Recherches Cliniques de Montréal (IRCM), Montreal, Quebec, Canada H2W 1R7 Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada H3A 1A3
| | - Billy Haitian He
- McGill Centre for Research in Neuroscience and the McGill University Health Centre Research Institute, 1650 Cedar Avenue, Montreal, Quebec, Canada H3G 1A4
| | - Sally Li
- McGill Centre for Research in Neuroscience and the McGill University Health Centre Research Institute, 1650 Cedar Avenue, Montreal, Quebec, Canada H3G 1A4
| | - Irene W Althaus
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Alexander M Holtz
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI 48109, USA Medical Scientist Training Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Benjamin L Allen
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Frédéric Charron
- Molecular Biology of Neural Development, Institut de Recherches Cliniques de Montréal (IRCM), Montreal, Quebec, Canada H2W 1R7 Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada H3A 1A3 Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada H3A 2B4 Program in Neuroengineering, McGill University, Montreal, Quebec, Canada H3A 2K6 Department of Medicine, University of Montreal, Montreal, Quebec, Canada H3T 1J4 Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada H3A 0C7 Department of Biology, McGill University, Montreal, Quebec, Canada H3A 1B1
| | - Donald J van Meyel
- McGill Centre for Research in Neuroscience and the McGill University Health Centre Research Institute, 1650 Cedar Avenue, Montreal, Quebec, Canada H3G 1A4 Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada H3A 1A3 Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada H3A 2B4 Department of Biology, McGill University, Montreal, Quebec, Canada H3A 1B1
| |
Collapse
|
38
|
Kwon YR, Jeong MH, Leem YE, Lee SJ, Kim HJ, Bae GU, Kang JS. The Shh coreceptor Cdo is required for differentiation of midbrain dopaminergic neurons. Stem Cell Res 2014; 13:262-74. [PMID: 25117422 DOI: 10.1016/j.scr.2014.07.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Revised: 07/12/2014] [Accepted: 07/16/2014] [Indexed: 11/16/2022] Open
Abstract
Sonic hedgehog (Shh) signaling is required for numerous developmental processes including specification of ventral cell types in the central nervous system such as midbrain dopaminergic (DA) neurons. The multifunctional coreceptor Cdo increases the signaling activity of Shh which is crucial for development of forebrain and neural tube. In this study, we investigated the role of Cdo in midbrain DA neurogenesis. Cdo and Shh signaling components are induced during neurogenesis of embryonic stem (ES) cells. Cdo(-/-) ES cells show reduced neuronal differentiation accompanied by increased cell death upon neuronal induction. In addition, Cdo(-/-) ES cells form fewer tyrosine hydroxylase (TH) and microtubule associated protein 2 (MAP2)-positive DA neurons correlating with the decreased expression of key regulators of DA neurogenesis, such as Shh, Neurogenin2, Mash1, Foxa2, Lmx1a, Nurr1 and Pitx3, relative to the Cdo(+/+) ES cells. Consistently, the Cdo(-/-) embryonic midbrain displays a reduction in expression of TH and Nurr1. Furthermore, activation of Shh signaling by treatment with Purmorphamine (Pur) restores the DA neurogenesis of Cdo(-/-) ES cells, suggesting that Cdo is required for the full Shh signaling activation to induce efficient DA neurogenesis.
Collapse
Affiliation(s)
- Yu-Rim Kwon
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 440-746, Republic of Korea
| | - Myong-Ho Jeong
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 440-746, Republic of Korea
| | - Young-Eun Leem
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 440-746, Republic of Korea
| | - Sang-Jin Lee
- Research Center for Cell Fate Control, Sookmyung Women's University, Seoul 140-742, Republic of Korea
| | - Hyun-Jin Kim
- Department of Physiology, Sungkyunkwan University School of Medicine, Samsung Biomedical Research Institute, Suwon 440-746, Republic of Korea
| | - Gyu-Un Bae
- Research Center for Cell Fate Control, Sookmyung Women's University, Seoul 140-742, Republic of Korea.
| | - Jong-Sun Kang
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 440-746, Republic of Korea.
