1
|
Huang S, Li J, Li Q, Wang Q, Zhou X, Chen J, Chen X, Bellou A, Zhuang J, Lei L. Cardiomyopathy: pathogenesis and therapeutic interventions. MedComm (Beijing) 2024; 5:e772. [PMID: 39465141 PMCID: PMC11502724 DOI: 10.1002/mco2.772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 10/29/2024] Open
Abstract
Cardiomyopathy is a group of disease characterized by structural and functional damage to the myocardium. The etiologies of cardiomyopathies are diverse, spanning from genetic mutations impacting fundamental myocardial functions to systemic disorders that result in widespread cardiac damage. Many specific gene mutations cause primary cardiomyopathy. Environmental factors and metabolic disorders may also lead to the occurrence of cardiomyopathy. This review provides an in-depth analysis of the current understanding of the pathogenesis of various cardiomyopathies, highlighting the molecular and cellular mechanisms that contribute to their development and progression. The current therapeutic interventions for cardiomyopathies range from pharmacological interventions to mechanical support and heart transplantation. Gene therapy and cell therapy, propelled by ongoing advancements in overarching strategies and methodologies, has also emerged as a pivotal clinical intervention for a variety of diseases. The increasing number of causal gene of cardiomyopathies have been identified in recent studies. Therefore, gene therapy targeting causal genes holds promise in offering therapeutic advantages to individuals diagnosed with cardiomyopathies. Acting as a more precise approach to gene therapy, they are gradually emerging as a substitute for traditional gene therapy. This article reviews pathogenesis and therapeutic interventions for different cardiomyopathies.
Collapse
Affiliation(s)
- Shitong Huang
- Department of Cardiac Surgical Intensive Care UnitGuangdong Cardiovascular InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
| | - Jiaxin Li
- Department of Cardiac Surgical Intensive Care UnitGuangdong Cardiovascular InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
| | - Qiuying Li
- Department of Cardiac Surgical Intensive Care UnitGuangdong Cardiovascular InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
| | - Qiuyu Wang
- Department of Cardiac Surgical Intensive Care UnitGuangdong Cardiovascular InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
| | - Xianwu Zhou
- Department of Cardiovascular SurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Jimei Chen
- Department of Cardiovascular SurgeryGuangdong Cardiovascular InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
- Department of Cardiovascular SurgeryGuangdong Provincial Key Laboratory of South China Structural Heart DiseaseGuangzhouChina
| | - Xuanhui Chen
- Department of Medical Big Data CenterGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
| | - Abdelouahab Bellou
- Department of Emergency Medicine, Institute of Sciences in Emergency MedicineGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
- Department of Emergency MedicineWayne State University School of MedicineDetroitMichiganUSA
| | - Jian Zhuang
- Department of Cardiovascular SurgeryGuangdong Cardiovascular InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
- Department of Cardiovascular SurgeryGuangdong Provincial Key Laboratory of South China Structural Heart DiseaseGuangzhouChina
| | - Liming Lei
- Department of Cardiac Surgical Intensive Care UnitGuangdong Cardiovascular InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
- Department of Cardiovascular SurgeryGuangdong Provincial Key Laboratory of South China Structural Heart DiseaseGuangzhouChina
| |
Collapse
|
2
|
Delaney R, O'Halloran KD. Respiratory performance in Duchenne muscular dystrophy: Clinical manifestations and lessons from animal models. Exp Physiol 2024; 109:1426-1445. [PMID: 39023735 PMCID: PMC11363095 DOI: 10.1113/ep091967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/17/2024] [Indexed: 07/20/2024]
Abstract
Duchenne muscular dystrophy (DMD) is a fatal genetic neuromuscular disease. Lack of dystrophin in skeletal muscles leads to intrinsic weakness, injury, subsequent degeneration and fibrosis, decreasing contractile function. Dystropathology eventually presents in all inspiratory and expiratory muscles of breathing, severely curtailing their critical function. In people with DMD, premature death is caused by respiratory or cardiac failure. There is an urgent need to develop therapies that improve quality of life and extend life expectancy in DMD. Surprisingly, there is a dearth of information on respiratory control in animal models of DMD, and respiratory outcome measures are often limited or absent in clinical trials. Characterization of respiratory performance in murine and canine models has revealed extensive remodelling of the diaphragm, the major muscle of inspiration. However, significant compensation by extradiaphragmatic muscles of breathing is evident in early disease, contributing to preservation of peak respiratory system performance. Loss of compensation afforded by accessory muscles in advanced disease is ultimately associated with compromised respiratory performance. A new and potentially more translatable murine model of DMD, the D2.mdx mouse, has recently been developed. Respiratory performance in D2.mdx mice is yet to be characterized fully. However, based on histopathological features, D2.mdx mice might serve as useful preclinical models, facilitating the testing of new therapeutics that rescue respiratory function. This review summarizes the pathophysiological mechanisms associated with DMD both in humans and in animal models, with a focus on breathing. We consider the translational value of each model to human DMD and highlight the urgent need for comprehensive characterization of breathing in representative preclinical models to better inform human trials.
