1
|
Zhao H, Ming T, Tang S, Ren S, Yang H, Liu M, Tao Q, Xu H. Wnt signaling in colorectal cancer: pathogenic role and therapeutic target. Mol Cancer 2022; 21:144. [PMID: 35836256 PMCID: PMC9281132 DOI: 10.1186/s12943-022-01616-7] [Citation(s) in RCA: 284] [Impact Index Per Article: 142.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 07/01/2022] [Indexed: 02/08/2023] Open
Abstract
Background The Wnt signaling pathway is a complex network of protein interactions that functions most commonly in embryonic development and cancer, but is also involved in normal physiological processes in adults. The canonical Wnt signaling pathway regulates cell pluripotency and determines the differentiation fate of cells during development. The canonical Wnt signaling pathway (also known as the Wnt/β-catenin signaling pathway) is a recognized driver of colon cancer and one of the most representative signaling pathways. As a functional effector molecule of Wnt signaling, the modification and degradation of β-catenin are key events in the Wnt signaling pathway and the development and progression of colon cancer. Therefore, the Wnt signaling pathway plays an important role in the pathogenesis of diseases, especially the pathogenesis of colorectal cancer (CRC). Objective Inhibit the Wnt signaling pathway to explore the therapeutic targets of colorectal cancer. Methods Based on studying the Wnt pathway, master the biochemical processes related to the Wnt pathway, and analyze the relevant targets when drugs or inhibitors act on the Wnt pathway, to clarify the medication ideas of drugs or inhibitors for the treatment of diseases, especially colorectal cancer. Results Wnt signaling pathways include: Wnt/β-catenin or canonical Wnt signaling pathway, planar cell polarity (Wnt-PCP) pathway and Wnt-Ca2+ signaling pathway. The Wnt signaling pathway is closely related to cancer cell proliferation, stemness, apoptosis, autophagy, metabolism, inflammation and immunization, microenvironment, resistance, ion channel, heterogeneity, EMT/migration/invasion/metastasis. Drugs/phytochemicals and molecular preparations for the Wnt pathway of CRC treatment have now been developed. Wnt inhibitors are also commonly used clinically for the treatment of CRC. Conclusion The development of drugs/phytochemicals and molecular inhibitors targeting the Wnt pathway can effectively treat colorectal cancer clinically.
Collapse
Affiliation(s)
- Hui Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Tianqi Ming
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Shun Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Shan Ren
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Han Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Maolun Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Qiu Tao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Haibo Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
2
|
Hakura A, Koyama N, Seki Y, Sonoda J, Asakura S. o-Aminoazotoluene, 7,12-dimethylbenz[a]anthracene, and N-ethyl-N-nitrosourea, which are mutagenic but not carcinogenic in the colon, rapidly induce colonic tumors in mice with dextran sulfate sodium-induced colitis. Genes Environ 2022; 44:11. [PMID: 35351212 PMCID: PMC8966303 DOI: 10.1186/s41021-022-00240-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 03/09/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Several rodent models with chemically induced colon cancer have been developed. Among these models, dextran sulfate sodium (DSS), a colitis inducer, combined with azoxymethane as a colon mutagenic carcinogen, is commonly used. We previously reported that although benzo [a] pyrene (BP) is mutagenic but not carcinogenic in the colon, it rapidly develops colon tumors at a high incidence/multiplicity after treatment with DSS. In the present study, we examined whether other colon-mutagenic non-carcinogens (CMNCs) induced colon tumors after treatment with DSS. RESULTS o-Aminoazotoluene, 7,12-dimethylbenz[a]anthracene, and N-ethyl-N-nitrosourea were selected as CMNCs. Male CD2F1 mice were orally administered CMNC for 5 consecutive days. After a 9-day dose-free period, mice were treated with 4% DSS in drinking water for 1 week. Three months after DSS treatment, colon samples were collected for histopathology and β-catenin immunohistochemistry analyses. All CMNCs in combination with DSS induced colonic adenocarcinomas at a high incidence/multiplicity in the distal and middle parts of the colon, coinciding with the location of colitis. Unlike in normal cells where β-catenin is exclusively located on the cell membrane, in adenocarcinoma cells, it was translocated to both the nucleus and cytoplasm or only to cytoplasm. The translocation of β-catenin is closely associated with colon carcinogenesis in rodents and humans. No colonic tumors or dysplastic lesions were found after exposure to either CMNC or DSS alone. CONCLUSION We provided further evidence clearly showing that CMNCs can rapidly induce colonic tumors in mice with DSS-induced colitis, even if they are not colonic carcinogens.
