1
|
Henke M, Prigione A, Schuelke M. Disease models of Leigh syndrome: From yeast to organoids. J Inherit Metab Dis 2024; 47:1292-1321. [PMID: 39385390 PMCID: PMC11586605 DOI: 10.1002/jimd.12804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/30/2024] [Accepted: 09/18/2024] [Indexed: 10/12/2024]
Abstract
Leigh syndrome (LS) is a severe mitochondrial disease that results from mutations in the nuclear or mitochondrial DNA that impairs cellular respiration and ATP production. Mutations in more than 100 genes have been demonstrated to cause LS. The disease most commonly affects brain development and function, resulting in cognitive and motor impairment. The underlying pathogenesis is challenging to ascertain due to the diverse range of symptoms exhibited by affected individuals and the variability in prognosis. To understand the disease mechanisms of different LS-causing mutations and to find a suitable treatment, several different model systems have been developed over the last 30 years. This review summarizes the established disease models of LS and their key findings. Smaller organisms such as yeast have been used to study the biochemical properties of causative mutations. Drosophila melanogaster, Danio rerio, and Caenorhabditis elegans have been used to dissect the pathophysiology of the neurological and motor symptoms of LS. Mammalian models, including the widely used Ndufs4 knockout mouse model of complex I deficiency, have been used to study the developmental, cognitive, and motor functions associated with the disease. Finally, cellular models of LS range from immortalized cell lines and trans-mitochondrial cybrids to more recent model systems such as patient-derived induced pluripotent stem cells (iPSCs). In particular, iPSCs now allow studying the effects of LS mutations in specialized human cells, including neurons, cardiomyocytes, and even three-dimensional organoids. These latter models open the possibility of developing high-throughput drug screens and personalized treatments based on defined disease characteristics captured in the context of a defined cell type. By analyzing all these different model systems, this review aims to provide an overview of past and present means to elucidate the complex pathology of LS. We conclude that each approach is valid for answering specific research questions regarding LS, and that their complementary use could be instrumental in finding treatment solutions for this severe and currently untreatable disease.
Collapse
Affiliation(s)
- Marie‐Thérèse Henke
- NeuroCure Cluster of ExcellenceCharité–Universitätsmedizin BerlinBerlinGermany
- Department of NeuropediatricsCharité–Universitätsmedizin BerlinBerlinGermany
| | - Alessandro Prigione
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical FacultyHeinrich Heine UniversityDuesseldorfGermany
| | - Markus Schuelke
- NeuroCure Cluster of ExcellenceCharité–Universitätsmedizin BerlinBerlinGermany
- Department of NeuropediatricsCharité–Universitätsmedizin BerlinBerlinGermany
| |
Collapse
|
2
|
Zuniga G, Katsumura S, De Mange J, Ramirez P, Atrian F, Morita M, Frost B. Pathogenic tau induces an adaptive elevation in mRNA translation rate at early stages of disease. Aging Cell 2024; 23:e14245. [PMID: 38932463 PMCID: PMC11464109 DOI: 10.1111/acel.14245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/29/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Alterations in the rate and accuracy of messenger RNA (mRNA) translation are associated with aging and several neurodegenerative disorders, including Alzheimer's disease and related tauopathies. We previously reported that error-containing RNA that are normally cleared via nonsense-mediated mRNA decay (NMD), a key RNA surveillance mechanism, are translated in the adult brain of a Drosophila model of tauopathy. In the current study, we find that newly-synthesized peptides and translation machinery accumulate within nuclear envelope invaginations that occur as a consequence of tau pathology, and that the rate of mRNA translation is globally elevated in early stages of disease in adult brains of Drosophila models of tauopathy. Polysome profiling from adult heads of tau transgenic Drosophila reveals the preferential translation of specific mRNA that have been previously linked to neurodegeneration. Unexpectedly, we find that panneuronal elevation of NMD further elevates the global translation rate in tau transgenic Drosophila, as does treatment with rapamycin. As NMD activation and rapamycin both suppress tau-induced neurodegeneration, their shared effect on translation suggests that elevated rates of mRNA translation are an early adaptive mechanism to limit neurodegeneration. Our work provides compelling evidence that tau-induced deficits in NMD reshape the tau translatome by increasing translation of RNA that are normally repressed in healthy cells.
Collapse
Affiliation(s)
- Gabrielle Zuniga
- Barshop Institute for Longevity and Aging StudiesSan AntonioTexasUSA
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative DiseasesSan AntonioTexasUSA
- Department of Cell Systems and AnatomyUniversity of Texas Health San AntonioSan AntonioTexasUSA
| | - Sakie Katsumura
- Barshop Institute for Longevity and Aging StudiesSan AntonioTexasUSA
- Department of Molecular MedicineUniversity of Texas Health San AntonioSan AntonioTexasUSA
- Premium Research Institute for Human Metaverse Medicine (WPI‐PRIMe)Osaka UniversitySuitaOsakaJapan
| | - Jasmine De Mange
- Barshop Institute for Longevity and Aging StudiesSan AntonioTexasUSA
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative DiseasesSan AntonioTexasUSA
- Department of Cell Systems and AnatomyUniversity of Texas Health San AntonioSan AntonioTexasUSA
| | - Paulino Ramirez
- Barshop Institute for Longevity and Aging StudiesSan AntonioTexasUSA
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative DiseasesSan AntonioTexasUSA
- Department of Cell Systems and AnatomyUniversity of Texas Health San AntonioSan AntonioTexasUSA
| | - Farzaneh Atrian
- Barshop Institute for Longevity and Aging StudiesSan AntonioTexasUSA
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative DiseasesSan AntonioTexasUSA
- Department of Cell Systems and AnatomyUniversity of Texas Health San AntonioSan AntonioTexasUSA
| | - Masahiro Morita
- Barshop Institute for Longevity and Aging StudiesSan AntonioTexasUSA
- Department of Molecular MedicineUniversity of Texas Health San AntonioSan AntonioTexasUSA
- Premium Research Institute for Human Metaverse Medicine (WPI‐PRIMe)Osaka UniversitySuitaOsakaJapan
| | - Bess Frost
- Barshop Institute for Longevity and Aging StudiesSan AntonioTexasUSA
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative DiseasesSan AntonioTexasUSA
- Department of Cell Systems and AnatomyUniversity of Texas Health San AntonioSan AntonioTexasUSA
| |
Collapse
|
3
|
Shi L, Xue Z, Mao H, Jiang H, Zhang L. Proteomic analysis of gene expression in the prefrontal cortex in infant rhesus macaques after multiple sevoflurane exposures. J Anesth 2023; 37:853-860. [PMID: 37608132 DOI: 10.1007/s00540-023-03244-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 07/28/2023] [Indexed: 08/24/2023]
Abstract
PURPOSE Repeated exposure of infant rhesus macaques to sevoflurane induces neurotoxicity and is associated with neurocognitive impairment in later life. We aimed to investigate the effect of repeated sevoflurane exposure on the expression of proteins in the prefrontal cortex of infant rhesus macaques by proteomics. METHODS Rhesus macaques were exposed to sevoflurane three times, on postnatal days 7, 21 and 35. Quantitative proteomics employing LC-MS with isobaric labeling (TMT10plex), western blotting, and transmission electron microscopy (TEM) were utilized in the studies. RESULTS The results of a proteomics investigation of the brain revealed that the proteins that were differentially expressed in rhesus macaques after sevoflurane exposures were associated mainly with mitochondrial respiration. Following multiple sevoflurane exposures, the prefrontal cortices of rhesus macaques exhibited increases in NDUFA8 and COX IV protein levels, while no alterations in mitochondrial morphology were observed through TEM. CONCLUSION Multiple exposures to sevoflurane increased the mitochondrial protein levels in rhesus macaques.
Collapse
Affiliation(s)
- Lingling Shi
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China
| | - Zhenyu Xue
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China
| | - Haoli Mao
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China
| | - Hong Jiang
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China.
| | - Lei Zhang
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China.
| |
Collapse
|
4
|
Dowling DK, Wolff JN. Evolutionary genetics of the mitochondrial genome: insights from Drosophila. Genetics 2023; 224:iyad036. [PMID: 37171259 PMCID: PMC10324950 DOI: 10.1093/genetics/iyad036] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 02/05/2023] [Indexed: 05/13/2023] Open
Abstract
Mitochondria are key to energy conversion in virtually all eukaryotes. Intriguingly, despite billions of years of evolution inside the eukaryote, mitochondria have retained their own small set of genes involved in the regulation of oxidative phosphorylation (OXPHOS) and protein translation. Although there was a long-standing assumption that the genetic variation found within the mitochondria would be selectively neutral, research over the past 3 decades has challenged this assumption. This research has provided novel insight into the genetic and evolutionary forces that shape mitochondrial evolution and broader implications for evolutionary ecological processes. Many of the seminal studies in this field, from the inception of the research field to current studies, have been conducted using Drosophila flies, thus establishing the species as a model system for studies in mitochondrial evolutionary biology. In this review, we comprehensively review these studies, from those focusing on genetic processes shaping evolution within the mitochondrial genome, to those examining the evolutionary implications of interactions between genes spanning mitochondrial and nuclear genomes, and to those investigating the dynamics of mitochondrial heteroplasmy. We synthesize the contribution of these studies to shaping our understanding of the evolutionary and ecological implications of mitochondrial genetic variation.
Collapse
Affiliation(s)
- Damian K Dowling
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia
| | - Jonci N Wolff
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia
| |
Collapse
|
5
|
Wang R, Shi Z, Li J, Tang D, Qin S, Guo Y. Protective Effect of Manganese on Apoptosis and Mitochondrial Function of Heat-Stressed Primary Chick Embryonic Myocardial Cells. Biol Trace Elem Res 2022; 200:4419-4429. [PMID: 34779997 DOI: 10.1007/s12011-021-03016-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/03/2021] [Indexed: 12/16/2022]
Abstract
Heat stress, as a kind of oxidative stress, induces cell apoptosis. Apoptosis is a form of programmed cell death, and mitochondria play an important role in apoptosis. Manganese (Mn) has an antioxidant capacity by enhancing the activity of manganese superoxide dismutase (MnSOD). To investigate the potential effect of Mn on heat stress-induced apoptosis and mitochondrial function, we examined crucial related factors in the context of heat stress using primary chick embryonic myocardial cells pretreated with Mn for 24 h. The results showed that Mn restored the heat stress-induced decrease in cell viability and reduced the activities of caspase-3 (P < 0.05). The repression of the Δψm and intracellular ATP content caused by heat stress was reversed dramatically in the Mn pretreatment group (P < 0.05). Additionally, Mn inhibited heat stress-induced mitochondrial fission, as shown by decreased mitochondrial fission-related protein dynamin-related protein 1 (Drp1) expression and increased mitochondrial fusion-related protein optic atrophy 1 (Opa1) and mitofusin 1 (Mfn1) (P < 0.05) in primary chick embryonic myocardial cells. It was concluded that Mn attenuates the mitochondrial-mediated apoptosis pathway and sustains mitochondrial structure and function under heat stress in primary chick embryonic myocardial cells.
Collapse
Affiliation(s)
- Rui Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Zhaoguo Shi
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Jinlu Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Defu Tang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Shizhen Qin
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China.
| | - Yanli Guo
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| |
Collapse
|
6
|
Mallik B, Frank CA. Roles for Mitochondrial Complex I Subunits in Regulating Synaptic Transmission and Growth. Front Neurosci 2022; 16:846425. [PMID: 35557603 PMCID: PMC9087048 DOI: 10.3389/fnins.2022.846425] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/22/2022] [Indexed: 11/13/2022] Open
Abstract
To identify conserved components of synapse function that are also associated with human diseases, we conducted a genetic screen. We used the Drosophila melanogaster neuromuscular junction (NMJ) as a model. We employed RNA interference (RNAi) on selected targets and assayed synapse function and plasticity by electrophysiology. We focused our screen on genetic factors known to be conserved from human neurological or muscle functions (300 Drosophila lines screened). From our screen, knockdown of a Mitochondrial Complex I (MCI) subunit gene (ND-20L) lowered levels of NMJ neurotransmission. Due to the severity of the phenotype, we studied MCI function further. Knockdown of core MCI subunits concurrently in neurons and muscle led to impaired neurotransmission. We localized this neurotransmission function to the muscle. Pharmacology targeting MCI phenocopied the impaired neurotransmission phenotype. Finally, MCI subunit knockdowns or pharmacological inhibition led to profound cytological defects, including reduced NMJ growth and altered NMJ morphology. Mitochondria are essential for cellular bioenergetics and produce ATP through oxidative phosphorylation. Five multi-protein complexes achieve this task, and MCI is the largest. Impaired Mitochondrial Complex I subunits in humans are associated with disorders such as Parkinson’s disease, Leigh syndrome, and cardiomyopathy. Together, our data present an analysis of Complex I in the context of synapse function and plasticity. We speculate that in the context of human MCI dysfunction, similar neuronal and synaptic defects could contribute to pathogenesis.
