1
|
Sun S, Liu Y, Sun J, Zan B, Cui Y, Jin A, Xu H, Huang X, Zhu Y, Yang Y, Gao X, Lu T, Wang X, Liu J, Mei L, Shen L, Dai Q, Jiang L. Osteopetrosis-like disorders induced by osteoblast-specific retinoic acid signaling inhibition in mice. Bone Res 2024; 12:61. [PMID: 39419968 PMCID: PMC11487257 DOI: 10.1038/s41413-024-00353-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 07/09/2024] [Accepted: 07/16/2024] [Indexed: 10/19/2024] Open
Abstract
Osteopetrosis is an inherited metabolic disease, characterized by increased bone density and narrow marrow cavity. Patients with severe osteopetrosis exhibit abnormal bone brittleness, anemia, and infection complications, which commonly cause death within the first decade of life. Pathologically, osteopetrosis impairs not only the skeletal system, but also the hemopoietic and immune systems during development, while the underlying osteoimmunological mechanisms remain unclear. Osteoclastic mutations are regarded as the major causes of osteopetrosis, while osteoclast non-autonomous theories have been proposed in recent years with unclear underlying mechanisms. Retinoic acid (RA), the metabolite of Vitamin A, is an essential requirement for skeletal and hematopoietic development, through the activation of retinoic acid signaling. RA can relieve osteopetrosis symptoms in some animal models, while its effect on bone health is still controversial and the underlying mechanisms remain unclear. In this study, we constructed an osteoblast-specific inhibitory retinoic acid signaling mouse model and surprisingly found it mimicked the symptoms of osteopetrosis found in clinical cases: dwarfism, increased imperfectly-formed trabecular bone deposition with a reduced marrow cavity, thin cortical bone with a brittle skeleton, and hematopoietic and immune dysfunction. Micro-CT, the three-point bending test, and histological analysis drew a landscape of poor bone quality. Single-cell RNA sequencing (scRNA-seq) of the femur and RNA-seq of osteoblasts uncovered an atlas of pathological skeletal metabolism dysfunction in the mutant mice showing that osteogenesis was impaired in a cell-autonomous manner and osteoclastogenesis was impaired via osteoblast-osteoclast crosstalk. Moreover, scRNA-seq of bone marrow and flow cytometry of peripheral blood, spleen, and bone marrow uncovered pathology in the hematopoietic and immune systems in the mutant mice, mimicking human osteopetrosis. Results showed that hematopoietic progenitors and B lymphocyte differentiation were affected and the osteoblast-dominated cell crosstalk was impaired, which may result from transcriptional impairment of the ligands Pdgfd and Sema4d. In summary, we uncovered previously unreported pathogenesis of osteopetrosis-like disorder in mice with skeletal, hematopoietic, and immune system dysfunction, which was induced by the inhibition of retinoic acid signaling in osteoblasts, and sheds new insights into a potential treatment for osteopetrosis.
Collapse
Affiliation(s)
- Siyuan Sun
- Center of Craniofacial Orthodontics, Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Disease; Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Yuanqi Liu
- Center of Craniofacial Orthodontics, Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Disease; Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Jiping Sun
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bingxin Zan
- The 2nd Dental Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiwen Cui
- Center of Craniofacial Orthodontics, Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Disease; Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Anting Jin
- Center of Craniofacial Orthodontics, Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Disease; Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Hongyuan Xu
- Center of Craniofacial Orthodontics, Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Disease; Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Xiangru Huang
- Center of Craniofacial Orthodontics, Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Disease; Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Yanfei Zhu
- Center of Craniofacial Orthodontics, Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Disease; Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Yiling Yang
- Center of Craniofacial Orthodontics, Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Disease; Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Xin Gao
- Center of Craniofacial Orthodontics, Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Disease; Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Tingwei Lu
- Center of Craniofacial Orthodontics, Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Disease; Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Xinyu Wang
- Center of Craniofacial Orthodontics, Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Disease; Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Jingyi Liu
- Center of Craniofacial Orthodontics, Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Disease; Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Li Mei
- Department of Oral Sciences, Faculty of Dentistry, University of Otago, Dunedin, 9016, New Zealand
| | - Lei Shen
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qinggang Dai
- The 2nd Dental Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Department of Stomatology, Zhang Zhiyuan Academician Work Station, Hainan Western Central Hospital, Shanghai Ninth People's Hospital, Danzhou, Hainan, China.
| | - Lingyong Jiang
- Center of Craniofacial Orthodontics, Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Disease; Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China.
| |
Collapse
|
2
|
Beckers G, Mazy D, Vendittoli PA, Morcos MW, Massé V. Challenges of Hip and Knee Arthroplasty in Patients With Osteopetrosis. J Am Acad Orthop Surg 2024; 32:938-945. [PMID: 39151178 PMCID: PMC11421562 DOI: 10.5435/jaaos-d-23-01208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 06/07/2024] [Accepted: 07/01/2024] [Indexed: 08/18/2024] Open
Abstract
Osteopetrosis is a rare metabolic bone disease, characterized by dysfunction of osteoclasts, resulting in increased bone density and brittleness leading to pathological fractures and bone deformities. Hip and knee osteoarthritis (OA) are common long-term complications in patients with osteopetrosis. Joint arthroplasty surgery remains an effective and recommended treatment for these patients with an end-stage OA because it provides favorable outcomes. However, in osteopetrosis, joint arthroplasty surgery carries an increased risk of complications, and specific preoperative and perioperative considerations are required to deal with the technical challenges related to the disease. The aim of this article was to review some of the key aspects of osteopetrosis, provide technical recommendations, and answer clinically relevant questions related to hip and knee arthroplasty surgery.