Collapse
|
3
|
Gandhi S, Sweeney HL, Hart CC, Han R, Perry CGR. Cardiomyopathy in Duchenne Muscular Dystrophy and the Potential for Mitochondrial Therapeutics to Improve Treatment Response. Cells 2024; 13:1168. [PMID: 39056750 PMCID: PMC11274633 DOI: 10.3390/cells13141168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 07/05/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024] Open
Abstract
Duchenne muscular dystrophy (DMD) is a progressive neuromuscular disease caused by mutations to the dystrophin gene, resulting in deficiency of dystrophin protein, loss of myofiber integrity in skeletal and cardiac muscle, and eventual cell death and replacement with fibrotic tissue. Pathologic cardiac manifestations occur in nearly every DMD patient, with the development of cardiomyopathy-the leading cause of death-inevitable by adulthood. As early cardiac abnormalities are difficult to detect, timely diagnosis and appropriate treatment modalities remain a challenge. There is no cure for DMD; treatment is aimed at delaying disease progression and alleviating symptoms. A comprehensive understanding of the pathophysiological mechanisms is crucial to the development of targeted treatments. While established hypotheses of underlying mechanisms include sarcolemmal weakening, upregulation of pro-inflammatory cytokines, and perturbed ion homeostasis, mitochondrial dysfunction is thought to be a potential key contributor. Several experimental compounds targeting the skeletal muscle pathology of DMD are in development, but the effects of such agents on cardiac function remain unclear. The synergistic integration of small molecule- and gene-target-based drugs with metabolic-, immune-, or ion balance-enhancing compounds into a combinatorial therapy offers potential for treating dystrophin deficiency-induced cardiomyopathy, making it crucial to understand the underlying mechanisms driving the disorder.
Collapse
Affiliation(s)
- Shivam Gandhi
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, ON M3J 1P3, Canada
| | - H. Lee Sweeney
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL 32610, USA; (H.L.S.); (C.C.H.)
- Myology Institute, University of Florida, Gainesville, FL 32610, USA
| | - Cora C. Hart
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL 32610, USA; (H.L.S.); (C.C.H.)
- Myology Institute, University of Florida, Gainesville, FL 32610, USA
| | - Renzhi Han
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Christopher G. R. Perry
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, ON M3J 1P3, Canada
| |
Collapse
|
4
|
Swiderski K, Chan AS, Herold MJ, Kueh AJ, Chung JD, Hardee JP, Trieu J, Chee A, Naim T, Gregorevic P, Lynch GS. The BALB/c.mdx62 mouse exhibits a dystrophic muscle pathology and is a model of Duchenne muscular dystrophy. Dis Model Mech 2024; 17:dmm050502. [PMID: 38602028 PMCID: PMC11095634 DOI: 10.1242/dmm.050502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 03/28/2024] [Indexed: 04/12/2024] Open
Abstract
Duchenne muscular dystrophy (DMD) is a devastating monogenic skeletal muscle-wasting disorder. Although many pharmacological and genetic interventions have been reported in preclinical studies, few have progressed to clinical trials with meaningful benefit. Identifying therapeutic potential can be limited by availability of suitable preclinical mouse models. More rigorous testing across models with varied background strains and mutations can identify treatments for clinical success. Here, we report the generation of a DMD mouse model with a CRISPR-induced deletion within exon 62 of the dystrophin gene (Dmd) and the first generated in BALB/c mice. Analysis of mice at 3, 6 and 12 months of age confirmed loss of expression of the dystrophin protein isoform Dp427 and resultant dystrophic pathology in limb muscles and the diaphragm, with evidence of centrally nucleated fibers, increased inflammatory markers and fibrosis, progressive decline in muscle function, and compromised trabecular bone development. The BALB/c.mdx62 mouse is a novel model of DMD with associated variations in the immune response and muscle phenotype, compared with those of existing models. It represents an important addition to the preclinical model toolbox for developing therapeutic strategies.
Collapse
Affiliation(s)
- Kristy Swiderski
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Audrey S. Chan
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Marco J. Herold
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC 3052, Australia
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia
- School of Cancer Medicine, La Trobe University, Heidelberg, VIC 3084, Australia
| | - Andrew J. Kueh
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC 3052, Australia
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia
- School of Cancer Medicine, La Trobe University, Heidelberg, VIC 3084, Australia
| | - Jin D. Chung
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Justin P. Hardee
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Jennifer Trieu
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Annabel Chee
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Timur Naim
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Paul Gregorevic
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Gordon S. Lynch
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC 3010, Australia
| |
Collapse
|
5
|
Steiman S, Miyake T, McDermott JC. FoxP1 Represses MEF2A in Striated Muscle. Mol Cell Biol 2024; 44:57-71. [PMID: 38483114 PMCID: PMC10950271 DOI: 10.1080/10985549.2024.2323959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/23/2024] [Indexed: 03/19/2024] Open
Abstract
Myocyte enhancer factor 2 (MEF2) proteins are involved in multiple developmental, physiological, and pathological processes in vertebrates. Protein-protein interactions underlie the plethora of biological processes impacted by MEF2A, necessitating a detailed characterization of the MEF2A interactome. A nanobody based affinity-purification/mass spectrometry strategy was employed to achieve this goal. Specifically, the MEF2A protein complexes were captured from myogenic lysates using a GFP-tagged MEF2A protein immobilized with a GBP-nanobody followed by LC-MS/MS proteomic analysis to identify MEF2A interactors. After bioinformatic analysis, we further characterized the interaction of MEF2A with a transcriptional repressor, FOXP1. FOXP1 coprecipitated with MEF2A in proliferating myogenic cells which diminished upon differentiation (myotube formation). Ectopic expression of FOXP1 inhibited MEF2A driven myogenic reporter genes (derived from the creatine kinase muscle and myogenin genes) and delayed induction of endogenous myogenin during differentiation. Conversely, FOXP1 depletion enhanced MEF2A transactivation properties and myogenin expression. The FoxP1:MEF2A interaction is also preserved in cardiomyocytes and FoxP1 depletion enhanced cardiomyocyte hypertrophy. FOXP1 prevented MEF2A phosphorylation and activation by the p38MAPK pathway. Overall, these data implicate FOXP1 in restricting MEF2A function in order to avoid premature differentiation in myogenic progenitors and also to possibly prevent re-activation of embryonic gene expression in cardiomyocyte hypertrophy.