Collapse
Affiliation(s)
- Bhagaban Mallik
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA, United States
| | - C. Andrew Frank
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA, United States
- Carver College of Medicine and Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, United States
- *Correspondence: C. Andrew Frank,
| |
Collapse
|
7
|
Anoar S, Woodling NS, Niccoli T. Mitochondria Dysfunction in Frontotemporal Dementia/Amyotrophic Lateral Sclerosis: Lessons From Drosophila Models. Front Neurosci 2021; 15:786076. [PMID: 34899176 PMCID: PMC8652125 DOI: 10.3389/fnins.2021.786076] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/03/2021] [Indexed: 12/16/2022] Open
Abstract
Frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) are neurodegenerative disorders characterized by declining motor and cognitive functions. Even though these diseases present with distinct sets of symptoms, FTD and ALS are two extremes of the same disease spectrum, as they show considerable overlap in genetic, clinical and neuropathological features. Among these overlapping features, mitochondrial dysfunction is associated with both FTD and ALS. Recent studies have shown that cells derived from patients' induced pluripotent stem cells (iPSC)s display mitochondrial abnormalities, and similar abnormalities have been observed in a number of animal disease models. Drosophila models have been widely used to study FTD and ALS because of their rapid generation time and extensive set of genetic tools. A wide array of fly models have been developed to elucidate the molecular mechanisms of toxicity for mutations associated with FTD/ALS. Fly models have been often instrumental in understanding the role of disease associated mutations in mitochondria biology. In this review, we discuss how mutations associated with FTD/ALS disrupt mitochondrial function, and we review how the use of Drosophila models has been pivotal to our current knowledge in this field.
Collapse
Affiliation(s)
- Sharifah Anoar
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing, University College London, London, United Kingdom
| | - Nathaniel S Woodling
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing, University College London, London, United Kingdom
| | - Teresa Niccoli
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing, University College London, London, United Kingdom
| |
Collapse
|
8
|
Wang M, Xu P, Liao L, Gao L, Amakye WK, Zhang Y, Yao M, Ren J. Haematococcus Pluvialis Extends Yeast Lifespan and Improves Slc25a46 Gene Knockout-Associated Mice Phenotypic Defects. Mol Nutr Food Res 2021; 65:e2100086. [PMID: 34672083 DOI: 10.1002/mnfr.202100086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 09/02/2021] [Indexed: 12/18/2022]
Abstract
SCOPE Aging has become one of major concern worldwide. It is therefore of great significance in finding food resources as therapeutic candidates for aging-related functional decline improvement and prevention. This study aimed to define the potency of Haematococcus pluvialis (H. pluvialis) as an anti-aging food resource. METHODS AND RESULTS Yeast is used to explore the anti-aging effects of H. pluvialis. The result showed that H. pluvialis extract could effectively extend yeast chronological lifespan (CLS) by reducing intracellular reactive oxygen species (ROS) levels, promoting mitochondrial membrane potential (MMP) levels and accumulating storage carbohydrate (glycogen). Subsequently, Slc25a46 knockout (Slc25a46-/- ) mice with mitochondrial dysfunction are fed with 100 mg kg-1 H. pluvialis extracts for 10 days. The in vivo data demonstrated that H. pluvialis extract could effectively improve the phenotypic deficits, including underweight, muscle weakness, redox imbalance, and mitochondrial respiratory chain dysfunction, etc., in Slc25a46-/- mice. CONCLUSIONS This work highlights that the mitochondria may be a potential therapeutic target for combating aging, and demonstrated that H. pluvialis, as a dietary supplement, may potentially be an effective preventive substance that may contribute to the promotion of healthy aging.
Collapse
Affiliation(s)
- Min Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong, 510640, China
| | - Piao Xu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong, 510640, China
| | - Linfeng Liao
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong, 510640, China
| | - Li Gao
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong, 510640, China
| | - William Kwame Amakye
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong, 510640, China
| | - Ying Zhang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong, 510640, China
| | - Maojin Yao
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Jiaoyan Ren
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong, 510640, China
| |
Collapse
|
9
|
Gao L, Wang M, Liao L, Gou N, Xu P, Ren Z, Yao M, Yuan E, Yang X, Ren J. A Slc25a46 Mouse Model Simulating Age-Associated Motor Deficit, Redox Imbalance, and Mitochondria Dysfunction. J Gerontol A Biol Sci Med Sci 2021; 76:440-447. [PMID: 33277645 DOI: 10.1093/gerona/glaa306] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Indexed: 01/10/2023] Open
Abstract
The mitochondrial theory of aging postulates that accumulation of mtDNA mutations and mitochondrial dysfunction are responsible for producing aging phenotypes. To more comprehensively explore the complex relationship between aging and mitochondria dysfunction, we have developed a mouse model with Slc25a46 knockout, a nuclear gene described as encoding mitochondrial carriers, by CRISPR/Cas9 gene editing to mimic some typical aging phenotypes in human. Slc25a46-/- mice present segmental premature aging phenotypes characterized by shortened life span of no more than 2 months, obviously defective motor ability, gastrocnemius muscle atrophy, and imbalance of redox level in brain and liver. The underlying mechanism for multiple organ disorder may attribute to mitochondrial dysfunction, which is mainly manifested in the damaged mitochondrial structure (eg, vacuolar structure, irregular swelling, and disorganized cristae) and an age-associated decrease in respiratory chain enzyme (mainly complex I and IV) activity. In summary, our study suggests that the Slc25a46-/- mouse is a valid animal model for segmental aging-related pathologies studies based on mitochondrial theory, generating a new platform to both understand mechanisms between aging and mitochondria dysfunction as well as to design mitochondria-based therapeutic strategies to improve mitochondrial quality, and thereby the overall healthspan.
Collapse
Affiliation(s)
- Li Gao
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Min Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Linfeng Liao
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Na Gou
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Piao Xu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Zhengyu Ren
- School of Pharmaceutical Science, University of South China, Hengyang, China
| | - Maojin Yao
- Guangzhou Institute of Respiratory Disease & China State Key Laboratory of Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, China
| | - Erdong Yuan
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Xinquan Yang
- School of Life Sciences, Guangzhou University, China
| | - Jiaoyan Ren
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
10
|
Tsurumi A, Li WX. Aging mechanisms-A perspective mostly from Drosophila. ADVANCED GENETICS (HOBOKEN, N.J.) 2020; 1:e10026. [PMID: 36619249 PMCID: PMC9744567 DOI: 10.1002/ggn2.10026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 04/04/2020] [Accepted: 04/08/2020] [Indexed: 01/11/2023]
Abstract
A mechanistic understanding of the natural aging process, which is distinct from aging-related disease mechanisms, is essential for developing interventions to extend lifespan or healthspan. Here, we discuss current trends in aging research and address conceptual and experimental challenges in the field. We examine various molecular markers implicated in aging with an emphasis on the role of heterochromatin and epigenetic changes. Studies in model organisms have been advantageous in elucidating conserved genetic and epigenetic mechanisms and assessing interventions that affect aging. We highlight the use of Drosophila, which allows controlled studies for evaluating genetic and environmental contributors to aging conveniently. Finally, we propose the use of novel methodologies and future strategies using Drosophila in aging research.
Collapse
Affiliation(s)
- Amy Tsurumi
- Department of SurgeryMassachusetts General Hospital, and Harvard Medical SchoolBostonMassachusettsUSA
- Department of Microbiology and ImmunologyHarvard Medical SchoolBostonMassachusettsUSA
- Shriners Hospitals for Children‐Boston®BostonMassachusettsUSA
| | - Willis X. Li
- Department of MedicineUniversity of California at San DiegoLa JollaCaliforniaUSA
| |
Collapse
|
11
|
Abstract
BACKGROUND General anesthetics influence mitochondrial homeostasis, placing individuals with mitochondrial disorders and possibly carriers of recessive mitochondrial mutations at increased risk of perioperative complications. In Drosophila, mutations in the ND23 subunit of complex I of the mitochondrial electron transport chain-analogous to mammalian NDUFS8-replicate key characteristics of Leigh syndrome, an inherited mitochondrial disorder. The authors used the ND23 mutant for testing the hypothesis that anesthetics have toxic potential in carriers of mitochondrial mutations. METHODS The authors exposed wild-type flies and ND23 mutant flies to behaviorally equivalent doses of isoflurane or sevoflurane in 5%, 21%, or 75% oxygen. The authors used percent mortality (mean ± SD, n ≥ 3) at 24 h after exposure as a readout of toxicity and changes in gene expression to investigate toxicity mechanisms. RESULTS Exposure of 10- to 13-day-old male ND23 flies to isoflurane in 5%, 21%, or 75% oxygen resulted in 16.0 ± 14.9% (n = 10), 48.2 ± 16.1% (n = 9), and 99.2 ± 2.0% (n = 10) mortality, respectively. Comparable mortality was observed in females. In contrast, under the same conditions, mortality was less than 5% for all male and female groups exposed to sevoflurane, except 10- to 13-day-old male ND23 flies with 9.6 ± 8.9% (n = 16) mortality. The mortality of 10- to 13-day-old ND23 flies exposed to isoflurane was rescued by neuron- or glia-specific expression of wild-type ND23. Isoflurane and sevoflurane differentially affected expression of antioxidant genes in 10- to 13-day-old ND23 flies. ND23 flies had elevated mortality from paraquat-induced oxidative stress compared with wild-type flies. The mortality of heterozygous ND23 flies exposed to isoflurane in 75% oxygen increased with age, resulting in 54.0 ± 19.6% (n = 4) mortality at 33 to 39 days old, and the percent mortality varied in different genetic backgrounds. CONCLUSIONS Mutations in the mitochondrial complex I subunit ND23 increase susceptibility to isoflurane-induced toxicity and to oxidative stress in Drosophila. Asymptomatic flies that carry ND23 mutations are sensitized to hyperoxic isoflurane toxicity by age and genetic background. EDITOR’S PERSPECTIVE
Collapse
|
12
|
Towarnicki SG, Ballard JWO. Towards understanding the evolutionary dynamics of mtDNA. Mitochondrial DNA A DNA Mapp Seq Anal 2020; 31:355-364. [PMID: 33026269 DOI: 10.1080/24701394.2020.1830076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Historically, mtDNA was considered a selectively neutral marker that was useful for estimating the population genetic history of the maternal lineage. Over time there has been an increasing appreciation of mtDNA and mitochondria in maintaining cellular and organismal health. Beyond energy production, mtDNA and mitochondria have critical cellular roles in signalling. Here we briefly review the structure of mtDNA and the role of the mitochondrion in energy production. We then discuss the predictions that can be obtained from quaternary structure modelling and focus on mitochondrial complex I. Complex I is the primary entry point for electrons into the electron transport system is the largest respiratory complex of the chain and produces about 40% of the proton flux used to synthesize ATP. A focus of the review is Drosophila's utility as a model organism to study the selective advantage of specific mutations. However, we note that the incorporation of insights from a multitude of systems is necessary to fully understand the range of roles that mtDNA has in organismal fitness. We speculate that dietary changes can illicit stress responses that influence the selective advantage of specific mtDNA mutations and cause spatial and temporal fluctuations in the frequencies of mutations. We conclude that developing our understanding of the roles mtDNA has in determining organismal fitness will enable increased evolutionary insight and propose we can no longer assume it is evolving as a strictly neutral marker without testing this hypothesis.
