1
|
Song N, Xu Y, Paust HJ, Panzer U, de Las Noriega MM, Guo L, Renné T, Huang J, Meng X, Zhao M, Thaiss F. IKK1 aggravates ischemia-reperfusion kidney injury by promoting the differentiation of effector T cells. Cell Mol Life Sci 2023; 80:125. [PMID: 37074502 PMCID: PMC10115737 DOI: 10.1007/s00018-023-04763-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/10/2023] [Accepted: 03/20/2023] [Indexed: 04/20/2023]
Abstract
Ischemia-reperfusion injury (IRI) is one of the major causes of acute kidney injury (AKI), and experimental work has revealed detailed insight into the inflammatory response in the kidney. T cells and NFκB pathway play an important role in IRI. Therefore, we examined the regulatory role and mechanisms of IkappaB kinase 1 (IKK1) in CD4+T lymphocytes in an experimental model of IRI. IRI was induced in CD4cre and CD4IKK1Δ mice. Compared to control mice, conditional deficiency of IKK1 in CD4+T lymphocyte significantly decreased serum creatinine, blood urea nitrogen (BUN) level, and renal tubular injury score. Mechanistically, lack in IKK1 in CD4+T lymphocytes reduced the ability of CD4 lymphocytes to differentiate into Th1/Th17 cells. Similar to IKK1 gene ablation, pharmacological inhibition of IKK also protected mice from IRI. Together, lymphocyte IKK1 plays a pivotal role in IRI by promoting T cells differentiation into Th1/Th17 and targeting lymphocyte IKK1 may be a novel therapeutic strategy for IRI.
Collapse
Affiliation(s)
- Ning Song
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Youzheng St 23, Harbin, 150001, China
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, Hamburg, 20246, Germany
| | - Yang Xu
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
| | - Hans-Joachim Paust
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, Hamburg, 20246, Germany
| | - Ulf Panzer
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, Hamburg, 20246, Germany
| | | | - Linlin Guo
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, Hamburg, 20246, Germany
| | - Thomas Renné
- Institute for Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
- Center for Thrombosis and Hemostasis (CTH), Johannes Gutenberg University Medical Center, Mainz, 55131, Germany
| | - Jiabin Huang
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
| | - Xianglin Meng
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Youzheng St 23, Harbin, 150001, China
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, 200032, People's Republic of China
- Heilongjiang Provincial Key Laboratory of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Mingyan Zhao
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Youzheng St 23, Harbin, 150001, China.
- Heilongjiang Provincial Key Laboratory of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.
| | - Friedrich Thaiss
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, Hamburg, 20246, Germany.
| |
Collapse
|
2
|
Zhang H, Pan B, Huang W, Ma M, Zhang F, Jiang L, Qian C, Wan X, Cao C. IKKα aggravates renal fibrogenesis by positively regulating the Wnt/β-catenin pathway. Immunology 2023; 168:120-134. [PMID: 36053796 DOI: 10.1111/imm.13567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 05/26/2022] [Indexed: 12/27/2022] Open
Abstract
AKI (acute kidney injury) with maladaptive repair plays exacerbated role in renal fibrosis characterized by tubulointerstitial fibrosis. Previously, we reported that IKKα contributed to kidney regeneration and inhibited inflammation. Here, we first identified the role and mechanism of IKKα on TGF-β1-induced fibrosis in human tubular epithelial cells and fibrotic kidneys. IKKα was up-regulated in kidney tubular epithelium in unilateral ureteral obstruction (UUO) and unilateral ischemic reperfusion injury (UIRI) mice. Immunohistochemical staining showed that IKKα was positively correlated with the extent of kidney fibrosis in tissue biopsies from chronic kidney disease (CKD) patients. Compared with wild-type controls, Ksp-IKKα-/- mice exhibited inactivated Wnt/β-catenin pathway, decreased serum creatinine and interstitial fibrosis in the kidney after IRI. In TGF-β1-stimulated human tubular epithelial cells, IKKα overexpression enhanced β-catenin nuclear translocation. Blocking IKKα by siRNA specifically suppressed β-catenin activation and downstream profibrotic genes such as fibronectin and α-smooth muscle actin (α-SMA). Taken together, our study demonstrated that IKKα aggravated renal fibrogenesis by activating Wnt/β-catenin signalling pathway, providing a new target for the treatment of kidney fibrosis.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Nephrology, The Affiliated Sir Run Run Hospital of Nanjing Medical University, Nanjing, China.,Department of Nephrology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Binbin Pan
- Department of Nephrology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Wenjuan Huang
- Department of Nephrology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Mengqing Ma
- Department of Nephrology, The Affiliated Sir Run Run Hospital of Nanjing Medical University, Nanjing, China
| | - Feng Zhang
- Department of Nephrology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Linglin Jiang
- Department of Nephrology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Cheng Qian
- Department of Nephrology, The Affiliated Sir Run Run Hospital of Nanjing Medical University, Nanjing, China
| | - Xin Wan
- Department of Nephrology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Changchun Cao
- Department of Nephrology, The Affiliated Sir Run Run Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
3
|
Krupa A, Krupa MM, Pawlak K. Indoleamine 2,3 Dioxygenase 1-The Potential Link between the Innate Immunity and the Ischemia-Reperfusion-Induced Acute Kidney Injury? Int J Mol Sci 2022; 23:6176. [PMID: 35682852 PMCID: PMC9181334 DOI: 10.3390/ijms23116176] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 05/30/2022] [Indexed: 12/13/2022] Open
Abstract
Ischemia-reperfusion injury (IRI) is of the most common causes of acute kidney injury (AKI); nevertheless, the mechanisms responsible for both early kidney injury and the reparative phase are not fully recognised. The inflammatory response following ischemia is characterised by the crosstalk between cells belonging to the innate immune system-dendritic cells (DCs), macrophages, neutrophils, natural killer (NK) cells, and renal tubular epithelial cells (RTECs). A tough inflammatory response can damage the renal tissue; it may also have a protective effect leading to the repair after IRI. Indoleamine 2,3 dioxygenase 1 (IDO1), the principal enzyme of the kynurenine pathway (KP), has a broad spectrum of immunological activity from stimulation to immunosuppressive activity in inflamed areas. IDO1 expression occurs in cells of the innate immunity and RTECs during IRI, resulting in local tryptophan (TRP) depletion and generation of kynurenines, and both of these mechanisms contribute to the immunosuppressive effect. Nonetheless, it is unknown if the above mechanism can play a harmful or preventive role in IRI-induced AKI. Despite the scarcity of literature in this field, the current review attempts to present a possible role of IDO1 activation in the regulation of the innate immune system in IRI-induced AKI.
