1
|
Cappucci U, Proietti M, Casale AM, Schiavo S, Chiavarini S, Accardo S, Manzo S, Piacentini L. Assessing genotoxic effects of plastic leachates in Drosophila melanogaster. CHEMOSPHERE 2024; 361:142440. [PMID: 38821133 DOI: 10.1016/j.chemosphere.2024.142440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 05/16/2024] [Accepted: 05/24/2024] [Indexed: 06/02/2024]
Abstract
Plastic polymers were largely added with chemical substances to be utilized in the items and product manufacturing. The leachability of these substances is a matter of concern given the wide amount of plastic waste, particularly in terrestrial environments, where soil represents a sink for these novel contaminants and a possible pathway of human health risk. In this study, we integrated genetic, molecular, and behavioral approaches to comparatively evaluate toxicological effects of plastic leachates, virgin and oxodegradable polypropylene (PP) and polyethylene (PE), in Drosophila melanogaster, a novel in vivo model organism for environmental monitoring studies and (eco)toxicological research. The results of this study revealed that while conventional toxicological endpoints such as developmental times and longevity remain largely unaffected, exposure to plastic leachates induces chromosomal abnormalities and transposable element (TE) activation in neural tissues. The combined effects of DNA damage and TE mobilization contribute to genome instability and increase the likelihood of LOH events, thus potentiating tumor growth and metastatic behavior ofRasV12 clones. Collectively, these findings indicate that plastic leachates exert genotoxic effects in Drosophila thus highlighting potential risks associated with leachate-related plastic pollution and their implications for ecosystems and human health.
Collapse
Affiliation(s)
- Ugo Cappucci
- Department of Biology and Biotechnologies "C. Darwin", Sapienza University of Rome, P. le A. Moro 5, 00185 Rome, Italy
| | - Mirena Proietti
- Department of Biology and Biotechnologies "C. Darwin", Sapienza University of Rome, P. le A. Moro 5, 00185 Rome, Italy
| | - Assunta Maria Casale
- Department of Biology and Biotechnologies "C. Darwin", Sapienza University of Rome, P. le A. Moro 5, 00185 Rome, Italy
| | - Simona Schiavo
- ENEA, Department for Sustainability, Division Protection and Enhancement of the Natural Capital, P. le E. Fermi 1, 80055 Portici, Na, Italy
| | - Salvatore Chiavarini
- ENEA, Department for Sustainability, Division Protection and Enhancement of the Natural Capital, P. le E. Fermi 1, 80055 Portici, Na, Italy
| | - Sara Accardo
- ENEA, Department for Sustainability, Division Protection and Enhancement of the Natural Capital, P. le E. Fermi 1, 80055 Portici, Na, Italy
| | - Sonia Manzo
- ENEA, Department for Sustainability, Division Protection and Enhancement of the Natural Capital, P. le E. Fermi 1, 80055 Portici, Na, Italy.
| | - Lucia Piacentini
- Department of Biology and Biotechnologies "C. Darwin", Sapienza University of Rome, P. le A. Moro 5, 00185 Rome, Italy.
| |
Collapse
|
2
|
Nuckhir M, Withey D, Cabral S, Harrison H, Clarke RB. State of the Art Modelling of the Breast Cancer Metastatic Microenvironment: Where Are We? J Mammary Gland Biol Neoplasia 2024; 29:14. [PMID: 39012440 PMCID: PMC11252219 DOI: 10.1007/s10911-024-09567-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/09/2024] [Indexed: 07/17/2024] Open
Abstract
Metastatic spread of tumour cells to tissues and organs around the body is the most frequent cause of death from breast cancer. This has been modelled mainly using mouse models such as syngeneic mammary cancer or human in mouse xenograft models. These have limitations for modelling human disease progression and cannot easily be used for investigation of drug resistance and novel therapy screening. To complement these approaches, advances are being made in ex vivo and 3D in vitro models, which are becoming progressively better at reliably replicating the tumour microenvironment and will in the future facilitate drug development and screening. These approaches include microfluidics, organ-on-a-chip and use of advanced biomaterials. The relevant tissues to be modelled include those that are frequent and clinically important sites of metastasis such as bone, lung, brain, liver for invasive ductal carcinomas and a distinct set of common metastatic sites for lobular breast cancer. These sites all have challenges to model due to their unique cellular compositions, structure and complexity. The models, particularly in vivo, provide key information on the intricate interactions between cancer cells and the native tissue, and will guide us in producing specific therapies that are helpful in different context of metastasis.
Collapse
Affiliation(s)
- Mia Nuckhir
- Breast Biology Group, Manchester Breast Centre, Division of Cancer Sciences, Oglesby Cancer Research Building, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M20 4GJ, UK
| | - David Withey
- Breast Biology Group, Manchester Breast Centre, Division of Cancer Sciences, Oglesby Cancer Research Building, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M20 4GJ, UK
| | - Sara Cabral
- Breast Biology Group, Manchester Breast Centre, Division of Cancer Sciences, Oglesby Cancer Research Building, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M20 4GJ, UK
| | - Hannah Harrison
- Breast Biology Group, Manchester Breast Centre, Division of Cancer Sciences, Oglesby Cancer Research Building, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M20 4GJ, UK.
| | - Robert B Clarke
- Breast Biology Group, Manchester Breast Centre, Division of Cancer Sciences, Oglesby Cancer Research Building, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M20 4GJ, UK.
| |
Collapse
|
3
|
Khan C, Rusan NM. Using Drosophila to uncover the role of organismal physiology and the tumor microenvironment in cancer. Trends Cancer 2024; 10:289-311. [PMID: 38350736 PMCID: PMC11008779 DOI: 10.1016/j.trecan.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 02/15/2024]
Abstract
Cancer metastasis causes over 90% of cancer patient fatalities. Poor prognosis is determined by tumor type, the tumor microenvironment (TME), organ-specific biology, and animal physiology. While model organisms do not fully mimic the complexity of humans, many processes can be studied efficiently owing to the ease of genetic, developmental, and cell biology studies. For decades, Drosophila has been instrumental in identifying basic mechanisms controlling tumor growth and metastasis. The ability to generate clonal populations of distinct genotypes in otherwise wild-type animals makes Drosophila a powerful system to study tumor-host interactions at the local and global scales. This review discusses advancements in tumor biology, highlighting the strength of Drosophila for modeling TMEs and systemic responses in driving tumor progression and metastasis.
Collapse
Affiliation(s)
- Chaitali Khan
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Nasser M Rusan
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
4
|
Takarada K, Kinoshita J, Inoue YH. Ectopic expression of matrix metalloproteinases and filopodia extension via JNK activation are involved in the invasion of blood tumor cells in Drosophila mxc mutant. Genes Cells 2023; 28:709-726. [PMID: 37615261 PMCID: PMC11448368 DOI: 10.1111/gtc.13060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/12/2023] [Accepted: 08/12/2023] [Indexed: 08/25/2023]
Abstract
Drosophila mxcmbn1 mutant exhibits severe hyperplasia in larval hematopoietic tissue called the lymph glands (LGs). However, the malignant nature of these cells remains unknown. We aimed to identify if mxcmbn1 LG cells behave as malignant tumor cells and uncover the mechanism(s) underlying the malignancy of the mutant hemocytes. When mutant LG cells were allografted into normal adult abdomens, they continued to proliferate; however, normal LG cells did not proliferate. Mutant circulating hemocytes also attached to the larval central nervous system (CNS), where the basement membrane was disrupted. The mutant hemocytes displayed higher expression of matrix metalloproteinase (MMP) 1 and MMP2 and higher activation of the c-Jun N-terminal kinase (JNK) pathway than normal hemocytes. Depletion of MMPs or JNK mRNAs in LGs resulted in reduced numbers of hemocytes attached to the CNS, suggesting that the invasive phenotype involved elevated expression of MMPs via hyperactivation of the JNK pathway. Moreover, hemocytes with elongated filopodia and extra lamellipodia were frequently observed in the mutant hemolymph, which also depended on JNK signaling. Thus, the MMP upregulation and overextension of actin-based cell protrusions were also involved in hemocyte invasion in mxcmbn1 larvae. These findings contribute to the understanding of molecular mechanisms underlying mammalian leukemic invasion.
Collapse
Affiliation(s)
- Kazuki Takarada
- Research Center of Biomedical Research, Graduate School of Science and TechnologyKyoto Institute of TechnologyKyotoJapan
| | - Juri Kinoshita
- Research Center of Biomedical Research, Graduate School of Science and TechnologyKyoto Institute of TechnologyKyotoJapan
| | - Yoshihiro H. Inoue
- Research Center of Biomedical Research, Graduate School of Science and TechnologyKyoto Institute of TechnologyKyotoJapan
| |
Collapse
|
5
|
Parisi E, Hidalgo I, Montal R, Pallisé O, Tarragona J, Sorolla A, Novell A, Campbell K, Sorolla MA, Casali A, Salud A. PLA2G12A as a Novel Biomarker for Colorectal Cancer with Prognostic Relevance. Int J Mol Sci 2023; 24:10889. [PMID: 37446068 DOI: 10.3390/ijms241310889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/13/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
Metastasis is the leading cause of colorectal cancer (CRC)-related deaths. Therefore, the identification of accurate biomarkers predictive of metastasis is needed to better stratify high-risk patients to provide preferred management and reduce mortality. In this study, we identified 13 new genes that modified circulating tumor cell numbers using a genome-wide genetic screen in a whole animal CRC model. Candidate genes were subsequently evaluated at the gene expression level in both an internal human CRC cohort of 153 patients and an independent cohort from the TCGA including 592 patients. Interestingly, the expression of one candidate, PLA2G12A, significantly correlated with both the time to recurrence and overall survival in our CRC cohort, with its low expression being an indicator of a poor clinical outcome. By examining the TCGA cohort, we also found that low expression of PLA2G12A was significantly enriched in epithelial-mesenchymal transition signatures. Finally, the candidate functionality was validated in vitro using three different colon cancer cell lines, revealing that PLA2G12A deficiency increases cell proliferation, migration, and invasion. Overall, our study identifies PLA2G12A as a prognostic biomarker of early-stage CRC, providing evidence that its deficiency promotes tumor growth and dissemination.