Collapse
Affiliation(s)
- Atsushi Hakura
- Global Drug Safety, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba, Ibaraki, 300-2635, Japan.
| | - Naoki Koyama
- Global Drug Safety, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba, Ibaraki, 300-2635, Japan
| | - Yuki Seki
- Global Drug Safety, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba, Ibaraki, 300-2635, Japan
| | - Jiro Sonoda
- Global Drug Safety (present affiliation, Advanced Data Assurance), Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba, Ibaraki, 300-2635, Japan
| | - Shoji Asakura
- Global Drug Safety, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba, Ibaraki, 300-2635, Japan
| |
Collapse
|
3
|
Fujita M, Suzuki H, Fukai F. Involvement of integrin-activating peptides derived from tenascin-C in colon cancer progression. World J Gastrointest Oncol 2021; 13:980-994. [PMID: 34616507 PMCID: PMC8465449 DOI: 10.4251/wjgo.v13.i9.980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 06/03/2021] [Accepted: 08/11/2021] [Indexed: 02/06/2023] Open
Abstract
Tenascin-C (TNC) is an adhesion modulatory protein present in the extracellular matrix that is highly expressed in several malignancies, including colon cancer. Although TNC is considered a negative prognostic factor for cancer patients, the substantial role of the TNC molecule in colorectal carcinogenesis and its malignant progression is poorly understood. We previously found that TNC has a cryptic functional site and that a TNC peptide containing this site, termed TNIIIA2, can potently and persistently activate beta1-integrins. In contrast, the peptide FNIII14, which contains a cryptic bioactive site within the fibronectin molecule, can inactivate beta1-integrins. This review presents the role of TNC in the development of colitis-associated colorectal cancer and in the malignant progression of colon cancer, particularly the major involvement of its cryptic functional site TNIIIA2. We propose new possible prophylactic and therapeutic strategies based on inhibition of the TNIIIA2-induced beta1-integrin activation by peptide FNIII14.
Collapse
Affiliation(s)
- Motomichi Fujita
- Department of Molecular Patho-Physiology, Tokyo University of Science, Noda 278-8510, Chiba, Japan
| | - Hideo Suzuki
- Department of Gastroenterology, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan
| | - Fumio Fukai
- Department of Molecular Patho-Physiology, Tokyo University of Science, Noda 278-8510, Chiba, Japan
| |
Collapse
|
4
|
Pu Z, Yang F, Wang L, Diao Y, Chen D. Advancements of compounds targeting Wnt and Notch signalling pathways in the treatment of inflammatory bowel disease and colon cancer. J Drug Target 2020; 29:507-519. [PMID: 33307848 DOI: 10.1080/1061186x.2020.1864741] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The Wnt and Notch signalling pathways are important for maintenance of intestinal epithelial barrier integrity by intestinal stem cells (ISCs). Dysfunction of these pathways is implicated in inflammatory bowel disease (IBD) and colon cancer. The objective of this review is to summarise advancements of drugs that regulate Wnt and Notch in the treatment of IBD and colon cancer. The compositions and biological effects of Wnt and Notch modulators in both ISCs and non-ISCs are discussed. The drugs, including phytochemicals, plant extracts, probiotics and synthetic compounds, have been found to regulate Wnt and Notch signalling pathways by targeting regulatory factors (including secreted frizzled-related proteins or pathway proteins such as β-catenin and γ-secretase) to alleviate IBD and colon cancer. This review highlights the potential for targeting Wnt and Notch pathways to treat IBD and colon cancer.