Collapse
Affiliation(s)
- Samuel G Towarnicki
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, Australia
| | - J William O Ballard
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, Australia
| |
Collapse
|
13
|
Long DM, Frame AK, Reardon PN, Cumming RC, Hendrix DA, Kretzschmar D, Giebultowicz JM. Lactate dehydrogenase expression modulates longevity and neurodegeneration in Drosophila melanogaster. Aging (Albany NY) 2020; 12:10041-10058. [PMID: 32484787 PMCID: PMC7346061 DOI: 10.18632/aging.103373] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 05/14/2020] [Indexed: 11/25/2022]
Abstract
Lactate dehydrogenase (LDH) catalyzes the conversion of glycolysis-derived pyruvate to lactate. Lactate has been shown to play key roles in brain energetics and memory formation. However, lactate levels are elevated in aging and Alzheimer's disease patients, and it is not clear whether lactate plays protective or detrimental roles in these contexts. Here we show that Ldh transcript levels are elevated and cycle with diurnal rhythm in the heads of aged flies and this is associated with increased LDH protein, enzyme activity, and lactate concentrations. To understand the biological significance of increased Ldh gene expression, we genetically manipulated Ldh levels in adult neurons or glia. Overexpression of Ldh in both cell types caused a significant reduction in lifespan whereas Ldh down-regulation resulted in lifespan extension. Moreover, pan-neuronal overexpression of Ldh disrupted circadian locomotor activity rhythms and significantly increased brain neurodegeneration. In contrast, reduction of Ldh in neurons delayed age-dependent neurodegeneration. Thus, our unbiased genetic approach identified Ldh and lactate as potential modulators of aging and longevity in flies.
Collapse
Affiliation(s)
- Dani M Long
- Department of Integrative Biology, Oregon State University, Corvallis, OR 97331, USA.,Present address: Oregon Institute of Occupational Health Sciences, Oregon Health and Science University, Portland, OR 97239, USA
| | - Ariel K Frame
- Department of Biology, Western University of London, London N6A 5B7, Ontario, Canada
| | | | - Robert C Cumming
- Department of Biology, Western University of London, London N6A 5B7, Ontario, Canada
| | - David A Hendrix
- Department of Biochemistry and Biophysics, School of Electrical Engineering and Computer Science, Corvallis, OR 97331, USA
| | - Doris Kretzschmar
- Oregon Institute of Occupational Health Sciences, Oregon Health and Science University, Portland, OR 97239, USA
| | | |
Collapse
|
14
|
Ohnuma K, Kishita Y, Nyuzuki H, Kohda M, Ohtsu Y, Takeo S, Asano T, Sato-Miyata Y, Ohtake A, Murayama K, Okazaki Y, Aigaki T. Ski3/TTC37 deficiency associated with trichohepatoenteric syndrome causes mitochondrial dysfunction in Drosophila. FEBS Lett 2020; 594:2168-2181. [PMID: 32294252 DOI: 10.1002/1873-3468.13792] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 03/30/2020] [Indexed: 11/08/2022]
Abstract
Tetratricopeptide repeat protein 37 (TTC37) is a causative gene of trichohepatoenteric syndrome (THES). However, little is known about the pathogenesis of this disease. Here, we characterize the phenotype of a Drosophila model in which ski3, a homolog of TTC37, is disrupted. The mutant flies are pupal lethal, and the pupal lethality is partially rescued by transgenic expression of wild-type ski3 or human TTC37. The mutant larvae show growth retardation, heart arrhythmia, triacylglycerol accumulation, and aberrant metabolism of glycolysis and the TCA cycle. Moreover, mitochondrial membrane potential and respiratory chain complex activities are significantly reduced in the mutants. Our results demonstrate that ski3 deficiency causes mitochondrial dysfunction, which may underlie the pathogenesis of THES.
Collapse
Affiliation(s)
- Kohei Ohnuma
- Department of Biological Sciences, Graduate School of Science and Engineering, Tokyo Metropolitan University, Hachioji-shi, Japan
| | - Yoshihito Kishita
- Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Japan
| | - Hiromi Nyuzuki
- Department of Pediatrics, School of Medicine, Niigata University, Asahimachi, Japan
| | - Masakazu Kohda
- Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Japan
| | - Yuta Ohtsu
- Division of Medical Nutrition, Faculty of Healthcare, Tokyo Healthcare University, Setagaya-ku, Japan
| | - Satomi Takeo
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Hachioji-shi, Japan
| | - Tsunaki Asano
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Hachioji-shi, Japan
| | - Yukiko Sato-Miyata
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Hachioji-shi, Japan
- Research and Education Centre for Natural Sciences, Keio University, Yokohama, Japan
| | - Akira Ohtake
- Department of Pediatrics & Clinical Genomics, Saitama Medical University, Iruma-gun, Japan
| | - Kei Murayama
- Department of Metabolism, Center for Medical Genetics, Chiba Children's Hospital, Midori-ku, Japan
| | - Yasushi Okazaki
- Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Japan
| | - Toshiro Aigaki
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Hachioji-shi, Japan
| |
Collapse
|
15
|
Rhooms SK, Murari A, Goparaju NSV, Vilanueva M, Owusu-Ansah E. Insights from Drosophila on mitochondrial complex I. Cell Mol Life Sci 2020; 77:607-618. [PMID: 31485716 PMCID: PMC7289077 DOI: 10.1007/s00018-019-03293-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 08/08/2019] [Accepted: 08/28/2019] [Indexed: 12/26/2022]
Abstract
NADH:ubiquinone oxidoreductase, more commonly referred to as mitochondrial complex I (CI), is the largest discrete enzyme of the oxidative phosphorylation system (OXPHOS). It is localized to the mitochondrial inner membrane. CI oxidizes NADH generated from the tricarboxylic acid cycle to NAD+, in a series of redox reactions that culminates in the reduction of ubiquinone, and the transport of protons from the matrix across the inner membrane to the intermembrane space. The resulting proton-motive force is consumed by ATP synthase to generate ATP, or harnessed to transport ions, metabolites and proteins into the mitochondrion. CI is also a major source of reactive oxygen species. Accordingly, impaired CI function has been associated with a host of chronic metabolic and degenerative disorders such as diabetes, cardiomyopathy, Parkinson's disease (PD) and Leigh syndrome. Studies on Drosophila have contributed to our understanding of the multiple roles of CI in bioenergetics and organismal physiology. Here, we explore and discuss some of the studies on Drosophila that have informed our understanding of this complex and conclude with some of the open questions about CI that can be resolved by studies on Drosophila.
Collapse
Affiliation(s)
- Shauna-Kay Rhooms
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, NY, 10032, USA
| | - Anjaneyulu Murari
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, NY, 10032, USA
| | - Naga Sri Vidya Goparaju
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, NY, 10032, USA
| | - Maximino Vilanueva
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, NY, 10032, USA
| | - Edward Owusu-Ansah
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, NY, 10032, USA.
- The Robert N. Butler Columbia Aging Center, Columbia University Medical Center, New York, NY, 10032, USA.
| |
Collapse
|
16
|
Klucnika A, Ma H. Mapping and editing animal mitochondrial genomes: can we overcome the challenges? Philos Trans R Soc Lond B Biol Sci 2019; 375:20190187. [PMID: 31787046 DOI: 10.1098/rstb.2019.0187] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The animal mitochondrial genome, although small, can have a big impact on health and disease. Non-pathogenic sequence variation among mitochondrial DNA (mtDNA) haplotypes influences traits including fertility, healthspan and lifespan, whereas pathogenic mutations are linked to incurable mitochondrial diseases and other complex conditions like ageing, diabetes, cancer and neurodegeneration. However, we know very little about how mtDNA genetic variation contributes to phenotypic differences. Infrequent recombination, the multicopy nature and nucleic acid-impenetrable membranes present significant challenges that hamper our ability to precisely map mtDNA variants responsible for traits, and to genetically modify mtDNA so that we can isolate specific mutants and characterize their biochemical and physiological consequences. Here, we summarize the past struggles and efforts in developing systems to map and edit mtDNA. We also assess the future of performing forward and reverse genetic studies on animal mitochondrial genomes. This article is part of the theme issue 'Linking the mitochondrial genotype to phenotype: a complex endeavour'.
Collapse
Affiliation(s)
- Anna Klucnika
- Wellcome Trust/Cancer Research UK Gurdon Institute, Tennis Court Road, Cambridge CB2 1QN, UK.,Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | - Hansong Ma
- Wellcome Trust/Cancer Research UK Gurdon Institute, Tennis Court Road, Cambridge CB2 1QN, UK.,Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| |
Collapse
|
17
|
Bevers RPJ, Litovchenko M, Kapopoulou A, Braman VS, Robinson MR, Auwerx J, Hollis B, Deplancke B. Mitochondrial haplotypes affect metabolic phenotypes in the Drosophila Genetic Reference Panel. Nat Metab 2019; 1:1226-1242. [PMID: 32694676 DOI: 10.1038/s42255-019-0147-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 11/07/2019] [Indexed: 01/04/2023]
Abstract
The nature and extent of mitochondrial DNA variation in a population and how it affects traits is poorly understood. Here we resequence the mitochondrial genomes of 169 Drosophila Genetic Reference Panel lines, identifying 231 variants that stratify along 12 mitochondrial haplotypes. We identify 1,845 cases of mitonuclear allelic imbalances, thus implying that mitochondrial haplotypes are reflected in the nuclear genome. However, no major fitness effects are associated with mitonuclear imbalance, suggesting that such imbalances reflect population structure at the mitochondrial level rather than genomic incompatibilities. Although mitochondrial haplotypes have no direct impact on mitochondrial respiration, some haplotypes are associated with stress- and metabolism-related phenotypes, including food intake in males. Finally, through reciprocal swapping of mitochondrial genomes, we demonstrate that a mitochondrial haplotype associated with high food intake can rescue a low food intake phenotype. Together, our findings provide new insight into population structure at the mitochondrial level and point to the importance of incorporating mitochondrial haplotypes in genotype-phenotype relationship studies.
Collapse
Affiliation(s)
- Roel P J Bevers
- Laboratory of Systems Biology and Genetics, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Genomics England, London, UK
| | - Maria Litovchenko
- Laboratory of Systems Biology and Genetics, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Adamandia Kapopoulou
- Laboratory of Systems Biology and Genetics, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Virginie S Braman
- Laboratory of Systems Biology and Genetics, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Matthew R Robinson
- Complex Trait Genetics Group, Université de Lausanne, Lausanne, Switzerland
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Brian Hollis
- Laboratory of Systems Biology and Genetics, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Bart Deplancke
- Laboratory of Systems Biology and Genetics, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
- Swiss Institute of Bioinformatics, Lausanne, Switzerland.
| |
Collapse
|
18
|
Cruz-Rivera YE, Perez-Morales J, Santiago YM, Gonzalez VM, Morales L, Cabrera-Rios M, Isaza CE. A Selection of Important Genes and Their Correlated Behavior in Alzheimer's Disease. J Alzheimers Dis 2019; 65:193-205. [PMID: 30040709 PMCID: PMC6087431 DOI: 10.3233/jad-170799] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
In 2017, approximately 5 million Americans were living with Alzheimer’s disease (AD), and it is estimated that by 2050 this number could increase to 16 million. In this study, we apply mathematical optimization to approach microarray analysis to detect differentially expressed genes and determine the most correlated structure among their expression changes. The analysis of GSE4757 microarray dataset, which compares expression between AD neurons without neurofibrillary tangles (controls) and with neurofibrillary tangles (cases), was casted as a multiple criteria optimization (MCO) problem. Through the analysis it was possible to determine a series of Pareto efficient frontiers to find the most differentially expressed genes, which are here proposed as potential AD biomarkers. The Traveling Sales Problem (TSP) model was used to find the cyclical path of maximal correlation between the expression changes among the genes deemed important from the previous stage. This leads to a structure capable of guiding biological exploration with enhanced precision and repeatability. Ten genes were selected (FTL, GFAP, HNRNPA3, COX1, ND2, ND3, ND4, NUCKS1, RPL41, and RPS10) and their most correlated cyclic structure was found in our analyses. The biological functions of their products were found to be linked to inflammation and neurodegenerative diseases and some of them had not been reported for AD before. The TSP path connects genes coding for mitochondrial electron transfer proteins. Some of these proteins are closely related to other electron transport proteins already reported as important for AD.