Collapse
Affiliation(s)
- Gautier Beckers
- From the Department of Surgery, Hospital Maisonneuve-Rosemont, Montreal University, Montreal, QC, Canada (Dr. Beckers, Dr. Vendittoli, Dr. Morcos, and Dr. Massé), the Department of Surgery, CHU Sainte-Justine, Montréal, Quebec, Canada (Mazy), the Clinique Orthopédique Duval, Laval, QC, Canada (Vendittoli and Massé), and the Personalized Arthroplasty Society, Atlanta, GA (Vendittoli)
| | - David Mazy
- From the Department of Surgery, Hospital Maisonneuve-Rosemont, Montreal University, Montreal, QC, Canada (Dr. Beckers, Dr. Vendittoli, Dr. Morcos, and Dr. Massé), the Department of Surgery, CHU Sainte-Justine, Montréal, Quebec, Canada (Mazy), the Clinique Orthopédique Duval, Laval, QC, Canada (Vendittoli and Massé), and the Personalized Arthroplasty Society, Atlanta, GA (Vendittoli)
| | - Pascal-André Vendittoli
- From the Department of Surgery, Hospital Maisonneuve-Rosemont, Montreal University, Montreal, QC, Canada (Dr. Beckers, Dr. Vendittoli, Dr. Morcos, and Dr. Massé), the Department of Surgery, CHU Sainte-Justine, Montréal, Quebec, Canada (Mazy), the Clinique Orthopédique Duval, Laval, QC, Canada (Vendittoli and Massé), and the Personalized Arthroplasty Society, Atlanta, GA (Vendittoli)
| | - Mina W. Morcos
- From the Department of Surgery, Hospital Maisonneuve-Rosemont, Montreal University, Montreal, QC, Canada (Dr. Beckers, Dr. Vendittoli, Dr. Morcos, and Dr. Massé), the Department of Surgery, CHU Sainte-Justine, Montréal, Quebec, Canada (Mazy), the Clinique Orthopédique Duval, Laval, QC, Canada (Vendittoli and Massé), and the Personalized Arthroplasty Society, Atlanta, GA (Vendittoli)
| | - Vincent Massé
- From the Department of Surgery, Hospital Maisonneuve-Rosemont, Montreal University, Montreal, QC, Canada (Dr. Beckers, Dr. Vendittoli, Dr. Morcos, and Dr. Massé), the Department of Surgery, CHU Sainte-Justine, Montréal, Quebec, Canada (Mazy), the Clinique Orthopédique Duval, Laval, QC, Canada (Vendittoli and Massé), and the Personalized Arthroplasty Society, Atlanta, GA (Vendittoli)
| |
Collapse
|
3
|
Penna S, Zecchillo A, Di Verniere M, Fontana E, Iannello V, Palagano E, Mantero S, Cappelleri A, Rizzoli E, Santi L, Crisafulli L, Filibian M, Forlino A, Basso-Ricci L, Scala S, Scanziani E, Schinke T, Ficara F, Sobacchi C, Villa A, Capo V. Correction of osteopetrosis in the neonate oc/oc murine model after lentiviral vector gene therapy and non-genotoxic conditioning. Front Endocrinol (Lausanne) 2024; 15:1450349. [PMID: 39314524 PMCID: PMC11416974 DOI: 10.3389/fendo.2024.1450349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/05/2024] [Indexed: 09/25/2024] Open
Abstract
Introduction Autosomal recessive osteopetrosis (ARO) is a rare genetic disease, characterized by increased bone density due to defective osteoclast function. Most of the cases are due to TCIRG1 gene mutation, leading to severe bone phenotype and death in the first years of life. The standard therapy is the hematopoietic stem cell transplantation (HSCT), but its success is limited by several constraints. Conversely, gene therapy (GT) could minimize the immune-mediated complications of allogeneic HSCT and offer a prompt treatment to these patients. Methods The Tcirg1-defective oc/oc mouse model displays a short lifespan and high bone density, closely mirroring the human condition. In this work, we exploited the oc/oc neonate mice to optimize the critical steps for a successful therapy. Results First, we showed that lentiviral vector GT can revert the osteopetrotic bone phenotype, allowing long-term survival and reducing extramedullary haematopoiesis. Then, we demonstrated that plerixafor-induced mobilization can further increase the high number of HSPCs circulating in peripheral blood, facilitating the collection of adequate numbers of cells for therapeutic purposes. Finally, pre-transplant non-genotoxic conditioning allowed the stable engraftment of HSPCs, albeit at lower level than conventional total body irradiation, and led to long-term survival and correction of bone phenotype, in the absence of acute toxicity. Conclusion These results will pave the way to the implementation of an effective GT protocol, reducing the transplant-related complication risks in the very young and severely affected ARO patients.