| |
Collapse
|
39
|
Seppala M, Xavier GM, Fan CM, Cobourne MT. Boc modifies the spectrum of holoprosencephaly in the absence of Gas1 function. Biol Open 2014; 3:728-40. [PMID: 25063195 PMCID: PMC4133726 DOI: 10.1242/bio.20147989] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Holoprosencephaly is a heterogeneous developmental malformation of the central nervous system characterized by impaired forebrain cleavage, midline facial anomalies and wide phenotypic variation. Indeed, microforms represent the mildest manifestation, associated with facial anomalies but an intact central nervous system. In many cases, perturbations in sonic hedgehog signaling are responsible for holoprosencephaly. Here, we have elucidated the contribution of Gas1 and an additional hedgehog co-receptor, Boc during early development of the craniofacial midline, by generating single and compound mutant mice. Significantly, we find Boc has an essential role in the etiology of a unique form of lobar holoprosencephaly that only occurs in conjunction with combined loss of Gas1. Whilst Gas1(-/-) mice have microform holoprosencephaly characterized by a single median maxillary central incisor, cleft palate and pituitary anomalies, Boc(-/-) mice have a normal facial midline. However, Gas1(-/-); Boc(-/-) mutants have lobar holoprosencephaly associated with clefting of the lip, palate and tongue, secondary to reduced sonic hedgehog transduction in the central nervous system and face. Moreover, maxillary incisor development is severely disrupted in these mice, arresting prior to cellular differentiation as a result of apoptosis in the odontogenic epithelium. Thus, Boc and Gas1 retain an essential function in these tooth germs, independent of their role in midline development of the central nervous system and face. Collectively, this phenotype demonstrates both redundancy and individual requirements for Gas1 and Boc during sonic hedgehog transduction in the craniofacial midline and suggests BOC as a potential digenic locus for lobar holoprosencephaly in human populations.
Collapse
Affiliation(s)
- Maisa Seppala
- Department of Craniofacial Development and Stem Cell Biology, King's College London Dental Institute, Guy's Hospital, London SE1 9RT, UK Department of Orthodontics, King's College London Dental Institute, Guy's Hospital, London SE1 9RT, UK
| | - Guilherme M Xavier
- Department of Craniofacial Development and Stem Cell Biology, King's College London Dental Institute, Guy's Hospital, London SE1 9RT, UK Department of Orthodontics, King's College London Dental Institute, Guy's Hospital, London SE1 9RT, UK
| | - Chen-Ming Fan
- Department of Embryology, Carnegie Institution of Washington, Baltimore, MD 21218, USA
| | - Martyn T Cobourne
- Department of Craniofacial Development and Stem Cell Biology, King's College London Dental Institute, Guy's Hospital, London SE1 9RT, UK Department of Orthodontics, King's College London Dental Institute, Guy's Hospital, London SE1 9RT, UK
| |
Collapse
|
40
|
Cdon acts as a Hedgehog decoy receptor during proximal-distal patterning of the optic vesicle. Nat Commun 2014; 5:4272. [PMID: 25001599 PMCID: PMC4102123 DOI: 10.1038/ncomms5272] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 05/26/2014] [Indexed: 02/06/2023] Open
Abstract
Patterning of the vertebrate optic vesicle into proximal/optic stalk and distal/neural retina involves midline-derived Hedgehog (Hh) signalling, which promotes stalk specification. In the absence of Hh signalling, the stalks are not specified, causing cyclopia. Recent studies showed that the cell adhesion molecule Cdon forms a heteromeric complex with the Hh receptor Patched 1 (Ptc1). This receptor complex binds Hh and enhances signalling activation, indicating that Cdon positively regulates the pathway. Here we show that in the developing zebrafish and chick optic vesicle, in which cdon and ptc1 are expressed with a complementary pattern, Cdon acts as a negative Hh signalling regulator. Cdon predominantly localizes to the basolateral side of neuroepithelial cells, promotes the enlargement of the neuroepithelial basal end-foot and traps Hh protein, thereby limiting its dispersion. This Ptc-independent function protects the retinal primordium from Hh activity, defines the stalk/retina boundary and thus the correct proximo-distal patterning of the eye. The Drosophila homologue of the vertebrate cell surface glycoprotein Cdon binds Hedgehog ligand and thereby prevents its diffusion. Here, the authors provide evidence for a similar mechanism during vertebrate optic vesicle patterning, where Cdon acts as a negative regulator of Hedgehog signalling to define the boundary between the optic stalk and the retina.