Collapse
Affiliation(s)
- Zhuonan Pu
- Comparative Medicine Department of Researching and Teaching, Dalian Medical University, Dalian, Liaoning, China
| | - Fang Yang
- Comparative Medicine Department of Researching and Teaching, Dalian Medical University, Dalian, Liaoning, China
| | - Liang Wang
- Comparative Medicine Department of Researching and Teaching, Dalian Medical University, Dalian, Liaoning, China
| | - Yunpeng Diao
- Colleage of Pharmacy, Dalian Medical University, Dalian, Liaoning, China
| | - Dapeng Chen
- Comparative Medicine Department of Researching and Teaching, Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
5
|
Tikka C, Manthari RK, Ommati MM, Niu R, Sun Z, Zhang J, Wang J. Immune disruption occurs through altered gut microbiome and NOD2 in arsenic induced mice: Correlation with colon cancer markers. CHEMOSPHERE 2020; 246:125791. [PMID: 31927375 DOI: 10.1016/j.chemosphere.2019.125791] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/27/2019] [Accepted: 12/29/2019] [Indexed: 06/10/2023]
Abstract
The gut microbial compositions are easily affected by the environmental chemicals like arsenic (As) leading to dysbiosis. The dysbiosis of gut microbiome has associated with numerous diseases; among which cancer is one of the major diseases. The meticulous mechanism underlying As- altered gut microbiome, Nucleotide domine containing protein 2 (NOD2) and how altered gut microbiome disturbs the intestinal homeostasis to regulate colon cancer markers remains unclear. For this, one hundred twenty 8-week old age male mice were divided into two exposure periods (3 and 6 months), and each exposure group animals were further divided into four groups as control (received only distilled H2O), low (0.15 mg As2O3/L), medium (1.5 mg As2O3/L) and high (15 mg As2O3/L) dose (each group containing 15 mice) administrated for 3 and 6 months. The results showed that As exposure highly altered gut microbiome with a significant depletion in NOD2 in contrast to control groups. Moreover, the dendritic cells (CD11a, CD103, CX3CR1) and macrophages (F4/80) were significantly increased by As exposure. Interestingly, increased trend of inflammatory cytokines (TNF-α, IFN-γ, IL-17) and depleted anti-inflammatory cytokines (IL-10) was observed in As exposed mice. Furthermore, the colon cancer markers β-catenin has increased while APC was arrested by As both in 3 and 6 months treated animals. Many studies reported that As altered gut microbial compositions, in this study, our results suggested that altered gut microbiome indirectly regulates colon cancer marker through immune system destruction mediated by inflammatory cytokines.
Collapse
Affiliation(s)
- Chiranjeevi Tikka
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Ram Kumar Manthari
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Mohammad Mehdi Ommati
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China; Department of Life Science, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Ruiyan Niu
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Zilong Sun
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Jianhai Zhang
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Jundong Wang
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China.