Collapse
Affiliation(s)
- Yazeli E Cruz-Rivera
- The Applied Optimization Group/Department of Industrial Engineering, University of Puerto Rico, Mayagüez Campus, Mayagüez, Puerto Rico
| | - Jaileene Perez-Morales
- Department of Basic Science-Biochemistry Division, Ponce Health Sciences University, Ponce, Puerto Rico
| | - Yaritza M Santiago
- The Applied Optimization Group/Department of Industrial Engineering, University of Puerto Rico, Mayagüez Campus, Mayagüez, Puerto Rico
| | - Valerie M Gonzalez
- The Applied Optimization Group/Department of Industrial Engineering, University of Puerto Rico, Mayagüez Campus, Mayagüez, Puerto Rico
| | - Luisa Morales
- Public Health Program, Ponce Health Sciences University, Ponce, Puerto Rico
| | - Mauricio Cabrera-Rios
- The Applied Optimization Group/Department of Industrial Engineering, University of Puerto Rico, Mayagüez Campus, Mayagüez, Puerto Rico
| | - Clara E Isaza
- The Applied Optimization Group/Department of Industrial Engineering, University of Puerto Rico, Mayagüez Campus, Mayagüez, Puerto Rico.,Public Health Program, Ponce Health Sciences University, Ponce, Puerto Rico
| |
Collapse
|
19
|
Andreazza S, Samstag CL, Sanchez-Martinez A, Fernandez-Vizarra E, Gomez-Duran A, Lee JJ, Tufi R, Hipp MJ, Schmidt EK, Nicholls TJ, Gammage PA, Chinnery PF, Minczuk M, Pallanck LJ, Kennedy SR, Whitworth AJ. Mitochondrially-targeted APOBEC1 is a potent mtDNA mutator affecting mitochondrial function and organismal fitness in Drosophila. Nat Commun 2019; 10:3280. [PMID: 31337756 PMCID: PMC6650417 DOI: 10.1038/s41467-019-10857-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 06/06/2019] [Indexed: 12/22/2022] Open
Abstract
Somatic mutations in the mitochondrial genome (mtDNA) have been linked to multiple disease conditions and to ageing itself. In Drosophila, knock-in of a proofreading deficient mtDNA polymerase (POLG) generates high levels of somatic point mutations and also small indels, but surprisingly limited impact on organismal longevity or fitness. Here we describe a new mtDNA mutator model based on a mitochondrially-targeted cytidine deaminase, APOBEC1. mito-APOBEC1 acts as a potent mutagen which exclusively induces C:G>T:A transitions with no indels or mtDNA depletion. In these flies, the presence of multiple non-synonymous substitutions, even at modest heteroplasmy, disrupts mitochondrial function and dramatically impacts organismal fitness. A detailed analysis of the mutation profile in the POLG and mito-APOBEC1 models reveals that mutation type (quality) rather than quantity is a critical factor in impacting organismal fitness. The specificity for transition mutations and the severe phenotypes make mito-APOBEC1 an excellent mtDNA mutator model for ageing research.
Collapse
Affiliation(s)
- Simonetta Andreazza
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, UK
| | - Colby L Samstag
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195, USA
| | - Alvaro Sanchez-Martinez
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, UK
| | - Erika Fernandez-Vizarra
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, UK
| | - Aurora Gomez-Duran
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, UK
| | - Juliette J Lee
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, UK
| | - Roberta Tufi
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, UK
| | - Michael J Hipp
- Department of Pathology, University of Washington, Seattle, WA, 98195, USA
| | | | - Thomas J Nicholls
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, UK
| | - Payam A Gammage
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, UK
| | - Patrick F Chinnery
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, UK
- Department of Clinical Neuroscience, School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Michal Minczuk
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, UK
| | - Leo J Pallanck
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195, USA
| | - Scott R Kennedy
- Department of Pathology, University of Washington, Seattle, WA, 98195, USA
| | - Alexander J Whitworth
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, UK.
| |
Collapse
|
20
|
Hirose M, Schilf P, Zarse K, Busch H, Fuellen G, Jöhren O, Köhling R, König IR, Richer B, Rupp J, Schwaninger M, Seeger K, Sina C, Ristow M, Ibrahim SM. Maternally Inherited Differences within Mitochondrial Complex I Control Murine Healthspan. Genes (Basel) 2019; 10:genes10070532. [PMID: 31337008 PMCID: PMC6678443 DOI: 10.3390/genes10070532] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/02/2019] [Accepted: 07/10/2019] [Indexed: 11/16/2022] Open
Abstract
Mitochondrial complex I-the largest enzyme complex of the mitochondrial oxidative phosphorylation machinery-has been proposed to contribute to a variety of age-related pathological alterations as well as longevity. The enzyme complex-consisting proteins are encoded by both nuclear (nDNA) and mitochondrial DNA (mtDNA). While some association studies of mtDNA encoded complex I genes and lifespan in humans have been reported, experimental evidence and the functional consequence of such variants is limited to studies using invertebrate models. Here, we present experimental evidence that a homoplasmic mutation in the mitochondrially encoded complex I gene mt-Nd2 modulates lifespan by altering cellular tryptophan levels and, consequently, ageing-related pathways in mice. A conplastic mouse strain carrying a mutation at m.4738C > A in mt-Nd2 lived slightly, but significantly, shorter than the controls did. The same mutation led to a higher susceptibility to glucose intolerance induced by high-fat diet feeding. These phenotypes were not observed in mice carrying a mutation in another mtDNA encoded complex I gene, mt-Nd5, suggesting the functional relevance of particular mutations in complex I to ageing and age-related diseases.
Collapse
Affiliation(s)
- Misa Hirose
- Luebeck Institute of Experimental Dermatology, University of Luebeck, 23562 Luebeck, Germany
| | - Paul Schilf
- Luebeck Institute of Experimental Dermatology, University of Luebeck, 23562 Luebeck, Germany
| | - Kim Zarse
- Energy Metabolism Laboratory, Institute of Translational Medicine, Swiss Federal Institute of Technology (ETH) Zurich, 8603 Schwerzenbach, Switzerland
| | - Hauke Busch
- Group of Systems Biology, Institute of Cardiogenetics and Luebeck Institute of Experimental Dermatology, University of Luebeck, 23562 Luebeck, Germany
| | - Georg Fuellen
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University Medical Center, 18057 Rostock, Germany
| | - Olaf Jöhren
- Center of Brain, Behavior & Metabolism, University of Luebeck, 23562 Luebeck, Germany
| | - Rüdiger Köhling
- Oscar Langendorff Institute of Physiology, Rostock University Medical Center, 18057 Rostock, Germany
| | - Inke R König
- Institute of Medical Biometry and Statistics, University of Luebeck, 23562 Luebeck, Germany
| | - Barbara Richer
- Institute of Chemistry and Metabolomics, University of Luebeck, 23562 Luebeck, Germany
| | - Jan Rupp
- Department of Infectious Diseases and Microbiology, University of Luebeck, 23562 Luebeck, Germany
| | - Markus Schwaninger
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Luebeck, 23562 Luebeck, Germany
| | - Karsten Seeger
- Institute of Chemistry and Metabolomics, University of Luebeck, 23562 Luebeck, Germany
| | - Christian Sina
- Institute for Nutritional Medicine, University of Luebeck, 23562 Luebeck, Germany
| | - Michael Ristow
- Energy Metabolism Laboratory, Institute of Translational Medicine, Swiss Federal Institute of Technology (ETH) Zurich, 8603 Schwerzenbach, Switzerland
| | - Saleh M Ibrahim
- Luebeck Institute of Experimental Dermatology, University of Luebeck, 23562 Luebeck, Germany.
| |
Collapse
|
21
|
Mitochondrial miR-762 regulates apoptosis and myocardial infarction by impairing ND2. Cell Death Dis 2019; 10:500. [PMID: 31235686 PMCID: PMC6591419 DOI: 10.1038/s41419-019-1734-7] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 05/01/2019] [Accepted: 05/28/2019] [Indexed: 12/11/2022]
Abstract
Mitochondrial dysfunction plays a major role in the pathogenesis of cardiovascular diseases. MicroRNAs (miRNAs) are small RNAs that act as negative regulators of gene expression, but how miRNAs affect mitochondrial function in the heart is unclear. Using a miRNA microarray assay, we found that miR-762 predominantly translocated in the mitochondria and was significantly upregulated upon anoxia/reoxygenation (A/R) treatment. Knockdown of endogenous miR-762 significantly attenuated the decrease in intracellular ATP levels, the increase in ROS levels, the decrease in mitochondrial complex I enzyme activity and the increase in apoptotic cell death in cardiomyocytes, which was induced by A/R treatment. In addition, knockdown of miR-762 ameliorated myocardial ischemia/reperfusion (I/R) injury in mice. Mechanistically, we showed that enforced expression of miR-762 dramatically decreased the protein levels of endogenous NADH dehydrogenase subunit 2 (ND2) but had no effect on the transcript levels of ND2. The luciferase reporter assay showed that miR-762 bound to the coding sequence of ND2. In addition, knockdown of endogenous ND2 significantly decreased intracellular ATP levels, increased ROS levels, reduced mitochondrial complex I enzyme activity and increased apoptotic cell death in cardiomyocytes, which was induced by A/R treatment. Furthermore, we found that the inhibitory effect of miR-762 downregulation was attenuated by ND2 knockdown. Thus, our findings suggest that miR-762 participates in the regulation of mitochondrial function and cardiomyocyte apoptosis by ND2, a core assembly subunit of mitochondrial complex I. Our results revealed that mitochondrial miR-762, as a new player in mitochondrial dysfunction, may provide a new therapeutic target for myocardial infarction.
Collapse
|
22
|
Chen Z, Zhang F, Xu H. Human mitochondrial DNA diseases and Drosophila models. J Genet Genomics 2019; 46:201-212. [DOI: 10.1016/j.jgg.2019.03.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 03/05/2019] [Accepted: 03/25/2019] [Indexed: 01/06/2023]
|
23
|
Foriel S, Renkema GH, Lasarzewski Y, Berkhout J, Rodenburg RJ, Smeitink JAM, Beyrath J, Schenck A. A Drosophila Mitochondrial Complex I Deficiency Phenotype Array. Front Genet 2019; 10:245. [PMID: 30972103 PMCID: PMC6445954 DOI: 10.3389/fgene.2019.00245] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 03/05/2019] [Indexed: 12/14/2022] Open
Abstract
Mitochondrial diseases are a group of rare life-threatening diseases often caused by defects in the oxidative phosphorylation system. No effective treatment is available for these disorders. Therapeutic development is hampered by the high heterogeneity in genetic, biochemical, and clinical spectra of mitochondrial diseases and by limited preclinical resources to screen and identify effective treatment candidates. Alternative models of the pathology are essential to better understand mitochondrial diseases and to accelerate the development of new therapeutics. The fruit fly Drosophila melanogaster is a cost- and time-efficient model that can recapitulate a wide range of phenotypes observed in patients suffering from mitochondrial disorders. We targeted three important subunits of complex I of the mitochondrial oxidative phosphorylation system with the flexible UAS-Gal4 system and RNA interference (RNAi): NDUFS4 (ND-18), NDUFS7 (ND-20), and NDUFV1 (ND-51). Using two ubiquitous driver lines at two temperatures, we established a collection of phenotypes relevant to complex I deficiencies. Our data offer models and phenotypes with different levels of severity that can be used for future therapeutic screenings. These include qualitative phenotypes that are amenable to high-throughput drug screening and quantitative phenotypes that require more resources but are likely to have increased potential and sensitivity to show modulation by drug treatment.