Collapse
Affiliation(s)
- Sara Penna
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessandra Zecchillo
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Translational and Molecular Medicine (DIMET), University of Milano Bicocca, Milan, Italy
| | - Martina Di Verniere
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elena Fontana
- Milan Unit, Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Milan, Italy
- Humanitas Research Hospital IRCCS, Rozzano, MI, Italy
| | - Valeria Iannello
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Eleonora Palagano
- Humanitas Research Hospital IRCCS, Rozzano, MI, Italy
- Florence Unit, Istituto di Bioscienze e Biorisorse, Consiglio Nazionale delle Ricerche, Sesto Fiorentino, Italy
| | - Stefano Mantero
- Milan Unit, Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Milan, Italy
- Humanitas Research Hospital IRCCS, Rozzano, MI, Italy
| | - Andrea Cappelleri
- Mouse and Animal Pathology Laboratory, UniMi Foundation, Milan, Italy
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Lodi, Italy
| | - Elena Rizzoli
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Ludovica Santi
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Laura Crisafulli
- Milan Unit, Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Milan, Italy
- Humanitas Research Hospital IRCCS, Rozzano, MI, Italy
| | - Marta Filibian
- Biomedical Imaging Laboratory, Centro Grandi Strumenti, University of Pavia, Pavia, Italy
| | - Antonella Forlino
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy
| | - Luca Basso-Ricci
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Serena Scala
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Eugenio Scanziani
- Mouse and Animal Pathology Laboratory, UniMi Foundation, Milan, Italy
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Lodi, Italy
| | - Thorsten Schinke
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Francesca Ficara
- Milan Unit, Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Milan, Italy
- Humanitas Research Hospital IRCCS, Rozzano, MI, Italy
| | - Cristina Sobacchi
- Milan Unit, Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Milan, Italy
- Humanitas Research Hospital IRCCS, Rozzano, MI, Italy
| | - Anna Villa
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Milan Unit, Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Milan, Italy
| | - Valentina Capo
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Milan Unit, Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Milan, Italy
| |
Collapse
|
4
|
Chiu KY, Lin YY, Liu YL, Lee NC, Tsai TH. Genetic testing confirmed osteopetrosis with initial presentation of nystagmus. Taiwan J Ophthalmol 2024; 14:437-440. [PMID: 39430360 PMCID: PMC11488795 DOI: 10.4103/tjo.tjo-d-22-00152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 02/19/2023] [Indexed: 10/22/2024] Open
Abstract
Osteopetrosis (OS) is a rare heritable disorder characterized by osteoclast dysfunction and increased bone density on radiography. Optic nerve osseous compression is the most frequent ocular complication of OS, with nystagmus, strabismus, ptosis, proptosis, and lagophthalmos occurring less frequently. However, it is uncommon for patients to have neurological or ocular symptoms at initial presentation. Herein, we present the case of a 3-year-old girl with the initial presentation of ocular symptoms who was confirmed to have OS through genetic testing. She was born full-term and found to have nystagmus since the age of 1 year. Her best-corrected visual acuity was 1.2/60 for both eyes. Exotropia of the left eye and bilateral small-amplitude pendular nystagmus were also noted. Color fundoscopy revealed a tessellated fundus and pale discs with cup-to-disc ratios of 0.5-0.6. Magnetic resonance imaging revealed bilateral optic canal stenosis and optic nerve atrophy. Whole-exome sequencing revealed a biallelic chloride voltage-gated channel 7 mutation, c.2297T > C (p.Leu766Pro) and c.1577G > A (p.Arg526Gln), and autosomal recessive OS was diagnosed. The patient is currently being evaluated for possible hematopoietic stem cell transplantation. We suggest that OS should be considered a differential diagnosis for unexplained nystagmus and optic nerve atrophy.
Collapse
Affiliation(s)
- Kai-Yen Chiu
- Department of Ophthalmology, College of Medicine, National Taiwan University Hospital, National Taiwan University, Taipei, Taiwan
| | - Yu-Yang Lin
- Department of Ophthalmology, College of Medicine, National Taiwan University Hospital, National Taiwan University, Taipei, Taiwan
| | - Yao-Lin Liu
- Department of Ophthalmology, College of Medicine, National Taiwan University Hospital, National Taiwan University, Taipei, Taiwan
| | - Ni-Chung Lee
- Department of Pediatrics and Medical Genetics, National Taiwan University Hospital, National Taiwan University, Taipei, Taiwan
| | - Tzu-Hsun Tsai
- Department of Ophthalmology, College of Medicine, National Taiwan University Hospital, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
5
|
Funck-Brentano T, Zillikens MC, Clunie G, Siggelkow H, Appelman-Dijkstra NM, Cohen-Solal M. Osteopetrosis and related osteoclast disorders in adults: A review and knowledge gaps On behalf of the European calcified tissue society and ERN BOND. Eur J Med Genet 2024; 69:104936. [PMID: 38593953 DOI: 10.1016/j.ejmg.2024.104936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/13/2023] [Accepted: 04/01/2024] [Indexed: 04/11/2024]
Abstract
Osteopetrosis refers to a group of related rare bone diseases characterized by a high bone mass due to impaired bone resorption by osteoclasts. Despite the high bone mass, skeletal strength is compromised and the risk of fracture is high, particularly in the long bones. Osteopetrosis was classically categorized by inheritance pattern into autosomal recessive forms (ARO), which are severe and diagnosed within the first years of life, an intermediate form and an autosomal dominant (ADO) form; the latter with variable clinical severity and typically diagnosed during adolescence or in young adulthood. Subsequently, the AD form was shown to be a result of mutations in the gene CLCN7 encoding for the ClC-7 chloride channel). Traditionally, the diagnosis of osteopetrosis was made on radiograph appearance alone, but recent molecular and genetic advances have enabled a greater fidelity in classification of osteopetrosis subtypes. In the more severe ARO forms (e.g., malignant infantile osteopetrosis MIOP) typical clinical features have severe consequences and often result in death in early childhood. Major complications of ADO are atypical fractures with delay or failure of repair and challenge in orthopedic management. Bone marrow failure, dental abscess, deafness and visual loss are often underestimated and neglected in relation with lack of awareness and expertise. Accordingly, the care of adult patients with osteopetrosis requires a multidisciplinary approach ideally in specialized centers. Apart from hematopoietic stem cell transplantation in certain infantile forms, the treatment of patients with osteopetrosis, has not been standardized and remains supportive. Further clinical studies are needed to improve our knowledge of the natural history, optimum management and impact of osteopetrosis on the lives of patients living with the disorder.
Collapse
Affiliation(s)
- Thomas Funck-Brentano
- Reference Center for Rare Bone Diseases and Department of Rheumatology, Hôpital Lariboisière, APHP, Université Paris Cité, Paris, France; INSERM UMR1132 BIOSCAR, Paris, France.
| | - M Carola Zillikens
- Bone Center, Department of Internal Medicine. Erasmus MC, University Medical Center Rotterdam, the Netherlands
| | - Gavin Clunie
- Metabolic Bone Physician, Cambridge University Hospitals, Box 204, Hills Rd, Cambridge, CB2 0QQ, UK
| | - Heide Siggelkow
- MVZ Endokrinologikum, Göttingen, Germany; Clinic of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center, 37075, Göttingen, Germany
| | - Natasha M Appelman-Dijkstra
- Center for Bone Quality, Department of Internal Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands
| | - Martine Cohen-Solal
- Reference Center for Rare Bone Diseases and Department of Rheumatology, Hôpital Lariboisière, APHP, Université Paris Cité, Paris, France; INSERM UMR1132 BIOSCAR, Paris, France.