Collapse
Affiliation(s)
- Eva Parisi
- Research Group of Cancer Biomarkers, Biomedical Research Institute of Lleida (IRBLleida), 25198 Lleida, Spain
- Department of Experimental Medicine, University of Lleida, 25198 Lleida, Spain
| | - Ivan Hidalgo
- Research Group of Cancer Biomarkers, Biomedical Research Institute of Lleida (IRBLleida), 25198 Lleida, Spain
| | - Robert Montal
- Research Group of Cancer Biomarkers, Biomedical Research Institute of Lleida (IRBLleida), 25198 Lleida, Spain
- Department of Medical Oncology, Arnau de Vilanova University Hospital (HUAV), 25198 Lleida, Spain
- Department of Basic Medical Sciences, University of Lleida and IRBLleida, 25198 Lleida, Spain
| | - Ona Pallisé
- Research Group of Cancer Biomarkers, Biomedical Research Institute of Lleida (IRBLleida), 25198 Lleida, Spain
- Department of Medical Oncology, Arnau de Vilanova University Hospital (HUAV), 25198 Lleida, Spain
| | - Jordi Tarragona
- Department of Pathology and Molecular Genetics/Oncologic Pathology Group, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida, CIBERONC, 25198 Lleida, Spain
| | - Anabel Sorolla
- Research Group of Cancer Biomarkers, Biomedical Research Institute of Lleida (IRBLleida), 25198 Lleida, Spain
| | - Anna Novell
- Research Group of Cancer Biomarkers, Biomedical Research Institute of Lleida (IRBLleida), 25198 Lleida, Spain
| | - Kyra Campbell
- School of Biosciences, The University of Sheffield, Sheffield S10 2TN, UK
| | - Maria Alba Sorolla
- Research Group of Cancer Biomarkers, Biomedical Research Institute of Lleida (IRBLleida), 25198 Lleida, Spain
| | - Andreu Casali
- Department of Basic Medical Sciences, University of Lleida and IRBLleida, 25198 Lleida, Spain
| | - Antonieta Salud
- Research Group of Cancer Biomarkers, Biomedical Research Institute of Lleida (IRBLleida), 25198 Lleida, Spain
- Department of Medical Oncology, Arnau de Vilanova University Hospital (HUAV), 25198 Lleida, Spain
- Department of Medicine, University of Lleida, 25198 Lleida, Spain
| |
Collapse
|
6
|
Deng Y, Peng D, Xiao J, Zhao Y, Ding W, Yuan S, Sun L, Ding J, Zhou Z, Zhan M. Inhibition of the transcription factor ZNF281 by SUFU to suppress tumor cell migration. Cell Death Differ 2023; 30:702-715. [PMID: 36220888 PMCID: PMC9984498 DOI: 10.1038/s41418-022-01073-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 03/05/2023] Open
Abstract
Although the Hedgehog (Hh) pathway plays an evolutionarily conserved role from Drosophila to mammals, some divergences also exist. Loss of Sufu, an important component of the Hh pathway, does not lead to an obvious developmental defect in Drosophila. However, in mammals, loss of SUFU results in serious disorder, even various cancers. This divergence suggests that SUFU plays additional roles in mammalian cells, besides regulating the Hh pathway. Here, we identify that the transcription factor ZNF281 is a novel binding partner of SUFU. Intriguingly, the Drosophila genome does not encode any homologs of ZNF281. SUFU is able to suppress ZNF281-induced tumor cell migration and DNA damage repair by inhibiting ZNF281 activity. Mechanistically, SUFU binds ZNF281 to mask the nuclear localization signal of ZNF281, culminating in ZNF281 cytoplasmic retention. In addition, SUFU also hampers the interactions between ZNF281 and promoters of target genes. Finally, we show that SUFU is able to inhibit ZNF281-induced tumor cell migration using an in vivo model. Taken together, these results uncover a Hh-independent mechanism of SUFU exerting the anti-tumor role, in which SUFU suppresses tumor cell migration through antagonizing ZNF281. Therefore, this study provides a possible explanation for the functional divergence of SUFU in mammals and Drosophila.
Collapse
Affiliation(s)
- Yanran Deng
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, 210009, Nanjing, China
| | - Dezhen Peng
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, 210009, Nanjing, China
| | - Jing Xiao
- Center of Intervention radiology, Zhuhai Precision Medicine Center, Zhuhai People's Hospital, 519000, Zhuhai, China
| | - Yunhe Zhao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, 271018, Tai'an, China
| | - Wenhao Ding
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, 271018, Tai'an, China
| | - Shengtao Yuan
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, 210009, Nanjing, China
| | - Li Sun
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, 210009, Nanjing, China
| | - Jian Ding
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, 210009, Nanjing, China.
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China.
| | - Zizhang Zhou
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, 271018, Tai'an, China.
| | - Meixiao Zhan
- Center of Intervention radiology, Zhuhai Precision Medicine Center, Zhuhai People's Hospital, 519000, Zhuhai, China.
| |
Collapse
|
7
|
Fruit fly for anticancer drug discovery and repurposing. Ann Med Surg (Lond) 2023; 85:337-342. [PMID: 36845805 PMCID: PMC9949803 DOI: 10.1097/ms9.0000000000000222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 01/01/2023] [Indexed: 02/28/2023] Open
|
8
|
Egger B. Neural Stem Cells and Brain Tumour Models in Drosophila. Neurogenetics 2023. [DOI: 10.1007/978-3-031-07793-7_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
9
|
WiFi Related Radiofrequency Electromagnetic Fields Promote Transposable Element Dysregulation and Genomic Instability in Drosophila melanogaster. Cells 2022; 11:cells11244036. [PMID: 36552798 PMCID: PMC9776602 DOI: 10.3390/cells11244036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/02/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Exposure to artificial radio frequency electromagnetic fields (RF-EMFs) has greatly increased in recent years, thus promoting a growing scientific and social interest in deepening the biological impact of EMFs on living organisms. The current legislation governing the exposure to RF-EMFs is based exclusively on their thermal effects, without considering the possible non-thermal adverse health effects from long term exposure to EMFs. In this study we investigated the biological non-thermal effects of low-level indoor exposure to RF-EMFs produced by WiFi wireless technologies, using Drosophila melanogaster as the model system. Flies were exposed to 2.4 GHz radiofrequency in a Transverse Electromagnetic (TEM) cell device to ensure homogenous controlled fields. Signals were continuously monitored during the experiments and regulated at non thermal levels. The results of this study demonstrate that WiFi electromagnetic radiation causes extensive heterochromatin decondensation and thus a general loss of transposable elements epigenetic silencing in both germinal and neural tissues. Moreover, our findings provide evidence that WiFi related radiofrequency electromagnetic fields can induce reactive oxygen species (ROS) accumulation, genomic instability, and behavioural abnormalities. Finally, we demonstrate that WiFi radiation can synergize with RasV12 to drive tumor progression and invasion. All together, these data indicate that radiofrequency radiation emitted from WiFi devices could exert genotoxic effects in Drosophila and set the stage to further explore the biological effects of WiFi electromagnetic radiation on living organisms.
Collapse
|
10
|
Hashemi L, Ormsbee ME, Patel PJ, Nielson JA, Ahlander J, Padash Barmchi M. A Drosophila model of HPV16-induced cancer reveals conserved disease mechanism. PLoS One 2022; 17:e0278058. [PMID: 36508448 PMCID: PMC9744332 DOI: 10.1371/journal.pone.0278058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 11/09/2022] [Indexed: 12/14/2022] Open
Abstract
High-risk human papillomaviruses (HR-HPVs) cause almost all cervical cancers and a significant number of vaginal, vulvar, penile, anal, and oropharyngeal cancers. HPV16 and 18 are the most prevalent types among HR-HPVs and together cause more than 70% of all cervical cancers. Low vaccination rate and lack of molecularly-targeted therapeutics for primary therapy have led to a slow reduction in cervical cancer incidence and high mortality rate. Hence, creating new models of HPV-induced cancer that can facilitate understanding of the disease mechanism and identification of key cellular targets of HPV oncogenes are important for development of new interventions. Here in this study, we used the tissue-specific expression technique, Gal4-UAS, to establish the first Drosophila model of HPV16-induced cancer. Using this technique, we expressed HPV16 oncogenes E5, E6, E7 and the human E3 ligase (hUBE3A) specifically in the epithelia of Drosophila eye, which allows simple phenotype scoring without affecting the viability of the organism. We found that, as in human cells, hUBE3A is essential for cellular abnormalities caused by HPV16 oncogenes in flies. Several proteins targeted for degradation by HPV16 oncoproteins in human cells were also reduced in the Drosophila epithelial cells. Cell polarity and adhesion were compromised, resulting in impaired epithelial integrity. Cells did not differentiate to the specific cell types of ommatidia, but instead were transformed into neuron-like cells. These cells extended axon-like structures to connect to each other and exhibited malignant behavior, migrating away to distant sites. Our findings suggest that given the high conservation of genes and signaling pathways between humans and flies, the Drosophila model of HPV16- induced cancer could serve as an excellent model for understanding the disease mechanism and discovery of novel molecularly-targeted therapeutics.
Collapse
Affiliation(s)
- Lydia Hashemi
- Department of Biology, University of Oklahoma, Norman, OK, United States of America
| | - McKenzi E. Ormsbee
- Department of Biology, University of Oklahoma, Norman, OK, United States of America
| | - Prashant J. Patel
- Department of Biology, University of Oklahoma, Norman, OK, United States of America
| | - Jacquelyn A. Nielson
- Stead Family Department of Pediatrics, University of Iowa, Iowa City, IA, United States of America
| | - Joseph Ahlander
- Department of Natural Sciences, Northeastern State University, Broken Arrow, OK, United States of America
| | - Mojgan Padash Barmchi
- Department of Biology, University of Oklahoma, Norman, OK, United States of America
- * E-mail:
| |
Collapse
|
11
|
Xu M, Ren P, Tian J, Xiao L, Hu P, Chen P, Li W, Xue L. dGLYAT modulates Gadd45-mediated JNK activation and cell invasion. Cell Div 2022; 17:4. [PMID: 35933447 PMCID: PMC9357319 DOI: 10.1186/s13008-022-00080-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 07/22/2022] [Indexed: 11/10/2022] Open
Abstract
Background Cell invasion is a crucial step of tumor metastasis, finding new regulators of which offers potential drug targets for cancer therapy. Aberrant GLYAT expression is associated with human cancers, yet its role in cancer remains unknown. This study aims to understand the function and mechanism of Drosophila GLYAT in cell invasion. Results We found that dGLYAT regulates Gadd45-mediated JNK pathway activation and cell invasion. Firstly, loss of dGLYAT suppressed scrib depletion- or Egr overexpression-induced JNK pathway activation and invasive cell migration. Secondary, mRNA-seq analysis identified Gadd45 as a potential transcriptional target of dGLYAT, as depletion of dGLYAT decreased Gadd45 mRNA level. Finally, Gadd45 knockdown suppressed scrib depletion-induced JNK pathway activation and cell invasion. Conclusions These evidences reveal the role of dGLYAT and Gadd45 in JNK-dependent cell invasion, and provide insight for the roles of their human homologs in cancers. Supplementary Information The online version contains supplementary material available at 10.1186/s13008-022-00080-5.
Collapse
|
12
|
Singh G, Chakraborty S, Lakhotia SC. Elevation of major constitutive heat shock proteins is heat shock factor independent and essential for establishment and growth of Lgl loss and Yorkie gain-mediated tumors in Drosophila. Cell Stress Chaperones 2022; 27:431-448. [PMID: 35704239 PMCID: PMC9346025 DOI: 10.1007/s12192-022-01283-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 05/29/2022] [Accepted: 05/31/2022] [Indexed: 01/03/2023] Open
Abstract
Cancer cells generally overexpress heat shock proteins (Hsps), the major components of cellular stress response, to overcome and survive the diverse stresses. However, the specific roles of Hsps in initiation and establishment of cancers remain unclear. Using loss of Lgl-mediated epithelial tumorigenesis in Drosophila, we induced tumorigenic somatic clones of different genetic backgrounds to examine the temporal and spatial expression and roles of major heat shock proteins in tumor growth. The constitutively expressed Hsp83, Hsc70 (heat shock cognate), Hsp60 and Hsp27 show elevated levels in all cells of the tumorigenic clone since early stages, which persists till their transformation. However, the stress-inducible Hsp70 is expressd only in a few cells at later stage of established tumorous clones that show high F-actin aggregation. Intriguingly, levels of heat shock factor (HSF), the master regulator of Hsps, remain unaltered in these tumorous cells and its down-regulation does not affect tumorigenic growth of lgl- clones overexpressing Yorkie, although down-regulation of Hsp83 prevents their survival and growth. Interestingly, overexpression of HSF or Hsp83 in lgl- cells makes them competitively successful in establishing tumorous clones. These results show that the major constitutively expressed Hsps, but not the stress-inducible Hsp70, are involved in early as well as late stages of epithelial tumors and their elevated expression in lgl- clones co-overexpressing Yorkie is independent of HSF.