Collapse
Affiliation(s)
- Sydney Steiman
- Department of Biology, York University, Toronto, ON, Canada
- Muscle Health Research Centre (MHRC), York University, Toronto, ON, Canada
- Centre for Research in Biomolecular Interactions (CRBI), York University, Toronto, ON, Canada
| | - Tetsuaki Miyake
- Department of Biology, York University, Toronto, ON, Canada
- Muscle Health Research Centre (MHRC), York University, Toronto, ON, Canada
- Centre for Research in Biomolecular Interactions (CRBI), York University, Toronto, ON, Canada
| | - John C. McDermott
- Department of Biology, York University, Toronto, ON, Canada
- Muscle Health Research Centre (MHRC), York University, Toronto, ON, Canada
- Centre for Research in Biomolecular Interactions (CRBI), York University, Toronto, ON, Canada
| |
Collapse
|
6
|
Rok M, Wong TWY, Maino E, Ahmed A, Yang G, Hyatt E, Lindsay K, Fatehi S, Marks R, Delgado-Olguín P, Ivakine EA, Cohn RD. Prevention of early-onset cardiomyopathy in Dmd exon 52-54 deletion mice by CRISPR-Cas9-mediated exon skipping. Mol Ther Methods Clin Dev 2023; 30:246-258. [PMID: 37545481 PMCID: PMC10403712 DOI: 10.1016/j.omtm.2023.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/12/2023] [Indexed: 08/08/2023]
Abstract
Duchenne muscular dystrophy (DMD) is a disease with a life-threatening trajectory resulting from mutations in the dystrophin gene, leading to degeneration of skeletal muscle and fibrosis of cardiac muscle. The overwhelming majority of mutations are multiexonic deletions. We previously established a dystrophic mouse model with deletion of exons 52-54 in Dmd that develops an early-onset cardiac phenotype similar to DMD patients. Here we employed CRISPR-Cas9 delivered intravenously by adeno-associated virus (AAV) vectors to restore functional dystrophin expression via excision or skipping of exon 55. Exon skipping with a solitary guide significantly improved editing outcomes and dystrophin recovery over dual guide excision. Some improvements to genomic and transcript editing levels were observed when the guide dose was enhanced, but dystrophin restoration did not improve considerably. Editing and dystrophin recovery were restricted primarily to cardiac tissue. Remarkably, our exon skipping approach completely prevented onset of the cardiac phenotype in treated mice up to 12 weeks. Thus, our results demonstrate that intravenous delivery of a single-cut CRISPR-Cas9-mediated exon skipping therapy can prevent heart dysfunction in DMD in vivo.
Collapse
Affiliation(s)
- Matthew Rok
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Tatianna Wai Ying Wong
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Eleonora Maino
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Abdalla Ahmed
- Department of Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Grace Yang
- Department of Biochemistry & Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Elzbieta Hyatt
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, ON, Canada
| | - Kyle Lindsay
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, ON, Canada
| | - Sina Fatehi
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Ryan Marks
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Paul Delgado-Olguín
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Department of Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
- Heart & Stroke Richard Lewar Centre of Excellence, Toronto, ON, Canada
| | - Evgueni A. Ivakine
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Ronald D. Cohn
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Department of Pediatrics, The Hospital for Sick Children, Toronto, ON, Canada
| |
Collapse
|
7
|
Li J, Zhu W, Su G, Zhu F, Shuai X, Meng Y, Zhang J, Chen H. Case report: A rare case of left ventricular noncompaction in two Chinese siblings with becker muscular dystrophy caused by deletion of exons 10 to 12 in the DMD gene. Front Cardiovasc Med 2023; 10:1243825. [PMID: 37781315 PMCID: PMC10538561 DOI: 10.3389/fcvm.2023.1243825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/31/2023] [Indexed: 10/03/2023] Open
Abstract
Background Becker muscular dystrophy (BMD) is an inherited X-linked recessive condition resulting from mutations of the DMD gene encoding dystrophin. Left ventricular noncompaction (LVNC) is a rare cardiomyopathy morphologically characterized by abnormal myocardial trabeculae and deep recesses in the left ventricle. LVNC in BMD patients has only rarely been reported. Case report In the present study, we identified a deletion mutation in exons 10 to 12 (EX10_12 del) of the DMD gene (reference sequence NM_004006.2) in two Chinese siblings with BMD and LVNC by high throughput targeted next-generation sequencing (NGS) and quantitative polymerase chain reaction (qPCR). The proband was a 22-year-old man admitted with dyspnea, abdominal distention, and polyserositis. It is noteworthy that both the proband and his younger brother manifested progressive muscular atrophy and creatine kinase (CK) elevation. Light and electron microscopy examination of muscle biopsies showed the typical features of dystrophinopathies. Cardiac magnetic resonance imaging and echocardiography demonstrated that both brothers had an enlarged left ventricle, LVNC, and reduced left ventricular ejection fraction. Finally, the proband underwent heart transplantation at age 26 with an event-free follow-up over 4 years post-transplantation. Conclusion This case further enriches our knowledge of the symptoms, genotype, cardiac performance, management, and prognosis of BMD patients complicated by LVNC. It is recommended that early comprehensive cardiac evaluation should be considered for patients with BMD to exclude LVNC, as this may have a significant impact on their prognosis.