| |
Collapse
|
6
|
Almutairi M, Alharbi A, Almutairi H, Shemis MF, Almutairi MS, Almutairi F. Management of Osteomyelitis in Autosomal Dominant Osteopetrosis: A Rare Case Report. Cureus 2024; 16:e62660. [PMID: 39036270 PMCID: PMC11258530 DOI: 10.7759/cureus.62660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2024] [Indexed: 07/23/2024] Open
Abstract
Albers-Schönberg disease, also known as osteopetrosis or marble bone disease, is a rare genetic disorder characterised by increased cortical bone mass due to dysfunctional osteoclast cells. This case report presents a 34-year-old male with autosomal dominant osteopetrosis (ADO), who was referred for evaluation and treatment of a chronic mandibular abscess with associated osteomyelitis and fistula. The patient's medical history included multiple fractures necessitating open reduction and internal fixation. Radiological examinations revealed the presence of chronic osteomyelitis in the mandible, marked by an increase in bone density and obliteration of medullary spaces. The treatment approach included surgical debridement, extraction of adjacent teeth, sequestrectomy, and antibiotic therapy. Notably, Enterobacter cloacae bacteria were identified through culture, leading to a tailored antibiotic regimen. Follow-up assessments, including clinical photographs and postoperative CT scans, were conducted to monitor the patient's progress. Histopathological examination confirmed osteomyelitis showing both viable and non-viable bone, surrounded by significant inflammatory infiltrate. This case underscores the complexity of managing osteomyelitis in patients with osteopetrosis and highlights the importance of early diagnosis, particularly before dental extractions, to prevent disease exacerbation. The rarity of this condition emphasises the need for further research and awareness among healthcare providers for optimal patient care.
Collapse
Affiliation(s)
| | | | | | - Mohamed F Shemis
- Oral and Maxillofacial Surgery, Qassim University, Buraydah, SAU
| | | | - Faris Almutairi
- Oral and Maxillofacial Surgery, Qassim University, Buraydah, SAU
| |
Collapse
|
7
|
Liu Z, Luo X, Xu R. Interaction between immuno-stem dual lineages in jaw bone formation and injury repair. Front Cell Dev Biol 2024; 12:1359295. [PMID: 38510177 PMCID: PMC10950953 DOI: 10.3389/fcell.2024.1359295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/26/2024] [Indexed: 03/22/2024] Open
Abstract
The jawbone, a unique structure in the human body, undergoes faster remodeling than other bones due to the presence of stem cells and its distinct immune microenvironment. Long-term exposure of jawbones to an oral environment rich in microbes results in a complex immune balance, as shown by the higher proportion of activated macrophage in the jaw. Stem cells derived from the jawbone have a higher propensity to differentiate into osteoblasts than those derived from other bones. The unique immune microenvironment of the jaw also promotes osteogenic differentiation of jaw stem cells. Here, we summarize the various types of stem cells and immune cells involved in jawbone reconstruction. We describe the mechanism relationship between immune cells and stem cells, including through the production of inflammatory bodies, secretion of cytokines, activation of signaling pathways, etc. In addition, we also comb out cellular interaction of immune cells and stem cells within the jaw under jaw development, homeostasis maintenance and pathological conditions. This review aims to eclucidate the uniqueness of jawbone in the context of stem cell within immune microenvironment, hopefully advancing clinical regeneration of the jawbone.
Collapse
Affiliation(s)
| | | | - Ruoshi Xu
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases and Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Mei S, Alchahin AM, Tsea I, Kfoury Y, Hirz T, Jeffries NE, Zhao T, Xu Y, Zhang H, Sarkar H, Wu S, Subtelny AO, Johnsen JI, Zhang Y, Salari K, Wu CL, Randolph MA, Scadden DT, Dahl DM, Shin J, Kharchenko PV, Saylor PJ, Sykes DB, Baryawno N. Single-cell analysis of immune and stroma cell remodeling in clear cell renal cell carcinoma primary tumors and bone metastatic lesions. Genome Med 2024; 16:1. [PMID: 38281962 PMCID: PMC10823713 DOI: 10.1186/s13073-023-01272-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/11/2023] [Indexed: 01/30/2024] Open
Abstract
BACKGROUND Despite therapeutic advances, once a cancer has metastasized to the bone, it represents a highly morbid and lethal disease. One third of patients with advanced clear cell renal cell carcinoma (ccRCC) present with bone metastasis at the time of diagnosis. However, the bone metastatic niche in humans, including the immune and stromal microenvironments, has not been well-defined, hindering progress towards identification of therapeutic targets. METHODS We collected fresh patient samples and performed single-cell transcriptomic profiling of solid metastatic tissue (Bone Met), liquid bone marrow at the vertebral level of spinal cord compression (Involved), and liquid bone marrow from a different vertebral body distant from the tumor site but within the surgical field (Distal), as well as bone marrow from patients undergoing hip replacement surgery (Benign). In addition, we incorporated single-cell data from primary ccRCC tumors (ccRCC Primary) for comparative analysis. RESULTS The bone marrow of metastatic patients is immune-suppressive, featuring increased, exhausted CD8 + cytotoxic T cells, T regulatory cells, and tumor-associated macrophages (TAM) with distinct transcriptional states in metastatic lesions. Bone marrow stroma from tumor samples demonstrated a tumor-associated mesenchymal stromal cell population (TA-MSC) that appears to be supportive of epithelial-to mesenchymal transition (EMT), bone remodeling, and a cancer-associated fibroblast (CAFs) phenotype. This stromal subset is associated with poor progression-free and overall survival and also markedly upregulates bone remodeling through the dysregulation of RANK/RANKL/OPG signaling activity in bone cells, ultimately leading to bone resorption. CONCLUSIONS These results provide a comprehensive analysis of the bone marrow niche in the setting of human metastatic cancer and highlight potential therapeutic targets for both cell populations and communication channels.