Collapse
Affiliation(s)
- Gunjan Singh
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, 221005 India
| | - Saptomee Chakraborty
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, 221005 India
- Present Address: Department of Biosciences & Bioengineering, Indian Institute of Technology, Kanpur, India
| | - Subhash C. Lakhotia
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, 221005 India
| |
Collapse
|
13
|
Ding X, Li Z, Lin G, Li W, Xue L. Toll-7 promotes tumour growth and invasion in Drosophila. Cell Prolif 2022; 55:e13188. [PMID: 35050535 PMCID: PMC8828261 DOI: 10.1111/cpr.13188] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 12/30/2021] [Accepted: 01/02/2022] [Indexed: 12/25/2022] Open
Abstract
Objectives Drosophila melanogaster has become an excellent model organism to explore the genetic mechanisms underlying tumour progression. Here, by using well‐established Drosophila tumour models, we identified Toll‐7 as a novel regulator of tumour growth and invasion. Materials and methods Transgenic flies and genetic epistasis analysis were used. All flies were raised on a standard cornmeal and agar medium at 25°C unless otherwise indicated. Immunostaining and RT‐qPCR were performed by standard procedures. Images were taken by OLYMPUS BX51 microscope and Zeiss LSM 880 confocal microscope. Adobe Photoshop 2020 and Zeiss Zen were used to analyse the images. All results were presented in Scatter plots or Column bar graphs created by GraphPad Prism 8.0. Results Loss of Toll‐7 suppresses RasV12/lgl−/−‐induced tumour growth and invasion, as well as cell polarity disruption‐induced invasive cell migration, whereas expression of a constitutively active allele of Toll‐7 is sufficient to promote tumorous growth and cell migration. In addition, the Egr‐JNK signalling is necessary and sufficient for Toll‐7‐induced invasive cell migration. Mechanistically, Toll‐7 facilitates the endocytosis of Egr, which is known to activate JNK in the early endosomes. Moreover, Toll‐7 activates the EGFR‐Ras signalling, which cooperates with the Egr‐JNK signalling to promote Yki‐mediated cell proliferation and tissue overgrowth. Finally, Toll‐7 is necessary and sufficient for the proper maintenance of EGFR protein level. Conclusions Our findings characterized Toll‐7 as a proto‐oncogene that promotes tumour growth and invasion in Drosophila, which shed light on the pro‐tumour function of mammalian Toll‐like receptors (TLRs).
Collapse
Affiliation(s)
- Xiang Ding
- Institute of Intervention Vessel, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Zhuojie Li
- Institute of Intervention Vessel, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Gufa Lin
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Wenzhe Li
- Institute of Intervention Vessel, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Lei Xue
- Institute of Intervention Vessel, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, Shanghai, China.,Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, China
| |
Collapse
|
14
|
Drosophila Accessory Gland: A Complementary In Vivo Model to Bring New Insight to Prostate Cancer. Cells 2021; 10:cells10092387. [PMID: 34572036 PMCID: PMC8468328 DOI: 10.3390/cells10092387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/03/2021] [Accepted: 09/08/2021] [Indexed: 11/16/2022] Open
Abstract
Prostate cancer is the most common cancer in aging men. Despite recent progress, there are still few effective treatments to cure its aggressive and metastatic stages. A better understanding of the molecular mechanisms driving disease initiation and progression appears essential to support the development of more efficient therapies and improve patient care. To do so, multiple research models, such as cell culture and mouse models, have been developed over the years and have improved our comprehension of the biology of the disease. Recently, a new model has been added with the use of the Drosophila accessory gland. With a high level of conservation of major signaling pathways implicated in human disease, this functional equivalent of the prostate represents a powerful, inexpensive, and rapid in vivo model to study epithelial carcinogenesis. The purpose of this review is to quickly overview the existing prostate cancer models, including their strengths and limitations. In particular, we discuss how the Drosophila accessory gland can be integrated as a convenient complementary model by bringing new understanding in the mechanisms driving prostate epithelial tumorigenesis, from initiation to metastatic formation.
Collapse
|
15
|
Wang XF, Yang SA, Gong S, Chang CH, Portilla JM, Chatterjee D, Irianto J, Bao H, Huang YC, Deng WM. Polyploid mitosis and depolyploidization promote chromosomal instability and tumor progression in a Notch-induced tumor model. Dev Cell 2021; 56:1976-1988.e4. [PMID: 34146466 DOI: 10.1016/j.devcel.2021.05.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 03/18/2021] [Accepted: 05/27/2021] [Indexed: 02/07/2023]
Abstract
Ploidy variation is a cancer hallmark and is frequently associated with poor prognosis in high-grade cancers. Using a Drosophila solid-tumor model where oncogenic Notch drives tumorigenesis in a transition-zone microenvironment in the salivary gland imaginal ring, we find that the tumor-initiating cells normally undergo endoreplication to become polyploid. Upregulation of Notch signaling, however, induces these polyploid transition-zone cells to re-enter mitosis and undergo tumorigenesis. Growth and progression of the transition-zone tumor are fueled by a combination of polyploid mitosis, endoreplication, and depolyploidization. Both polyploid mitosis and depolyploidization are error prone, resulting in chromosomal copy-number variation and polyaneuploidy. Comparative RNA-seq and epistasis analysis reveal that the DNA-damage response genes, also active during meiosis, are upregulated in these tumors and are required for the ploidy-reduction division. Together, these findings suggest that polyploidy and associated cell-cycle variants are critical for increased tumor-cell heterogeneity and genome instability during cancer progression.
Collapse
Affiliation(s)
- Xian-Feng Wang
- Department of Biochemistry and Molecular Biology, Tulane University Louisiana Center Research Center, New Orleans, LA 70112, USA
| | - Sheng-An Yang
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Shangyu Gong
- Department of Biochemistry and Molecular Biology, Tulane University Louisiana Center Research Center, New Orleans, LA 70112, USA
| | - Chih-Hsuan Chang
- Department of Biochemistry and Molecular Biology, Tulane University Louisiana Center Research Center, New Orleans, LA 70112, USA
| | - Juan Martin Portilla
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Deeptiman Chatterjee
- Department of Biochemistry and Molecular Biology, Tulane University Louisiana Center Research Center, New Orleans, LA 70112, USA
| | - Jerome Irianto
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32306, USA
| | - Hongcun Bao
- Department of Biochemistry and Molecular Biology, Tulane University Louisiana Center Research Center, New Orleans, LA 70112, USA
| | - Yi-Chun Huang
- Department of Biochemistry and Molecular Biology, Tulane University Louisiana Center Research Center, New Orleans, LA 70112, USA
| | - Wu-Min Deng
- Department of Biochemistry and Molecular Biology, Tulane University Louisiana Center Research Center, New Orleans, LA 70112, USA; Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA.
| |
Collapse
|
16
|
Sajjad H, Imtiaz S, Noor T, Siddiqui YH, Sajjad A, Zia M. Cancer models in preclinical research: A chronicle review of advancement in effective cancer research. Animal Model Exp Med 2021; 4:87-103. [PMID: 34179717 PMCID: PMC8212826 DOI: 10.1002/ame2.12165] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/04/2021] [Indexed: 12/15/2022] Open
Abstract
Cancer is a major stress for public well-being and is the most dreadful disease. The models used in the discovery of cancer treatment are continuously changing and extending toward advanced preclinical studies. Cancer models are either naturally existing or artificially prepared experimental systems that show similar features with human tumors though the heterogeneous nature of the tumor is very familiar. The choice of the most fitting model to best reflect the given tumor system is one of the real difficulties for cancer examination. Therefore, vast studies have been conducted on the cancer models for developing a better understanding of cancer invasion, progression, and early detection. These models give an insight into cancer etiology, molecular basis, host tumor interaction, the role of microenvironment, and tumor heterogeneity in tumor metastasis. These models are also used to predict novel cancer markers, targeted therapies, and are extremely helpful in drug development. In this review, the potential of cancer models to be used as a platform for drug screening and therapeutic discoveries are highlighted. Although none of the cancer models is regarded as ideal because each is associated with essential caveats that restraint its application yet by bridging the gap between preliminary cancer research and translational medicine. However, they promise a brighter future for cancer treatment.
Collapse
Affiliation(s)
- Humna Sajjad
- Department of BiotechnologyQuaid‐i‐Azam UniversityIslamabadPakistan
| | - Saiqa Imtiaz
- Department of BiotechnologyQuaid‐i‐Azam UniversityIslamabadPakistan
| | - Tayyaba Noor
- Department of BiotechnologyQuaid‐i‐Azam UniversityIslamabadPakistan
| | | | - Anila Sajjad
- Department of BiotechnologyQuaid‐i‐Azam UniversityIslamabadPakistan
| | - Muhammad Zia
- Department of BiotechnologyQuaid‐i‐Azam UniversityIslamabadPakistan
| |
Collapse
|
17
|
Estella C, Baonza A. Cell proliferation control by Notch signalling during imaginal discs development in Drosophila. AIMS GENETICS 2021. [DOI: 10.3934/genet.2015.1.70] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
AbstractThe Notch signalling pathway is evolutionary conserved and participates in numerous developmental processes, including the control of cell proliferation. However, Notch signalling can promote or restrain cell division depending on the developmental context, as has been observed in human cancer where Notch can function as a tumor suppressor or an oncogene. Thus, the outcome of Notch signalling can be influenced by the cross-talk between Notch and other signalling pathways. The use of model organisms such as Drosophila has been proven to be very valuable to understand the developmental role of the Notch pathway in different tissues and its relationship with other signalling pathways during cell proliferation control. Here we review recent studies in Drosophila that shed light in the developmental control of cell proliferation by the Notch pathway in different contexts such as the eye, wing and leg imaginal discs. We also discuss the autonomous and non-autonomous effects of the Notch pathway on cell proliferation and its interactions with different signalling pathways.
Collapse
Affiliation(s)
- Carlos Estella
- Departamento de Biología Molecular and Centro de Biología Molecular SeveroOchoa, Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Antonio Baonza
- Centro de Biología Molecular Severo Ochoa (CSIC/UAM) c/Nicolás Cabrera 1, 28049, Madrid, Spain
| |
Collapse
|
18
|
Ma X. Context-dependent interplay between Hippo and JNK pathway in Drosophila. AIMS GENETICS 2021. [DOI: 10.3934/genet.2014.1.20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
AbstractBoth Hippo and JNK signaling have well-established roles in regulating many physiological processes, including cell proliferation, growth, survival, and migration. An increasing body of evidence shows that dysregulation of either Hippo or JNK pathway would lead to tumorigenesis. Recently, studies in Drosophila has coupled Hippo with JNK pathway in numerous ways ranging from tissue regeneration to growth control. In this review, I provide an overview of the current understanding of crosstalk between Hippo and JNK pathway in Drosophila, and discuss their context-dependent interactions in gut homeostasis, regeneration, cell competition and migration.
Collapse
Affiliation(s)
- Xianjue Ma
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
19
|
Elmore LW, Greer SF, Daniels EC, Saxe CC, Melner MH, Krawiec GM, Cance WG, Phelps WC. Blueprint for cancer research: Critical gaps and opportunities. CA Cancer J Clin 2021; 71:107-139. [PMID: 33326126 DOI: 10.3322/caac.21652] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/15/2020] [Accepted: 10/15/2020] [Indexed: 12/12/2022] Open
Abstract
We are experiencing a revolution in cancer. Advances in screening, targeted and immune therapies, big data, computational methodologies, and significant new knowledge of cancer biology are transforming the ways in which we prevent, detect, diagnose, treat, and survive cancer. These advances are enabling durable progress in the goal to achieve personalized cancer care. Despite these gains, more work is needed to develop better tools and strategies to limit cancer as a major health concern. One persistent gap is the inconsistent coordination among researchers and caregivers to implement evidence-based programs that rely on a fuller understanding of the molecular, cellular, and systems biology mechanisms underpinning different types of cancer. Here, the authors integrate conversations with over 90 leading cancer experts to highlight current challenges, encourage a robust and diverse national research portfolio, and capture timely opportunities to advance evidence-based approaches for all patients with cancer and for all communities.