Collapse
Affiliation(s)
- Jingdong Li
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wanyue Zhu
- Department of Emergency Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guanhua Su
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Zhu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinxin Shuai
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yidi Meng
- Department of Gerontology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiaming Zhang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Chen
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
8
|
Wilton-Clark H, Yokota T. CRISPR-Cas9-mediated exon skipping as a cardioprotective strategy in Duchenne muscular dystrophy. Mol Ther Methods Clin Dev 2023; 30:500-501. [PMID: 37693945 PMCID: PMC10491811 DOI: 10.1016/j.omtm.2023.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Affiliation(s)
- Harry Wilton-Clark
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
| | - Toshifumi Yokota
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
9
|
Tillotson R, Yan K, Ruston J, DeYoung T, Córdova A, Turcotte-Cardin V, Yee Y, Taylor C, Visuvanathan S, Babbs C, Ivakine EA, Sled JG, Nieman BJ, Picketts DJ, Justice MJ. A new mouse model of ATR-X syndrome carrying a common patient mutation exhibits neurological and morphological defects. Hum Mol Genet 2023; 32:2485-2501. [PMID: 37171606 PMCID: PMC10360390 DOI: 10.1093/hmg/ddad075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/18/2023] [Accepted: 05/05/2023] [Indexed: 05/13/2023] Open
Abstract
ATRX is a chromatin remodelling ATPase that is involved in transcriptional regulation, DNA damage repair and heterochromatin maintenance. It has been widely studied for its role in ALT-positive cancers, but its role in neurological function remains elusive. Hypomorphic mutations in the X-linked ATRX gene cause a rare form of intellectual disability combined with alpha-thalassemia called ATR-X syndrome in hemizygous males. Clinical features also include facial dysmorphism, microcephaly, short stature, musculoskeletal defects and genital abnormalities. As complete deletion of ATRX in mice results in early embryonic lethality, the field has largely relied on conditional knockout models to assess the role of ATRX in multiple tissues. Given that null alleles are not found in patients, a more patient-relevant model was needed. Here, we have produced and characterized the first patient mutation knock-in model of ATR-X syndrome, carrying the most common causative mutation, R246C. This is one of a cluster of missense mutations located in the chromatin-binding domain and disrupts its function. The knock-in mice recapitulate several aspects of the patient disorder, including craniofacial defects, microcephaly, reduced body size and impaired neurological function. They provide a powerful model for understanding the molecular mechanisms underlying ATR-X syndrome and testing potential therapeutic strategies.