Collapse
Affiliation(s)
- Shenglin Mei
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA.
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, 02115, USA.
| | - Adele M Alchahin
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, 17176, Stockholm, Sweden
| | - Ioanna Tsea
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, 17176, Stockholm, Sweden
| | - Youmna Kfoury
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Taghreed Hirz
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Nathan Elias Jeffries
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Ting Zhao
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Yanxin Xu
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA
| | - Hanyu Zhang
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Hirak Sarkar
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, 02115, USA
| | - Shulin Wu
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Alexander O Subtelny
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - John Inge Johnsen
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, 17176, Stockholm, Sweden
| | - Yida Zhang
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, 02115, USA
| | - Keyan Salari
- Department of Urology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Chin-Lee Wu
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Mark A Randolph
- Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - David T Scadden
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Douglas M Dahl
- Department of Urology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - John Shin
- Department of Neurosurgery, Harvard Medical School, Boston, MA, 02115, USA.
| | - Peter V Kharchenko
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, 02115, USA.
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA.
- Present: Altos Labs, San Diego, CA, 92121, USA.
| | - Philip J Saylor
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, 02114, USA.
| | - David B Sykes
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA.
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA.
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA.
| | - Ninib Baryawno
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, 17176, Stockholm, Sweden.
| |
Collapse
|
9
|
Bingöl O, Yaşar NE, Özdemir G, Bekmez Ş, Söylemez MS, Dumlupinar E, Ayvali MO, Ata N, Ülgü MM, Birinci Ş, Bingöl İ. Fracture Patterns and Mortality in Osteopetrosis: A 7-year Retrospective Analysis from Türkiye's National Registry. J Pediatr Orthop 2024; 44:e69-e72. [PMID: 37728079 DOI: 10.1097/bpo.0000000000002518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
BACKGROUND The aim of this study is to determine the demographic data, fracture treatment methods, and medical treatments of patients diagnosed with osteopetrosis in the national registry. METHODS Patients with International Classification of Diseases (ICD)-10 code Q78.2 for osteopetrosis between January 1, 2016 and April 11, 2023 were retrospectively reviewed. Data on sex, age at time of diagnosis, fracture history, mortality, and use of medications were evaluated for all patients. In addition, open reduction and internal fixation, closed reduction and internal fixation, closed reduction and casting, and conservative treatment methods were noted. The number of patients requiring deformity surgery was determined. The incidence and prevalence of osteopetrosis were also calculated in this cross-sectional study. RESULTS A total of 476 patients diagnosed with osteopetrosis were identified. The mean age at time of diagnosis of these patients was 5.79 ± 5.43 years. A total of 101 patients died. As the age at diagnosis decreased, the mortality rate of the patients increased with statistical significance ( P <0.001). A total of 192 fractures were seen in 121 osteopetrosis patients in this study. Femur fractures were most common among these patients with osteopetrosis. A history of fracture was statistically significantly less common in patients using a combination of vitamin D + calcium compared with patients not using such medication ( P <0.001). In this 7-year cross-sectional study, the incidence was found to be 1 in 416,000 and the prevalence was 0.00199% in the population under 18 years of age. CONCLUSION Younger age at diagnosis is associated with higher mortality in patients with osteopetrosis. In addition, the combination of vitamin D and calcium were associated with lower fracture incidence. LEVEL OF EVIDENCE Prognostic Level II.
Collapse
Affiliation(s)
- Olgun Bingöl
- Department of Orthopedics and Traumatology, Health Sciences University, Ankara Bilkent City Hospital
| | - Niyazi Erdem Yaşar
- Department of Orthopedics and Traumatology, Health Sciences University, Ankara Bilkent City Hospital
| | - Güzelali Özdemir
- Department of Orthopedics and Traumatology, Health Sciences University, Ankara Bilkent City Hospital
| | - Şenol Bekmez
- Department of Orthopedics and Traumatology, Health Sciences University, Ankara Bilkent City Hospital
| | - Mehmet Salih Söylemez
- Associate Professor, MD, Department of Orthopedics and Traumatology, Umraniye Research and Training Hospital, Istanbul, Türkiye
| | - Ebru Dumlupinar
- Department of Biostatistics, Faculty of Medicine, Ankara University
| | | | - Naim Ata
- Ministry of Health, General Directorate of Health Information Systems
| | - M Mahir Ülgü
- Ministry of Health, General Directorate of Health Information Systems
| | | | - İzzet Bingöl
- Department of Orthopedics and Traumatology, Dr. Abdurrahman Yurtaslan Ankara Oncology Training and Research Hospital, Ankara
| |
Collapse
|
10
|
Nadyrshina DD, Khusainova RI. Clinical, genetic aspects and molecular pathogenesis of osteopetrosis. Vavilovskii Zhurnal Genet Selektsii 2023; 27:383-392. [PMID: 37465191 PMCID: PMC10350861 DOI: 10.18699/vjgb-23-46] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 12/23/2022] [Accepted: 12/24/2022] [Indexed: 07/20/2023] Open
Abstract
Osteopetrosis ("marble bone", ICD-10-78.2) includes a group of hereditary bone disorders distinguished by clinical variability and genetic heterogeneity. The name "osteopetrosis" comes from the Greek language: 'osteo' means 'bone' and 'petrosis' means 'stone', which characterizes the main feature of the disease: increased bone density caused by imbalances in bone formation and remodeling, leading to structural changes in bone tissue, predisposition to fractures, skeletal deformities. These defects, in turn, affect other important organs and tissues, especially bone marrow and the nervous system. The disease can be autosomal recessive, autosomal dominant, X-linked or sporadic. Autosomal dominant osteopetrosis has an incidence of 1 in 20,000 newborns and autosomal recessive one has 1 in 250,000. To date, 23 genes have been described, structural changes in which lead to the development of osteopetrosis. Clinical symptoms in osteopetrosis vary greatly in their presentation and severity. The mildest skeletal abnormalities are observed in adulthood and occur in the autosomal dominant form of osteopetrosis. Severe forms, being autosomal recessive and manifesting in early childhood, are characterized by fractures, mental retardation, skin lesions, immune system disorders, renal tubular acidosis. Clinical examination and review of radiographs, bone biopsy and genetic testing provide the bases for clinical diagnosis. The early and accurate detection and treatment of the disease are important to prevent hematologic abnormalities and disease progression to irreversible neurologic consequences. Most patients die within the first decade due to secondary infections, bone marrow suppression and/or bleeding. This article summarizes the current state of the art in this field, including clinical and genetic aspects, and the molecular pathogenesis of the osteopetrosis.