Collapse
Affiliation(s)
- Lynne W Elmore
- Office of the Chief Medical and Scientific Officer, American Cancer Society, Atlanta, Georgia
| | - Susanna F Greer
- Office of the Chief Medical and Scientific Officer, American Cancer Society, Atlanta, Georgia
| | - Elvan C Daniels
- Office of the Chief Medical and Scientific Officer, American Cancer Society, Atlanta, Georgia
| | - Charles C Saxe
- Office of the Chief Medical and Scientific Officer, American Cancer Society, Atlanta, Georgia
| | - Michael H Melner
- Office of the Chief Medical and Scientific Officer, American Cancer Society, Atlanta, Georgia
| | - Ginger M Krawiec
- Office of the Chief Medical and Scientific Officer, American Cancer Society, Atlanta, Georgia
| | - William G Cance
- Office of the Chief Medical and Scientific Officer, American Cancer Society, Atlanta, Georgia
| | - William C Phelps
- Office of the Chief Medical and Scientific Officer, American Cancer Society, Atlanta, Georgia
| |
Collapse
|
20
|
Gong S, Zhang Y, Bao H, Wang X, Chang CH, Huang YC, Deng WM. Tumor Allotransplantation in Drosophila melanogaster with a Programmable Auto-Nanoliter Injector. J Vis Exp 2021. [PMID: 33616117 DOI: 10.3791/62229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
This protocol describes the allotransplantation of tumors in Drosophila melanogaster using an auto-nanoliter injection apparatus. With the use of an autoinjector apparatus, trained operators can achieve more efficient and consistent transplantation results compared to those obtained using a manual injector. Here, we cover topics in a chronological fashion: from the crossing of Drosophila lines, to the induction and dissection of the primary tumor, transplantation of the primary tumor into a new adult host and continued generational transplantation of the tumor for extended studies. As a demonstration, here we use Notch intracellular domain (NICD) overexpression induced salivary gland imaginal ring tumors for generational transplantation. These tumors can first be reliably induced in a transition-zone microenvironment within larval salivary gland imaginal rings, then allografted and cultured in vivo to study continued tumor growth, evolution, and metastasis. This allotransplantation method can be useful in potential drug screening programs, as well as for studying tumor-host interactions.
Collapse
Affiliation(s)
- Shangyu Gong
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine
| | - Yichi Zhang
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine
| | - Hongcun Bao
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine
| | - Xianfeng Wang
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine
| | - Chih-Hsuan Chang
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine
| | - Yi-Chun Huang
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine
| | - Wu-Min Deng
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine;
| |
Collapse
|
21
|
Wei T, Ji X, Xue J, Gao Y, Zhu X, Xiao G. Cyanidin-3-O-glucoside represses tumor growth and invasion in vivo by suppressing autophagy via inhibition of the JNK signaling pathways. Food Funct 2020; 12:387-396. [PMID: 33326533 DOI: 10.1039/d0fo02107e] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Black bean seed coat extract (BBSCE) contains a high amount of bioactive compounds which can reduce the risk of cancers, but the underlying mechanism remains poorly understood in vivo. Here using a Drosophila model of a malignant tumor, wherein the activated oncogene Raf (RafGOF) cooperates with loss-of-function mutations in the conserved tumor suppressor scribble (scrib-/-), we investigated the antitumor mechanism of BBSCE and its main active component cyanidin-3-O-glucoside (C3G) in vivo. The results showed that supplementation of either BBSCE or C3G inhibited the tumor growth and invasion of RafGOFscrib-/- and extended their survival in a dose dependent manner. Strikingly, the activation of both autonomous and non-autonomous autophagy in tumor flies was significantly reduced by C3G treatment. A further study indicated that C3G exhibited an antitumor effect in vivo by blocking autophagy both in tumor cells and in its microenvironment by inhibiting the JNK pathway. Interestingly, the efficacy of chloroquine (CQ, an autophagy inhibitor used as an antitumor agent) combined with C3G is much better than either C3G or CQ treatment alone. C3G may be combined with CQ to treat cancers and to provide a theoretical basis for functional food or natural medicine development.
Collapse
Affiliation(s)
- Tian Wei
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China.
| | - Xiaowen Ji
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China.
| | - Jinsong Xue
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China.
| | - Yan Gao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China.
| | - Xiaomei Zhu
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, China
| | - Guiran Xiao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China.
| |
Collapse
|
22
|
Arthurton L, Nahotko DA, Alonso J, Wendler F, Baena‐Lopez LA. Non-apoptotic caspase activation preserves Drosophila intestinal progenitor cells in quiescence. EMBO Rep 2020; 21:e48892. [PMID: 33135280 PMCID: PMC7726796 DOI: 10.15252/embr.201948892] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/21/2020] [Accepted: 10/01/2020] [Indexed: 12/11/2022] Open
Abstract
Caspase malfunction in stem cells often precedes the appearance and progression of multiple types of cancer, including human colorectal cancer. However, the caspase-dependent regulation of intestinal stem cell properties remains poorly understood. Here, we demonstrate that Dronc, the Drosophila ortholog of caspase-9/2 in mammals, limits the number of intestinal progenitor cells and their entry into the enterocyte differentiation programme. Strikingly, these unexpected roles for Dronc are non-apoptotic and have been uncovered under experimental conditions without epithelial replenishment. Supporting the non-apoptotic nature of these functions, we show that they require the enzymatic activity of Dronc, but are largely independent of the apoptotic pathway. Alternatively, our genetic and functional data suggest that they are linked to the caspase-mediated regulation of Notch signalling. Our findings provide novel insights into the non-apoptotic, caspase-dependent modulation of stem cell properties that could improve our understanding of the origin of intestinal malignancies.
Collapse
Affiliation(s)
- Lewis Arthurton
- Sir William Dunn School of PathologyUniversity of OxfordOxfordshireUK
| | | | - Jana Alonso
- Laboratorio de Agrobiología Juan José Bravo Rodríguez (Cabildo Insular de La Palma)Unidad Técnica del IPNA‐CSICSanta Cruz de La PalmaSpain
| | - Franz Wendler
- Sir William Dunn School of PathologyUniversity of OxfordOxfordshireUK
| | | |
Collapse
|
23
|
Nagarkar S, Wasnik R, Govada P, Cohen S, Shashidhara LS. Promoter Proximal Pausing Limits Tumorous Growth Induced by the Yki Transcription Factor in Drosophila. Genetics 2020; 216:67-77. [PMID: 32737120 PMCID: PMC7463282 DOI: 10.1534/genetics.120.303419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 07/27/2020] [Indexed: 12/15/2022] Open
Abstract
Promoter proximal pausing (PPP) of RNA polymerase II has emerged as a crucial rate-limiting step in the regulation of gene expression. Regulation of PPP is brought about by complexes 7SK snRNP, P-TEFb (Cdk9/cycT), and the negative elongation factor (NELF), which are highly conserved from Drosophila to humans. Here, we show that RNAi-mediated depletion of bin3 or Hexim of the 7SK snRNP complex or depletion of individual components of the NELF complex enhances Yki-driven growth, leading to neoplastic transformation of Drosophila wing imaginal discs. We also show that increased CDK9 expression cooperates with Yki in driving neoplastic growth. Interestingly, overexpression of CDK9 on its own or in the background of depletion of one of the components of 7SK snRNP or the NELF complex necessarily, and specifically, needed Yki overexpression to cause tumorous growth. Genome-wide gene expression analyses suggested that deregulation of protein homeostasis is associated with tumorous growth of wing imaginal discs. As both Fat/Hippo/Yki pathway and PPP are highly conserved, our observations may provide insights into mechanisms of oncogenic function of YAP-the ortholog of Yki in humans.
Collapse
Affiliation(s)
- Sanket Nagarkar
- Indian Institute of Science Education and Research (IISER), Pashan, Pune 411008
| | - Ruchi Wasnik
- Indian Institute of Science Education and Research (IISER), Pashan, Pune 411008
| | - Pravallika Govada
- Indian Institute of Science Education and Research (IISER), Pashan, Pune 411008
| | - Stephen Cohen
- Department of Cellular and Molecular Medicine, University of Copenhagen, 2200N, Denmark
| | - L S Shashidhara
- Indian Institute of Science Education and Research (IISER), Pashan, Pune 411008
- Ashoka University, Sonepat, Haryana 131029, India
| |
Collapse
|
24
|
Mishra R, Kunar R, Mandal L, Alone DP, Chandrasekharan S, Tiwari AK, Tapadia MG, Mukherjee A, Roy JK. A Forward Genetic Approach to Mapping a P-Element Second Site Mutation Identifies DCP2 as a Novel Tumor Suppressor in Drosophila melanogaster. G3 (BETHESDA, MD.) 2020; 10:2601-2618. [PMID: 32591349 PMCID: PMC7407449 DOI: 10.1534/g3.120.401501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 06/23/2020] [Indexed: 11/18/2022]
Abstract
The use of transposons to create mutations has been the cornerstone of Drosophila genetics in the past few decades. Second-site mutations caused by transpositions are often devoid of transposons and thereby affect subsequent analyses. In a P-element mutagenesis screen, a second site mutation was identified on chromosome 3, wherein the homozygous mutants exhibit classic hallmarks of tumor suppressor mutants, including brain tumor and lethality; hence the mutant line was initially named as lethal (3) tumorous brain [l(3)tb]. Classical genetic approaches relying on meiotic recombination and subsequent complementation with chromosomal deletions and gene mutations mapped the mutation to CG6169, the mRNA decapping protein 2 (DCP2), on the left arm of the third chromosome (3L). Thus the mutation was renamed as DCP2l(3)tb Fine mapping of the mutation further identified the presence of a Gypsy-LTR like sequence in the 5'UTR coding region of DCP2, along with the expansion of the adjacent upstream intergenic AT-rich sequence. The mutant phenotypes are rescued by the introduction of a functional copy of DCP2 in the mutant background, thereby establishing the causal role of the mutation and providing a genetic validation of the allelism. With the increasing repertoire of genes being associated with tumor biology, this is the first instance of mRNA decapping protein being implicated in Drosophila tumorigenesis. Our findings, therefore, imply a plausible role for the mRNA degradation pathway in tumorigenesis and identify DCP2 as a potential candidate for future explorations of cell cycle regulatory mechanisms.