Collapse
Affiliation(s)
- Anna Krupa
- Department of Internal Medicine and Metabolic Diseases, Medical University of Bialystok, M. Sklodowskiej-Curie 24A, 15-276 Bialystok, Poland;
| | - Mikolaj M. Krupa
- Department of Monitored Pharmacotherapy, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland;
| | - Krystyna Pawlak
- Department of Monitored Pharmacotherapy, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland;
| |
Collapse
|
4
|
Network Pharmacology and In Vivo Analysis of Dahuang-Huangqi Decoction Effectiveness in Alleviating Renal Interstitial Fibrosis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:4194827. [PMID: 35774743 PMCID: PMC9239803 DOI: 10.1155/2022/4194827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/01/2022] [Accepted: 04/13/2022] [Indexed: 11/26/2022]
Abstract
Dahuang and Huangqi are the most frequently prescribed treatment methods for chronic kidney disease in China. Our study aimed to clarify the pharmacological mechanism of action of Dahuang-Huangqi decoction (DHHQD) in renal interstitial fibrosis (RIF). The intersection of genes targeted by DHHQD active ingredients and RIF target genes was searched using network pharmacology to build a chemical ingredient and disease target network. For in vivo analysis, Sprague–Dawley rats with unilateral urethral obstruction (UUO) were administered DHHQD, and their kidney function-related indicators and pathological indices were determined. The expression of core targets was quantified using real-time polymerase chain reaction and western blotting. A total of 139 common targets for DHHQD and RIF in chronic kidney disease were detected. Compared with the untreated UUO rats, the DHHQD-treated rats showed reductions in the following: blood urea nitrogen and serum creatinine levels, kidney tubular atrophy and necrosis, interstitial fibrosis, hyperplasia and abnormal deposition of extracellular matrix, and microstructural changes in the mesangial matrix and glomerular basement membrane. DHHQD treatment significantly regulated the levels of renal core proteins, such as eNOS, IL-6, EGFR, and VEGF and reduced the mRNA and protein expression of the core targets involved in inflammation pathways, such as PI3K/AKT and TLR4/NF-κB. DHHQD treatment ameliorated the severity of RIF by potentially regulating the AKT/PI3K and TLR4/NF-κB signaling pathways. Our study findings provide insights into the mechanisms associated with DHHQD action and essential data for future research.
Collapse
|
5
|
Deficiency of IKK α in Macrophages Mitigates Fibrosis Progression in the Kidney after Renal Ischemia-Reperfusion Injury. J Immunol Res 2021; 2021:5521051. [PMID: 34917688 PMCID: PMC8670970 DOI: 10.1155/2021/5521051] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 09/03/2021] [Accepted: 11/06/2021] [Indexed: 11/17/2022] Open
Abstract
Aims. Acute kidney injury (AKI) can lead to chronic kidney disease (CKD), and macrophages play a key role in this process. The aim of this study was to discover the role of IκB kinase α (IKKα) in macrophages in the process of AKI-to-CKD transition. Main Methods. We crossed lyz2-Cre mice with IKKα-floxed mice to generate mice with IKKα ablation in macrophages (Mac IKKα-/-). A mouse renal ischemia/reperfusion injury (IRI) model was induced by clamping the renal artery for 45 minutes. Treated mice were evaluated for blood biochemistry, tissue histopathology, and fibrosis markers. Macrophages were isolated from the peritoneal cavity for coculturing with tubular epithelial cells (TECs) and flow cytometry analysis. Key Findings. We found that fibrosis and kidney function loss after IRI were significantly alleviated in Mac IKKα-/- mice compared with wild-type (WT) mice. The expression of fibrosis markers and the infiltration of M2 macrophages were decreased in the kidneys of Mac IKKα-/- mice after IRI. The in vitro experiment showed that the IRI TECs cocultured with IKKα-/- macrophages (KO MΦs) downregulated the fibrosis markers accompanied by a downregulation of Wnt/β-catenin signaling. Significance. These data support the hypothesis that IKKα is involved in mediating macrophage polarization and increasing the expression of fibrosis-promoting inflammatory factors in macrophages. Therefore, knockdown of IKKα in macrophages may be a potential method that can be used to alleviate the AKI-to-CKD transition after IRI.
Collapse
|
6
|
Jin Y, Zhang M, Li M, Zhang H, Zhao L, Qian C, Li S, Zhang H, Gao M, Pan B, Li R, Wan X, Cao C. SIX1 Activation Is Involved in Cell Proliferation, Migration, and Anti-inflammation of Acute Ischemia/Reperfusion Injury in Mice. Front Mol Biosci 2021; 8:725319. [PMID: 34513929 PMCID: PMC8427868 DOI: 10.3389/fmolb.2021.725319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/11/2021] [Indexed: 11/13/2022] Open
Abstract
Nephrogenic proteins are re-expressed after ischemia/reperfusion (I/R) injury; however, the role of these proteins is still unknown. We found that sine oculis homeobox 1 (SIX1), a developmentally regulated homeoprotein, is reactivated in tubular epithelial cells after I/R injury associated with cell proliferation/migration and anti-inflammation. We demonstrated that SIX1 promoted cell proliferation by upregulating cyclin and glycolytic genes, and might increase cell migration by upregulating the expression of matrix metalloproteinase 9 (MMP9) directly or indirectly in the cell model. Notably, SIX1 targeted the promoters of the amino-terminal enhancer of split (AES) and fused in sarcoma (FUS), which are cofactors of nuclear factor-κB (NF-κB) subunit RELA, and then inhibited the transactivation function of RELA. The expression of monocyte chemotactic protein-1 (MCP-1) was decreased by the SIX1-mediated NF-κB pathway. Our results showed that the expression of cyclin, glycolytic genes, and MMP9 were significantly increased, and the infiltration of monocytes/macrophages (Mophs) was suppressed in SIX1 overexpression kidney at 1, 2, and 3 days after reperfusion. The overexpression of SIX1 resulted in reducing kidney damage from I/R injury in mice by promoting cell proliferation and migration and by inhibiting inflammation. Our study provides evidence that SIX1 involved in cell proliferation, migration, and anti-inflammation in the I/R model, which might be a potential therapeutic target that could be used to ameliorate kidney damage.
Collapse
Affiliation(s)
- Yong Jin
- Department of Nephrology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Manling Zhang
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China
| | - Meishuang Li
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China
| | - Hong Zhang
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China
| | - Lihua Zhao
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China
| | - Cheng Qian
- Department of Nephrology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Shensen Li
- Department of Nephrology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Hao Zhang
- Department of Nephrology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Min Gao
- Department of Nephrology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Binbin Pan
- Department of Nephrology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Rongfeng Li
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China
| | - Xin Wan
- Department of Nephrology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Changchun Cao
- Department of Nephrology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
7
|
Bobot M, Hache G, Moyon A, Fernandez S, Balasse L, Daniel L, Garrigue P, Brige P, Chopinet S, Dignat-George F, Brunet P, Burtey S, Guillet B. Renal SPECT/CT with 99mTc-dimercaptosuccinic acid is a non-invasive predictive marker for the development of interstitial fibrosis in a rat model of renal insufficiency. Nephrol Dial Transplant 2021; 36:804-810. [PMID: 33367913 DOI: 10.1093/ndt/gfaa374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Chronic kidney disease (CKD) increases cardiovascular risk and mortality. Renal fibrosis plays a major role in the progression of CKD but, to date, histology remains the gold standard to assess fibrosis. Non-invasive techniques are needed to assess renal parenchymal impairment and to perform the longitudinal evaluation of renal structure. Thus we evaluated renal isotopic imaging by single-photon emission computed tomography/computed tomography (SPECT/CT) with technetium-99m (99mTc)-dimercaptosuccinic acid (DMSA) to monitor renal impairment during renal insufficiency in rats. METHODS Renal insufficiency was induced by an adenine-rich diet (ARD) at 0.25 and 0.5% for 28 days. Renal dysfunction was evaluated by assaying biochemical markers and renal histology. Renal parenchymal impairment was assessed by SPECT/CT isotopic imaging with 99mTc-DMSA on Days 0, 7, 14, 21, 28, 35 and 49. RESULTS Compared with controls, ARD rats developed renal dysfunction characterized by increased serum creatinine and blood urea nitrogen, fibrosis and tubulointerstitial damage in the kidneys, with a dose-dependent effect of the adenine concentration. 99mTc-DMSA SPECT-CT imaging showed a significant decrease in renal uptake over time in 0.25 and 0.5% ARD rats compared with control rats (P = 0.011 and P = 0.0004, respectively). 99mTc-DMSA uptake on Day 28 was significantly inversely correlated with Sirius red staining evaluated on Day 49 (r = 0.89, P < 0.0001, R2 = 0.67). CONCLUSIONS 99mTc-DMSA renal scintigraphy allows a longitudinal follow-up of risk of renal fibrosis in rats. We found that the reduction of renal parenchyma in ARD rats is inversely proportional to newly formed fibrous tissue in the kidney. Our results suggest that 99mTc-DMSA renal scintigraphy may be a useful non-invasive prognostic marker of the development of renal fibrosis in animals and should be tested in humans.