Collapse
Affiliation(s)
- Rebekah Tillotson
- Genetics and Genome Biology Program, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, ON M5G 0A4, Canada
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital/Headley Way, Oxford OX3 9DS, UK
| | - Keqin Yan
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Julie Ruston
- Genetics and Genome Biology Program, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, ON M5G 0A4, Canada
| | - Taylor DeYoung
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, ON M5T 3H7, Canada
| | - Alex Córdova
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Valérie Turcotte-Cardin
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Cellular & Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Yohan Yee
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, ON M5T 3H7, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Christine Taylor
- Genetics and Genome Biology Program, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, ON M5G 0A4, Canada
| | - Shagana Visuvanathan
- Genetics and Genome Biology Program, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, ON M5G 0A4, Canada
| | - Christian Babbs
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital/Headley Way, Oxford OX3 9DS, UK
| | - Evgueni A Ivakine
- Genetics and Genome Biology Program, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, ON M5G 0A4, Canada
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - John G Sled
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, ON M5T 3H7, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
- Translational Medicine Program, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, ON M5G 0A4, Canada
| | - Brian J Nieman
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, ON M5T 3H7, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
- Translational Medicine Program, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, ON M5G 0A4, Canada
- Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada
| | - David J Picketts
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Cellular & Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Monica J Justice
- Genetics and Genome Biology Program, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, ON M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A1, Canada
| |
Collapse
|
10
|
Hernandez R, Shi J, Liu J, Li X, Wu J, Zhao L, Zhou T, Chen Q, Zhou C. PANDORA-Seq unveils the hidden small noncoding RNA landscape in atherosclerosis of LDL receptor-deficient mice. J Lipid Res 2023; 64:100352. [PMID: 36871792 PMCID: PMC10119612 DOI: 10.1016/j.jlr.2023.100352] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 02/08/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023] Open
Abstract
Small noncoding RNAs (sncRNAs) play diverse roles in numerous biological processes. While the widely used RNA sequencing (RNA-Seq) method has advanced sncRNA discovery, RNA modifications can interfere with the complementary DNA library construction process, preventing the discovery of highly modified sncRNAs including transfer RNA-derived small RNAs (tsRNAs) and ribosomal RNA-derived small RNAs (rsRNAs) that may have important functions in disease development. To address this technical obstacle, we recently developed a novel PANDORA-Seq (Panoramic RNA Display by Overcoming RNA Modification Aborted Sequencing) method to overcome RNA modification-elicited sequence interferences. To identify novel sncRNAs associated with atherosclerosis development, LDL receptor-deficient (LDLR-/-) mice were fed a low-cholesterol diet or high-cholesterol diet (HCD) for 9 weeks. Total RNAs isolated from the intima were subjected to PANDORA-Seq and traditional RNA-Seq. By overcoming RNA modification-elicited limitations, PANDORA-Seq unveiled an rsRNA/tsRNA-enriched sncRNA landscape in the atherosclerotic intima of LDLR-/- mice, which was strikingly different from that detected by traditional RNA-Seq. While microRNAs were the dominant sncRNAs detected by traditional RNA-Seq, PANDORA-Seq substantially increased the reads of rsRNAs and tsRNAs. PANDORA-Seq also detected 1,383 differentially expressed sncRNAs induced by HCD feeding, including 1,160 rsRNAs and 195 tsRNAs. One of HCD-induced intimal tsRNAs, tsRNA-Arg-CCG, may contribute to atherosclerosis development by regulating the proatherogenic gene expression in endothelial cells. Overall, PANDORA-Seq revealed a hidden rsRNA and tsRNA population associated with atherosclerosis development. These understudied tsRNAs and rsRNAs, which are much more abundant than microRNAs in the atherosclerotic intima of LDLR-/- mice, warrant further investigations.
Collapse
Affiliation(s)
- Rebecca Hernandez
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, USA
| | - Junchao Shi
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, USA
| | - Jingwei Liu
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, USA
| | - Xiuchun Li
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, USA
| | - Jake Wu
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, USA
| | - Linlin Zhao
- Department of Chemistry, University of California, Riverside, CA, USA
| | - Tong Zhou
- Department of Physiology and Cell Biology, Reno School of Medicine, University of Nevada, Reno, NV, USA
| | - Qi Chen
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, USA; Molecular Medicine Program, Division of Urology, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Changcheng Zhou
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, USA.
| |
Collapse
|
11
|
Chey YCJ, Arudkumar J, Aartsma-Rus A, Adikusuma F, Thomas PQ. CRISPR applications for Duchenne muscular dystrophy: From animal models to potential therapies. WIREs Mech Dis 2023; 15:e1580. [PMID: 35909075 PMCID: PMC10078488 DOI: 10.1002/wsbm.1580] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/28/2022] [Accepted: 06/30/2022] [Indexed: 01/31/2023]
Abstract
CRISPR gene-editing technology creates precise and permanent modifications to DNA. It has significantly advanced our ability to generate animal disease models for use in biomedical research and also has potential to revolutionize the treatment of genetic disorders. Duchenne muscular dystrophy (DMD) is a monogenic muscle-wasting disease that could potentially benefit from the development of CRISPR therapy. It is commonly associated with mutations that disrupt the reading frame of the DMD gene that encodes dystrophin, an essential scaffolding protein that stabilizes striated muscles and protects them from contractile-induced damage. CRISPR enables the rapid generation of various animal models harboring mutations that closely simulates the wide variety of mutations observed in DMD patients. These models provide a platform for the testing of sequence-specific interventions like CRISPR therapy that aim to reframe or skip DMD mutations to restore functional dystrophin expression. This article is categorized under: Congenital Diseases > Genetics/Genomics/Epigenetics.