Collapse
Affiliation(s)
- Sarah Foriel
- Khondrion B.V., Nijmegen, Netherlands
- Radboud Center for Mitochondrial Medicine, Department of Pediatrics, Radboud University Medical Center, Nijmegen, Netherlands
| | - G. Herma Renkema
- Khondrion B.V., Nijmegen, Netherlands
- Radboud Center for Mitochondrial Medicine, Department of Pediatrics, Radboud University Medical Center, Nijmegen, Netherlands
| | - Yvonne Lasarzewski
- Radboud Center for Mitochondrial Medicine, Department of Pediatrics, Radboud University Medical Center, Nijmegen, Netherlands
| | | | - Richard J. Rodenburg
- Radboud Center for Mitochondrial Medicine, Department of Pediatrics, Radboud University Medical Center, Nijmegen, Netherlands
| | - Jan A. M. Smeitink
- Khondrion B.V., Nijmegen, Netherlands
- Radboud Center for Mitochondrial Medicine, Department of Pediatrics, Radboud University Medical Center, Nijmegen, Netherlands
| | | | - Annette Schenck
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
24
|
Deal SL, Yamamoto S. Unraveling Novel Mechanisms of Neurodegeneration Through a Large-Scale Forward Genetic Screen in Drosophila. Front Genet 2019; 9:700. [PMID: 30693015 PMCID: PMC6339878 DOI: 10.3389/fgene.2018.00700] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 12/13/2018] [Indexed: 01/04/2023] Open
Abstract
Neurodegeneration is characterized by progressive loss of neurons. Genetic and environmental factors both contribute to demise of neurons, leading to diverse devastating cognitive and motor disorders, including Alzheimer's and Parkinson's diseases in humans. Over the past few decades, the fruit fly, Drosophila melanogaster, has become an integral tool to understand the molecular, cellular and genetic mechanisms underlying neurodegeneration. Extensive tools and sophisticated technologies allow Drosophila geneticists to identify and study evolutionarily conserved genes that are essential for neural maintenance. In this review, we will focus on a large-scale mosaic forward genetic screen on the fly X-chromosome that led to the identification of a number of essential genes that exhibit neurodegenerative phenotypes when mutated. Most genes identified from this screen are evolutionarily conserved and many have been linked to human diseases with neurological presentations. Systematic electrophysiological and ultrastructural characterization of mutant tissue in the context of the Drosophila visual system, followed by a series of experiments to understand the mechanism of neurodegeneration in each mutant led to the discovery of novel molecular pathways that are required for neuronal integrity. Defects in mitochondrial function, lipid and iron metabolism, protein trafficking and autophagy are recurrent themes, suggesting that insults that eventually lead to neurodegeneration may converge on a set of evolutionarily conserved cellular processes. Insights from these studies have contributed to our understanding of known neurodegenerative diseases such as Leigh syndrome and Friedreich's ataxia and have also led to the identification of new human diseases. By discovering new genes required for neural maintenance in flies and working with clinicians to identify patients with deleterious variants in the orthologous human genes, Drosophila biologists can play an active role in personalized medicine.
Collapse
Affiliation(s)
- Samantha L Deal
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, United States
| | - Shinya Yamamoto
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, United States.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States.,Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, United States
| |
Collapse
|
25
|
Aw WC, Towarnicki SG, Melvin RG, Youngson NA, Garvin MR, Hu Y, Nielsen S, Thomas T, Pickford R, Bustamante S, Vila-Sanjurjo A, Smyth GK, Ballard JWO. Genotype to phenotype: Diet-by-mitochondrial DNA haplotype interactions drive metabolic flexibility and organismal fitness. PLoS Genet 2018; 14:e1007735. [PMID: 30399141 PMCID: PMC6219761 DOI: 10.1371/journal.pgen.1007735] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 10/02/2018] [Indexed: 02/07/2023] Open
Abstract
Diet may be modified seasonally or by biogeographic, demographic or cultural shifts. It can differentially influence mitochondrial bioenergetics, retrograde signalling to the nuclear genome, and anterograde signalling to mitochondria. All these interactions have the potential to alter the frequencies of mtDNA haplotypes (mitotypes) in nature and may impact human health. In a model laboratory system, we fed four diets varying in Protein: Carbohydrate (P:C) ratio (1:2, 1:4, 1:8 and 1:16 P:C) to four homoplasmic Drosophila melanogaster mitotypes (nuclear genome standardised) and assayed their frequency in population cages. When fed a high protein 1:2 P:C diet, the frequency of flies harbouring Alstonville mtDNA increased. In contrast, when fed the high carbohydrate 1:16 P:C food the incidence of flies harbouring Dahomey mtDNA increased. This result, driven by differences in larval development, was generalisable to the replacement of the laboratory diet with fruits having high and low P:C ratios, perturbation of the nuclear genome and changes to the microbiome. Structural modelling and cellular assays suggested a V161L mutation in the ND4 subunit of complex I of Dahomey mtDNA was mildly deleterious, reduced mitochondrial functions, increased oxidative stress and resulted in an increase in larval development time on the 1:2 P:C diet. The 1:16 P:C diet triggered a cascade of changes in both mitotypes. In Dahomey larvae, increased feeding fuelled increased β-oxidation and the partial bypass of the complex I mutation. Conversely, Alstonville larvae upregulated genes involved with oxidative phosphorylation, increased glycogen metabolism and they were more physically active. We hypothesise that the increased physical activity diverted energy from growth and cell division and thereby slowed development. These data further question the use of mtDNA as an assumed neutral marker in evolutionary and population genetic studies. Moreover, if humans respond similarly, we posit that individuals with specific mtDNA variations may differentially metabolise carbohydrates, which has implications for a variety of diseases including cardiovascular disease, obesity, and perhaps Parkinson's Disease.
Collapse
Affiliation(s)
- Wen C. Aw
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Samuel G. Towarnicki
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Richard G. Melvin
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Neil A. Youngson
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Michael R. Garvin
- School of Biological Sciences, Washington State University, Pullman, Washington, United States of America
| | - Yifang Hu
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | - Shaun Nielsen
- Centre for Marine Bio-Innovation and School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Torsten Thomas
- Centre for Marine Bio-Innovation and School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Russell Pickford
- Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical Center, The University of New South Wales, Sydney, NSW, Australia
| | - Sonia Bustamante
- Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical Center, The University of New South Wales, Sydney, NSW, Australia
| | - Antón Vila-Sanjurjo
- Grupo GIBE, Bioloxía Celular e Molecular, Facultade de Ciencias, Universidade da Coruña (UDC), Campus Zapateira s/n, A Coruña, Spain
| | - Gordon K. Smyth
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- School of Mathematics and Statistics, The University of Melbourne, Melbourne, Victoria, Australia
| | - J. William O. Ballard
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
26
|
Lon protease inactivation in Drosophila causes unfolded protein stress and inhibition of mitochondrial translation. Cell Death Discov 2018; 4:51. [PMID: 30374414 PMCID: PMC6197249 DOI: 10.1038/s41420-018-0110-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 09/11/2018] [Indexed: 12/24/2022] Open
Abstract
Mitochondrial dysfunction is a frequent participant in common diseases and a principal suspect in aging. To combat mitochondrial dysfunction, eukaryotes have evolved a large repertoire of quality control mechanisms. One such mechanism involves the selective degradation of damaged or misfolded mitochondrial proteins by mitochondrial resident proteases, including proteases of the ATPase Associated with diverse cellular Activities (AAA+) family. The importance of the AAA+ family of mitochondrial proteases is exemplified by the fact that mutations that impair their functions cause a variety of human diseases, yet our knowledge of the cellular responses to their inactivation is limited. To address this matter, we created and characterized flies with complete or partial inactivation of the Drosophila matrix-localized AAA+ protease Lon. We found that a Lon null allele confers early larval lethality and that severely reducing Lon expression using RNAi results in shortened lifespan, locomotor impairment, and respiratory defects specific to respiratory chain complexes that contain mitochondrially encoded subunits. The respiratory chain defects of Lon knockdown (LonKD) flies appeared to result from severely reduced translation of mitochondrially encoded genes. This translational defect was not a consequence of reduced mitochondrial transcription, as evidenced by the fact that mitochondrial transcripts were elevated in abundance in LonKD flies. Rather, the translational defect of LonKD flies appeared to be derived from sequestration of mitochondrially encoded transcripts in highly dense ribonucleoparticles. The translational defect of LonKD flies was also accompanied by a substantial increase in unfolded mitochondrial proteins. Together, our findings suggest that the accumulation of unfolded mitochondrial proteins triggers a stress response that culminates in the inhibition of mitochondrial translation. Our work provides a foundation to explore the underlying molecular mechanisms.
Collapse
|
27
|
Abstract
Mutations of mtDNA accumulate in aging humans and other mammals to cause mitochondrial dysfunction in a subset of cells in various tissues. Furthermore, experimental induction of mtDNA mutations causes a premature aging syndrome in the mouse. To study if mitochondrial dysfunction is universally involved in shortening life span in metazoans, we generated a series of fruit fly lines with varying levels of mtDNA mutations. Unexpectedly, we report that fruit flies are remarkably tolerant to mtDNA mutations, as exemplified by their lack of effect on physiology and lifespan. Only an artificially induced, very drastic increase of the mtDNA mutation load will lead to reduced lifespan, showing that mtDNA mutations are unlikely to limit lifespan in natural fruit fly populations. Mammals develop age-associated clonal expansion of somatic mtDNA mutations resulting in severe respiratory chain deficiency in a subset of cells in a variety of tissues. Both mathematical modeling based on descriptive data from humans and experimental data from mtDNA mutator mice suggest that the somatic mutations are formed early in life and then undergo mitotic segregation during adult life to reach very high levels in certain cells. To address whether mtDNA mutations have a universal effect on aging metazoans, we investigated their role in physiology and aging of fruit flies. To this end, we utilized genetically engineered flies expressing mutant versions of the catalytic subunit of mitochondrial DNA polymerase (DmPOLγA) as a means to introduce mtDNA mutations. We report here that lifespan and health in fruit flies are remarkably tolerant to mtDNA mutations. Our results show that the short lifespan and wide genetic bottleneck of fruit flies are limiting the extent of clonal expansion of mtDNA mutations both in individuals and between generations. However, an increase of mtDNA mutations to very high levels caused sensitivity to mechanical and starvation stress, intestinal stem cell dysfunction, and reduced lifespan under standard conditions. In addition, the effects of dietary restriction, widely considered beneficial for organismal health, were attenuated in flies with very high levels of mtDNA mutations.
Collapse
|
28
|
A modeling and simulation perspective on the mechanism and function of respiratory complex I. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:510-523. [DOI: 10.1016/j.bbabio.2018.04.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/03/2018] [Accepted: 04/10/2018] [Indexed: 12/12/2022]
|
29
|
Hirose M, Schilf P, Gupta Y, Zarse K, Künstner A, Fähnrich A, Busch H, Yin J, Wright MN, Ziegler A, Vallier M, Belheouane M, Baines JF, Tautz D, Johann K, Oelkrug R, Mittag J, Lehnert H, Othman A, Jöhren O, Schwaninger M, Prehn C, Adamski J, Shima K, Rupp J, Häsler R, Fuellen G, Köhling R, Ristow M, Ibrahim SM. Low-level mitochondrial heteroplasmy modulates DNA replication, glucose metabolism and lifespan in mice. Sci Rep 2018; 8:5872. [PMID: 29651131 PMCID: PMC5897405 DOI: 10.1038/s41598-018-24290-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 03/29/2018] [Indexed: 01/07/2023] Open
Abstract
Mutations in mitochondrial DNA (mtDNA) lead to heteroplasmy, i.e., the intracellular coexistence of wild-type and mutant mtDNA strands, which impact a wide spectrum of diseases but also physiological processes, including endurance exercise performance in athletes. However, the phenotypic consequences of limited levels of naturally arising heteroplasmy have not been experimentally studied to date. We hence generated a conplastic mouse strain carrying the mitochondrial genome of an AKR/J mouse strain (B6-mtAKR) in a C57BL/6 J nuclear genomic background, leading to >20% heteroplasmy in the origin of light-strand DNA replication (OriL). These conplastic mice demonstrate a shorter lifespan as well as dysregulation of multiple metabolic pathways, culminating in impaired glucose metabolism, compared to that of wild-type C57BL/6 J mice carrying lower levels of heteroplasmy. Our results indicate that physiologically relevant differences in mtDNA heteroplasmy levels at a single, functionally important site impair the metabolic health and lifespan in mice.