Collapse
Affiliation(s)
- Mickaël Bobot
- Centre de Néphrologie et Transplantation Rénale, Hôpital de la Conception, Assistance Publique-Hôpitaux de Marseille, Marseille, France.,Centre Européen de Recherche en Imagerie Médicale, Aix-Marseille Université, Marseille, France.,C2VN, INSERM 1263, INRAE 1260, Aix-Marseille Université, Marseille, France
| | - Guillaume Hache
- Centre Européen de Recherche en Imagerie Médicale, Aix-Marseille Université, Marseille, France.,C2VN, INSERM 1263, INRAE 1260, Aix-Marseille Université, Marseille, France.,Pharmacie, Hôpital de la Timone, Assistance Publique-Hôpitaux de Marseille, Marseille, France
| | - Anaïs Moyon
- Centre Européen de Recherche en Imagerie Médicale, Aix-Marseille Université, Marseille, France.,C2VN, INSERM 1263, INRAE 1260, Aix-Marseille Université, Marseille, France.,Service de Radiopharmacie, Assistance Publique-Hôpitaux de Marseille, Marseille, France
| | - Samantha Fernandez
- Centre Européen de Recherche en Imagerie Médicale, Aix-Marseille Université, Marseille, France
| | - Laure Balasse
- Centre Européen de Recherche en Imagerie Médicale, Aix-Marseille Université, Marseille, France
| | - Laurent Daniel
- C2VN, INSERM 1263, INRAE 1260, Aix-Marseille Université, Marseille, France.,Laboratoire d'Anatomopathologie, Hôpital de la Timone, Assistance Publique-Hôpitaux de Marseille, Marseille, France
| | - Philippe Garrigue
- Centre Européen de Recherche en Imagerie Médicale, Aix-Marseille Université, Marseille, France.,C2VN, INSERM 1263, INRAE 1260, Aix-Marseille Université, Marseille, France.,Service de Radiopharmacie, Assistance Publique-Hôpitaux de Marseille, Marseille, France
| | - Pauline Brige
- Centre Européen de Recherche en Imagerie Médicale, Aix-Marseille Université, Marseille, France.,Laboratoire d'Imagerie Interventionnelle Expérimentale, EA, 4264, Aix Marseille Université, Marseille, France
| | - Sophie Chopinet
- Centre Européen de Recherche en Imagerie Médicale, Aix-Marseille Université, Marseille, France.,Laboratoire d'Imagerie Interventionnelle Expérimentale, EA, 4264, Aix Marseille Université, Marseille, France.,Service de Chirurgie Digestive, Hôpital de la Timone, Assistance Publique-Hôpitaux de Marseille, Marseille, France
| | | | - Philippe Brunet
- Centre de Néphrologie et Transplantation Rénale, Hôpital de la Conception, Assistance Publique-Hôpitaux de Marseille, Marseille, France.,C2VN, INSERM 1263, INRAE 1260, Aix-Marseille Université, Marseille, France
| | - Stéphane Burtey
- Centre de Néphrologie et Transplantation Rénale, Hôpital de la Conception, Assistance Publique-Hôpitaux de Marseille, Marseille, France.,C2VN, INSERM 1263, INRAE 1260, Aix-Marseille Université, Marseille, France
| | - Benjamin Guillet
- Centre Européen de Recherche en Imagerie Médicale, Aix-Marseille Université, Marseille, France.,C2VN, INSERM 1263, INRAE 1260, Aix-Marseille Université, Marseille, France.,Service de Radiopharmacie, Assistance Publique-Hôpitaux de Marseille, Marseille, France
| |
Collapse
|
8
|
Habib R. Multifaceted roles of Toll-like receptors in acute kidney injury. Heliyon 2021; 7:e06441. [PMID: 33732942 PMCID: PMC7944035 DOI: 10.1016/j.heliyon.2021.e06441] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/08/2020] [Accepted: 03/03/2021] [Indexed: 12/13/2022] Open
Abstract
Toll-like receptors (TLRs) are a family of pattern recognition receptors (PRRs) in the first line defense system of our bodies; they are widely expressed on leukocytes and kidney epithelial cells. Infections due to pathogens or danger signals from injured tissues often activate several TLRs and these receptors mediate their signal transduction through the activation of transcription factors that regulate the expression of cytokine interleukin-1β (IL-1β), type I interferons (IFNs), and nuclear factor kappa light chain enhancer of activated B cells (NF-κB) dependent cytokines and chemokines. Acute kidney injury (AKI) involves early Toll-like receptors driven immunopathology, while resolution of inflammation is needed for rapid regeneration of injured tubular cells. Despite their well known function in the progression of inflammation; interestingly, activation of TLRs also has been implicated in renal epithelial repair through the induction of certain interleukins and improvement in autophagy mechanism. Studies have found that although the blockade of TLRs during the early injury phase of renal tissues prevented tubular necrosis, suppression of interleukins production and impaired kidney regeneration due to their blockade has been observed during the healing phase of tissue. Taken together, these results suggest that the two danger response programs of renal cells i.e. renal inflammation and regeneration may link at the level of TLRs. This review aims to emphasize on the role of TLRs signaling in different acute kidney injury phases. Understanding of these pathways may turn out to be effective as therapeutic option for kidney diseases.
Collapse
Affiliation(s)
- Rakhshinda Habib
- Dow Research Institute of Biotechnology and Biomedical Sciences, Dow University of Health Sciences, Karachi, 74200, Pakistan
| |
Collapse
|
9
|
Combination of Alcohol and EVOH as a New Embolic Agent: Midterm Tissue and Inflammatory Effects in a Swine Model. Radiol Res Pract 2020; 2020:8831060. [PMID: 33163232 PMCID: PMC7605951 DOI: 10.1155/2020/8831060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/06/2020] [Accepted: 10/13/2020] [Indexed: 11/17/2022] Open
Abstract
Objective To evaluate the vascular occlusion and midterm tissue toxicity properties of a combination of ethylene-vinyl alcohol (EVOH) (Squid 18®) (75%) and alcohol (25%)—Alco-Squid 18—in a swine model. Materials and Methods Alco-Squid 18 (75% Squid 18® mixed with 25% alcohol) (AS18) was compared to embolization with 96% alcohol alone and to embolization with Squid 18® (S18®) alone. An arteriovenous malformation (AVM) model was created in group 1 (n = 2). Each AVM model was then embolized with AS18 or S18® alone with evaluation of a ratio between the volume of embolic agent divided by the volume of the AVM (evaluated by CT). For group 2 (n = 5), each agent was tested on three different kidneys (upper pole kidney artery). Pre- and postinterventional CTs, angiographies, blood alcohol content dosages, and histological studies (3 months postintervention) were performed. Results AS18 has better distal distribution than S18® alone, both in the kidneys (mean capsule-S18® distance: 3.9 mm (±0.23) and mean capsule-AS18 distance: 2.3 mm (±0.11) (p=0.029) and in the AVM model. Histological exploration found a higher rate of tubular necrosis with AS18 compared with S18® alone and alcohol alone (3.78 ± 0.44 compared to 2.33 ± 1.22 (p = 0.012) and 1.22 ± 0.67 (p < 0 .0001)). The blood alcohol content was negligible in all cases. Conclusion AS18 can suggest a better distal sclerotic and embolic character as compared with S18® alone without systemic toxicity.