Collapse
Affiliation(s)
- Yu C J Chey
- School of Biomedicine and Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia.,Genome Editing Program, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
| | - Jayshen Arudkumar
- School of Biomedicine and Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia.,Genome Editing Program, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
| | - Annemieke Aartsma-Rus
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Fatwa Adikusuma
- School of Biomedicine and Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia.,Genome Editing Program, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia.,CSIRO Synthetic Biology Future Science Platform, Canberra, Australia
| | - Paul Q Thomas
- School of Biomedicine and Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia.,Genome Editing Program, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia.,South Australian Genome Editing (SAGE), South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
| |
Collapse
|
12
|
CRISPR-Based Therapeutic Gene Editing for Duchenne Muscular Dystrophy: Advances, Challenges and Perspectives. Cells 2022; 11:cells11192964. [PMID: 36230926 PMCID: PMC9564082 DOI: 10.3390/cells11192964] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/06/2022] [Accepted: 09/09/2022] [Indexed: 11/19/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a severe neuromuscular disease arising from loss-of-function mutations in the dystrophin gene and characterized by progressive muscle degeneration, respiratory insufficiency, cardiac failure, and premature death by the age of thirty. Albeit DMD is one of the most common types of fatal genetic diseases, there is no curative treatment for this devastating disorder. In recent years, gene editing via the clustered regularly interspaced short palindromic repeats (CRISPR) system has paved a new path toward correcting pathological mutations at the genetic source, thus enabling the permanent restoration of dystrophin expression and function throughout the musculature. To date, the therapeutic benefits of CRISPR genome-editing systems have been successfully demonstrated in human cells, rodents, canines, and piglets with diverse DMD mutations. Nevertheless, there remain some nonignorable challenges to be solved before the clinical application of CRISPR-based gene therapy. Herein, we provide an overview of therapeutic CRISPR genome-editing systems, summarize recent advancements in their applications in DMD contexts, and discuss several potential obstacles lying ahead of clinical translation.
Collapse
|
13
|
Hooper K, Hmeljak J. Disease Models & Mechanisms helps move heart failure to heart success. Dis Model Mech 2022; 15:275488. [PMID: 35593431 PMCID: PMC9150112 DOI: 10.1242/dmm.049634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Heart failure affects ∼64 million people worldwide, resulting in high morbidity, mortality and societal cost. Current treatment strategies are primarily geared at slowing the progression to an advanced disease state, but do not reverse or cure heart failure. A more comprehensive understanding of the underlying biology and development of preclinical models of this heterogeneous group of disorders will improve diagnosis and treatment. Here, we summarise recent preclinical and translational research in this area published in Disease Models & Mechanisms. We also discuss how our Journal is propelling this field forward by launching a Special Issue and ongoing subject collection, ‘Moving Heart Failure to Heart Success: Mechanisms, Regeneration & Therapy’.
Collapse
Affiliation(s)
- Kirsty Hooper
- The Company of Biologists, Bidder Building, Station Road, Histon, Cambridge CB24 9LF, UK
| | - Julija Hmeljak
- The Company of Biologists, Bidder Building, Station Road, Histon, Cambridge CB24 9LF, UK
| |
Collapse
|
14
|
Shrestha S, McFadden MJ, Teng ACT, Chang PDM, Deng J, Wong TWY, Cohn RD, Ivakine EA, Gramolini AO, Santerre JP. Self-Assembled Oligo-Urethane Nanoparticles: Their Characterization and Use for the Delivery of Active Biomolecules into Mammalian Cells. ACS APPLIED MATERIALS & INTERFACES 2021; 13:58352-58368. [PMID: 34873903 DOI: 10.1021/acsami.1c17868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Developing safe and effective strategies to deliver biomolecules such as oligonucleotides and proteins into cells has grown in importance over recent years, with an increasing demand for non-viral methods that enable clinical translation. Here, we investigate uniquely configured oligo-urethane nanoparticles based on synthetic chemistries that minimize the release of pro-inflammatory biomarkers from immune cells, show low cytotoxicity in a broad range of cells, and efficiently deliver oligonucleotides and proteins into mammalian cells. The mechanism of cell uptake for the self-assembled oligo-urethane nanoparticles was shown to be directed by caveolae-dependent endocytosis in murine myoblasts (C2C12) cells. Inhibiting caveolae functions with genistein and methyl-β-cyclodextrin limited nanoparticle internalization. The nanoparticles showed a very high delivery efficiency for the genetic material (a 47-base oligonucleotide) (∼80% incorporation into cells) as well as the purified protein (full length firefly luciferase, 67 kDa) into human embryonic kidney (HEK293T) cells. Luciferase enzyme activity in HEK293T cells demonstrated that intact and functional proteins could be delivered and showed a significant extension of activity retention up to 24 h, well beyond the 2 h half-life of the free enzyme. This study introduces a novel self-assembled oligo-urethane nanoparticle delivery platform with very low associated production costs, enabled by their scalable chemistry (the benchwork cost is $ 0.152/mg vs $ 974.6/mg for typical lipid carriers) that has potential to deliver both oligonucleotides and proteins for biomedical purposes.