Collapse
Affiliation(s)
- Rakesh Mishra
- Cytogenetics Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Rohit Kunar
- Cytogenetics Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Lolitika Mandal
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Manauli 140306, India
| | - Debasmita Pankaj Alone
- School of Biological Sciences, National Institute of Science Education and Research, HBNI, Bhimpur-Padanpur, Jatni, 752020 Khurda
| | - Shanti Chandrasekharan
- Division of Genetics, Indian Agricultural Research Institute, Pusa, New Delhi, Delhi, 110012 India
| | - Anand Krishna Tiwari
- School of Biological Sciences and Biotechnology, Indian Institute of Advanced Research, Koba, Gandhinagar 382 007, India
| | - Madhu Gwaldas Tapadia
- Cytogenetics Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Ashim Mukherjee
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Jagat Kumar Roy
- Cytogenetics Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
25
|
Dissemination of Ras V12-transformed cells requires the mechanosensitive channel Piezo. Nat Commun 2020; 11:3568. [PMID: 32678085 PMCID: PMC7366633 DOI: 10.1038/s41467-020-17341-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 06/24/2020] [Indexed: 12/31/2022] Open
Abstract
Dissemination of transformed cells is a key process in metastasis. Despite its importance, how transformed cells disseminate from an intact tissue and enter the circulation is poorly understood. Here, we use a fully developed tissue, Drosophila midgut, and describe the morphologically distinct steps and the cellular events occurring over the course of RasV12-transformed cell dissemination. Notably, RasV12-transformed cells formed the Actin- and Cortactin-rich invasive protrusions that were important for breaching the extracellular matrix (ECM) and visceral muscle. Furthermore, we uncovered the essential roles of the mechanosensory channel Piezo in orchestrating dissemination of RasV12-transformed cells. Collectively, our study establishes an in vivo model for studying how transformed cells migrate out from a complex tissue and provides unique insights into the roles of Piezo in invasive cell behavior. Drosophila tumours can be utilised to study the mechanisms of cell dissemination. Here, the authors use Drosophila midgut to examine the course of RasV12-transformed cell dissemination from midgut into circulation, which requires the actions of invasive protrusions and the mechanosensitive channel Piezo.
Collapse
|
26
|
Witkowski JM, Bryl E, Fulop T. Should we Try to Alleviate Immunosenescence and Inflammaging - Why, How and to What Extent? Curr Pharm Des 2020; 25:4154-4162. [PMID: 31713479 DOI: 10.2174/1381612825666191111153016] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 11/07/2019] [Indexed: 12/29/2022]
Abstract
With advancing age, immune responses of human beings to external pathogens, i.e., bacteria, viruses, fungi and parasites, and to internal pathogens - malignant neoplasm cells - become less effective. Two major features in the process of aging of the human immune system are immunosenescence and inflammaging. The immune systems of our predecessors co-evolved with pathogens, which led to the occurrence of effective immunity. However, the otherwise beneficial activity may pose problems to the organism of the host and so it has builtin brakes (regulatory immune cells) and - with age - it undergoes adaptations and modifications, examples of which are the mentioned inflammaging and immunosenescence. Here we describe the mechanisms that first created our immune systems, then the consequences of their changes associated with aging, and the mechanisms of inflammaging and immunosenescence. Finally, we discuss to what extent both processes are detrimental and to what extent they might be beneficial and propose some therapeutic approaches for their wise control.
Collapse
Affiliation(s)
- Jacek M Witkowski
- Department of Pathophysiology, Medical University of Gdansk, Gdansk, Poland
| | - Ewa Bryl
- Department of Pathology and Experimental Rheumatology, Medical University of Gdansk, Gdansk, Poland
| | - Tamas Fulop
- Research Center on Aging, Faculty of Medicine and Health Sciences, Department of Medicine, University of Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
27
|
Kamdem JP, Duarte AE, Ibrahim M, Lukong KE, Barros LM, Roeder T. Bibliometric analysis of personalized humanized mouse and Drosophila models for effective combinational therapy in cancer patients. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165880. [PMID: 32592936 DOI: 10.1016/j.bbadis.2020.165880] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/25/2020] [Accepted: 06/11/2020] [Indexed: 12/19/2022]
Abstract
Research performed using model organisms such as mice and the fruit fly, Drosophila melanogaster has significantly enhanced our knowledge about cancer biology and the fundamental processes of cancer. This is because the major biological properties and genes associated with cancer including signaling pathways, oncogenes, tumor suppressors, and other regulators of cell growth and proliferation are evolutionary conserved. This review provides bibliometric analysis of research productivity, and performance of authors, institutions, countries, and journals associated with personalized animal cancer models, focussing on the role of Drosophila in cancer research, thus highlighting emerging trends in the field. A total of 1469 and 2672 original articles and reviews for Drosophila cancer model and patient-derived xenograft (PDX) respectively, were retrieved from the Scopus database and the most cited papers were thoroughly analyzed. Our analysis indicates a steadily increasing productivity of the animal models and especially of mouse models in cancer research. In addition to the many different systems that address almost all aspects of tumor research in humanized animal models, a trend towards using tailored screening platforms with Drosophila models in particular will become widespread in the future. Having Drosophila models that recapitulate major genetic aspects of a given tumor will enable the development and validation of novel therapeutic strategies for specific cancers, and provide a platform for screening small molecule inhibitors and other anti-tumor compounds. The combination of Drosophila cancer models and mouse PDX models particularly is highly promising and should be one of the major research strategies the future.
Collapse
Affiliation(s)
- Jean Paul Kamdem
- Department of Biological Sciences, Regional University of Cariri, Campus Pimenta, Crato, Ceara CEP: 63105-000, Brazil.
| | - Antonia Eliene Duarte
- Department of Biological Sciences, Regional University of Cariri, Campus Pimenta, Crato, Ceara CEP: 63105-000, Brazil
| | - Mohammad Ibrahim
- Department of Chemistry, Abdul Wali Khan University Mardan (AWKUM), KPK, Mardan, Pakistan
| | - Kiven Erique Lukong
- Department of Biochemistry, Microbiology and Immunology (BMI) College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada.
| | - Luiz Marivando Barros
- Department of Biological Sciences, Regional University of Cariri, Campus Pimenta, Crato, Ceara CEP: 63105-000, Brazil
| | - Thomas Roeder
- Christian-Albrechts Universität zu Kiel, Zoologisches Institut, Molekulare Physiologie, Olshausenstraße 40, D-24098 Kiel, Germany; German Center for Lung Research, Airway Research Center North, Kiel, Germany.
| |
Collapse
|
28
|
Murray A, Palmer D, Bennett D, Dwarampudi V, Pedro de Magalhães J. A method for the permeabilization of live Drosophila melanogaster larvae to small molecules and cryoprotectants. Fly (Austin) 2020; 14:29-33. [PMID: 32037953 PMCID: PMC7746254 DOI: 10.1080/19336934.2020.1724051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The larvae of Drosophila melanogaster is a model organism widely used to study the muscular and nervous systems. Drosophila larvae are surrounded by a waxy cuticle that prevents permeation by most substances. Here we develop a method to remove this layer, rendering the larvae permeable to small molecules without causing death, allowing the larvae to develop to adulthood and reproduce. Permeability was assessed using fluorescein diacetate dye uptake, and mortality upon exposure to toxic levels of ethylene glycol (EG) and Dimethyl sulfoxide (DMSO). Potential uses for this method include drug delivery, toxicity assays, cryopreservation, staining, and fixation.
Collapse
Affiliation(s)
- Alex Murray
- Institute of Ageing & Chronic Disease, University of Liverpool , Liverpool, UK
| | - Daniel Palmer
- Institute of Ageing & Chronic Disease, University of Liverpool , Liverpool, UK
| | - Daimark Bennett
- Institute of Integrative Biology, University of Liverpool , Liverpool, UK
| | - Venkata Dwarampudi
- Division of Biomedical and Life Sciences, Lancaster University , Lancaster, UK
| | | |
Collapse
|
29
|
Kakanj P, Eming SA, Partridge L, Leptin M. Long-term in vivo imaging of Drosophila larvae. Nat Protoc 2020; 15:1158-1187. [DOI: 10.1038/s41596-019-0282-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 12/09/2019] [Indexed: 02/07/2023]
|
30
|
Mendes N, Dias Carvalho P, Martins F, Mendonça S, Malheiro AR, Ribeiro A, Carvalho J, Velho S. Animal Models to Study Cancer and Its Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1219:389-401. [PMID: 32130710 DOI: 10.1007/978-3-030-34025-4_20] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cancers are complex tissues composed by genetically altered cancer cells and stromal elements such as inflammatory/immune cells, fibroblasts, endothelial cells and pericytes, neuronal cells, and a non-cellular component, the extracellular matrix. The complex network of interactions and crosstalk established between cancer cells and the supportig cellular and non-cellular components of the microenvironment are of extreme importance for tumor initiation and progression, strongly impacting the course and the outcome of the disease. Therefore, a better understanding of the tumorigenic processes implies the combined study of the cancer cell and the biologic, chemical and mechanic constituents of the tumor microenvironment, as their concerted action plays a major role in the carcinogenic pathway and is a key determinant of the efficacy of anti-cancer treatments. The use of animal models (e.g. Mouse, Zebrafish and Drosophila) to study cancer has greatly impacted our understanding of the processes governing initiation, progression and metastasis and allowed the discovery and pre-clinical validation of novel cancer treatments as it allows to recreate tumor development in a more pathophysiologic environment.
Collapse
Affiliation(s)
- N Mendes
- i3S, Instituto de Investigação e Inovação em Saúde, Porto, Portugal.
- IPATIMUP, Instituto de Patologia Molecular e Imunologia da Universidade do Porto, Porto, Portugal.
| | - P Dias Carvalho
- i3S, Instituto de Investigação e Inovação em Saúde, Porto, Portugal
- IPATIMUP, Instituto de Patologia Molecular e Imunologia da Universidade do Porto, Porto, Portugal
| | - F Martins
- i3S, Instituto de Investigação e Inovação em Saúde, Porto, Portugal
- IPATIMUP, Instituto de Patologia Molecular e Imunologia da Universidade do Porto, Porto, Portugal
| | - S Mendonça
- i3S, Instituto de Investigação e Inovação em Saúde, Porto, Portugal
- IPATIMUP, Instituto de Patologia Molecular e Imunologia da Universidade do Porto, Porto, Portugal
| | - A R Malheiro
- i3S, Instituto de Investigação e Inovação em Saúde, Porto, Portugal
- IBMC, Instituto de Biologia Molecular e Celular da Universidade do Porto, Porto, Portugal
| | - A Ribeiro
- i3S, Instituto de Investigação e Inovação em Saúde, Porto, Portugal
- IPATIMUP, Instituto de Patologia Molecular e Imunologia da Universidade do Porto, Porto, Portugal
| | - J Carvalho
- i3S, Instituto de Investigação e Inovação em Saúde, Porto, Portugal
- IPATIMUP, Instituto de Patologia Molecular e Imunologia da Universidade do Porto, Porto, Portugal
| | - S Velho
- i3S, Instituto de Investigação e Inovação em Saúde, Porto, Portugal.
- IPATIMUP, Instituto de Patologia Molecular e Imunologia da Universidade do Porto, Porto, Portugal.
| |
Collapse
|
31
|
Mollica H, Palomba R, Primavera R, Decuzzi P. Two-Channel Compartmentalized Microfluidic Chip for Real-Time Monitoring of the Metastatic Cascade. ACS Biomater Sci Eng 2019; 5:4834-4843. [DOI: 10.1021/acsbiomaterials.9b00697] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Hilaria Mollica
- Laboratory of Nanotechnology for Precision Medicine, Italian Institute of Technology, Via Morego 30, Genoa 16163, Italy
- DIBRIS, University of Genova, Via Opera Pia 13, Genoa 16145, Italy
| | - Roberto Palomba
- Laboratory of Nanotechnology for Precision Medicine, Italian Institute of Technology, Via Morego 30, Genoa 16163, Italy
| | - Rosita Primavera
- Laboratory of Nanotechnology for Precision Medicine, Italian Institute of Technology, Via Morego 30, Genoa 16163, Italy
| | - Paolo Decuzzi
- Laboratory of Nanotechnology for Precision Medicine, Italian Institute of Technology, Via Morego 30, Genoa 16163, Italy
| |
Collapse
|
32
|
Li P, Ma Z, Yu Y, Hu X, Zhou Y, Song H. FER promotes cell migration via regulating JNK activity. Cell Prolif 2019; 52:e12656. [PMID: 31264309 PMCID: PMC6797522 DOI: 10.1111/cpr.12656] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 12/11/2022] Open
Abstract
Objectives Cell migration has a key role in cancer metastasis, which contributes to drug resistance and tumour recurrence. Better understanding of the mechanisms involved in this process will potentially reveal new drug targets for cancer therapy. Fer is a non‐receptor protein tyrosine kinase aberrantly expressed in various human cancers, whereas its role in tumour progression remains elusive. Materials and Methods Transgenic flies and epigenetic analysis were employed to investigate the role of Drosophila Fer (FER) in cell migration and underlying mechanisms. Co‐immunoprecipitation assay was used to monitor the interaction between FER and Drosophila JNK (Bsk). The conservation of Fer in regulating JNK signalling was explored in mammalian cancer and non‐cancer cells. Results Overexpression of FER triggered cell migration and activated JNK signalling in the Drosophila wing disc. Upregulation and downregulation in the basal activity of Bsk exacerbated and eliminated FER‐mediated migration, respectively. In addition, loss of FER blocked signal transduction of the JNK pathway. Specifically, FER interacted with and promoted the activity of Bsk, which required both the kinase domain and the C‐terminal of Bsk. Lastly, Fer regulated JNK activities in mammalian cells. Conclusions Our study reveals FER as a positive regulator of JNK‐mediated cell migration and suggests its potential role as a therapeutic target for cancer metastasis.