Collapse
|
10
|
Bobot M, Thomas L, Moyon A, Fernandez S, McKay N, Balasse L, Garrigue P, Brige P, Chopinet S, Poitevin S, Cérini C, Brunet P, Dignat-George F, Burtey S, Guillet B, Hache G. Uremic Toxic Blood-Brain Barrier Disruption Mediated by AhR Activation Leads to Cognitive Impairment during Experimental Renal Dysfunction. J Am Soc Nephrol 2020; 31:1509-1521. [PMID: 32527975 DOI: 10.1681/asn.2019070728] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 03/30/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Uremic toxicity may play a role in the elevated risk of developing cognitive impairment found among patients with CKD. Some uremic toxins, like indoxyl sulfate, are agonists of the transcription factor aryl hydrocarbon receptor (AhR), which is widely expressed in the central nervous system and which we previously identified as the receptor of indoxyl sulfate in endothelial cells. METHODS To characterize involvement of uremic toxins in cerebral and neurobehavioral abnormalities in three rat models of CKD, we induced CKD in rats by an adenine-rich diet or by 5/6 nephrectomy; we also used AhR-/- knockout mice overloaded with indoxyl sulfate in drinking water. We assessed neurologic deficits by neurobehavioral tests and blood-brain barrier disruption by SPECT/CT imaging after injection of 99mTc-DTPA, an imaging marker of blood-brain barrier permeability. RESULTS In CKD rats, we found cognitive impairment in the novel object recognition test, the object location task, and social memory tests and an increase of blood-brain barrier permeability associated with renal dysfunction. We found a significant correlation between 99mTc-DTPA content in brain and both the discrimination index in the novel object recognition test and indoxyl sulfate concentrations in serum. When we added indoxyl sulfate to the drinking water of rats fed an adenine-rich diet, we found an increase in indoxyl sulfate concentrations in serum associated with a stronger impairment in cognition and a higher permeability of the blood-brain barrier. In addition, non-CKD AhR-/- knockout mice were protected against indoxyl sulfate-induced blood-brain barrier disruption and cognitive impairment. CONCLUSIONS AhR activation by indoxyl sulfate, a uremic toxin, leads to blood-brain barrier disruption associated with cognitive impairment in animal models of CKD.
Collapse
Affiliation(s)
- Mickaël Bobot
- Centre de Néphrologie et Transplantation Rénale, Hôpital de la Conception, Assistnce Publique - Hôpitaux de Marseille, Marseille, France .,Centre Européen de recherche en Imagerie Médicale, Aix Marseille Université, Centre National de la Recherche Scientifique, Marseille, France.,Centre de Recherche en Cardiovasculaireet Nutrition, Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Institut National de Recherche pour l'agriculture, l'alimentation et l'environnement, Marseille, France
| | - Laurent Thomas
- Centre Européen de recherche en Imagerie Médicale, Aix Marseille Université, Centre National de la Recherche Scientifique, Marseille, France.,Centre de Recherche en Cardiovasculaireet Nutrition, Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Institut National de Recherche pour l'agriculture, l'alimentation et l'environnement, Marseille, France
| | - Anaïs Moyon
- Centre Européen de recherche en Imagerie Médicale, Aix Marseille Université, Centre National de la Recherche Scientifique, Marseille, France.,Centre de Recherche en Cardiovasculaireet Nutrition, Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Institut National de Recherche pour l'agriculture, l'alimentation et l'environnement, Marseille, France.,Service de Radiopharmacie, Assistnce Publique - Hôpitaux de Marseille, Marseille, France
| | - Samantha Fernandez
- Centre Européen de recherche en Imagerie Médicale, Aix Marseille Université, Centre National de la Recherche Scientifique, Marseille, France
| | - Nathalie McKay
- Centre de Recherche en Cardiovasculaireet Nutrition, Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Institut National de Recherche pour l'agriculture, l'alimentation et l'environnement, Marseille, France
| | - Laure Balasse
- Centre Européen de recherche en Imagerie Médicale, Aix Marseille Université, Centre National de la Recherche Scientifique, Marseille, France
| | - Philippe Garrigue
- Centre Européen de recherche en Imagerie Médicale, Aix Marseille Université, Centre National de la Recherche Scientifique, Marseille, France.,Centre de Recherche en Cardiovasculaireet Nutrition, Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Institut National de Recherche pour l'agriculture, l'alimentation et l'environnement, Marseille, France.,Service de Radiopharmacie, Assistnce Publique - Hôpitaux de Marseille, Marseille, France
| | - Pauline Brige
- Centre Européen de recherche en Imagerie Médicale, Aix Marseille Université, Centre National de la Recherche Scientifique, Marseille, France.,Laboratoire d'Imagerie Interventionelle Expérimentale, Aix-Marseille Université, Marseille, France
| | - Sophie Chopinet
- Centre Européen de recherche en Imagerie Médicale, Aix Marseille Université, Centre National de la Recherche Scientifique, Marseille, France.,Laboratoire d'Imagerie Interventionelle Expérimentale, Aix-Marseille Université, Marseille, France.,Service de Chirurgie générale et transplantation hépatique, Hôpital de la Timone, Assistnce Publique - Hôpitaux de Marseille, Marseille, France
| | - Stéphane Poitevin
- Centre de Recherche en Cardiovasculaireet Nutrition, Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Institut National de Recherche pour l'agriculture, l'alimentation et l'environnement, Marseille, France
| | - Claire Cérini
- Centre de Recherche en Cardiovasculaireet Nutrition, Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Institut National de Recherche pour l'agriculture, l'alimentation et l'environnement, Marseille, France
| | - Philippe Brunet
- Centre de Néphrologie et Transplantation Rénale, Hôpital de la Conception, Assistnce Publique - Hôpitaux de Marseille, Marseille, France.,Centre de Recherche en Cardiovasculaireet Nutrition, Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Institut National de Recherche pour l'agriculture, l'alimentation et l'environnement, Marseille, France
| | - Françoise Dignat-George
- Centre de Recherche en Cardiovasculaireet Nutrition, Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Institut National de Recherche pour l'agriculture, l'alimentation et l'environnement, Marseille, France
| | - Stéphane Burtey
- Centre de Néphrologie et Transplantation Rénale, Hôpital de la Conception, Assistnce Publique - Hôpitaux de Marseille, Marseille, France.,Centre de Recherche en Cardiovasculaireet Nutrition, Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Institut National de Recherche pour l'agriculture, l'alimentation et l'environnement, Marseille, France
| | - Benjamin Guillet
- Centre Européen de recherche en Imagerie Médicale, Aix Marseille Université, Centre National de la Recherche Scientifique, Marseille, France.,Centre de Recherche en Cardiovasculaireet Nutrition, Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Institut National de Recherche pour l'agriculture, l'alimentation et l'environnement, Marseille, France.,Service de Radiopharmacie, Assistnce Publique - Hôpitaux de Marseille, Marseille, France
| | - Guillaume Hache
- Centre Européen de recherche en Imagerie Médicale, Aix Marseille Université, Centre National de la Recherche Scientifique, Marseille, France .,Centre de Recherche en Cardiovasculaireet Nutrition, Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Institut National de Recherche pour l'agriculture, l'alimentation et l'environnement, Marseille, France.,Pharmacie, Hôpital de la Timone, Assistnce Publique - Hôpitaux de Marseille, Marseille, France