Collapse
Affiliation(s)
- Suja Shrestha
- Faculty of Dentistry, University of Toronto, Toronto M5G 1G6, Ontario, Canada
- Translational Biology and Engineering Program and Ted Rogers Centre for Heart Research, Toronto M5G 1M1, Ontario, Canada
| | - Meghan J McFadden
- Translational Biology and Engineering Program and Ted Rogers Centre for Heart Research, Toronto M5G 1M1, Ontario, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto M5S 3G9, Ontario, Canada
| | - Allen C T Teng
- Translational Biology and Engineering Program and Ted Rogers Centre for Heart Research, Toronto M5G 1M1, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto M5S 1A8, Ontario, Canada
| | - Patrick Dong Min Chang
- Translational Biology and Engineering Program and Ted Rogers Centre for Heart Research, Toronto M5G 1M1, Ontario, Canada
- Department of Chemical Engineering & Applied Chemistry, Faculty of Engineering, University of Toronto, Toronto M5S 3E5, Canada
| | - Joyce Deng
- Translational Biology and Engineering Program and Ted Rogers Centre for Heart Research, Toronto M5G 1M1, Ontario, Canada
| | - Tatianna W Y Wong
- Genetics & Genome Biology Program, The Hospital for Sick Children, Toronto M5G 0A4, Ontario, Canada
| | - Ronald D Cohn
- Department of Molecular & Medical Genetics and Paediatrics, Faculty of Medicine, University of Toronto, Toronto M5S 1A8, Ontario, Canada
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto M5G 0A4, Ontario, Canada
| | - Evgueni A Ivakine
- Department of Physiology, University of Toronto, Toronto M5S 1A8, Ontario, Canada
- Genetics & Genome Biology Program, The Hospital for Sick Children, Toronto M5G 0A4, Ontario, Canada
| | - Anthony O Gramolini
- Translational Biology and Engineering Program and Ted Rogers Centre for Heart Research, Toronto M5G 1M1, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto M5S 1A8, Ontario, Canada
| | - J Paul Santerre
- Faculty of Dentistry, University of Toronto, Toronto M5G 1G6, Ontario, Canada
- Translational Biology and Engineering Program and Ted Rogers Centre for Heart Research, Toronto M5G 1M1, Ontario, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto M5S 3G9, Ontario, Canada
| |
Collapse
|
15
|
A Dystrophin Exon-52 Deleted Miniature Pig Model of Duchenne Muscular Dystrophy and Evaluation of Exon Skipping. Int J Mol Sci 2021; 22:ijms222313065. [PMID: 34884867 PMCID: PMC8657897 DOI: 10.3390/ijms222313065] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 12/12/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a lethal X-linked recessive disorder caused by mutations in the DMD gene and the subsequent lack of dystrophin protein. Recently, phosphorodiamidate morpholino oligomer (PMO)-antisense oligonucleotides (ASOs) targeting exon 51 or 53 to reestablish the DMD reading frame have received regulatory approval as commercially available drugs. However, their applicability and efficacy remain limited to particular patients. Large animal models and exon skipping evaluation are essential to facilitate ASO development together with a deeper understanding of dystrophinopathies. Using recombinant adeno-associated virus-mediated gene targeting and somatic cell nuclear transfer, we generated a Yucatan miniature pig model of DMD with an exon 52 deletion mutation equivalent to one of the most common mutations seen in patients. Exon 52-deleted mRNA expression and dystrophin deficiency were confirmed in the skeletal and cardiac muscles of DMD pigs. Accordingly, dystrophin-associated proteins failed to be recruited to the sarcolemma. The DMD pigs manifested early disease onset with severe bodywide skeletal muscle degeneration and with poor growth accompanied by a physical abnormality, but with no obvious cardiac phenotype. We also demonstrated that in primary DMD pig skeletal muscle cells, the genetically engineered exon-52 deleted pig DMD gene enables the evaluation of exon 51 or 53 skipping with PMO and its advanced technology, peptide-conjugated PMO. The results show that the DMD pigs developed here can be an appropriate large animal model for evaluating in vivo exon skipping efficacy.
Collapse
|
16
|
Atmanli A, Chai AC, Cui M, Wang Z, Nishiyama T, Bassel-Duby R, Olson EN. Cardiac Myoediting Attenuates Cardiac Abnormalities in Human and Mouse Models of Duchenne Muscular Dystrophy. Circ Res 2021; 129:602-616. [PMID: 34372664 PMCID: PMC8416801 DOI: 10.1161/circresaha.121.319579] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Ayhan Atmanli
- Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Andreas C. Chai
- Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Miao Cui
- Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Zhaoning Wang
- Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Takahiko Nishiyama
- Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Rhonda Bassel-Duby
- Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Eric N. Olson
- Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
17
|
Hooper KM, Justice MJ, Patton EE. Developmental disorders Journal Meeting: a collaboration between Development and Disease Models & Mechanisms. Dis Model Mech 2021; 14:272141. [PMID: 34515289 DOI: 10.1242/dmm.049268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Kirsty M Hooper
- The Company of Biologists, Station Road, Histon, Cambridge CB24 9LF, UK
| | - Monica J Justice
- Program in Genetics and Genome Biology, The Hospital for Sick Children, and Department of Molecular Genetics, The University of Toronto, Toronto, Ontario M5G 0A4, Canada
| | - E Elizabeth Patton
- MRC Human Genetics Unit and Cancer Research UK Edinburgh Centre, MRC Institute of Genetics and Cancer, The University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh EH4 2XU, UK
| |
Collapse
|
18
|
Animal models for researching approaches to therapy of Duchenne muscular dystrophy. Transgenic Res 2021; 30:709-725. [PMID: 34409525 DOI: 10.1007/s11248-021-00278-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 08/11/2021] [Indexed: 01/17/2023]
Abstract
Duchenne muscular dystrophy (DMD) is a relatively widespread genetic disease which develops as a result of a mutation in the gene DMD encoding dystrophin. In this review, animal models of DMD are described. These models are used in preclinical studies to elucidate the pathogenesis of the disease or to develop effective treatments; each animal model has its own advantages and disadvantages. For instance, Caenorhabditis elegans, Drosophila melanogaster, and zebrafish (sapje) are suitable for large-scale chemical screening of large numbers of small molecules, but their disease phenotype differs from that of mammals. The use of larger animals is important for understanding of the potential efficacy of various treatments for DMD. While mdx mice have their advantages, they exhibit a milder disease phenotype compared to humans or dogs, making it difficult to evaluate the efficacy of new treatment for DMD. The disease in dogs and pigs is more severe and progresses faster than in mice, but it is more difficult to breed and obtain sufficient numbers of specimens in order to achieve statistically significant results. Moreover, working with large animals is also more labor-intensive. Therefore, when choosing the optimal animal model for research, it is worth considering all the goals and objectives.