Collapse
Affiliation(s)
- Misa Hirose
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Paul Schilf
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Yask Gupta
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Kim Zarse
- Energy Metabolism Laboratory, Institute of Translational Medicine, Swiss Federal Institute of Technology (ETH) Zurich, Schwerzenbach, Switzerland
| | - Axel Künstner
- Medical Systems Biology Group, Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
- Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany
| | - Anke Fähnrich
- Medical Systems Biology Group, Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
- Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany
| | - Hauke Busch
- Medical Systems Biology Group, Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
- Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany
| | - Junping Yin
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Marvin N Wright
- Institute of Medical Biometry and Statistics, University of Lübeck, University Medical Center Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
- Leibniz Institute for Prevention Research and Epidemiology, BIPS GmbH, Department Biometry and Data Management, Unit Statistical Methods in Genetics and Live-Course Epidemiology, Bremen, Germany
| | | | - Marie Vallier
- Max Planck Institute for Evolutionary Biology, Evolutionary Genomics, Plön, Germany
| | - Meriem Belheouane
- Max Planck Institute for Evolutionary Biology, Evolutionary Genomics, Plön, Germany
| | - John F Baines
- Max Planck Institute for Evolutionary Biology, Evolutionary Genomics, Plön, Germany
- Institute for Experimental Medicine, Section of Evolutionary Medicine, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Diethard Tautz
- Max Planck Institute for Evolutionary Biology, Evolutionary Genomics, Plön, Germany
| | - Kornelia Johann
- Center of Brain Behavior & Metabolism, Molecular Endocrinology, University of Lübeck, Lübeck, Germany
| | - Rebecca Oelkrug
- Center of Brain Behavior & Metabolism, Molecular Endocrinology, University of Lübeck, Lübeck, Germany
| | - Jens Mittag
- Center of Brain Behavior & Metabolism, Molecular Endocrinology, University of Lübeck, Lübeck, Germany
| | - Hendrik Lehnert
- Center of Brain Behavior & Metabolism, Clinical Endocrinology and Metabolism, University of Lübeck, Lübeck, Germany
| | - Alaa Othman
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
- Center of Brain, Behavior & Metabolism, University of Lübeck, Lübeck, Germany
| | - Olaf Jöhren
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| | - Markus Schwaninger
- Center of Brain, Behavior & Metabolism, University of Lübeck, Lübeck, Germany
| | - Cornelia Prehn
- Helmholtz Center, German Research Center for Environmental Health, Institute of Experimental Genetics, Genome Analysis Center, Neuherberg, Germany
| | - Jerzy Adamski
- Helmholtz Center, German Research Center for Environmental Health, Institute of Experimental Genetics, Genome Analysis Center, Neuherberg, Germany
| | - Kensuke Shima
- Department of Infectious Disease and Microbiology, University of Lübeck, Lübeck, Germany
| | - Jan Rupp
- Department of Infectious Disease and Microbiology, University of Lübeck, Lübeck, Germany
| | - Robert Häsler
- Institute of Clinical Molecular Biology, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Georg Fuellen
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University Medical Center, Rostock, Germany
| | - Rüdiger Köhling
- Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, Rostock University, Rostock, Germany
| | - Michael Ristow
- Energy Metabolism Laboratory, Institute of Translational Medicine, Swiss Federal Institute of Technology (ETH) Zurich, Schwerzenbach, Switzerland.
| | - Saleh M Ibrahim
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany.
- College of Medicine and Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates.
| |
Collapse
|
30
|
Loewen CA, Ganetzky B. Mito-Nuclear Interactions Affecting Lifespan and Neurodegeneration in a Drosophila Model of Leigh Syndrome. Genetics 2018; 208:1535-1552. [PMID: 29496745 PMCID: PMC5887147 DOI: 10.1534/genetics.118.300818] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 02/19/2018] [Indexed: 12/18/2022] Open
Abstract
Proper mitochondrial activity depends upon proteins encoded by genes in the nuclear and mitochondrial genomes that must interact functionally and physically in a precisely coordinated manner. Consequently, mito-nuclear allelic interactions are thought to be of crucial importance on an evolutionary scale, as well as for manifestation of essential biological phenotypes, including those directly relevant to human disease. Nonetheless, detailed molecular understanding of mito-nuclear interactions is still lacking, and definitive examples of such interactions in vivo are sparse. Here we describe the characterization of a mutation in Drosophila ND23, a nuclear gene encoding a highly conserved subunit of mitochondrial complex 1. This characterization led to the discovery of a mito-nuclear interaction that affects the ND23 mutant phenotype. ND23 mutants exhibit reduced lifespan, neurodegeneration, abnormal mitochondrial morphology, and decreased ATP levels. These phenotypes are similar to those observed in patients with Leigh syndrome, which is caused by mutations in a number of nuclear genes that encode mitochondrial proteins, including the human ortholog of ND23 A key feature of Leigh syndrome, and other mitochondrial disorders, is unexpected and unexplained phenotypic variability. We discovered that the phenotypic severity of ND23 mutations varies depending on the maternally inherited mitochondrial background. Sequence analysis of the relevant mitochondrial genomes identified several variants that are likely candidates for the phenotypic interaction with mutant ND23, including a variant affecting a mitochondrially encoded component of complex I. Thus, our work provides an in vivo demonstration of the phenotypic importance of mito-nuclear interactions in the context of mitochondrial disease.
Collapse
Affiliation(s)
- Carin A Loewen
- Laboratory of Genetics, University of Wisconsin-Madison, Wisconsin 53706-1580
| | - Barry Ganetzky
- Laboratory of Genetics, University of Wisconsin-Madison, Wisconsin 53706-1580
| |
Collapse
|
31
|
Loss of the Drosophila m-AAA mitochondrial protease paraplegin results in mitochondrial dysfunction, shortened lifespan, and neuronal and muscular degeneration. Cell Death Dis 2018; 9:304. [PMID: 29467464 PMCID: PMC5833341 DOI: 10.1038/s41419-018-0365-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 12/30/2017] [Accepted: 01/04/2018] [Indexed: 12/31/2022]
Abstract
The progressive accumulation of dysfunctional mitochondria is implicated in aging and in common diseases of the elderly. To oppose this occurrence, organisms employ a variety of strategies, including the selective degradation of oxidatively damaged and misfolded mitochondrial proteins. Genetic studies in yeast indicate that the ATPase Associated with diverse cellular Activities (AAA+) family of mitochondrial proteases account for a substantial fraction of this protein degradation, but their metazoan counterparts have been little studied, despite the fact that mutations in the genes encoding these proteases cause a variety of human diseases. To begin to explore the biological roles of the metazoan mitochondrial AAA+ protease family, we have created a CRISPR/Cas9 allele of the Drosophila homolog of SPG7, which encodes an inner membrane-localized AAA+ protease known as paraplegin. Drosophila SPG7 mutants exhibited shortened lifespan, progressive locomotor defects, sensitivity to chemical and environmental stress, and muscular and neuronal degeneration. Ultrastructural examination of photoreceptor neurons indicated that the neurodegenerative phenotype of SPG7 mutants initiates at the synaptic terminal. A variety of mitochondrial defects accompanied the degenerative phenotypes of SPG7 mutants, including altered axonal transport of mitochondria, accumulation of electron-dense material in the matrix of flight muscle mitochondria, reduced activities of respiratory chain complexes I and II, and severely swollen and dysmorphic mitochondria in the synaptic terminals of photoreceptors. Drosophila SPG7 mutants recapitulate key features of human diseases caused by mutations in SPG7, and thus provide a foundation for the identification of Drosophila paraplegin substrates and strategies that could be used to ameliorate the symptoms of these diseases.
Collapse
|
32
|
Wang A, Mouser J, Pitt J, Promislow D, Kaeberlein M. Rapamycin enhances survival in a Drosophila model of mitochondrial disease. Oncotarget 2018; 7:80131-80139. [PMID: 27741510 PMCID: PMC5348310 DOI: 10.18632/oncotarget.12560] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 09/27/2016] [Indexed: 11/25/2022] Open
Abstract
Pediatric mitochondrial disorders are a devastating category of diseases caused by deficiencies in mitochondrial function. Leigh Syndrome (LS) is the most common of these diseases with symptoms typically appearing within the first year of birth and progressing rapidly until death, usually by 6-7 years of age. Our lab has recently shown that genetic inhibition of the mechanistic target of rapamycin (TOR) rescues the short lifespan of yeast mutants with defective mitochondrial function, and that pharmacological inhibition of TOR by administration of rapamycin significantly rescues the shortened lifespan, neurological symptoms, and neurodegeneration in a mouse model of LS. However, the mechanism by which TOR inhibition exerts these effects, and the extent to which these effects can extend to other models of mitochondrial deficiency, are unknown. Here, we probe the effects of TOR inhibition in a Drosophila model of complex I deficiency. Treatment with rapamycin robustly suppresses the lifespan defect in this model of LS, without affecting behavioral phenotypes. Interestingly, this increased lifespan in response to TOR inhibition occurs in an autophagy-independent manner. Further, we identify a fat storage defect in the ND2 mutant flies that is rescued by rapamycin, supporting a model that rapamycin exerts its effects on mitochondrial disease in these animals by altering metabolism.
Collapse
Affiliation(s)
- Adrienne Wang
- University of Washington, Department of Pathology, Seattle, WA, USA
| | - Jacob Mouser
- University of Washington, Department of Pathology, Seattle, WA, USA
| | - Jason Pitt
- University of Washington, Department of Pathology, Seattle, WA, USA
| | - Daniel Promislow
- University of Washington, Department of Pathology, Seattle, WA, USA.,University of Washington, Department of Biology, Seattle, WA, USA
| | - Matt Kaeberlein
- University of Washington, Department of Pathology, Seattle, WA, USA
| |
Collapse
|
33
|
Mitochondrial Mutations in Cholestatic Liver Disease with Biliary Atresia. Sci Rep 2018; 8:905. [PMID: 29343773 PMCID: PMC5772057 DOI: 10.1038/s41598-017-18958-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 12/19/2017] [Indexed: 12/25/2022] Open
Abstract
Biliary atresia (BA) results in severe bile blockage and is caused by the absence of extrahepatic ducts. Even after successful hepatic portoenterostomy, a considerable number of patients are likely to show progressive deterioration in liver function. Recent studies show that mutations in protein-coding mitochondrial DNA (mtDNA) genes and/or mitochondrial genes in nuclear DNA (nDNA) are associated with hepatocellular dysfunction. This observation led us to investigate whether hepatic dysfunctions in BA is genetically associated with mtDNA mutations. We sequenced the mtDNA protein-coding genes in 14 liver specimens from 14 patients with BA and 5 liver specimens from 5 patients with choledochal cyst using next-generation sequencing. We found 34 common non-synonymous variations in mtDNA protein-coding genes in all patients examined. A systematic 3D structural analysis revealed the presence of several single nucleotide polymorphism-like mutations in critical regions of complexes I to V, that are involved in subunit assembly, proton-pumping activity, and/or supercomplex formation. The parameters of chronic hepatic injury and liver dysfunction in BA patients were also significantly correlated with the extent of hepatic failure, suggesting that the mtDNA mutations may aggravate hepatopathy. Therefore, mitochondrial mutations may underlie the pathological mechanisms associated with BA.
Collapse
|
34
|
Lee MB, Kaeberlein M. Translational Geroscience: From invertebrate models to companion animal and human interventions. TRANSLATIONAL MEDICINE OF AGING 2018; 2:15-29. [PMID: 32368707 PMCID: PMC7198054 DOI: 10.1016/j.tma.2018.08.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Translational geroscience is an interdisciplinary field descended from basic gerontology that seeks to identify, validate, and clinically apply interventions to maximize healthy, disease-free lifespan. In this review, we describe a research pipeline for the identification and validation of lifespan extending interventions. Beginning in invertebrate model systems, interventions are discovered and then characterized using other invertebrate model systems (evolutionary translation), models of genetic diversity, and disease models. Vertebrate model systems, particularly mice, can then be utilized to validate interventions in mammalian systems. Collaborative, multi-site efforts, like the Interventions Testing Program (ITP), provide a key resource to assess intervention robustness in genetically diverse mice. Mouse disease models provide a tool to understand the broader utility of longevity interventions. Beyond mouse models, we advocate for studies in companion pets. The Dog Aging Project is an exciting example of translating research in dogs, both to develop a model system and to extend their healthy lifespan as a goal in itself. Finally, we discuss proposed and ongoing intervention studies in humans, unmet needs for validating interventions in humans, and speculate on how differences in survival among human populations may influence intervention efficacy.