Collapse
Affiliation(s)
| | - R I Khusainova
- Ufa University of Science and Technology, Ufa, Russia Saint Petersburg State University, St. Petersburg, Russia
| |
Collapse
|
11
|
Karnik SJ, Nazzal MK, Kacena MA, Bruzzaniti A. Megakaryocyte Secreted Factors Regulate Bone Marrow Niche Cells During Skeletal Homeostasis, Aging, and Disease. Calcif Tissue Int 2023; 113:83-95. [PMID: 37243755 PMCID: PMC11179715 DOI: 10.1007/s00223-023-01095-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/01/2023] [Indexed: 05/29/2023]
Abstract
The bone marrow microenvironment contains a diverse array of cell types under extensive regulatory control and provides for a novel and complex mechanism for bone regulation. Megakaryocytes (MKs) are one such cell type that potentially acts as a master regulator of the bone marrow microenvironment due to its effects on hematopoiesis, osteoblastogenesis, and osteoclastogenesis. While several of these processes are induced/inhibited through MK secreted factors, others are primarily regulated by direct cell-cell contact. Notably, the regulatory effects that MKs exert on these different cell populations has been found to change with aging and disease states. Overall, MKs are a critical component of the bone marrow that should be considered when examining regulation of the skeletal microenvironment. An increased understanding of the role of MKs in these physiological processes may provide insight into novel therapies that can be used to target specific pathways important in hematopoietic and skeletal disorders.
Collapse
Affiliation(s)
- Sonali J Karnik
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Murad K Nazzal
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Melissa A Kacena
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA.
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA.
| | - Angela Bruzzaniti
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN, USA.
| |
Collapse
|
12
|
Zhou W, van Rooij JGJ, van de Laarschot DM, Zervou Z, Bruggenwirth H, Appelman‐Dijkstra NM, Ebeling PR, Demirdas S, Verkerk AJMH, Zillikens MC. Prevalence of Monogenic Bone Disorders in a Dutch Cohort of Atypical Femur Fracture Patients. J Bone Miner Res 2023; 38:896-906. [PMID: 37076969 PMCID: PMC10946469 DOI: 10.1002/jbmr.4801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 02/12/2023] [Accepted: 03/07/2023] [Indexed: 04/21/2023]
Abstract
Atypical femur fractures (AFFs), considered rare associations of bisphosphonates, have also been reported in patients with monogenic bone disorders without bisphosphonate use. The exact association between AFFs and monogenic bone disorders remains unknown. Our aim was to determine the prevalence of monogenic bone disorders in a Dutch AFF cohort. AFF patients were recruited from two specialist bone centers in the Netherlands. Medical records of the AFF patients were reviewed for clinical features of monogenic bone disorders. Genetic variants identified by whole-exome sequencing in 37 candidate genes involved in monogenic bone disorders were classified based on the American College of Medical Genetics and Genomics (ACMG) classification guidelines. Copy number variations overlapping the candidate genes were also evaluated using DNA array genotyping data. The cohort comprises 60 AFF patients (including a pair of siblings), with 95% having received bisphosphonates. Fifteen AFF patients (25%) had clinical features of monogenic bone disorders. Eight of them (54%), including the pair of siblings, had a (likely) pathogenic variant in either PLS3, COL1A2, LRP5, or ALPL. One patient carried a likely pathogenic variant in TCIRG1 among patients not suspected of monogenic bone disorders (2%). In total, nine patients in this AFF cohort (15%) had a (likely) pathogenic variant. In one patient, we identified a 12.7 Mb deletion in chromosome 6, encompassing TENT5A. The findings indicate a strong relationship between AFFs and monogenic bone disorders, particularly osteogenesis imperfecta and hypophosphatasia, but mainly in individuals with symptoms of these disorders. The high yield of (likely) pathogenic variants in AFF patients with a clinical suspicion of these disorders stresses the importance of careful clinical evaluation of AFF patients. Although the relevance of bisphosphonate use in this relationship is currently unclear, clinicians should consider these findings in medical management of these patients. © 2023 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Wei Zhou
- Department of Internal MedicineErasmus MCRotterdamThe Netherlands
| | | | | | - Zografia Zervou
- Department of Internal MedicineErasmus MCRotterdamThe Netherlands
| | | | - Natasha M Appelman‐Dijkstra
- Department of Internal Medicine, Division of EndocrinologyLeiden University Medical CenterLeidenThe Netherlands
| | - Peter R Ebeling
- Department of MedicineSchool of Clinical Sciences, Monash UniversityClaytonAustralia
| | - Serwet Demirdas
- Department of Clinical GeneticsErasmus MCRotterdamThe Netherlands
| | | | | |
Collapse
|
13
|
Stauber T, Wartosch L, Vishnolia S, Schulz A, Kornak U. CLCN7, a gene shared by autosomal recessive and autosomal dominant osteopetrosis. Bone 2023; 168:116639. [PMID: 36513280 DOI: 10.1016/j.bone.2022.116639] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/27/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022]
Abstract
After the discovery of abundant v-ATPase complexes in the osteoclast ruffled membrane it was obvious that in parallel a negative counter-ion needs to be transported across this membrane to allow for efficient transport of protons into the resorption lacuna. While different candidate proteins were discussed the osteopetrosis phenotype of Clcn7 knockout mice suggested that the chloride/proton-exchanger ClC-7 might be responsible for transporting the negative charge. In the following, individuals with autosomal recessive osteopetrosis (ARO) were found to carry biallelic CLCN7 pathogenic variants. Shortly thereafter, heterozygous pathogenic variants were identified as the exclusive cause of autosomal dominant osteopetrosis type 2 (ADO2). Since in most cell types other than osteoclasts ClC-7 resides in late endosomes and lysosomes, it took some time until the electrophysiological properties of ClC-7 were elucidated. Whereas most missense variants lead to reduced chloride currents, several variants with accelerated kinetics have been identified. Evidence for folding problems is also known for several missense variants. Paradoxically, a heterozygous activating variant in ClC-7 was described to cause lysosomal alteration, pigmentation defects, and intellectual disability without osteopetrosis. The counter-intuitive 2 Cl-/H+ exchange function of ClC-7 was shown to be physiologically important for intravesicular ion homeostasis. The lysosomal function of ClC-7 is also the reason why individuals with CLCN7-ARO can develop a storage disorder and neurodegeneration, a feature that is variable and difficult to predict. Furthermore, the low penetrance of heterozygous pathogenic CLCN7 variants and the clinical variability of ADO2 are incompletely understood. We aim to give an overview not only of the current knowledge about ClC-7 and its related pathologies, but also of the scientists and clinicians that paved the way for these discoveries.