| |
Collapse
|
11
|
Renoprotective effect of edaravone in acute limb ischemia/reperfusion injury. TURK GOGUS KALP DAMAR CERRAHISI DERGISI-TURKISH JOURNAL OF THORACIC AND CARDIOVASCULAR SURGERY 2020; 28:274-281. [PMID: 32551157 DOI: 10.5606/tgkdc.dergisi.2020.18905] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 01/28/2020] [Indexed: 12/20/2022]
Abstract
Background In this experimental study, we aimed to investigate the efficacy of edaravone on renal injury due to acute lower limb ischemia/reperfusion in a rat model. Methods Between June 2015 and August 2015, a total of 40 male Wistar rats were used in this study. The rats were randomly divided into the sham, ischemia/reperfusion, edaravone, and solvent groups (n=10 in each). The infrarenal abdominal aorta was clamped for 120 min and was, then, reperfused for 120 min after clamp removal. Edaravone was administered intravenously 30 min before the induction of ischemia. Serum and kidney tissue samples were subjected to biochemical and histopathological analyses. Results Edaravone decreased the serum and tissue malondialdehyde levels in the ischemia/reperfusion group. The serum superoxide dismutase activity in the edaravone group was significantly higher than the ischemia/reperfusion and solvent groups. The serum nitric oxide level in the ischemia/reperfusion group was numerically higher than the sham group. The serum nitric oxide level was decreased by edaravone. The serum nitric oxide level was lower in the edaravone group than the solvent group. The tissue nitric oxide level was significantly higher in the ischemia/reperfusion than the sham group. In the ischemia/ reperfusion group, the histopathological changes were improved by edaravone. Conclusion Edaravone ameliorated renal injury caused by lower-limb ischemia/reperfusion. Therefore, it can be used to ameliorate acute ischemia/reperfusion injury during aortic and peripheral vascular surgery.
Collapse
|
12
|
Xie X, Yang X, Wu J, Ma J, Wei W, Fei X, Wang M. Trib1 Contributes to Recovery From Ischemia/Reperfusion-Induced Acute Kidney Injury by Regulating the Polarization of Renal Macrophages. Front Immunol 2020; 11:473. [PMID: 32265926 PMCID: PMC7098949 DOI: 10.3389/fimmu.2020.00473] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 02/28/2020] [Indexed: 11/13/2022] Open
Abstract
Increasing evidence suggests that macrophage polarization is involved in the recovery from ischemia-reperfusion (I/R)-induced acute kidney injury (AKI), implying that the regulation of macrophage polarization homeostasis might mediate AKI recovery. Trib1 is a key regulator of macrophage differentiation, but its role in AKI remains unclear. Here, we aimed to investigate the role of Trib1 and its link with the macrophage phenotype in the process of adaptive recovery from I/R-induced renal injury. Lentiviral vector-mediated RNA interference (RNAi) was used to knock down Trib1 expression in vitro and in vivo, and a mouse model of moderate AKI was established by the induction of I/R injury. Renal function measurements and inflammatory factors were determined by the corresponding kits. Histomorphology was assessed by hematoxylin-eosin, Masson and PAS staining. Western blot and flow cytometry were employed for the analysis of signal transduction, cell apoptosis and macrophage phenotypes. Trib1 knockdown inhibited cell viability of tubular epithelial cells (TECs) by inhibiting proliferation and enhancing apoptosis in vitro. I/R-induced AKI significantly impaired renal function in mice via increasing the levels of BUN, Scr, NGAL and renal tubular damage, leading to renal fibrosis from days 1 to 3. Through the adaptive self-repair mechanism, renal dysfunction recovered over time and returned to almost normal levels on day 28 after I/R intervention. However, Trib1 depletion worsened renal damage on day 3 and blunted the adaptive repair process of the renal tissue. Mechanistically, Trib1 inhibition suppressed renal tubular cell proliferation under adaptive self-repair conditions by affecting the expression of the proliferation-related proteins cyclin D1, cyclin B, p21, and p27, the apoptosis-related proteins Bcl-2 and Bax, and the fibrosis-related proteins collagen I and III. Furthermore, the M1/M2 macrophage ratio increased in the first 3 days and decreased from day 7 to day 28, consistent with changes in the expression of inflammatory factors, including TNFα, IL-6, IL-12, IL-10, and IL-13. Trib1 inhibition blocked macrophage polarization during adaptive recovery from I/R-induced moderate AKI. Our results show that Trib1 plays a role in kidney recovery and regeneration via the regulation of renal tubular cell proliferation by affecting macrophage polarization. Thus, Trib1 might be a viable therapeutic target to improve renal adaptive repair following I/R injury.
Collapse
Affiliation(s)
- Xiangcheng Xie
- Department of Nephrology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiu Yang
- Department of Nephrology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Junxia Wu
- Department of Nephrology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jilin Ma
- Division of Nephrology, Zhejiang Traditional Chinese Medicine and Western Medicine Hospital, Hangzhou, China
| | - Wei Wei
- Department of Nephrology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao Fei
- Department of Nephrology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ming Wang
- Department of Nephrology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
13
|
Vidal V, Hak JF, Brige P, Chopinet S, Tradi F, Bobot M, Gach P, Haffner A, Soulez G, Jacquier A, Moulin G, Bartoli JM, Guillet B. In Vivo Feasibility of Arterial Embolization with Permanent and Absorbable Suture: The FAIR-Embo Concept. Cardiovasc Intervent Radiol 2019; 42:1175-1182. [PMID: 31025052 DOI: 10.1007/s00270-019-02211-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 03/25/2019] [Indexed: 10/27/2022]
Abstract
PURPOSE Arterial embolization has been shown to be effective and safe for the management of bleeding, especially for postpartum and pelvic traumatic bleeding. We propose to evaluate the proof of concept of feasibility and effectiveness of arterial embolization with absorbable and non-absorbable sutures in a porcine model. MATERIALS AND METHODS In the acute setting (n = 1), several different arteries (mesenteric, splenic, pharyngeal, kidney) were embolized using non-absorbable sutures (NAS): Mersutures™ braided sutures (polyethylene terephthalate). In the chronic setting (n = 3), only lower pole renal arteries were embolized. On the right side, NAS was used, whereas on the left side embolization was realized with absorbable suture (AS): Vicryl® braided suture (polyglactin 910). The chronic group was followed for 3 months. The pigs received contrast-enhanced CT the day before embolization (D-1), after the embolization (D0), at 1 month and 3 months after embolization (M1 and M3); digital subtraction angiography (DSA) was done at D0 and M3 and histological analysis at M3. RESULTS All vascular targets were effectively embolized without any pre- or postoperative complications. Both DSAs and CTs at M3 showed a 100% recanalization rate for the AS embolization and a partial reversal rate for the NAS embolization. A renal hypotrophy in the embolized region was observed during both the M1 and M3 scans for both sutures (AS and NAS) with a clear hypotrophy for the NAS embolized kidney. CONCLUSION Embolization by AS and NAS (FAIR-Embo) is a feasible and effective treatment which opens up the possibility of global use of this inexpensive and widely available embolization agent.