Collapse
Affiliation(s)
- Ping Li
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhiwei Ma
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yun Yu
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xingjie Hu
- School of Public Health, Guangzhou Medical University, Guangdong, China
| | - Yanfeng Zhou
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haiyun Song
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
33
|
Wu Q, Kumar N, Velagala V, Zartman JJ. Tools to reverse-engineer multicellular systems: case studies using the fruit fly. J Biol Eng 2019; 13:33. [PMID: 31049075 PMCID: PMC6480878 DOI: 10.1186/s13036-019-0161-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 04/07/2019] [Indexed: 01/08/2023] Open
Abstract
Reverse-engineering how complex multicellular systems develop and function is a grand challenge for systems bioengineers. This challenge has motivated the creation of a suite of bioengineering tools to develop increasingly quantitative descriptions of multicellular systems. Here, we survey a selection of these tools including microfluidic devices, imaging and computer vision techniques. We provide a selected overview of the emerging cross-talk between engineering methods and quantitative investigations within developmental biology. In particular, the review highlights selected recent examples from the Drosophila system, an excellent platform for understanding the interplay between genetics and biophysics. In sum, the integrative approaches that combine multiple advances in these fields are increasingly necessary to enable a deeper understanding of how to analyze both natural and synthetic multicellular systems.
Collapse
Affiliation(s)
- Qinfeng Wu
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556 USA
| | - Nilay Kumar
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556 USA
| | - Vijay Velagala
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556 USA
| | - Jeremiah J. Zartman
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556 USA
| |
Collapse
|
34
|
MKK3 modulates JNK-dependent cell migration and invasion. Cell Death Dis 2019; 10:149. [PMID: 30770795 PMCID: PMC6377636 DOI: 10.1038/s41419-019-1350-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 12/19/2018] [Accepted: 01/07/2019] [Indexed: 01/02/2023]
Abstract
The c-Jun N-terminal kinase (JNK) pathway plays essential roles in regulating a variety of physiological processes including cell migration and invasion. To identify critical factors that regulate JNK-dependent cell migration, we carried out a genetic screen in Drosophila based on the loss-of-cell polarity-triggered cell migration in the wing epithelia, and identified MKK3 licorne (lic) as an essential regulator of JNK-mediated cell migration and invasion. We found that loss of lic suppressed ptc > scrib-IR or ptc > Egr triggered cell migration in the wing epithelia, and Rasv12/lgl−/− induced tumor invasion in the eye discs. In addition, ectopic expression of Lic is sufficient to induce JNK-mediated but p38-independent cell migration, and cooperate with oncogenic Ras to promote tumor invasion. Consistently, Lic is able to activate JNK signaling by phosphorylating JNK, which up-regulates the matrix metalloproteinase MMP1 and integrin, characteristics of epithelial–mesenchymal transition (EMT). Moreover, lic is required for physiological JNK-mediate cell migration in thorax development. Finally, expression of human MKK3 in Drosophila is able to initiate JNK-mediated cell migration, cooperates with oncogenic Ras to trigger tumor invasion, and rescue loss-of-lic induced thorax closure defect. As previous studies suggest that MKK3 specifically phosphorylates and activates p38MAPK, our data provide the first in vivo evidence that MKK3 regulates JNK-dependent cell migration and invasion, a process evolutionarily conserved from flies to human.
Collapse
|
35
|
Two Sides of the Same Coin - Compensatory Proliferation in Regeneration and Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1167:65-85. [PMID: 31520349 DOI: 10.1007/978-3-030-23629-8_4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Apoptosis has long been regarded as a tumor suppressor mechanism and evasion from apoptosis is considered to be one hallmark of cancer. However, this principle is not always consistent with clinical data which often illustrate a correlation between apoptosis and poor prognosis. Work in the last 15 years has provided an explanation for this apparent paradox. Apoptotic cells communicate with their environment and can produce signals which promote compensatory proliferation of surviving cells. This behavior of apoptotic cells is important for tissue regeneration in several model organisms, ranging from hydra to mammals. However, it may also play an important feature for tumorigenesis and tumor relapse. Several distinct forms of apoptosis-induced compensatory proliferation (AiP) have been identified, many of which involve reactive oxygen species (ROS) and immune cells. One type of AiP, "undead" AiP, in which apoptotic cells are kept in an immortalized state and continuously divide, may have particular relevance for tumorigenesis. Furthermore, given that chemo- and radiotherapy often aim to kill tumor cells, an improved understanding of the effects of apoptotic cells on the tumor and the tumor environment is of critical importance for the well-being of the patient. In this review, we summarize the current knowledge of AiP and focus our attention on recent findings obtained in Drosophila and other model organisms, and relate them to tumorigenesis.
Collapse
|
36
|
Abstract
Cancer is a cumulative manifestation of several complicated disease states that affect multiple organs. Over the last few decades, the fruit fly Drosophila melanogaster, has become a successful model for studying human cancers. The genetic simplicity and vast arsenal of genetic tools available in Drosophila provides a unique opportunity to address questions regarding cancer initiation and progression that would be extremely challenging in other model systems. In this chapter we provide a historical overview of Drosophila as a model organism for cancer research, summarize the multitude of genetic tools available, offer a brief comparison between different model organisms and cell culture platforms used in cancer studies and briefly discuss some of the latest models and concepts in recent Drosophila cancer research.
Collapse
|
37
|
Saavedra P, Perrimon N. Drosophila as a Model for Tumor-Induced Organ Wasting. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1167:191-205. [PMID: 31520356 DOI: 10.1007/978-3-030-23629-8_11] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In humans, cancer-associated cachexia is a complex syndrome that reduces the overall quality of life and survival of cancer patients, particularly for those undergoing chemotherapy. The most easily observable sign of cachexia is organ wasting, the dramatic loss of skeletal muscle and adipose tissue mass. Estimates suggest that 80% of patients in advanced stages of cancer show signs of the syndrome and about 20% of cancer patients die directly of cachexia. Because there is no treatment or drug available to ameliorate organ wasting induced by cancer, cachexia is a relevant clinical problem. However, it is unclear how cachexia is mediated, what factors drive interactions between tumors and host tissues, and which markers of cachexia might be used to allow early detection before the observable signs of organ wasting. In this chapter, we review the current mammalian models of cachexia and the need to use new models of study. We also explain recent developments in Drosophila as a model for studying organ wasting induced by tumors and how fly studies can help unravel important mechanisms that drive cachexia. In particular, we discuss what lessons have been learned from tumor models recently reported to induce systemic organ wasting in Drosophila.
Collapse
Affiliation(s)
- Pedro Saavedra
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
| | - Norbert Perrimon
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA. .,Howard Hughes Medical Institute, Boston, MA, USA.
| |
Collapse
|
38
|
Ma Z, Li P, Hu X, Song H. Polarity protein Canoe mediates overproliferation via modulation of JNK, Ras-MAPK and Hippo signalling. Cell Prolif 2018; 52:e12529. [PMID: 30328653 PMCID: PMC6430484 DOI: 10.1111/cpr.12529] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 08/20/2018] [Accepted: 08/28/2018] [Indexed: 02/06/2023] Open
Abstract
Objectives Over the past decade an intriguing connection between cell polarity and tumorigenesis has emerged. Multiple core components of the junction complexes that help to form and maintain cell polarity display both pro‐ and anti‐tumorigenic functions in a context‐dependent manner, with the underlying mechanisms poorly understood. Materials and Methods With transgenic fly lines that overexpress or knock down specific signalling components, we perform genetic analysis to investigate the precise role of the polarity protein Canoe (Cno) in tumorigenesis and the downstream pathways. Results We show that overexpression of cno simultaneously activates JNK and Ras‐MEK‐ERK signalling, resulting in mixed phenotypes of both overproliferation and cell death in the Drosophila wing disc. Moderate alleviation of JNK activation eliminates the effect of Cno on cell death, leading to organ overgrowth and cell migration that mimic the formation and invasion of tumours. In addition, we find that the Hippo pathway acts downstream of JNK and Ras signalling to mediate the effect of Cno on cell proliferation. Conclusions Our work reveals an oncogenic role of Cno and creates a new type of Drosophila tumour model for cancer research.
Collapse
Affiliation(s)
- Zhiwei Ma
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ping Li
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xingjie Hu
- School of Public Health, Guangzhou Medical University, Guangdong, China
| | - Haiyun Song
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.,School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
39
|
Zoranovic T, Manent J, Willoughby L, Matos de Simoes R, La Marca JE, Golenkina S, Cuiping X, Gruber S, Angjeli B, Kanitz EE, Cronin SJF, Neely GG, Wernitznig A, Humbert PO, Simpson KJ, Mitsiades CS, Richardson HE, Penninger JM. A genome-wide Drosophila epithelial tumorigenesis screen identifies Tetraspanin 29Fb as an evolutionarily conserved suppressor of Ras-driven cancer. PLoS Genet 2018; 14:e1007688. [PMID: 30325918 PMCID: PMC6203380 DOI: 10.1371/journal.pgen.1007688] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 10/26/2018] [Accepted: 09/11/2018] [Indexed: 12/15/2022] Open
Abstract
Oncogenic mutations in the small GTPase Ras contribute to ~30% of human cancers. However, Ras mutations alone are insufficient for tumorigenesis, therefore it is paramount to identify cooperating cancer-relevant signaling pathways. We devised an in vivo near genome-wide, functional screen in Drosophila and discovered multiple novel, evolutionarily-conserved pathways controlling Ras-driven epithelial tumorigenesis. Human gene orthologs of the fly hits were significantly downregulated in thousands of primary tumors, revealing novel prognostic markers for human epithelial tumors. Of the top 100 candidate tumor suppressor genes, 80 were validated in secondary Drosophila assays, identifying many known cancer genes and multiple novel candidate genes that cooperate with Ras-driven tumorigenesis. Low expression of the confirmed hits significantly correlated with the KRASG12 mutation status and poor prognosis in pancreatic cancer. Among the novel top 80 candidate cancer genes, we mechanistically characterized the function of the top hit, the Tetraspanin family member Tsp29Fb, revealing that Tsp29Fb regulates EGFR signaling, epithelial architecture and restrains tumor growth and invasion. Our functional Drosophila screen uncovers multiple novel and evolutionarily conserved epithelial cancer genes, and experimentally confirmed Tsp29Fb as a key regulator of EGFR/Ras induced epithelial tumor growth and invasion. Cancer involves the cooperative interaction of many gene mutations. The Ras signaling pathway is upregulated in many human cancers, but upregulated Ras signaling alone is not sufficient to induce malignant tumors. We have undertaken a genome-wide genetic screen using a transgenic RNAi library in the vinegar fly, Drosophila melanogaster, to identify tumor suppressor genes that cooperate with the Ras oncogene (RasV12) in conferring overgrown invasive tumors. We stratified the hits by analyzing the expression of human orthologs of these genes in human epithelial cancers, revealing genes that were strongly downregulated in human cancer. By conducting secondary genetic interaction tests, we validated 80 of the top 100 genes. Pathway analysis of these genes revealed that 55 fell into known pathways involved in human cancer, whereas 25 were unique genes. We then confirmed the tumor suppressor properties of one of these genes, Tsp29Fb, encoding a Tetraspanin membrane protein, and showed that Tsp29Fb functions as a tumor suppressor by inhibiting Ras signaling and by maintaining epithelial cell polarity. Altogether, our study has revealed novel Ras-cooperating tumor suppressors in Drosophila and suggests that these genes may also be involved in human cancer.