| |
Collapse
|
6
|
Li Y, Li X, Qu J, Luo D, Hu Z. Cas9 Mediated Correction of β-catenin Mutation and Restoring the Expression of Protein Phosphorylation in Colon Cancer HCT-116 Cells Decrease Cell Proliferation in vitro and Hamper Tumor Growth in Mice in vivo. Onco Targets Ther 2020; 13:17-29. [PMID: 32021251 PMCID: PMC6954092 DOI: 10.2147/ott.s225556] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 12/17/2019] [Indexed: 12/14/2022] Open
Abstract
Purpose Colorectal cancer (CRC) is one of the major contributors to cancer mortality and morbidity. Finding strategies to fight against CRC is urgently required. Mutations in driver genes of APC or β-catenin play an important role in the occurrence and progression of CRC. In the present study, we jointly apply CRISPR/Cas9-sgRNA system and Single-stranded oligodeoxynucleotide (ssODN) as templates to correct a heterozygous ΔTCT deletion mutation of β-catenin present in a colon cancer cell line HCT-116. This method provides a potential strategy in gene therapy for cancer. Methods A Cas9/β-catenin-sgRNA-eGFP co-expression vector was constructed and co-transfected with ssODN into HCT-116 cells. Mutation-corrected single-cell clones were sorted by FACS and judged by TA cloning and DNA sequencing. Effects of CRISPR/Cas9-mediated correction were tested by real-time quantitative PCR, Western blotting, CCK8, EDU dyeing and cell-plated clones. Moreover, the growth of cell clones derived tumors was analyzed at nude mice xenografts. Results CRISPR/Cas9-mediated β-catenin mutation correction resulted in the presence of TCT sequence and the re-expression of phosphorylation β-catenin at Ser45, which restored the normal function of phosphorylation β-catenin including reduction of the transportation of nuclear β-catenin and the expression of downstream c-myc, survivin. Significantly reduced cell growth was observed in β-catenin mutation-corrected cells. Mice xenografted with mutation-corrected HCT-116 cells showed significantly smaller tumor size than uncorrected xenografts. Conclusion The data of this study documented that correction of the driven mutation by the combination of CRISPR/Cas9 and ssODN could greatly remedy the biological behavior of the cancer cell line, suggesting a potential application of this strategy in gene therapy of cancer.
Collapse
Affiliation(s)
- Yanlan Li
- Translational Medicine Institute, the First People's Hospital of Chenzhou Affiliated to University of South China, Hunan 432000, People's Republic of China.,Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, University of South China, Hunan 421001, People's Republic of China
| | - Xiangning Li
- Translational Medicine Institute, the First People's Hospital of Chenzhou Affiliated to University of South China, Hunan 432000, People's Republic of China.,National & Local Joint Engineering Laboratory for High-Through Molecular Diagnosis Technology, The First People's Hospital of Chenzhou, Hunan 432000, People's Republic of China
| | - Jiayao Qu
- Translational Medicine Institute, the First People's Hospital of Chenzhou Affiliated to University of South China, Hunan 432000, People's Republic of China.,National & Local Joint Engineering Laboratory for High-Through Molecular Diagnosis Technology, The First People's Hospital of Chenzhou, Hunan 432000, People's Republic of China
| | - Dixian Luo
- Translational Medicine Institute, the First People's Hospital of Chenzhou Affiliated to University of South China, Hunan 432000, People's Republic of China.,National & Local Joint Engineering Laboratory for High-Through Molecular Diagnosis Technology, The First People's Hospital of Chenzhou, Hunan 432000, People's Republic of China
| | - Zheng Hu
- Translational Medicine Institute, the First People's Hospital of Chenzhou Affiliated to University of South China, Hunan 432000, People's Republic of China.,National & Local Joint Engineering Laboratory for High-Through Molecular Diagnosis Technology, The First People's Hospital of Chenzhou, Hunan 432000, People's Republic of China
| |
Collapse
|
7
|
Sperlich A, Balmert A, Doll D, Bauer S, Franke F, Keller G, Wilhelm D, Mur A, Respondek M, Friess H, Nitsche U, Janssen KP. Genetic and immunological biomarkers predict metastatic disease recurrence in stage III colon cancer. BMC Cancer 2018; 18:998. [PMID: 30340556 PMCID: PMC6194664 DOI: 10.1186/s12885-018-4940-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 10/11/2018] [Indexed: 02/08/2023] Open
Abstract