Collapse
|
41
|
Hong M, Krauss RS. Rescue of holoprosencephaly in fetal alcohol-exposed Cdon mutant mice by reduced gene dosage of Ptch1. PLoS One 2013; 8:e79269. [PMID: 24244464 PMCID: PMC3823703 DOI: 10.1371/journal.pone.0079269] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 09/25/2013] [Indexed: 11/18/2022] Open
Abstract
Holoprosencephaly (HPE) is a commonly occurring developmental defect in which midline patterning of the forebrain and midface is disrupted. Sonic hedgehog (SHH) signaling is required during multiple stages of rostroventral midline development, and heterozygous mutations in SHH pathway components are associated with HPE. However, clinical presentation of HPE is highly variable, and carriers of heterozygous mutations often lack apparent defects. It is therefore thought that such mutations must interact with more common modifiers, genetic and/or environmental. We have modeled this scenario in mice. Cdon mutant mice have a largely subthreshold defect in SHH signaling, rendering them sensitive to a wide spectrum of HPE phenotypes by additional hits that are themselves insufficient to produce HPE, including transient in utero exposure to ethanol. These variable HPE phenotypes may arise in embryos that fail to reach a threshold level of SHH signaling at a specific developmental stage. To provide evidence for this possibility, here we tested the effect of removing one copy of the negative regulator Ptch1 from Cdon(-/-) embryos and compared their response to ethanol with that of Cdon(-/-);Ptch1(+/+) embryos. Ptch1 heterozygosity decreased the penetrance of HPE in this system by >75%. The major effect of reduced Ptch1 gene dosage was on penetrance, as those Cdon(-/-);Ptch1(+/-) embryos that displayed HPE did not show major differences in phenotype from Cdon(-/-);Ptch1(+/+) embryos with ethanol-induced HPE. Our findings are consistent with the notion that even in an etiologically complex model of HPE, the level of SHH pathway activity is rate-limiting. Furthermore, the clinical outcome of an individual carrying a SHH pathway mutation will likely reflect the sum effect of both deleterious and protective modifier alleles and their interaction with non-genetic risk factors like fetal alcohol exposure.
Collapse
Affiliation(s)
- Mingi Hong
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Robert S. Krauss
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
42
|
Shuvarikov A, Campbell IM, Dittwald P, Neill NJ, Bialer MG, Moore C, Wheeler PG, Wallace SE, Hannibal MC, Murray MF, Giovanni MA, Terespolsky D, Sodhi S, Cassina M, Viskochil D, Moghaddam B, Herman K, Brown CW, Beck CR, Gambin A, Cheung SW, Patel A, Lamb AN, Shaffer LG, Ellison JW, Ravnan JB, Stankiewicz P, Rosenfeld JA. Recurrent HERV-H-mediated 3q13.2-q13.31 deletions cause a syndrome of hypotonia and motor, language, and cognitive delays. Hum Mutat 2013; 34:1415-23. [PMID: 23878096 DOI: 10.1002/humu.22384] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 07/11/2013] [Indexed: 11/09/2022]
Abstract
We describe the molecular and clinical characterization of nine individuals with recurrent, 3.4-Mb, de novo deletions of 3q13.2-q13.31 detected by chromosomal microarray analysis. All individuals have hypotonia and language and motor delays; they variably express mild to moderate cognitive delays (8/9), abnormal behavior (7/9), and autism spectrum disorders (3/9). Common facial features include downslanting palpebral fissures with epicanthal folds, a slightly bulbous nose, and relative macrocephaly. Twenty-eight genes map to the deleted region, including four strong candidate genes, DRD3, ZBTB20, GAP43, and BOC, with important roles in neural and/or muscular development. Analysis of the breakpoint regions based on array data revealed directly oriented human endogenous retrovirus (HERV-H) elements of ~5 kb in size and of >95% DNA sequence identity flanking the deletion. Subsequent DNA sequencing revealed different deletion breakpoints and suggested nonallelic homologous recombination (NAHR) between HERV-H elements as a mechanism of deletion formation, analogous to HERV-I-flanked and NAHR-mediated AZFa deletions. We propose that similar HERV elements may also mediate other recurrent deletion and duplication events on a genome-wide scale. Observation of rare recurrent chromosomal events such as these deletions helps to further the understanding of mechanisms behind naturally occurring variation in the human genome and its contribution to genetic disease.