Collapse
Affiliation(s)
- Mitchell B Lee
- Department of Pathology, University of Washington, Seattle, WA USA
| | - Matt Kaeberlein
- Department of Pathology, University of Washington, Seattle, WA USA
| |
Collapse
|
35
|
Cabirol-Pol MJ, Khalil B, Rival T, Faivre-Sarrailh C, Besson MT. Glial lipid droplets and neurodegeneration in a Drosophila model of complex I deficiency. Glia 2017; 66:874-888. [PMID: 29285794 DOI: 10.1002/glia.23290] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 12/14/2017] [Accepted: 12/15/2017] [Indexed: 01/09/2023]
Abstract
Mitochondrial defects associated with respiratory chain complex I deficiency lead to heterogeneous fatal syndromes. While the role of NDUFS8, an essential subunit of the core assembly of the complex I, is established in mitochondrial diseases, the mechanisms underlying neuropathology are poorly understood. We developed a Drosophila model of NDUFS8 deficiency by knocking down the expression of its fly homologue in neurons or in glial cells. Downregulating ND23 in neurons resulted in shortened lifespan, and decreased locomotion. Although total brain ATP levels were decreased, histological analysis did not reveal any signs of neurodegeneration except for photoreceptors of the retina. Interestingly, ND23 deficiency-associated phenotypes were rescued by overexpressing the glucose transporter hGluT3 demonstrating that boosting glucose metabolism in neurons was sufficient to bypass altered mitochondrial functions and to confer neuroprotection. We then analyzed the consequences of ND23 knockdown in glial cells. In contrast to neuronal knockdown, loss of ND23 in glia did not lead to significant behavioral defects nor to reduced lifespan, but induced brain degeneration, as visualized by numerous vacuoles found all over the nervous tissue. This phenotype was accompanied by the massive accumulation of lipid droplets at the cortex-neuropile boundaries, suggesting an alteration of lipid metabolism in glia. These results demonstrate that complex I deficiency triggers metabolic alterations both in neurons and glial cells which may contribute to the neuropathology.
Collapse
Affiliation(s)
| | - Bilal Khalil
- Aix Marseille Université, CNRS, CRN2M-UMR7286, 13344 Marseille cedex 15, Marseille, France.,Department of Neuroscience, Mayo Clinic Florida, Jacksonville, Florida
| | - Thomas Rival
- Aix Marseille Université, CNRS, IBDM UMR 7288, Marseille, France
| | | | - Marie Thérèse Besson
- Aix Marseille Université, CNRS, CRN2M-UMR7286, 13344 Marseille cedex 15, Marseille, France
| |
Collapse
|
36
|
Towarnicki SG, Ballard JWO. Drosophila mitotypes determine developmental time in a diet and temperature dependent manner. JOURNAL OF INSECT PHYSIOLOGY 2017; 100:133-139. [PMID: 28619466 DOI: 10.1016/j.jinsphys.2017.06.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 06/05/2017] [Accepted: 06/07/2017] [Indexed: 06/07/2023]
Abstract
It is well known that specific mitochondrial (mt) DNA mutations can reduce organismal fitness and influence mitochondrial-nuclear interactions. However, determining specific mtDNA mutations that are beneficial has been elusive. In this study, we vary the diet and environmental temperature to study larval development time of two Drosophila melanogaster mitotypes (Alstonville and Dahomey), in two nuclear genetic backgrounds, and investigate developmental differences through weight, feeding rate, and movement. To manipulate the diet, we utilize the nutritional geometric framework to manipulate isocaloric diets of differing macronutrient ratios (1:2 and 1:16 protein: carbohydrate (P:C) ratios) and raise flies at three temperatures (19°C, 23°C and 27°C). Larvae with Dahomey mtDNA develop more slowly than Alstonville when fed the 1:2 P:C diet at all temperatures and developed more quickly when fed the 1:16 P:C diet at 23°C and 27°C. We determined that Dahomey larvae eat more, move less, and weigh more than Alstonville larvae when raised on the 1:16 P:C diet and that these physiological responses are modified by temperature. We suggest that 1 (or more) of 4 mtDNA changes is likely responsible for the observed effects and posit the mtDNA changes moderate a physiological trade-off between consumption and foraging.
Collapse
Affiliation(s)
- Samuel G Towarnicki
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
| | - J William O Ballard
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
37
|
Zwarts L, Vulsteke V, Buhl E, Hodge JJL, Callaerts P. SlgA, encoded by the homolog of the human schizophrenia-associated gene PRODH, acts in clock neurons to regulate Drosophila aggression. Dis Model Mech 2017; 10:705-716. [PMID: 28331058 PMCID: PMC5483002 DOI: 10.1242/dmm.027151] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 03/09/2017] [Indexed: 12/11/2022] Open
Abstract
Mutations in the proline dehydrogenase gene PRODH are linked to behavioral alterations in schizophrenia and as part of DiGeorge and velo-cardio-facial syndromes, but the role of PRODH in their etiology remains unclear. Here, we establish a Drosophila model to study the role of PRODH in behavioral disorders. We determine the distribution of the Drosophila PRODH homolog slgA in the brain and show that knockdown and overexpression of human PRODH and slgA in the lateral neurons ventral (LNv) lead to altered aggressive behavior. SlgA acts in an isoform-specific manner and is regulated by casein kinase II (CkII). Our data suggest that these effects are, at least partially, due to effects on mitochondrial function. We thus show that precise regulation of proline metabolism is essential to drive normal behavior and we identify Drosophila aggression as a model behavior relevant for the study of the mechanisms that are impaired in neuropsychiatric disorders. Editors' choice: A Drosophila model to study the role of PRODH, a schizophrenia-associated gene, in behavioral disorders.
Collapse
Affiliation(s)
- Liesbeth Zwarts
- KU Leuven - University of Leuven, Department of Human Genetics, Laboratory of Behavioral and Developmental Genetics, Leuven B-3000, Belgium.,VIB Center for the Biology of Disease, Laboratory of Behavioral and Developmental Genetics, Leuven B-3000, Belgium
| | - Veerle Vulsteke
- KU Leuven - University of Leuven, Department of Human Genetics, Laboratory of Behavioral and Developmental Genetics, Leuven B-3000, Belgium.,VIB Center for the Biology of Disease, Laboratory of Behavioral and Developmental Genetics, Leuven B-3000, Belgium
| | - Edgar Buhl
- University of Bristol, School of Physiology, Pharmacology and Neuroscience, Bristol BS8 1TD, UK
| | - James J L Hodge
- University of Bristol, School of Physiology, Pharmacology and Neuroscience, Bristol BS8 1TD, UK
| | - Patrick Callaerts
- KU Leuven - University of Leuven, Department of Human Genetics, Laboratory of Behavioral and Developmental Genetics, Leuven B-3000, Belgium .,VIB Center for the Biology of Disease, Laboratory of Behavioral and Developmental Genetics, Leuven B-3000, Belgium
| |
Collapse
|
38
|
Rajan TS, Scionti D, Diomede F, Grassi G, Pollastro F, Piattelli A, Cocco L, Bramanti P, Mazzon E, Trubiani O. Gingival Stromal Cells as an In Vitro Model: Cannabidiol Modulates Genes Linked With Amyotrophic Lateral Sclerosis. J Cell Biochem 2016; 118:819-828. [PMID: 27714895 DOI: 10.1002/jcb.25757] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 10/05/2016] [Indexed: 12/13/2022]
Abstract
Research in recent years has extensively investigated the therapeutic efficacy of mesenchymal stromal cells in regenerative medicine for many neurodegenerative diseases at preclinical and clinical stages. However, the success rate of stem cell therapy remains less at translational phase. Lack of relevant animal models that potentially simulate the molecular etiology of human pathological symptoms might be a reason behind such poor clinical outcomes associated with stem cell therapy. Apparently, self-renewal and differentiation ability of mesenchymal stem cells may help to study the early developmental signaling pathways connected with the diseases, such as Alzheimer's disease, Amyotrophic lateral sclerosis (ALS), etc., at in vitro level. Cannabidiol, a non-psychotrophic cannabinoid, has been demonstrated as a potent anti-inflammatory and neuroprotective agent in neurological preclinical models. In the present study, we investigated the modulatory role of cannabidiol on genes associated with ALS using human gingiva-derived mesenchymal stromal cells (hGMSCs) as an in vitro model system. Next generation transcriptomic sequencing analysis demonstrated considerable modifications in the expression of genes connected with ALS pathology, oxidative stress, mitochondrial dysfunction, and excitotoxicity in hGMSCs treated with cannabidiol. Our results suggest the efficacy of cannabidiol to delineate the unknown molecular pathways, which may underlie ALS pathology at an early stage using hGMSCs as a compelling in vitro system. J. Cell. Biochem. 118: 819-828, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Thangavelu Soundara Rajan
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124, Messina, Italy
| | - Domenico Scionti
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124, Messina, Italy
| | - Francesca Diomede
- Stem Cells and Regenerative Medicine Laboratory, Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio," Chieti-Pescara, Via dei Vestini, 31, 66100, Chieti, Italy
| | - Gianpaolo Grassi
- Council for Research and Experimentation in Agriculture-Research Centre for Industrial Crops (CRA-CIN), Rovigo, Italy
| | - Federica Pollastro
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Largo Donegani 2, 28100, Novara, Italy
| | - Adriano Piattelli
- Stem Cells and Regenerative Medicine Laboratory, Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio," Chieti-Pescara, Via dei Vestini, 31, 66100, Chieti, Italy
| | - Lucio Cocco
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Placido Bramanti
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124, Messina, Italy
| | - Emanuela Mazzon
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124, Messina, Italy
| | - Oriana Trubiani
- Stem Cells and Regenerative Medicine Laboratory, Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio," Chieti-Pescara, Via dei Vestini, 31, 66100, Chieti, Italy
| |
Collapse
|
39
|
Hekimi S, Wang Y, Noë A. Mitochondrial ROS and the Effectors of the Intrinsic Apoptotic Pathway in Aging Cells: The Discerning Killers! Front Genet 2016; 7:161. [PMID: 27683586 PMCID: PMC5021979 DOI: 10.3389/fgene.2016.00161] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 08/30/2016] [Indexed: 01/06/2023] Open
Abstract
It has become clear that mitochondrial reactive oxygen species (mtROS) are not simply villains and mitochondria the hapless targets of their attacks. Rather, it appears that mitochondrial dysfunction itself and the signaling function of mtROS can have positive effects on lifespan, helping to extend longevity. If events in the mitochondria can lead to better cellular homeostasis and better survival of the organism in ways beyond providing ATP and biosynthetic products, we can conjecture that they act on other cellular components through appropriate signaling pathways. We describe recent advances in a variety of species which promoted our understanding of how changes of mtROS generation are part of a system of signaling pathways that emanate from the mitochondria to impact organism lifespan through global changes, including in transcriptional patterns. In unraveling this, many old players in cellular homeostasis were encountered. Among these, maybe most strikingly, is the intrinsic apoptotic signaling pathway, which is the conduit by which at least one class of mtROS exercise their actions in the nematode Caenorhabditis elegans. This is a pathway that normally contributes to organismal homeostasis by killing defective or otherwise unwanted cells, and whose various compounds have also been implicated in other cellular processes. However, it was a surprise that that appropriate activation of a cell killing pathway can in fact prolong the lifespan of the organism. In the soma of adult C. elegans, all cells are post-mitotic, like many of our neurons and possibly some of our immune cells. These cells cannot simply be killed and replaced when showing signs of dysfunction. Thus, we speculate that it is the ability of the apoptotic pathway to pull together information about the functional and structural integrity of different cellular compartments that is the key property for why this pathway is used to decide when to boost defensive and repair processes in irreplaceable cells. When this process is artificially stimulated in mutants with elevated mtROS generation or with drug treatments it leads to lifespan prolongations beyond the normal lifespan of the organism.