Background Even though the post-operative outcome varies greatly among patients with nodal positive colon cancer (UICC stage III), personalized prediction of systemic disease recurrence is currently insufficient. We investigated in a retrospective setting whether genetic and immunological biomarkers can be applied for stratification of distant metastasis occurrence risk. Methods Eighty four patients with complete resection (R0) of stage III colon cancer from two clinical centres were analysed for genetic biomarkers: microsatellite instability, oncogenic mutations in KRAS exon2 and BRAF exon15, expression of osteopontin and the metastasis-associated genes SASH1 and MACC1. Tumor-infiltrating CD3 and CD8 positive T-cells were quantified by immunocytochemistry. Results were correlated with outcome and response to 5-FU based adjuvant chemotherapy, using Cox’s proportional hazard models and integrative two-step cluster analysis. Results Distant metastasis risk was significantly correlated with oncogenic KRAS mutations (p = 0.015), expression of SASH1 (p = 0.016), and the density of CD8-positive T-cells (p = 0.007) in Kaplan-Meier analysis. Upon multivariate Cox-regression analysis, KRAS mutation (p = 0.008) and density of CD8-positive TILs (p = 0.009) were retained as prognostic parameters for metachronous distant metastasis. Integrative two-step cluster analysis was used to combine all genetic markers, allowing stratification of patient subgroups. Post-operative distant metastasis risk ranged from 31% (low-risk) to 41% (intermediate), and 57% (high-risk) (p = 0.032). Increased expression of osteopontin (p = 0.019) and low density of CD8-positive T-cells (p = 0.043) were significantly associated with unfavourable response to 5-FU. Conclusions Integrative biomarker analysis allows stratification of stage III colon cancer patients for the risk of metastatic disease recurrence and may indicate response to 5-FU. Thus, biomarker analysis might facilitate the use of adjuvant therapy for high risk patients. Electronic supplementary material The online version of this article (10.1186/s12885-018-4940-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Andreas Sperlich
- Department of Surgery, Klinikum rechts der Isar, TUM, Ismaninger Str. 22, 81675, Munich, Germany
| | - Alexander Balmert
- Department of Surgery, Klinikum rechts der Isar, TUM, Ismaninger Str. 22, 81675, Munich, Germany
| | - Dietrich Doll
- Department of Surgery, Klinikum rechts der Isar, TUM, Ismaninger Str. 22, 81675, Munich, Germany.,Darmzentrum Vechta, St. Marienhospital, Marienstraße 6-8, 49377, Vechta, Germany
| | - Sabine Bauer
- Department of Surgery, Klinikum rechts der Isar, TUM, Ismaninger Str. 22, 81675, Munich, Germany
| | - Fabian Franke
- Department of Surgery, Klinikum rechts der Isar, TUM, Ismaninger Str. 22, 81675, Munich, Germany
| | - Gisela Keller
- Institute of Pathology, Technical University of Munich, Trogerstr. 18, 81675, Munich, Germany
| | - Dirk Wilhelm
- Department of Surgery, Klinikum rechts der Isar, TUM, Ismaninger Str. 22, 81675, Munich, Germany
| | - Anna Mur
- Department of Surgery, Klinikum rechts der Isar, TUM, Ismaninger Str. 22, 81675, Munich, Germany
| | - Michael Respondek
- St. Marienhospital, Praxis für Pathologie Vechta, Marienstr. 11, 49377, Vechta, Germany
| | - Helmut Friess
- Department of Surgery, Klinikum rechts der Isar, TUM, Ismaninger Str. 22, 81675, Munich, Germany
| | - Ulrich Nitsche
- Department of Surgery, Klinikum rechts der Isar, TUM, Ismaninger Str. 22, 81675, Munich, Germany
| | - Klaus-Peter Janssen
- Department of Surgery, Klinikum rechts der Isar, TUM, Ismaninger Str. 22, 81675, Munich, Germany.
| |
Collapse
|
8
|
Garcia MA, Nelson WJ, Chavez N. Cell-Cell Junctions Organize Structural and Signaling Networks. Cold Spring Harb Perspect Biol 2018; 10:a029181. [PMID: 28600395 PMCID: PMC5773398 DOI: 10.1101/cshperspect.a029181] [Citation(s) in RCA: 273] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cell-cell junctions link cells to each other in tissues, and regulate tissue homeostasis in critical cell processes that include tissue barrier function, cell proliferation, and migration. Defects in cell-cell junctions give rise to a wide range of tissue abnormalities that disrupt homeostasis and are common in genetic abnormalities and cancers. Here, we discuss the organization and function of cell-cell junctions primarily involved in adhesion (tight junction, adherens junction, and desmosomes) in two different epithelial tissues: a simple epithelium (intestine) and a stratified epithelium (epidermis). Studies in these tissues reveal similarities and differences in the organization and functions of different cell-cell junctions that meet the requirements for the specialized functions of each tissue. We discuss cell-cell junction responses to genetic and environmental perturbations that provide further insights into their roles in maintaining tissue homeostasis.