Collapse
|
19
|
Maino E, Wojtal D, Evagelou SL, Farheen A, Wong TWY, Lindsay K, Scott O, Rizvi SZ, Hyatt E, Rok M, Visuvanathan S, Chiodo A, Schneeweiss M, Ivakine EA, Cohn RD. Targeted genome editing in vivo corrects a Dmd duplication restoring wild-type dystrophin expression. EMBO Mol Med 2021; 13:e13228. [PMID: 33724658 PMCID: PMC8103086 DOI: 10.15252/emmm.202013228] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 02/06/2021] [Accepted: 02/10/2021] [Indexed: 12/26/2022] Open
Abstract
Tandem duplication mutations are increasingly found to be the direct cause of many rare heritable diseases, accounting for up to 10% of cases. Unfortunately, animal models recapitulating such mutations are scarce, limiting our ability to study them and develop genome editing therapies. Here, we describe the generation of a novel duplication mouse model, harboring a multi-exonic tandem duplication in the Dmd gene which recapitulates a human mutation. Duplication correction of this mouse was achieved by implementing a single-guide RNA (sgRNA) CRISPR/Cas9 approach. This strategy precisely removed a duplication mutation in vivo, restored full-length dystrophin expression, and was accompanied by improvements in both histopathological and clinical phenotypes. We conclude that CRISPR/Cas9 represents a powerful tool to accurately model and treat tandem duplication mutations. Our findings will open new avenues of research for exploring the study and therapeutics of duplication disorders.
Collapse
Affiliation(s)
- Eleonora Maino
- Program in Genetics and Genome Biologythe Hospital for Sick Children Research InstituteTorontoONCanada
- Department of Molecular GeneticsUniversity of TorontoTorontoONCanada
| | - Daria Wojtal
- Program in Genetics and Genome Biologythe Hospital for Sick Children Research InstituteTorontoONCanada
- Department of Molecular GeneticsUniversity of TorontoTorontoONCanada
| | - Sonia L Evagelou
- Program in Genetics and Genome Biologythe Hospital for Sick Children Research InstituteTorontoONCanada
| | - Aiman Farheen
- Program in Genetics and Genome Biologythe Hospital for Sick Children Research InstituteTorontoONCanada
| | - Tatianna W Y Wong
- Program in Genetics and Genome Biologythe Hospital for Sick Children Research InstituteTorontoONCanada
- Department of Molecular GeneticsUniversity of TorontoTorontoONCanada
| | - Kyle Lindsay
- Program in Genetics and Genome Biologythe Hospital for Sick Children Research InstituteTorontoONCanada
| | - Ori Scott
- Program in Genetics and Genome Biologythe Hospital for Sick Children Research InstituteTorontoONCanada
- Institute of Medical ScienceUniversity of TorontoTorontoONCanada
- Department of Pediatricsthe Hospital for Sick ChildrenTorontoONCanada
| | - Samar Z Rizvi
- Program in Genetics and Genome Biologythe Hospital for Sick Children Research InstituteTorontoONCanada
- Department of Molecular GeneticsUniversity of TorontoTorontoONCanada
| | - Elzbieta Hyatt
- Program in Genetics and Genome Biologythe Hospital for Sick Children Research InstituteTorontoONCanada
| | - Matthew Rok
- Program in Genetics and Genome Biologythe Hospital for Sick Children Research InstituteTorontoONCanada
- Department of Molecular GeneticsUniversity of TorontoTorontoONCanada
| | - Shagana Visuvanathan
- Program in Genetics and Genome Biologythe Hospital for Sick Children Research InstituteTorontoONCanada
| | - Amanda Chiodo
- Program in Genetics and Genome Biologythe Hospital for Sick Children Research InstituteTorontoONCanada
| | - Michelle Schneeweiss
- Program in Genetics and Genome Biologythe Hospital for Sick Children Research InstituteTorontoONCanada
| | - Evgueni A Ivakine
- Program in Genetics and Genome Biologythe Hospital for Sick Children Research InstituteTorontoONCanada
- Department of PhysiologyUniversity of TorontoTorontoONCanada
| | - Ronald D Cohn
- Program in Genetics and Genome Biologythe Hospital for Sick Children Research InstituteTorontoONCanada
- Department of Molecular GeneticsUniversity of TorontoTorontoONCanada
- Institute of Medical ScienceUniversity of TorontoTorontoONCanada
- Department of Pediatricsthe Hospital for Sick ChildrenTorontoONCanada
| |
Collapse
|