Collapse
Affiliation(s)
- Andrey Shuvarikov
- Signature Genomic Laboratories, PerkinElmer, Inc, Spokane, Washington
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
A multi-platform draft de novo genome assembly and comparative analysis for the Scarlet Macaw (Ara macao). PLoS One 2013; 8:e62415. [PMID: 23667475 PMCID: PMC3648530 DOI: 10.1371/journal.pone.0062415] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 03/21/2013] [Indexed: 12/31/2022] Open
Abstract
Data deposition to NCBI Genomes: This Whole Genome Shotgun project has been deposited at DDBJ/EMBL/GenBank under the accession AMXX00000000 (SMACv1.0, unscaffolded genome assembly). The version described in this paper is the first version (AMXX01000000). The scaffolded assembly (SMACv1.1) has been deposited at DDBJ/EMBL/GenBank under the accession AOUJ00000000, and is also the first version (AOUJ01000000). Strong biological interest in traits such as the acquisition and utilization of speech, cognitive abilities, and longevity catalyzed the utilization of two next-generation sequencing platforms to provide the first-draft de novo genome assembly for the large, new world parrot Ara macao (Scarlet Macaw). Despite the challenges associated with genome assembly for an outbred avian species, including 951,507 high-quality putative single nucleotide polymorphisms, the final genome assembly (>1.035 Gb) includes more than 997 Mb of unambiguous sequence data (excluding N's). Cytogenetic analyses including ZooFISH revealed complex rearrangements associated with two scarlet macaw macrochromosomes (AMA6, AMA7), which supports the hypothesis that translocations, fusions, and intragenomic rearrangements are key factors associated with karyotype evolution among parrots. In silico annotation of the scarlet macaw genome provided robust evidence for 14,405 nuclear gene annotation models, their predicted transcripts and proteins, and a complete mitochondrial genome. Comparative analyses involving the scarlet macaw, chicken, and zebra finch genomes revealed high levels of nucleotide-based conservation as well as evidence for overall genome stability among the three highly divergent species. Application of a new whole-genome analysis of divergence involving all three species yielded prioritized candidate genes and noncoding regions for parrot traits of interest (i.e., speech, intelligence, longevity) which were independently supported by the results of previous human GWAS studies. We also observed evidence for genes and noncoding loci that displayed extreme conservation across the three avian lineages, thereby reflecting their likely biological and developmental importance among birds.
Collapse
|
44
|
Da Ros VG, Gutierrez-Perez I, Ferres-Marco D, Dominguez M. Dampening the signals transduced through hedgehog via microRNA miR-7 facilitates notch-induced tumourigenesis. PLoS Biol 2013; 11:e1001554. [PMID: 23667323 PMCID: PMC3646720 DOI: 10.1371/journal.pbio.1001554] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 03/25/2013] [Indexed: 02/06/2023] Open
Abstract
Analysis of tumorigenesis in Drosophila reveals a tumor-suppressor role for Hedgehog signaling in the context of oncogenic Notch signaling. Fine-tuned Notch and Hedgehog signalling pathways via attenuators and dampers have long been recognized as important mechanisms to ensure the proper size and differentiation of many organs and tissues. This notion is further supported by identification of mutations in these pathways in human cancer cells. However, although it is common that the Notch and Hedgehog pathways influence growth and patterning within the same organ through the establishment of organizing regions, the cross-talk between these two pathways and how the distinct organizing activities are integrated during growth is poorly understood. Here, in an unbiased genetic screen in the Drosophila melanogaster eye, we found that tumour-like growth was provoked by cooperation between the microRNA miR-7 and the Notch pathway. Surprisingly, the molecular basis of this cooperation between miR-7 and Notch converged on the silencing of Hedgehog signalling. In mechanistic terms, miR-7 silenced the interference hedgehog (ihog) Hedgehog receptor, while Notch repressed expression of the brother of ihog (boi) Hedgehog receptor. Tumourigenesis was induced co-operatively following Notch activation and reduced Hedgehog signalling, either via overexpression of the microRNA or through specific down-regulation of ihog, hedgehog, smoothened, or cubitus interruptus or via overexpression of the cubitus interruptus repressor form. Conversely, increasing Hedgehog signalling prevented eye overgrowth induced by the microRNA and Notch pathway. Further, we show that blocking Hh signal transduction in clones of cells mutant for smoothened also enhance the organizing activity and growth by Delta-Notch signalling in the wing primordium. Together, these findings uncover a hitherto unsuspected tumour suppressor role for the Hedgehog signalling and reveal an unanticipated cooperative antagonism between two pathways extensively used in growth control and cancer. Growth control mechanisms ensure that organs attain the correct final size, generally averting tumour growth. This control is often linked to spatially confined domains known as organizers (conserved signalling centres), established along the dorsal-ventral and anterior-posterior axes of the organ by the Notch and Hedgehog pathways, respectively. The organizers emit signals that dictate growth, cell fate specification, and differentiation. However, how the distinct organizing signals received are integrated by cells within a growing organ remains a mystery. By studying how Delta-Notch signalling drives tumorigenesis, we identified the conserved microRNA miR-7 as a co-operative element in tumorigenesis mediated by Delta. We found that the cooperation between the microRNA and Delta-Notch pathway converged on the silencing of two obligatory and functionally redundant Hedgehog receptors, interference hedgehog and brother of ihog. Downregulation of other hedgehog pathway genes via RNA interference or genetic mosaics revealed a tumour suppressor role for Hedgehog signalling in the context of the oncogenic Notch pathway. Given the conservation of miR-7, as well as of the Notch and Hedgehog pathways, the conclusions we have drawn from these studies on Drosophila may be applicable to some human cancers.
Collapse
Affiliation(s)
| | | | | | - Maria Dominguez
- Instituto de Neurociencias, CSIC-UMH, Alicante, Spain
- * E-mail:
| |
Collapse
|
45
|
Romer AI, Singh J, Rattan S, Krauss RS. Smooth muscle fascicular reorientation is required for esophageal morphogenesis and dependent on Cdo. ACTA ACUST UNITED AC 2013; 201:309-23. [PMID: 23569214 PMCID: PMC3628509 DOI: 10.1083/jcb.201301005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Cdo-deficient mice have defects in smooth muscle fascicular reorientation during esophageal morphogenesis, resulting in structural and functional defects including an aberrantly proximal skeletal–smooth muscle boundary and achalasia. Postnatal maturation of esophageal musculature involves proximal-to-distal replacement of smooth muscle with skeletal muscle by elusive mechanisms. We report that this process is impaired in mice lacking the cell surface receptor Cdo and identify the underlying developmental mechanism. A myogenic transition zone containing proliferative skeletal muscle precursor cells migrated in a proximal–distal direction, leaving differentiated myofibers in its wake. Distal to the transition zone, smooth muscle fascicles underwent a morphogenetic process whereby they changed their orientation relative to each other and to the lumen. Consequently, a path was cleared for the transition zone, and smooth muscle ultimately occupied only the distal-most esophagus; there was no loss of smooth muscle. Cdo−/− mice were specifically defective in fascicular reorientation, resulting in an aberrantly proximal skeletal–smooth muscle boundary. Furthermore, Cdo−/− mice displayed megaesophagus and achalasia, and their lower esophageal sphincter was resistant to nitric oxide–induced relaxation, suggesting a developmental linkage between patterning and sphincter function. Collectively, these results illuminate mechanisms of esophageal morphogenesis and motility disorders.