Collapse
Affiliation(s)
- Miguel A Garcia
- Department of Biology, Stanford University, Stanford, California 94305
| | - W James Nelson
- Department of Biology, Stanford University, Stanford, California 94305
- Departments of Molecular and Cellular Physiology, Stanford University, Stanford, California 94305
| | - Natalie Chavez
- Department of Biology, Stanford University, Stanford, California 94305
| |
Collapse
|
9
|
Wang Z, Sun P, Gao C, Chen J, Li J, Chen Z, Xu M, Shao J, Zhang Y, Xie J. Down-regulation of LRP1B in colon cancer promoted the growth and migration of cancer cells. Exp Cell Res 2017; 357:1-8. [DOI: 10.1016/j.yexcr.2017.04.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 04/06/2017] [Accepted: 04/08/2017] [Indexed: 12/18/2022]
|
10
|
Shin YS, Kang SU, Park JK, Kim YE, Kim YS, Baek SJ, Lee SH, Kim CH. Anti-cancer effect of (-)-epigallocatechin-3-gallate (EGCG) in head and neck cancer through repression of transactivation and enhanced degradation of β-catenin. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2016; 23:1344-1355. [PMID: 27765354 DOI: 10.1016/j.phymed.2016.07.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Revised: 07/16/2016] [Accepted: 07/19/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND AND PURPOSE Aberrant expression of β-catenin is highly associated with progression of various cancers including head and neck cancer (HNC). Green tea is most commonly used beverage in the world and one of the more bioactive compounds is the antioxidant epigallocatechin gallate (EGCG). This study was performed to investigate the mechanism by which EGCG inhibits the growth of HNC, focusing on the modulation of the expression and activity of β-catenin. METHODS In vitro effects of EGCG on the transcription, translation, or degradation of β-catenin were investigated. Antitumor effects of EGCG in vivo were evaluated in a syngeneic mouse model and β-catenin expression was checked in HNC patients' samples. RESULTS β-catenin expression was elevated in tumor samples of HNC patients. EGCG induced apoptosis in KB and FaDu cells through the suppression of β-catenin signaling. Knockdown of β-catenin using siRNA enhanced the proapoptotic activities of EGCG. EGCG decreased mRNA and transcriptional activity of β-catenin in p53 wild-type KB cells. EGCG also enhanced the ubiquitination and proteasomal degradation of β-catenin. The suppression of β-catenin and consequent apoptosis were observed in response to EGCG treatment in a syngeneic mouse model. In conclusion, we report that EGCG inhibits β-catenin expression through multiple mechanisms including decreased transcription and increased ubiquitin-mediated 26S proteasomal degradation. CONCLUSION This study proposes a novel molecular rationale for antitumor activities of green tea in HNCs.
Collapse
Affiliation(s)
- Yoo Seob Shin
- Department of Otolaryngology, School of Medicine; Department of Molecular Science & Technology, Ajou University, Suwon, Korea
| | - Sung Un Kang
- Department of Otolaryngology, School of Medicine; Department of Molecular Science & Technology, Ajou University, Suwon, Korea
| | - Ju Kyeong Park
- Department of Otolaryngology, School of Medicine; Department of Molecular Science & Technology, Ajou University, Suwon, Korea
| | - Yang Eun Kim
- Department of Otolaryngology, School of Medicine; Department of Molecular Science & Technology, Ajou University, Suwon, Korea
| | - Yeon Soo Kim
- Department of Otolaryngology, School of Medicine
| | - Seung Joon Baek
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville
| | - Seong-Ho Lee
- Department of Nutrition and Food Science, College of Agriculture and Natural Resources, University of Maryland, College Park, USA
| | - Chul-Ho Kim
- Department of Otolaryngology, School of Medicine; Department of Molecular Science & Technology, Ajou University, Suwon, Korea.