Collapse
Affiliation(s)
- Tobias Stauber
- Institute for Molecular Medicine, MSH Medical School Hamburg, Hamburg, Germany
| | - Lena Wartosch
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Svenja Vishnolia
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Ansgar Schulz
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Uwe Kornak
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany.
| |
Collapse
|
14
|
Ancheta LR, Shramm PA, Bouajram R, Higgins D, Lappi DA. Streptavidin-Saporin: Converting Biotinylated Materials into Targeted Toxins. Toxins (Basel) 2023; 15:toxins15030181. [PMID: 36977072 PMCID: PMC10059012 DOI: 10.3390/toxins15030181] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/12/2023] [Accepted: 02/19/2023] [Indexed: 03/02/2023] Open
Abstract
Streptavidin-Saporin can be considered a type of ‘secondary’ targeted toxin. The scientific community has taken advantage of this conjugate in clever and fruitful ways using many kinds of biotinylated targeting agents to send saporin into a cell selected for elimination. Saporin is a ribosome-inactivating protein that causes inhibition of protein synthesis and cell death when delivered inside a cell. Streptavidin-Saporin, mixed with biotinylated molecules to cell surface markers, results in powerful conjugates that are used both in vitro and in vivo for behavior and disease research. Streptavidin-Saporin harnesses the ‘Molecular Surgery’ capability of saporin, creating a modular arsenal of targeted toxins used in applications ranging from the screening of potential therapeutics to behavioral studies and animal models. The reagent has become a well-published and validated resource in academia and industry. The ease of use and diverse functionality of Streptavidin-Saporin continues to have a significant impact on the life science industry.
Collapse
|
15
|
Carbonic Anhydrase II Activators in Osteopetrosis Treatment: A Review. Curr Issues Mol Biol 2023; 45:1373-1386. [PMID: 36826034 PMCID: PMC9954968 DOI: 10.3390/cimb45020089] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/22/2023] [Accepted: 01/27/2023] [Indexed: 02/09/2023] Open
Abstract
Osteopetrosis is a rare hereditary illness generated by failure in osteoclasts resulting in elevated bone densities. Patients with osteopetrosis possess several complications, like dental caries, earlier teeth loss, delayed eruption, malformed crowns and roots, and lamina dura thickening. Since deficiency of carbonic anhydrase II is a major cause behind osteopetrosis, carbonic anhydrase II activators have a large number of applications in osteopetrosis treatment. There is a lack of a comprehensive review on osteopetrosis, pathogenesis of dental abnormalities, and the role of carbonic anhydrase II activators in osteopetrosis treatment. To address this research gap, the authros perfomed a comprehensive review on osteopetrosis and its types, pathogenesis of dental abnormalities, and the role of carbonic anhydrase II activators in osteopetrosis treatment. A brief introduction to the pathogenesis of dental abnormalities and regeneration is provided in this survey. A discussion of types of osteopetrosis depending on genetic inheritance, such as autosomal dominant, autosomal recessive, and X-linked inheritance osteopetrosis, is presented in this survey. The paper also focuses on the importance of carbonic anhydrase II activators as a potential drug therapy for dental osteopetrosis. In addition, a brief note on the role of azole and fluconazole in treating osteopetrosis is given. Finally, future directions involving gene therapy for dental osteopetrosis are described.
Collapse
|
16
|
Schulz A, Moshous D. Hematopoietic stem cell transplantation, a curative approach in infantile osteopetrosis. Bone 2023; 167:116634. [PMID: 36470372 DOI: 10.1016/j.bone.2022.116634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022]
Abstract
Most patients with osteopetrosis (OPT) can be causally and curatively treated with allogeneic hematopoietic stem cell transplantation (HSCT) because osteoclasts are derived from the HSC. However, HSCT is contraindicated in some forms of OPT, namely OPT with neurodegeneration (in all patients with OSTM1 and about half of patients with CLCN7 mutations) and OPT caused by an osteoblast defect (patients with RANKL mutations). HSCT for OPT risks serious side effects, such as transplant failure, venous occlusive disease, pulmonary hypertension, and hypercalcemic crises. Nevertheless, the success rate of HSCT has improved significantly in recent decades. This applies, in particular, to HSCT from non-HLA compatible (haploidentical) donors. Therefore, nowadays an HSCT can be discussed for intermediate OPT forms. After a successful HSCT, most patients have very good quality of life, but about two-thirds are visually impaired, and in rarer cases show motor and neurological disabilities. Early diagnosis, further improvements in transplantation procedures, and advances to improve quality-of-life after transplantation are challenges for the future.