Collapse
Affiliation(s)
- Tamara Zoranovic
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Science, Campus Vienna BioCentre, Vienna, Austria
| | - Jan Manent
- Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Department of Biochemistry & Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Lee Willoughby
- Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Ricardo Matos de Simoes
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - John E. La Marca
- Department of Biochemistry & Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Sofya Golenkina
- Department of Biochemistry & Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Xia Cuiping
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Science, Campus Vienna BioCentre, Vienna, Austria
| | - Susanne Gruber
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Science, Campus Vienna BioCentre, Vienna, Austria
| | - Belinda Angjeli
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Science, Campus Vienna BioCentre, Vienna, Austria
| | - Elisabeth Eva Kanitz
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Science, Campus Vienna BioCentre, Vienna, Austria
| | - Shane J. F. Cronin
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Science, Campus Vienna BioCentre, Vienna, Austria
| | - G. Gregory Neely
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Science, Campus Vienna BioCentre, Vienna, Austria
- The Charles Perkins Centre, School of Life & Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | | | - Patrick O. Humbert
- Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Department of Biochemistry & Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, Department of Anatomy & Neuroscience, Department of Biochemistry & Molecular Biology, and Department of Clinical Pathology, University of Melbourne, Melbourne, Victoria, Australia
| | - Kaylene J. Simpson
- Sir Peter MacCallum Department of Oncology, Department of Anatomy & Neuroscience, Department of Biochemistry & Molecular Biology, and Department of Clinical Pathology, University of Melbourne, Melbourne, Victoria, Australia
- Victorian Center for Functional Genomics, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Constantine S. Mitsiades
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Helena E. Richardson
- Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Department of Biochemistry & Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, Department of Anatomy & Neuroscience, Department of Biochemistry & Molecular Biology, and Department of Clinical Pathology, University of Melbourne, Melbourne, Victoria, Australia
- * E-mail: (HER); (JMP)
| | - Josef M. Penninger
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Science, Campus Vienna BioCentre, Vienna, Austria
- * E-mail: (HER); (JMP)
| |
Collapse
|
40
|
Lin WY, Ng WC, Wong BSE, Teo SLM, Sivananthan GD, Baeg GH, Ok YS, Wang CH. Evaluation of sewage sludge incineration ash as a potential land reclamation material. JOURNAL OF HAZARDOUS MATERIALS 2018; 357:63-72. [PMID: 29864689 DOI: 10.1016/j.jhazmat.2018.05.047] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 05/17/2018] [Accepted: 05/23/2018] [Indexed: 06/08/2023]
Abstract
This study evaluated the potential of utilising sewage sludge incineration ash as a land reclamation material. Toxicity assessment of the leachate of the ash was carried out for both terrestrial and marine organisms. Both the fruit fly Drosophila melanogaster and barnacle Amphibalanus amphitrite showed that both bottom and fly ash leached at liquid-to-solid (L/S) ratio 5 did not substantially affect viabilities. The leachate carried out at L/S 10 was compared to the European Waste Acceptance Criteria and the sewage sludge ashes could be classified as non-hazardous waste. The geotechnical properties of the sewage sludge ash were studied and compared to sand, a conventional land reclamation material, for further evaluation of its potential as a land reclamation material. It was found from direct shear test that both bottom and fly ashes displayed similar and comparable shear strength to that of typical compacted sandy soil based on the range of internal friction angle obtained. However, the consolidation profile of bottom ash was significantly different from sand, while that of fly ash was more similar to sand. Our study showed that the sewage sludge ash has the potential to be used as a land reclamation material.
Collapse
Affiliation(s)
- Wenlin Yvonne Lin
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore
| | - Wei Cheng Ng
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower #15-02, 138602, Singapore
| | - Belinda Shu Ee Wong
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, 4 Medical Drive, 117594, Singapore
| | - Serena Lay-Ming Teo
- Tropical Marine Science Institute, National University of Singapore, 18 Kent Ridge Road, 119227, Singapore
| | - Gayathiri D/O Sivananthan
- Tropical Marine Science Institute, National University of Singapore, 18 Kent Ridge Road, 119227, Singapore
| | - Gyeong Hun Baeg
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, 4 Medical Drive, 117594, Singapore
| | - Yong Sik Ok
- Korea Biochar Research Center, O-Jeong Eco-Resilience Institute (OJERI) & Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Chi-Hwa Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore.
| |
Collapse
|
41
|
Xu DC, Arthurton L, Baena-Lopez LA. Learning on the Fly: The Interplay between Caspases and Cancer. BIOMED RESEARCH INTERNATIONAL 2018; 2018:5473180. [PMID: 29854765 PMCID: PMC5949197 DOI: 10.1155/2018/5473180] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 03/14/2018] [Indexed: 02/07/2023]
Abstract
The ease of genetic manipulation, as well as the evolutionary conservation of gene function, has placed Drosophila melanogaster as one of the leading model organisms used to understand the implication of many proteins with disease development, including caspases and their relation to cancer. The family of proteases referred to as caspases have been studied over the years as the major regulators of apoptosis: the most common cellular mechanism involved in eliminating unwanted or defective cells, such as cancerous cells. Indeed, the evasion of the apoptotic programme resulting from caspase downregulation is considered one of the hallmarks of cancer. Recent investigations have also shown an instrumental role for caspases in non-lethal biological processes, such as cell proliferation, cell differentiation, intercellular communication, and cell migration. Importantly, malfunction of these essential biological tasks can deeply impact the initiation and progression of cancer. Here, we provide an extensive review of the literature surrounding caspase biology and its interplay with many aspects of cancer, emphasising some of the key findings obtained from Drosophila studies. We also briefly describe the therapeutic potential of caspase modulation in relation to cancer, highlighting shortcomings and hopeful promises.
Collapse
Affiliation(s)
- Derek Cui Xu
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX13RE, UK
- Cell Biology Section, National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Lewis Arthurton
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX13RE, UK
| | | |
Collapse
|
42
|
Parvy JP, Hodgson JA, Cordero JB. Drosophila as a Model System to Study Nonautonomous Mechanisms Affecting Tumour Growth and Cell Death. BIOMED RESEARCH INTERNATIONAL 2018; 2018:7152962. [PMID: 29725601 PMCID: PMC5872677 DOI: 10.1155/2018/7152962] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 02/04/2018] [Indexed: 12/26/2022]
Abstract
The study of cancer has represented a central focus in medical research for over a century. The great complexity and constant evolution of the pathology require the use of multiple research model systems and interdisciplinary approaches. This is necessary in order to achieve a comprehensive understanding into the mechanisms driving disease initiation and progression, to aid the development of appropriate therapies. In recent decades, the fruit fly Drosophila melanogaster and its associated powerful genetic tools have become a very attractive model system to study tumour-intrinsic and non-tumour-derived processes that mediate tumour development in vivo. In this review, we will summarize recent work on Drosophila as a model system to study cancer biology. We will focus on the interactions between tumours and their microenvironment, including extrinsic mechanisms affecting tumour growth and how tumours impact systemic host physiology.
Collapse
Affiliation(s)
- Jean-Philippe Parvy
- CRUK Beatson Institute, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Joseph A. Hodgson
- CRUK Beatson Institute, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Julia B. Cordero
- CRUK Beatson Institute, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1QH, UK
| |
Collapse
|
43
|
Blaquiere JA, Wong KKL, Kinsey SD, Wu J, Verheyen EM. Homeodomain-interacting protein kinase promotes tumorigenesis and metastatic cell behavior. Dis Model Mech 2018; 11:dmm.031146. [PMID: 29208636 PMCID: PMC5818076 DOI: 10.1242/dmm.031146] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 11/08/2017] [Indexed: 12/21/2022] Open
Abstract
Aberrations in signaling pathways that regulate tissue growth often lead to tumorigenesis. Homeodomain-interacting protein kinase (Hipk) family members are reported to have distinct and contradictory effects on cell proliferation and tissue growth. From these studies, it is clear that much remains to be learned about the roles of Hipk family protein kinases in proliferation and cell behavior. Previous work has shown that Drosophila Hipk is a potent growth regulator, thus we predicted that it could have a role in tumorigenesis. In our study of Hipk-induced phenotypes, we observed the formation of tumor-like structures in multiple cell types in larvae and adults. Furthermore, elevated Hipk in epithelial cells induces cell spreading, invasion and epithelial-to-mesenchymal transition (EMT) in the imaginal disc. Further evidence comes from cell culture studies, in which we expressed Drosophila Hipk in human breast cancer cells and showed that it enhances proliferation and migration. Past studies have shown that Hipk can promote the action of conserved pathways implicated in cancer and EMT, such as Wnt/Wingless, Hippo, Notch and JNK. We show that Hipk phenotypes are not likely to arise from activation of a single target, but rather through a cumulative effect on numerous target pathways. Most Drosophila tumor models involve mutations in multiple genes, such as the well-known RasV12 model, in which EMT and invasiveness occur after the additional loss of the tumor suppressor gene scribble. Our study reveals that elevated levels of Hipk on their own can promote both hyperproliferation and invasive cell behavior, suggesting that Hipk family members could be potent oncogenes and drivers of EMT. Summary: The protein kinase Hipk can promote proliferation and invasive behaviors, and can synergize with known cancer pathways, in a new Drosophila model for tumorigenesis.
Collapse
Affiliation(s)
- Jessica A Blaquiere
- Department of Molecular Biology and Biochemistry, Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
| | - Kenneth Kin Lam Wong
- Department of Molecular Biology and Biochemistry, Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
| | - Stephen D Kinsey
- Department of Molecular Biology and Biochemistry, Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
| | - Jin Wu
- Department of Molecular Biology and Biochemistry, Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
| | - Esther M Verheyen
- Department of Molecular Biology and Biochemistry, Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
| |
Collapse
|
44
|
Abstract
Accumulating epidemiological evidence indicates a strong clinical association between obesity and an increased risk of cancer. The global pandemic of obesity indicates a public health trend towards a substantial increase in cancer incidence and mortality. However, the mechanisms that link obesity to cancer remain incompletely understood. The fruit fly Drosophila melanogaster has been increasingly used to model an expanding spectrum of human diseases. Fly models provide a genetically simpler system that is ideal for use as a first step towards dissecting disease interactions. Recently, the combining of fly models of diet-induced obesity with models of cancer has provided a novel model system in which to study the biological mechanisms that underlie the connections between obesity and cancer. In this Review, I summarize recent advances, made using Drosophila, in our understanding of the interplay between diet, obesity, insulin resistance and cancer. I also discuss how the biological mechanisms and therapeutic targets that have been identified in fly studies could be utilized to develop preventative interventions and treatment strategies for obesity-associated cancers. Summary: This Review highlights a Drosophila model of diet-induced obesity and cancer, and how these two models are combined to study the interplay between obesity and cancer.