| |
Collapse
|
11
|
Ertem FU, Zhang W, Chang K, Mohaiza Dashwood W, Rajendran P, Sun D, Abudayyeh A, Vilar E, Abdelrahim M, Dashwood RH. Oncogenic targets Mmp7, S100a9, Nppb and Aldh1a3 from transcriptome profiling of FAP and Pirc adenomas are downregulated in response to tumor suppression by Clotam. Int J Cancer 2016; 140:460-468. [PMID: 27706811 DOI: 10.1002/ijc.30458] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 09/08/2016] [Accepted: 09/26/2016] [Indexed: 12/11/2022]
Abstract
Intervention strategies in familial adenomatous polyposis (FAP) patients and other high-risk colorectal cancer (CRC) populations have highlighted a critical need for endoscopy combined with safe and effective preventive agents. We performed transcriptome profiling of colorectal adenomas from FAP patients and the polyposis in rat colon (Pirc) preclinical model, and prioritized molecular targets for prevention studies in vivo. At clinically relevant doses in the Pirc model, the drug Clotam (tolfenamic acid, TA) was highly effective at suppressing tumorigenesis both in the colon and in the small intestine, when administered alone or in combination with Sulindac. Cell proliferation in the colonic crypts was reduced significantly by TA, coincident with increased cleaved caspase-3 and decreased Survivin, β-catenin, cyclin D1 and matrix metalloproteinase 7. From the list of differentially expressed genes prioritized by transcriptome profiling, Mmp7, S100a9, Nppb and Aldh1a3 were defined as key oncogene candidates downregulated in colon tumors after TA treatment. Monthly colonoscopies revealed the rapid onset of tumor suppression by TA in the Pirc model, and the temporal changes in Mmp7, S100a9, Nppb and Aldh1a3, highlighting their value as potential early biomarkers for prevention in the clinical setting. We conclude that TA, an "old drug" repurposed from migraine, offers an exciting new therapeutic avenue in FAP and other high-risk CRC patient populations.
Collapse
Affiliation(s)
- Furkan U Ertem
- Center for Epigenetics & Disease Prevention, Texas A&M University Institute of Biosciences & Technology, Houston, TX.,University of Pittsburg Medical Center, Pittsburgh, Pennsylvania
| | - Wenqian Zhang
- Center for Epigenetics & Disease Prevention, Texas A&M University Institute of Biosciences & Technology, Houston, TX
| | - Kyle Chang
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Wan Mohaiza Dashwood
- Center for Epigenetics & Disease Prevention, Texas A&M University Institute of Biosciences & Technology, Houston, TX
| | - Praveen Rajendran
- Center for Epigenetics & Disease Prevention, Texas A&M University Institute of Biosciences & Technology, Houston, TX
| | - Deqiang Sun
- Center for Epigenetics & Disease Prevention, Texas A&M University Institute of Biosciences & Technology, Houston, TX
| | - Ala Abudayyeh
- Center for Epigenetics & Disease Prevention, Texas A&M University Institute of Biosciences & Technology, Houston, TX.,Department of General Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Eduardo Vilar
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Maen Abdelrahim
- Center for Epigenetics & Disease Prevention, Texas A&M University Institute of Biosciences & Technology, Houston, TX.,Division of Medical Oncology, Duke University Medical Center, Durham, NC
| | - Roderick H Dashwood
- Center for Epigenetics & Disease Prevention, Texas A&M University Institute of Biosciences & Technology, Houston, TX.,Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX.,Department of Nutrition and Food Science, Texas A&M University, College Station, TX.,Department of Molecular and Cellular Medicine, Texas A&M College of Medicine, College Station, TX
| |
Collapse
|