Collapse
Affiliation(s)
- V Vidal
- Interventional Radiology Section, Department of Medical Imaging, University Hospital Timone APHM, Marseille, France. .,LIIE, Aix Marseille Univ, Marseille, France. .,CERIMED, Aix Marseille Univ, Marseille, France.
| | - J F Hak
- Interventional Radiology Section, Department of Medical Imaging, University Hospital Timone APHM, Marseille, France. .,LIIE, Aix Marseille Univ, Marseille, France. .,CERIMED, Aix Marseille Univ, Marseille, France.
| | - P Brige
- LIIE, Aix Marseille Univ, Marseille, France.,CERIMED, Aix Marseille Univ, Marseille, France
| | - S Chopinet
- LIIE, Aix Marseille Univ, Marseille, France.,CERIMED, Aix Marseille Univ, Marseille, France.,Department of Digestive Surgery, University Hospital Timone APHM, Marseille, France
| | - F Tradi
- Interventional Radiology Section, Department of Medical Imaging, University Hospital Timone APHM, Marseille, France.,LIIE, Aix Marseille Univ, Marseille, France.,CERIMED, Aix Marseille Univ, Marseille, France
| | - M Bobot
- CERIMED, Aix Marseille Univ, Marseille, France.,Department of Nephrology, University Hospital Conception APHM, Marseille, France.,INSERM 1263, INRA 1260, C2VN, Aix Marseille Univ, Marseille, France
| | - P Gach
- Interventional Radiology Section, Department of Medical Imaging, University Hospital Timone APHM, Marseille, France.,LIIE, Aix Marseille Univ, Marseille, France.,CERIMED, Aix Marseille Univ, Marseille, France
| | - A Haffner
- Department of Pathological Anatomy, University Hospital Timone APHM, Marseille, France
| | - G Soulez
- Department of Radiology, Centre Hospitalier de l'Université de Montréal, 1560 Sherbrooke East, Montreal, H2L 4M1, Canada
| | - A Jacquier
- Interventional Radiology Section, Department of Medical Imaging, University Hospital Timone APHM, Marseille, France
| | - G Moulin
- Interventional Radiology Section, Department of Medical Imaging, University Hospital Timone APHM, Marseille, France
| | - J M Bartoli
- Interventional Radiology Section, Department of Medical Imaging, University Hospital Timone APHM, Marseille, France
| | - B Guillet
- CERIMED, Aix Marseille Univ, Marseille, France.,INSERM 1263, INRA 1260, C2VN, Aix Marseille Univ, Marseille, France.,Department of Radiopharmacy, APHM, Marseille, France
| |
Collapse
|
14
|
Sabapathy V, Cheru NT, Corey R, Mohammad S, Sharma R. A Novel Hybrid Cytokine IL233 Mediates regeneration following Doxorubicin-Induced Nephrotoxic Injury. Sci Rep 2019; 9:3215. [PMID: 30824764 PMCID: PMC6397151 DOI: 10.1038/s41598-019-39886-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 02/04/2019] [Indexed: 12/15/2022] Open
Abstract
Kidney injury, whether due to ischemic insults or chemotherapeutic agents, is exacerbated by inflammation, whereas Tregs are protective. We recently showed that IL-2 and IL-33, especially as a hybrid cytokine (IL233 - bearing IL-2 and IL-33 activities in one molecule), potentiated Tregs and group 2 innate lymphoid cells (ILC2) to prevent renal injury. Recent studies have indicated a reparative function for Tregs and ILC2. Here, using doxorubicin-induced nephrotoxic renal injury model, we investigated whether IL233 administration either before, late or very late after renal injury can restore kidney structure and function. We found that IL233 treatment even 2-weeks post-doxorubicin completely restored kidney function accompanied with an increase Treg and ILC2 in lymphoid and renal compartments, augmented anti-inflammatory cytokines and attenuated proinflammatory cytokine levels. IL233 treated mice had reduced inflammation, kidney injury (Score values - saline: 3.34 ± 0.334; IL233 pre: 0.42 ± 0.162; IL233 24 hrs: 1.34 ± 0.43; IL233 1 week: 1.2 ± 0.41; IL233 2 week: 0.47 ± 0.37; IL233 24 hrs + PC61: 3.5 ± 0.74) and fibrosis in all treatment regimen as compared to saline controls. Importantly, mice treated with IL233 displayed a reparative program in the kidneys, as evidenced by increased expression of genes for renal progenitor-cells and nephron segments. Our findings present the first evidence of an immunoregulatory cytokine, IL233, which could be a potent therapeutic strategy that augments Treg and ILC2 to not only inhibit renal injury, but also promote regeneration.
Collapse
Affiliation(s)
- Vikram Sabapathy
- Center for Immunity, Inflammation and Regenerative Medicine (CIIR), Division of Nephrology, Department of Medicine, University of Virginia, PO Box 800133, Charlottesville, VA, 22903, USA
| | - Nardos Tesfaye Cheru
- Center for Immunity, Inflammation and Regenerative Medicine (CIIR), Division of Nephrology, Department of Medicine, University of Virginia, PO Box 800133, Charlottesville, VA, 22903, USA
| | - Rebecca Corey
- Center for Immunity, Inflammation and Regenerative Medicine (CIIR), Division of Nephrology, Department of Medicine, University of Virginia, PO Box 800133, Charlottesville, VA, 22903, USA
| | - Saleh Mohammad
- Center for Immunity, Inflammation and Regenerative Medicine (CIIR), Division of Nephrology, Department of Medicine, University of Virginia, PO Box 800133, Charlottesville, VA, 22903, USA
| | - Rahul Sharma
- Center for Immunity, Inflammation and Regenerative Medicine (CIIR), Division of Nephrology, Department of Medicine, University of Virginia, PO Box 800133, Charlottesville, VA, 22903, USA.
| |
Collapse
|
15
|
Zhou Q, Gong X, Kuang G, Jiang R, Xie T, Tie H, Chen X, Li K, Wan J, Wang B. Ferulic Acid Protected from Kidney Ischemia Reperfusion Injury in Mice: Possible Mechanism Through Increasing Adenosine Generation via HIF-1α. Inflammation 2019; 41:2068-2078. [PMID: 30143933 DOI: 10.1007/s10753-018-0850-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ferulic acid (FA), derived from fruits and vegetables, is well-known as a potent antioxidant of scavenging free radicals. However, the role and underlying mechanism of FA on kidney ischemia reperfusion (I/R) injury are limited. Here, we explored the effects of FA on kidney I/R injury. The kidney I/R injury models were carried out by clamping bilateral pedicles for 35 min followed by reperfusion for 24 h. Mice were orally pretreated with different doses of FA for three times 24 h before I/R. The renal function was assessed by serum creatine (Scr) and blood urea nitrogen (BUN). Kidney histology was examined by hematoxylin and eosin (HE) staining and terminal deoxynucleotidly transferased UTP nick-end labeling (TUNEL) assay. Proinflammatory cytokines, caspase-3 activity, adenosine generation, adenosine signaling molecules, and hypoxia inducible factor-1 alpha (HIF-1α) were also detected, respectively. The siHIF-1α adenovirus vectors were in vivo used to inhibit the expression of HIF-1α. The results showed that FA significantly attenuated kidney damage in renal I/R-operated mice as indicated by reducing levels of Scr and BUN, ameliorating renal pathological structural changes, and tubular cells apoptosis. Moreover, FA pretreatment inhibited I/R-induced renal proinflammatory cytokines and neutrophils recruitment. Interestingly, the levels of HIF-α, CD39, and CD73 mRNA and protein as well as adenosine production were all significantly increased after FA pretreatment in the kidney of I/R-performed mice, and inhibiting HIF-α expression using siRNA abolished this protection of FA on I/R-induced acute kidney injury as evidenced by more severe renal damage and reduced adenosine production. Our findings indicated that FA protected against kidney I/R injury by reducing apoptosis, alleviating inflammation, increasing adenosine generation, and upregulating CD39 and CD73 expression, which might be mediated by HIF-1α.