Collapse
Affiliation(s)
- Anthony I Romer
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | |
Collapse
|
46
|
Pan A, Chang L, Nguyen A, James AW. A review of hedgehog signaling in cranial bone development. Front Physiol 2013; 4:61. [PMID: 23565096 PMCID: PMC3613593 DOI: 10.3389/fphys.2013.00061] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 03/13/2013] [Indexed: 12/20/2022] Open
Abstract
During craniofacial development, the Hedgehog (HH) signaling pathway is essential for mesodermal tissue patterning and differentiation. The HH family consists of three protein ligands: Sonic Hedgehog (SHH), Indian Hedgehog (IHH), and Desert Hedgehog (DHH), of which two are expressed in the craniofacial complex (IHH and SHH). Dysregulations in HH signaling are well documented to result in a wide range of craniofacial abnormalities, including holoprosencephaly (HPE), hypotelorism, and cleft lip/palate. Furthermore, mutations in HH effectors, co-receptors, and ciliary proteins result in skeletal and craniofacial deformities. Cranial suture morphogenesis is a delicate developmental process that requires control of cell commitment, proliferation and differentiation. This review focuses on both what is known and what remains unknown regarding HH signaling in cranial suture morphogenesis and intramembranous ossification. As demonstrated from murine studies, expression of both SHH and IHH is critical to the formation and fusion of the cranial sutures and calvarial ossification. SHH expression has been observed in the cranial suture mesenchyme and its precise function is not fully defined, although some postulate SHH to delay cranial suture fusion. IHH expression is mainly found on the osteogenic fronts of the calvarial bones, and functions to induce cell proliferation and differentiation. Unfortunately, neonatal lethality of IHH deficient mice precludes a detailed examination of their postnatal calvarial phenotype. In summary, a number of basic questions are yet to be answered regarding domains of expression, developmental role, and functional overlap of HH morphogens in the calvaria. Nevertheless, SHH and IHH ligands are integral to cranial suture development and regulation of calvarial ossification. When HH signaling goes awry, the resultant suite of morphologic abnormalities highlights the important roles of HH signaling in cranial development.
Collapse
Affiliation(s)
- Angel Pan
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | | | | | | |
Collapse
|
47
|
Mercier S, David V, Ratié L, Gicquel I, Odent S, Dupé V. NODAL and SHH dose-dependent double inhibition promotes an HPE-like phenotype in chick embryos. Dis Model Mech 2012; 6:537-43. [PMID: 23264560 PMCID: PMC3597036 DOI: 10.1242/dmm.010132] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Holoprosencephaly (HPE) is a common congenital defect that results from failed or incomplete forebrain cleavage. HPE is characterized by a wide clinical spectrum, with inter- and intrafamilial variability. This heterogeneity is not well understood and it has been suggested that HPE involves a combination of multiple gene mutations. In this model, several mutated alleles or modifying factors are presumed to act in synergy to cause and determine the severity of HPE. This could explain the various clinical phenotypes. Screening for HPE-associated genes in humans suggests the involvement of NODAL or SHH signaling, or both. To test this multigenic hypothesis, we investigated the effects of chemical inhibition of these two main HPE signaling pathways in a chick embryo model. SB-505124, a selective inhibitor of transforming growth factor-B type I receptors was used to inhibit the NODAL pathway. Cyclopamine was used to inhibit the SHH pathway. We report that both inhibitors caused HPE-like defects that were dependent on the drug concentration and on the developmental stage at the time of treatment. We also investigated double inhibition of NODAL and SHH pathways from the onset of gastrulation by using subthreshold inhibitor concentrations. The inhibitors of the NODAL and SHH pathways, even at low concentration, acted synergistically to promote an HPE-like phenotype. These findings support the view that genetic heterogeneity is important in the etiology of HPE and may contribute to the phenotypic variability.
Collapse
Affiliation(s)
- Sandra Mercier
- Institut de Génétique et Développement, CNRS UMR6290, Université de Rennes 1, IFR140 GFAS, Faculté de Médecine, 35043 Rennes, France
| | | | | | | | | | | |
Collapse
|
48
|
Abstract
Hedgehog (Hh) proteins regulate the development of a wide range of metazoan embryonic and adult structures, and disruption of Hh signaling pathways results in various human diseases. Here, we provide a comprehensive review of the signaling pathways regulated by Hh, consolidating data from a diverse array of organisms in a variety of scientific disciplines. Similar to the elucidation of many other signaling pathways, our knowledge of Hh signaling developed in a sequential manner centered on its earliest discoveries. Thus, our knowledge of Hh signaling has for the most part focused on elucidating the mechanism by which Hh regulates the Gli family of transcription factors, the so-called "canonical" Hh signaling pathway. However, in the past few years, numerous studies have shown that Hh proteins can also signal through Gli-independent mechanisms collectively referred to as "noncanonical" signaling pathways. Noncanonical Hh signaling is itself subdivided into two distinct signaling modules: (i) those not requiring Smoothened (Smo) and (ii) those downstream of Smo that do not require Gli transcription factors. Thus, Hh signaling is now proposed to occur through a variety of distinct context-dependent signaling modules that have the ability to crosstalk with one another to form an interacting, dynamic Hh signaling network.