Collapse
Affiliation(s)
| | - Ying Wang
- Department of Biology, McGill University Montreal, QC, Canada
| | - Alycia Noë
- Department of Biology, McGill University Montreal, QC, Canada
| |
Collapse
|
40
|
Sen A, Cox RT. Fly Models of Human Diseases: Drosophila as a Model for Understanding Human Mitochondrial Mutations and Disease. Curr Top Dev Biol 2016; 121:1-27. [PMID: 28057297 DOI: 10.1016/bs.ctdb.2016.07.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mitochondrial diseases are a prevalent, heterogeneous class of diseases caused by defects in oxidative phosphorylation, whose severity depends upon particular genetic mutations. These diseases can be difficult to diagnose, and current therapeutics have limited efficacy, primarily treating only symptoms. Because mitochondria play a pivotal role in numerous cellular functions, especially ATP production, their diminished activity has dramatic physiological consequences. While this in and of itself makes treating mitochondrial disease complex, these organelles contain their own DNA, mtDNA, whose products are required for ATP production, in addition to the hundreds of nucleus-encoded proteins. Drosophila offers a tractable whole-animal model to understand the mechanisms underlying loss of mitochondrial function, the subsequent cellular and tissue damage that results, and how these organelles are inherited. Human and Drosophila mtDNAs encode the same set of products, and the homologous nucleus-encoded genes required for mitochondrial function are conserved. In addition, Drosophila contain sufficiently complex organ systems to effectively recapitulate many basic symptoms of mitochondrial diseases, yet are relatively easy and fast to genetically manipulate. There are several Drosophila models for specific mitochondrial diseases, which have been recently reviewed (Foriel, Willems, Smeitink, Schenck, & Beyrath, 2015). In this review, we highlight the conservation between human and Drosophila mtDNA, the present and future techniques for creating mtDNA mutations for further study, and how Drosophila has contributed to our current understanding of mitochondrial inheritance.
Collapse
Affiliation(s)
- A Sen
- Uniformed Services University, Bethesda, MD, United States
| | - R T Cox
- Uniformed Services University, Bethesda, MD, United States.
| |
Collapse
|
41
|
Patel MR, Miriyala GK, Littleton AJ, Yang H, Trinh K, Young JM, Kennedy SR, Yamashita YM, Pallanck LJ, Malik HS. A mitochondrial DNA hypomorph of cytochrome oxidase specifically impairs male fertility in Drosophila melanogaster. eLife 2016; 5:e16923. [PMID: 27481326 PMCID: PMC4970871 DOI: 10.7554/elife.16923] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 06/30/2016] [Indexed: 12/17/2022] Open
Abstract
Due to their strict maternal inheritance in most animals and plants, mitochondrial genomes are predicted to accumulate mutations that are beneficial or neutral in females but harmful in males. Although a few male-harming mtDNA mutations have been identified, consistent with this 'Mother's Curse', their effect on females has been largely unexplored. Here, we identify COII(G177S), a mtDNA hypomorph of cytochrome oxidase II, which specifically impairs male fertility due to defects in sperm development and function without impairing other male or female functions. COII(G177S) represents one of the clearest examples of a 'male-harming' mtDNA mutation in animals and suggest that the hypomorphic mtDNA mutations like COII(G177S) might specifically impair male gametogenesis. Intriguingly, some D. melanogaster nuclear genetic backgrounds can fully rescue COII(G177S) -associated sterility, consistent with previously proposed models that nuclear genomes can regulate the phenotypic manifestation of mtDNA mutations.
Collapse
Affiliation(s)
- Maulik R Patel
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, United States
- Howard Hughes Medical Institute, Seattle, United States
- Department of Biological Sciences, Vanderbilt University, Nashville, United States
| | - Ganesh K Miriyala
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Aimee J Littleton
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Heiko Yang
- Life Sciences Institute, University of Michigan, Ann Arbor, United States
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, United States
| | - Kien Trinh
- Genome Sciences, University of Washington, Seattle, United States
| | - Janet M Young
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Scott R Kennedy
- Pathology, University of Washington Medical Center, Seattle, United States
| | - Yukiko M Yamashita
- Life Sciences Institute, University of Michigan, Ann Arbor, United States
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, United States
| | - Leo J Pallanck
- Genome Sciences, University of Washington, Seattle, United States
| | - Harmit S Malik
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, United States
- Howard Hughes Medical Institute, Seattle, United States
| |
Collapse
|
42
|
Ma H, O'Farrell PH. Selfish drive can trump function when animal mitochondrial genomes compete. Nat Genet 2016; 48:798-802. [PMID: 27270106 PMCID: PMC4925267 DOI: 10.1038/ng.3587] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 05/13/2016] [Indexed: 12/11/2022]
Abstract
Mitochondrial genomes compete for transmission from mother to progeny. We explored this competition by introducing a second genome into Drosophila melanogaster to follow transmission. Competitions between closely related genomes favored those functional in electron transport, resulting in a host-beneficial purifying selection. In contrast, matchups between distantly related genomes often favored those with negligible, negative or lethal consequences, indicating selfish selection. Exhibiting powerful selfish selection, a genome carrying a detrimental mutation displaced a complementing genome, leading to population death after several generations. In a different pairing, opposing selfish and purifying selection counterbalanced to give stable transmission of two genomes. Sequencing of recombinant mitochondrial genomes showed that the noncoding region, containing origins of replication, governs selfish transmission. Uniparental inheritance prevents encounters between distantly related genomes. Nonetheless, in each maternal lineage, constant competition among sibling genomes selects for super-replicators. We suggest that this relentless competition drives positive selection, promoting change in the sequences influencing transmission.
Collapse
Affiliation(s)
- Hansong Ma
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California, USA
| | - Patrick H O'Farrell
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
43
|
Sanz A. Mitochondrial reactive oxygen species: Do they extend or shorten animal lifespan? BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1116-1126. [PMID: 26997500 DOI: 10.1016/j.bbabio.2016.03.018] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Revised: 03/10/2016] [Accepted: 03/14/2016] [Indexed: 12/16/2022]
Abstract
Testing the predictions of the Mitochondrial Free Radical Theory of Ageing (MFRTA) has provided a deep understanding of the role of reactive oxygen species (ROS) and mitochondria in the aging process. However those data, which support MFRTA are in the majority correlative (e.g. increasing oxidative damage with age). In contrast the majority of direct experimental data contradict MFRTA (e.g. changes in ROS levels do not alter longevity as expected). Unfortunately, in the past, ROS measurements have mainly been performed using isolated mitochondria, a method which is prone to experimental artifacts and does not reflect the complexity of the in vivo process. New technology to study different ROS (e.g. superoxide or hydrogen peroxide) in vivo is now available; these new methods combined with state-of-the-art genetic engineering technology will allow a deeper interrogation of, where, when and how free radicals affect aging and pathological processes. In fact data that combine these new approaches, indicate that boosting mitochondrial ROS in lower animals is a way to extend both healthy and maximum lifespan. In this review, I discuss the latest literature focused on the role of mitochondrial ROS in aging, and how these new discoveries are helping to better understand the role of mitochondria in health and disease. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016', edited by Prof. Paolo Bernardi.
Collapse
Affiliation(s)
- Alberto Sanz
- Institute for Cell and Molecular Biosciences, Newcastle University Institute for Ageing, University of Newcastle, Newcastle upon Tyne NE4 5PL, UK
| |
Collapse
|
44
|
Alves CJ, Dariolli R, Jorge FM, Monteiro MR, Maximino JR, Martins RS, Strauss BE, Krieger JE, Callegaro D, Chadi G. Gene expression profiling for human iPS-derived motor neurons from sporadic ALS patients reveals a strong association between mitochondrial functions and neurodegeneration. Front Cell Neurosci 2015; 9:289. [PMID: 26300727 PMCID: PMC4523944 DOI: 10.3389/fncel.2015.00289] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 07/14/2015] [Indexed: 01/29/2023] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disease that leads to widespread motor neuron death, general palsy and respiratory failure. The most prevalent sporadic ALS form is not genetically inherited. Attempts to translate therapeutic strategies have failed because the described mechanisms of disease are based on animal models carrying specific gene mutations and thus do not address sporadic ALS. In order to achieve a better approach to study the human disease, human induced pluripotent stem cell (hiPSC)-differentiated motor neurons were obtained from motor nerve fibroblasts of sporadic ALS and non-ALS subjects using the STEMCCA Cre-Excisable Constitutive Polycistronic Lentivirus system and submitted to microarray analyses using a whole human genome platform. DAVID analyses of differentially expressed genes identified molecular function and biological process-related genes through Gene Ontology. REVIGO highlighted the related functions mRNA and DNA binding, GTP binding, transcription (co)-repressor activity, lipoprotein receptor binding, synapse organization, intracellular transport, mitotic cell cycle and cell death. KEGG showed pathways associated with Parkinson's disease and oxidative phosphorylation, highlighting iron homeostasis, neurotrophic functions, endosomal trafficking and ERK signaling. The analysis of most dysregulated genes and those representative of the majority of categorized genes indicates a strong association between mitochondrial function and cellular processes possibly related to motor neuron degeneration. In conclusion, iPSC-derived motor neurons from motor nerve fibroblasts of sporadic ALS patients may recapitulate key mechanisms of neurodegeneration and may offer an opportunity for translational investigation of sporadic ALS. Large gene profiling of differentiated motor neurons from sporadic ALS patients highlights mitochondrial participation in the establishment of autonomous mechanisms associated with sporadic ALS.
Collapse
Affiliation(s)
- Chrystian J Alves
- Department of Neurology, Neuroregeneration Center, University of São Paulo School of Medicine, University of São Paulo São Paulo, Brazil
| | - Rafael Dariolli
- Laboratory of Genetics and Molecular Cardiology/LIM13, Heart Institute, University of São Paulo School of Medicine São Paulo, Brazil
| | - Frederico M Jorge
- Department of Neurology, Neuroregeneration Center, University of São Paulo School of Medicine, University of São Paulo São Paulo, Brazil
| | - Matheus R Monteiro
- Department of Neurology, Neuroregeneration Center, University of São Paulo School of Medicine, University of São Paulo São Paulo, Brazil
| | - Jessica R Maximino
- Department of Neurology, Neuroregeneration Center, University of São Paulo School of Medicine, University of São Paulo São Paulo, Brazil
| | - Roberto S Martins
- Department of Neurosurgery, Surgical Center of Functional Neurosurgery, Clinics Hospital of University of São Paulo São Paulo, Brazil
| | - Bryan E Strauss
- Viral Vector Laboratory, Center for Translational Investigation in Oncology/LIM24, Cancer Institute of São Paulo, University of São Paulo School of Medicine São Paulo, Brazil
| | - José E Krieger
- Laboratory of Genetics and Molecular Cardiology/LIM13, Heart Institute, University of São Paulo School of Medicine São Paulo, Brazil
| | - Dagoberto Callegaro
- Department of Neurology, Neuroregeneration Center, University of São Paulo School of Medicine, University of São Paulo São Paulo, Brazil
| | - Gerson Chadi
- Department of Neurology, Neuroregeneration Center, University of São Paulo School of Medicine, University of São Paulo São Paulo, Brazil
| |
Collapse
|
45
|
Mitochondrial diseases: Drosophila melanogaster as a model to evaluate potential therapeutics. Int J Biochem Cell Biol 2015; 63:60-5. [PMID: 25666557 DOI: 10.1016/j.biocel.2015.01.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 01/19/2015] [Accepted: 01/29/2015] [Indexed: 01/26/2023]
Abstract
While often presented as a single entity, mitochondrial diseases comprise a wide range of clinical, biochemical and genetic heterogeneous disorders. Among them, defects in the process of oxidative phosphorylation are the most prevalent. Despite intense research efforts, patients are still without effective treatment. An important part of the development of new therapeutics relies on predictive models of the pathology in order to assess their therapeutic potential. Since mitochondrial diseases are a heterogeneous group of progressive multisystemic disorders that can affect any organ at any time, the development of various in vivo models for the different diseases-associated genes defects will accelerate the search for effective therapeutics. Here, we review existing Drosophila melanogaster models for mitochondrial diseases, with a focus on alterations in oxidative phosphorylation, and discuss the potential of this powerful model organism in the process of drug target discovery. This article is part of a Directed Issue entitled: Energy Metabolism Disorders and Therapies.
Collapse
|