Collapse
Affiliation(s)
- Qin Zhou
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Department of Pharmacology, Chongqing Medical University, Chongqing, 400016, China
| | - Xia Gong
- Department of Anatomy, Chongqing Medical University, Chongqing, 400016, China
| | - Ge Kuang
- Department of Pharmacology, Chongqing Medical University, Chongqing, 400016, China
| | - Rong Jiang
- Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Tianjun Xie
- Department of Pharmacology, Chongqing Medical University, Chongqing, 400016, China
| | - HongTao Tie
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - XiaHong Chen
- Department of Pharmacology, Chongqing Medical University, Chongqing, 400016, China
| | - Ke Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - JingYuan Wan
- Department of Pharmacology, Chongqing Medical University, Chongqing, 400016, China.
| | - Bin Wang
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
16
|
Erbatur ME, Sezen ŞC, Bayraktar AC, Arslan M, Kavutçu M, Aydın ME. Effects of dexmedetomidine on renal tissue after lower limb ischemia reperfusion injury in streptozotocin induced diabetic rats. Libyan J Med 2017; 12:1270021. [PMID: 28452604 PMCID: PMC5328322 DOI: 10.1080/19932820.2017.1270021] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 12/03/2016] [Indexed: 01/22/2023] Open
Abstract
AIM The aim of this study was to investigate whether dexmedetomidine - administered before ischemia - has protective effects against lower extremity ischemia reperfusion injury that induced by clamping and subsequent declamping of infra-renal abdominal aorta in streptozotocin-induced diabetic rats. MATERIAL AND METHODS After obtaining ethical committee approval, four study groups each containing six rats were created (Control (Group C), diabetes-control (Group DM-C), diabetes I/R (Group DM-I/R), and diabetes-I/R-dexmedetomidine (Group DM-I/R-D). In diabetes groups, single-dose (55 mg/kg) streptozotocin was administered intraperitoneally. Rats with a blood glucose level above 250 mg/dl at the 72nd hour were accepted as diabetic. At the end of four weeks, laparotomy was performed in all rats. Nothing else was done in Group C and DM-C. In Group DM-I/R, ischemia reperfusion was produced via two-hour periods of clamping and subsequent declamping of infra-renal abdominal aorta. In Group DM-I/R-D, 100 μg/kg dexmedetomidine was administered intraperitoneally 30 minutes before ischemia period. At the end of reperfusion, period biochemical and histopathological evaluation of renal tissue specimen were performed. RESULTS Thiobarbituric acid reactive substance (TBARS), Superoxide dismutase (SOD), Nitric oxide synthase (NOS), Catalase (CAT) and Glutathion S transferase (GST) levels were found significantly higher in Group DM-I/R when compared with Group C and Group DM-C. In the dexmedetomidine-treated group, TBARS, NOS, CAT, and GST levels were significantly lower than those measured in the Group D-I/R. In histopathological evaluation, glomerular vacuolization (GV), tubular dilatation (TD), vascular vacuolization and hypertrophy (VVH), tubular cell degeneration and necrosis (TCDN), tubular hyaline cylinder (THC), leucocyte infiltration (LI), and tubular cell spillage (TCS) in Group DM-I/R were significantly increased when compared with the control group. Also, GV, VVH, and THC levels in the dexmedetomidine-treated group (Group DM-I/R-D) were found significantly decreased when compared with the Group DM-I/R. CONCLUSION We found that dexmedetomidine - 100 μg/kg intraperitoneally - administered 30 minutes before ischemia in diabetic rats ameliorates lipid peroxidation, oxidative stress, and I-R-related renal injury. We suggest that dexmedetomidine administration in diabetic rats before I/R has renoprotective effects.
Collapse
Affiliation(s)
- Meral Erdal Erbatur
- Department of Anesthesiology and Reanimation, Gazi University, Ankara, Turkey
| | - Şaban Cem Sezen
- Department of Histology and Embryology, Kırıkkale University, Kırıkkale, Turkey
| | | | - Mustafa Arslan
- Department of Anesthesiology and Reanimation, Gazi University, Ankara, Turkey
| | - Mustafa Kavutçu
- Department of Medical Biochemistry, Gazi University, Ankara, Turkey
| | - Muhammed Enes Aydın
- Department of Anesthesiology and Reanimation, Gazi University, Ankara, Turkey
| |
Collapse
|
17
|
Baligand C, Qin H, True-Yasaki A, Gordon J, von Morze C, Santos JD, Wilson D, Raffai R, Cowley PM, Baker AJ, Kurhanewicz J, Lovett DH, Wang ZJ. Hyperpolarized 13 C magnetic resonance evaluation of renal ischemia reperfusion injury in a murine model. NMR IN BIOMEDICINE 2017; 30:10.1002/nbm.3765. [PMID: 28708304 PMCID: PMC5618802 DOI: 10.1002/nbm.3765] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 05/16/2017] [Accepted: 05/29/2017] [Indexed: 05/10/2023]
Abstract
Acute kidney injury (AKI) is a major risk factor for the development of chronic kidney disease (CKD). Persistent oxidative stress and mitochondrial dysfunction are implicated across diverse forms of AKI and in the transition to CKD. In this study, we applied hyperpolarized (HP) 13 C dehydroascorbate (DHA) and 13 C pyruvate magnetic resonance spectroscopy (MRS) to investigate the renal redox capacity and mitochondrial pyruvate dehydrogenase (PDH) activity, respectively, in a murine model of AKI at baseline and 7 days after unilateral ischemia reperfusion injury (IRI). Compared with the contralateral sham-operated kidneys, the kidneys subjected to IRI showed a significant decrease in the HP 13 C vitamin C/(vitamin C + DHA) ratio, consistent with a decrease in redox capacity. The kidneys subjected to IRI also showed a significant decrease in the HP 13 C bicarbonate/pyruvate ratio, consistent with impaired PDH activity. The IRI kidneys showed a significantly higher HP 13 C lactate/pyruvate ratio at day 7 compared with baseline, although the 13 C lactate/pyruvate ratio was not significantly different between the IRI and contralateral sham-operated kidneys at day 7. Arterial spin labeling magnetic resonance imaging (MRI) demonstrated significantly reduced perfusion in the IRI kidneys. Renal tissue analysis showed corresponding increased reactive oxygen species (ROS) and reduced PDH activity in the IRI kidneys. Our results show the feasibility of HP 13 C MRS for the non-invasive assessment of oxidative stress and mitochondrial PDH activity following renal IRI.