Collapse
Affiliation(s)
- David J Robbins
- Molecular Oncology Program, Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA.
| | | | | |
Collapse
|
49
|
Hong M, Krauss RS. Cdon mutation and fetal ethanol exposure synergize to produce midline signaling defects and holoprosencephaly spectrum disorders in mice. PLoS Genet 2012; 8:e1002999. [PMID: 23071453 PMCID: PMC3469434 DOI: 10.1371/journal.pgen.1002999] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 08/14/2012] [Indexed: 11/18/2022] Open
Abstract
Holoprosencephaly (HPE) is a remarkably common congenital anomaly characterized by failure to define the midline of the forebrain and midface. HPE is associated with heterozygous mutations in Sonic hedgehog (SHH) pathway components, but clinical presentation is extremely variable and many mutation carriers are unaffected. It has been proposed that these observations are best explained by a multiple-hit model, in which the penetrance and expressivity of an HPE mutation is enhanced by a second mutation or the presence of cooperating, but otherwise silent, modifier genes. Non-genetic risk factors are also implicated in HPE, and gene-environment interactions may provide an alternative multiple-hit model to purely genetic multiple-hit models; however, there is little evidence for this contention. We report here a mouse model in which there is dramatic synergy between mutation of a bona fide HPE gene (Cdon, which encodes a SHH co-receptor) and a suspected HPE teratogen, ethanol. Loss of Cdon and in utero ethanol exposure in 129S6 mice give little or no phenotype individually, but together produce defects in early midline patterning, inhibition of SHH signaling in the developing forebrain, and a broad spectrum of HPE phenotypes. Our findings argue that ethanol is indeed a risk factor for HPE, but genetically predisposed individuals, such as those with SHH pathway mutations, may be particularly susceptible. Furthermore, gene-environment interactions are likely to be important in the multifactorial etiology of HPE.
Collapse
Affiliation(s)
| | - Robert S. Krauss
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
50
|
Cameron DA, Middleton FA, Chenn A, Olson EC. Hierarchical clustering of gene expression patterns in the Eomes + lineage of excitatory neurons during early neocortical development. BMC Neurosci 2012; 13:90. [PMID: 22852769 PMCID: PMC3583225 DOI: 10.1186/1471-2202-13-90] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 07/11/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cortical neurons display dynamic patterns of gene expression during the coincident processes of differentiation and migration through the developing cerebrum. To identify genes selectively expressed by the Eomes + (Tbr2) lineage of excitatory cortical neurons, GFP-expressing cells from Tg(Eomes::eGFP) Gsat embryos were isolated to > 99% purity and profiled. RESULTS We report the identification, validation and spatial grouping of genes selectively expressed within the Eomes + cortical excitatory neuron lineage during early cortical development. In these neurons 475 genes were expressed ≥ 3-fold, and 534 genes ≤ 3-fold, compared to the reference population of neuronal precursors. Of the up-regulated genes, 328 were represented at the Genepaint in situ hybridization database and 317 (97%) were validated as having spatial expression patterns consistent with the lineage of differentiating excitatory neurons. A novel approach for quantifying in situ hybridization patterns (QISP) across the cerebral wall was developed that allowed the hierarchical clustering of genes into putative co-regulated groups. Forty four candidate genes were identified that show spatial expression with Intermediate Precursor Cells, 49 candidate genes show spatial expression with Multipolar Neurons, while the remaining 224 genes achieved peak expression in the developing cortical plate. CONCLUSIONS This analysis of differentiating excitatory neurons revealed the expression patterns of 37 transcription factors, many chemotropic signaling molecules (including the Semaphorin, Netrin and Slit signaling pathways), and unexpected evidence for non-canonical neurotransmitter signaling and changes in mechanisms of glucose metabolism. Over half of the 317 identified genes are associated with neuronal disease making these findings a valuable resource for studies of neurological development and disease.
Collapse
Affiliation(s)
- David A Cameron
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | | | | | | |
Collapse
|