Collapse
Affiliation(s)
- Susumu Hirabayashi
- Metabolism and Cell Growth Group, MRC Clinical Sciences Centre (CSC), Du Cane Road, London W12 0NN, UK Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| |
Collapse
|
45
|
Caballero D, Kaushik S, Correlo V, Oliveira J, Reis R, Kundu S. Organ-on-chip models of cancer metastasis for future personalized medicine: From chip to the patient. Biomaterials 2017; 149:98-115. [DOI: 10.1016/j.biomaterials.2017.10.005] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 09/15/2017] [Accepted: 10/02/2017] [Indexed: 02/09/2023]
|
46
|
Morimoto K, Tamori Y. Induction and Diagnosis of Tumors in Drosophila Imaginal Disc Epithelia. J Vis Exp 2017. [PMID: 28784954 DOI: 10.3791/55901] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
In the early stages of cancer, transformed mutant cells show cytological abnormalities, begin uncontrolled overgrowth, and progressively disrupt tissue organization. Drosophila melanogaster has emerged as a popular experimental model system in cancer biology to study the genetic and cellular mechanisms of tumorigenesis. In particular, genetic tools for Drosophila imaginal discs (developing epithelia in larvae) enable the creation of transformed pro-tumor cells within a normal epithelial tissue, a situation similar to the initial stages of human cancer. A recent study of tumorigenesis in Drosophila wing imaginal discs, however, showed that tumor initiation depends on the tissue-intrinsic cytoarchitecture and the local microenvironment, suggesting that it is important to consider the region-specific susceptibility to tumorigenic stimuli in evaluating tumor phenotypes in imaginal discs. To facilitate phenotypic analysis of tumor progression in imaginal discs, here we describe a protocol for genetic experiments using the GAL4-UAS system to induce neoplastic tumors in wing imaginal discs. We further introduce a diagnosis method to classify the phenotypes of clonal lesions induced in imaginal epithelia, as a clear classification method to discriminate various stages of tumor progression (such as hyperplasia, dysplasia, or neoplasia) had not been described before. These methods might be broadly applicable to the clonal analysis of tumor phenotypes in various organs in Drosophila.
Collapse
Affiliation(s)
- Kenta Morimoto
- Structural Biology Center, National Institute of Genetics and Department of Genetics, School of Life Science, SOKENDAI; Graduate School of Media and Governance, Keio University
| | - Yoichiro Tamori
- Structural Biology Center, National Institute of Genetics and Department of Genetics, School of Life Science, SOKENDAI;
| |
Collapse
|
47
|
Morciano P, Iorio R, Iovino D, Cipressa F, Esposito G, Porrazzo A, Satta L, Alesse E, Tabocchini MA, Cenci G. Effects of reduced natural background radiation on Drosophila melanogaster growth and development as revealed by the FLYINGLOW program. J Cell Physiol 2017; 233:23-29. [PMID: 28262946 DOI: 10.1002/jcp.25889] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 03/02/2017] [Indexed: 12/21/2022]
Abstract
Natural background radiation of Earth and cosmic rays played a relevant role during the evolution of living organisms. However, how chronic low doses of radiation can affect biological processes is still unclear. Previous data have indicated that cells grown at the Gran Sasso Underground Laboratory (LNGS, L'Aquila) of National Institute of Nuclear Physics (INFN) of Italy, where the dose rate of cosmic rays and neutrons is significantly reduced with respect to the external environment, elicited an impaired response against endogenous damage as compared to cells grown outside LNGS. This suggests that environmental radiation contributes to the development of defense mechanisms at cellular level. To further understand how environmental radiation affects metabolism of living organisms, we have recently launched the FLYINGLOW program that aims at exploiting Drosophila melanogaster as a model for evaluating the effects of low doses/dose rates of radiation at the organismal level. Here, we will present a comparative data set on lifespan, motility and fertility from different Drosophila strains grown in parallel at LNGS and in a reference laboratory at the University of L'Aquila. Our data suggest the reduced radiation environment can influence Drosophila development and, depending on the genetic background, may affect viability for several generations even when flies are moved back to normal background radiation. As flies are considered a valuable model for human biology, our results might shed some light on understanding the effect of low dose radiation also in humans.
Collapse
Affiliation(s)
- Patrizia Morciano
- SAPIENZA Università di Roma, Rome, Italy.,Museo Storico della Fisica e Centro Studi e Ricerche "Enrico Fermi", Rome, Italy
| | - Roberto Iorio
- Dipartimento di Scienze Cliniche Applicate e Biotecnologiche, Università dell'Aquila, L'Aquila, Italy
| | - Daniela Iovino
- Dipartimento di Scienze Cliniche Applicate e Biotecnologiche, Università dell'Aquila, L'Aquila, Italy
| | - Francesca Cipressa
- SAPIENZA Università di Roma, Rome, Italy.,Museo Storico della Fisica e Centro Studi e Ricerche "Enrico Fermi", Rome, Italy
| | - Giuseppe Esposito
- Istituto Superiore di Sanità (ISS) and Istituto Nazionale di Fisica Nucleare (INFN), Sezione Roma 1, Rome, Italy
| | | | - Luigi Satta
- Museo Storico della Fisica e Centro Studi e Ricerche "Enrico Fermi", Rome, Italy
| | - Edoardo Alesse
- Dipartimento di Scienze Cliniche Applicate e Biotecnologiche, Università dell'Aquila, L'Aquila, Italy
| | - Maria Antonella Tabocchini
- Museo Storico della Fisica e Centro Studi e Ricerche "Enrico Fermi", Rome, Italy.,Istituto Superiore di Sanità (ISS) and Istituto Nazionale di Fisica Nucleare (INFN), Sezione Roma 1, Rome, Italy
| | - Giovanni Cenci
- SAPIENZA Università di Roma, Rome, Italy.,Museo Storico della Fisica e Centro Studi e Ricerche "Enrico Fermi", Rome, Italy
| |
Collapse
|
48
|
Myc suppresses tumor invasion and cell migration by inhibiting JNK signaling. Oncogene 2017; 36:3159-3167. [PMID: 28068320 DOI: 10.1038/onc.2016.463] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 10/24/2016] [Accepted: 11/07/2016] [Indexed: 01/01/2023]
Abstract
Tumor metastasis, but not primary overgrowth, is the leading cause of mortality for cancer patients. During the past decade, Drosophila melanogaster has been well-accepted as an excellent model to address the intrinsic mechanism of different aspects of cancer progression, ranging from tumor initiation to metastasis. In a genetic screen performed in Drosophila, aiming to find novel modulators of tumor invasion, we identified the oncoprotein Myc as a negative regulator. While expression of Myc dramatically blocks tumor invasion and cell migration, loss of Myc promotes cell migration in vivo. The activity of Myc is further enhanced by the co-expression of its transcription partner Max. Mechanistically, we found Myc/Max directly upregulates the transcription of puc, which encodes an inhibitor of JNK signaling crucial for tumor invasion and cell migration. Furthermore, we demonstrated that human cMyc potently suppresses JNK-dependent cell invasion and migration in both Drosophila and lung adenocarcinoma cell lines. These findings provide novel molecular insights into Myc-mediated cancer progression and raise the noteworthy problem in therapeutic strategies as inhibiting Myc might conversely accelerate tumor metastasis.
Collapse
|
49
|
Xie G, Chen H, Jia D, Shu Z, Palmer WH, Huang YC, Zeng X, Hou SX, Jiao R, Deng WM. The SWI/SNF Complex Protein Snr1 Is a Tumor Suppressor in Drosophila Imaginal Tissues. Cancer Res 2016; 77:862-873. [PMID: 27923836 DOI: 10.1158/0008-5472.can-16-0963] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 11/02/2016] [Accepted: 11/18/2016] [Indexed: 12/17/2022]
Abstract
Components of the SWI/SNF chromatin-remodeling complex are among the most frequently mutated genes in various human cancers, yet only SMARCB1/hSNF5, a core member of the SWI/SNF complex, is mutated in malignant rhabdoid tumors (MRT). How SMARCB1/hSNF5 functions differently from other members of the SWI/SNF complex remains unclear. Here, we use Drosophila imaginal epithelial tissues to demonstrate that Snr1, the conserved homolog of human SMARCB1/hSNF5, prevents tumorigenesis by maintaining normal endosomal trafficking-mediated signaling cascades. Removal of Snr1 resulted in neoplastic tumorigenic overgrowth in imaginal epithelial tissues, whereas depletion of any other members of the SWI/SNF complex did not induce similar phenotypes. Unlike other components of the SWI/SNF complex that were detected only in the nucleus, Snr1 was observed in both the nucleus and the cytoplasm. Aberrant regulation of multiple signaling pathways, including Notch, JNK, and JAK/STAT, was responsible for tumor progression upon snr1-depletion. Our results suggest that the cytoplasmic Snr1 may play a tumor suppressive role in Drosophila imaginal tissues, offering a foundation for understanding the pivotal role of SMARCB1/hSNF5 in suppressing MRT during early childhood. Cancer Res; 77(4); 862-73. ©2017 AACR.
Collapse
Affiliation(s)
- Gengqiang Xie
- Department of Biological Science, Florida State University, Tallahassee, Florida
| | - Hanqing Chen
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, the Chinese Academy of Sciences, Beijing, China
| | - Dongyu Jia
- Department of Biological Science, Florida State University, Tallahassee, Florida
| | - Zhiqiang Shu
- Department of Biological Science, Florida State University, Tallahassee, Florida
| | - William Hunt Palmer
- Department of Biological Science, Florida State University, Tallahassee, Florida
| | - Yi-Chun Huang
- Department of Biological Science, Florida State University, Tallahassee, Florida
| | - Xiankun Zeng
- The Basic Research Laboratory, National Cancer Institute, National Institutes of Health, Frederick, Maryland
| | - Steven X Hou
- The Basic Research Laboratory, National Cancer Institute, National Institutes of Health, Frederick, Maryland
| | - Renjie Jiao
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, the Chinese Academy of Sciences, Beijing, China. .,Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Wu-Min Deng
- Department of Biological Science, Florida State University, Tallahassee, Florida.
| |
Collapse
|
50
|
Liu D, Shaukat Z, Saint RB, Gregory SL. Chromosomal instability triggers cell death via local signalling through the innate immune receptor Toll. Oncotarget 2016; 6:38552-65. [PMID: 26462024 PMCID: PMC4770720 DOI: 10.18632/oncotarget.6035] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 09/08/2015] [Indexed: 01/29/2023] Open
Abstract
Chromosomal instability (CIN) is a hallmark of cancer and has been implicated in cancer initiation, progression and the development of resistance to traditional cancer therapy. Here we identify a new property of CIN cells, showing that inducing CIN in proliferating Drosophila larval tissue leads to the activation of innate immune signalling in CIN cells. Manipulation of this immune pathway strongly affects the survival of CIN cells, primarily via JNK, which responds to both Toll and TNFα/Eiger. This pathway also activates Mmp1, which recruits hemocytes to the CIN tissue to provide local amplification of the immune response that is needed for effective elimination of CIN cells.
Collapse
Affiliation(s)
- Dawei Liu
- School of Biological Sciences, University of Adelaide, Adelaide, Australia
| | - Zeeshan Shaukat
- School of Biological Sciences, University of Adelaide, Adelaide, Australia
| | - Robert B Saint
- School of Biological Sciences, University of Adelaide, Adelaide, Australia
| | - Stephen L Gregory
- School of Biological Sciences, University of Adelaide, Adelaide, Australia
| |
Collapse
|