Collapse
Affiliation(s)
- Celine Baligand
- Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA
| | - Hecong Qin
- Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA
| | - Aisha True-Yasaki
- Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA
| | - Jeremy Gordon
- Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA
| | - Cornelius von Morze
- Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA
| | - Justin DeLos Santos
- Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA
| | - David Wilson
- Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA
| | - Robert Raffai
- Medicine, San Francisco VAMC/University of California San Francisco, San Francisco, CA
| | - Patrick M. Cowley
- Medicine, San Francisco VAMC/University of California San Francisco, San Francisco, CA
| | - Anthony J. Baker
- Medicine, San Francisco VAMC/University of California San Francisco, San Francisco, CA
| | - John Kurhanewicz
- Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA
| | - David H. Lovett
- Medicine, San Francisco VAMC/University of California San Francisco, San Francisco, CA
| | - Zhen Jane Wang
- Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA
| |
Collapse
|
18
|
Zhou D, Pan Q, Liu XL, Yang RX, Chen YW, Liu C, Fan JG. Clostridium butyricum B1 alleviates high-fat diet-induced steatohepatitis in mice via enterohepatic immunoregulation. J Gastroenterol Hepatol 2017; 32:1640-1648. [PMID: 28109017 DOI: 10.1111/jgh.13742] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 12/30/2016] [Accepted: 01/16/2017] [Indexed: 12/18/2022]
Abstract
BACKGROUND AND AIM Enterohepatic immunologic derangement is associated with non-alcoholic steatohepatitis. Here, we investigated whether Clostridium butyricum B1 (CB) would be an effective immune-targeted substance to attenuate steatohepatitis in mice. METHODS Thirty mice were randomized into a control group fed with common forage, a high-fat diet (HFD) group fed an HFD for 16 weeks, and an HFD + CB group treated with CB for the latter 8 weeks. Inflammation-associated or metabolism-associated genes in the liver or epididymal fat tissue were quantified; intrahepatic and intestinal immune factors were detected. Further short-chain fatty acids in the cecal contents or liver were measured, and differentiations of T cells in vitro were analyzed. RESULTS Characteristics of non-alcoholic steatohepatitis in the HFD group were obvious and were significantly attenuated in the HFD + CB group. The messenger RNA levels of monocyte chemotactic protein-1 and tumor necrosis factor-α in the liver and epididymal fat tissue were increased in the HFD group compared with the control group and were downregulated in the HFD + CB group. Intrahepatic and intestinal interferon-γ and interleukin (IL)-17 were significantly increased, whereas forkhead box P3, IL-4, and IL-22 were significantly decreased in the HFD group compared with the control group. However, these intrahepatic or intestinal immune changes were reversed after CB intervention. Furthermore, butyrate in the cecal content and liver of the HFD + CB group was significantly elevated. An in vitro investigation showed that sodium butyrate promoted CD4+ T cell differentiation into Th2, Th22, or Treg, whereas it inhibited CD4+ T cell differentiation into Th1 or Th17 under a cytokine milieu, which was mimicked by Trichostatin A. CONCLUSION Clostridium butyricum B1 could attenuate HFD-induced steatohepatitis in mice partially through butyrate-induced enterohepatic immunoregulation.
Collapse
Affiliation(s)
- Da Zhou
- Center for Fatty Liver, Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qin Pan
- Center for Fatty Liver, Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Lin Liu
- Center for Fatty Liver, Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rui-Xu Yang
- Center for Fatty Liver, Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuan-Wen Chen
- Center for Fatty Liver, Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chang Liu
- Department of Medical Microbiology and Parasitology, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian-Gao Fan
- Center for Fatty Liver, Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
19
|
Neves J, Sousa-Victor P, Jasper H. Rejuvenating Strategies for Stem Cell-Based Therapies in Aging. Cell Stem Cell 2017; 20:161-175. [PMID: 28157498 DOI: 10.1016/j.stem.2017.01.008] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Recent advances in our understanding of tissue regeneration and the development of efficient approaches to induce and differentiate pluripotent stem cells for cell replacement therapies promise exciting avenues for treating degenerative age-related diseases. However, clinical studies and insights from model organisms have identified major roadblocks that normal aging processes impose on tissue regeneration. These new insights suggest that specific targeting of environmental niche components, including growth factors, ECM, and immune cells, and intrinsic stem cell properties that are affected by aging will be critical for the development of new strategies to improve stem cell function and optimize tissue repair processes.
Collapse
Affiliation(s)
- Joana Neves
- Paul F. Glenn Center for Biology of Aging Research, Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945-1400, USA
| | - Pedro Sousa-Victor
- Paul F. Glenn Center for Biology of Aging Research, Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945-1400, USA
| | - Heinrich Jasper
- Paul F. Glenn Center for Biology of Aging Research, Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945-1400, USA; Leibniz Institute on Aging - Fritz Lipmann Institute, Jena 07745, Germany.
| |
Collapse
|
20
|
Yin Q, Tai T, Ji JZ, Mi QY, Zhang MR, Huang WJ, Cao CC, Xie HG. Interleukin-10 does not modulate clopidogrel platelet response in mice. J Thromb Haemost 2016; 14:596-605. [PMID: 26712119 DOI: 10.1111/jth.13238] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 12/06/2015] [Indexed: 02/04/2023]
Abstract
UNLABELLED ESSENTIALS: It is unclear whether interleukin-10 (IL-10) could affect clopidogrel metabolism and response. The bioactivation of and response to clopidogrel were determined between mice with or without IL-10. Maximum clopidogrel active metabolite levels were the major driver of platelet response to clopidogrel. IL-10 did not modulate maximum levels of clopidogrel active metabolite and its antiplatelet effects. SUMMARY BACKGROUND Elevated plasma interleukin-10 (IL-10) levels were observed in patients who responded less to clopidogrel (a prodrug that is required for further metabolic bioactivation in the liver). However, no data are currently available suggesting whether there is such an association. OBJECTIVE To systematically explore possible differences in the formation of and response to clopidogrel active metabolite (CAM) in mice with or without IL-10 gene expression. METHODS A single oral dose of clopidogrel (10 mg kg(-1)) was given to IL-10 knockout (KO) mice and wild-type (WT) control mice, respectively, and pharmacokinetic parameters of clopidogrel and CAM were calculated. Moreover, adenosine diphosphate-induced whole-blood platelet aggregation was measured in mice receiving 0, 5, 10, or 20 mg kg(-1) of clopidogrel, respectively. RESULTS Compared with IL-10 KO mice, WT mice had significantly lower area under the plasma concentration-time curve (AUC) of CAM as a result of a shorter mean elimination half-life but had significantly higher AUC of clopidogrel due to slower systemic clearance and smaller volume of distribution. Although AUC of CAM was significantly lower in WT mice than in KO mice, antiplatelet effects of clopidogrel did not differ significantly between the two mouse groups, as their maximum plasma concentrations (Cmax ) of CAM were not significantly different. CONCLUSIONS IL-10 expression level affects AUC rather than Cmax of CAM, but the Cmax of CAM is the major driver of antiplatelet effects of clopidogrel in mice.
Collapse
Affiliation(s)
- Q Yin
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - T Tai
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - J-Z Ji
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Q-Y Mi
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - M-R Zhang
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - W-J Huang
- Division of Nephrology, Department of Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - C-C Cao
- Division of Nephrology, Department of Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - H-G Xie
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Pharmacology, Nanjing Medical University School of Pharmacy, Nanjing, Jiangsu, China
| |
Collapse
|