Collapse
Affiliation(s)
- Ansgar Schulz
- Department of Paediatrics, University Medical Center Ulm, Eythstr. 24, D 89075 Ulm, Germany.
| | - Despina Moshous
- Department of Pediatric Immunology, Hematology and Rheumatology, Hôpital Universitaire Necker-Enfants Malades, AP-HP, Université Paris Cité, 149, rue de Sèvres, 75015 Paris, France.
| |
Collapse
|
17
|
Cohen-Solal M, Collet C, Bizot P, Pavis C, Funck-Brentano T. Osteopetrosis: The patient point of view and medical challenges. Bone 2023; 167:116635. [PMID: 36455785 DOI: 10.1016/j.bone.2022.116635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 11/10/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Martine Cohen-Solal
- INSERM U1132 Bioscar, Université Paris-Cité, F-75010 Paris, France; Reference Center of Rare Bone Diseases, APHP, Lariboisière Hospital, F-75010 Paris, France.
| | - Corinne Collet
- INSERM U1132 Bioscar, Université Paris-Cité, F-75010 Paris, France; Molecular Genetics Department, Robert-Debré Hospital, F-75019 Paris, France
| | - Pascal Bizot
- INSERM U1132 Bioscar, Université Paris-Cité, F-75010 Paris, France; Reference Center of Rare Bone Diseases, APHP, Lariboisière Hospital, F-75010 Paris, France
| | - Cecile Pavis
- Reference Center of Rare Bone Diseases, APHP, Lariboisière Hospital, F-75010 Paris, France
| | - Thomas Funck-Brentano
- INSERM U1132 Bioscar, Université Paris-Cité, F-75010 Paris, France; Reference Center of Rare Bone Diseases, APHP, Lariboisière Hospital, F-75010 Paris, France
| |
Collapse
|
18
|
Khromykh K, Dudnyk V, Korol T, Fedchishen O. MARBLE DISEASE (CASE REPORT). WIADOMOSCI LEKARSKIE (WARSAW, POLAND : 1960) 2023; 76:1694-1700. [PMID: 37622517 DOI: 10.36740/wlek202307127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
We present clinical case of marble disease in 5 yo girl. The management of this child was made in Vinnitsia Regional Children's Hospital (Vinnitsia, Ukraine). CBC, X-ray of bones, bone marrow biopsy, genetical testing, MRI of the brain and CT of the skull were done during this period. Marble disease is a very rare disease with very serious consequences, the prevention of which requires timely diagnosis and treatment, namely the prevention of infectious complications and early allogenic transplantation of stem cells. As it is a genetically determined disease, it is not possible to prevent the development of osteopetrosis. Genetic screening and proper treatment will allow the patient to lead an almost normal life.
Collapse
Affiliation(s)
| | - Veronika Dudnyk
- NATIONAL PIROGOV MEMORIAL MEDICAL UNIVERSITY, VINNYTSIA, UKRAINE
| | - Tetiana Korol
- NATIONAL PIROGOV MEMORIAL MEDICAL UNIVERSITY, VINNYTSIA, UKRAINE
| | | |
Collapse
|
19
|
Maurizi A. Experimental therapies for osteopetrosis. Bone 2022; 165:116567. [PMID: 36152941 DOI: 10.1016/j.bone.2022.116567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 09/13/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022]
Abstract
The medical treatment of osteopetrosis is an ongoing clinical problem. There are no effective and safer therapeutic approaches for all its forms. However, recent discoveries concerning the etiology and the pathogenesis of osteopetrosis, the development of dedicated cellular and animal models, and the advent of new technologies are paving the way for the development of targeted and safer therapies for both lethal and milder osteopetrosis. This review summarizes the huge effort and successes made by researchers to identify and develop new experimental approaches with this objective, such as the use of non-genotoxic myeloablation, gene correction of inducible Pluripotent Stem Cells (iPSCs), lentiviral-based gene therapy, protein replacement, prenatal treatment, osteoclast precursors transplantation and RNA Interference.
Collapse
Affiliation(s)
- Antonio Maurizi
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
| |
Collapse
|
20
|
Identification of a novel TNFRSF11A gene variant in a rare case of familial osteopetrosis autosomal recessive type 7. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
21
|
Capo V, Abinun M, Villa A. Osteoclast rich osteopetrosis due to defects in the TCIRG1 gene. Bone 2022; 165:116519. [PMID: 35981697 DOI: 10.1016/j.bone.2022.116519] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 11/28/2022]
Abstract
Discovery that mutations in TCIRG1 (also known as Atp6i) gene are responsible for most instances of autosomal recessive osteopetrosis (ARO) heralded a new era for comprehension and treatment of this phenotypically heterogeneous rare bone disease. TCIRG1 encodes the a3 subunit, an essential isoform of the vacuolar ATPase proton pump involved in acidification of the osteoclast resorption lacuna and in secretory lysosome trafficking. TCIRG1 defects lead to inefficient bone resorption by nonfunctional osteoclasts seen in abundance on bone marrow biopsy, delineating this ARO as 'osteoclast-rich'. Presentation is usually in early childhood and features of extramedullary haematopoiesis (hepatosplenomegaly, anaemia, thrombocytopenia) due to bone marrow fibrosis, and cranial nerve impingement (blindness in particular). Impaired dietary calcium uptake due to high pH causes the co-occurrence of rickets, described as "osteopetrorickets". Osteoclast dysfunction leads to early death if untreated, and allogeneic haematopoietic stem cell transplantation is currently the treatment of choice. Studies of patients as well as of mouse models carrying spontaneous (the oc/oc mouse) or targeted disruption of Atp6i (TCIRG1) gene have been instrumental providing insight into disease pathogenesis and development of novel cellular therapies that exploit gene correction.
Collapse
Affiliation(s)
- Valentina Capo
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy; Institute of Genetic and Biomedical Research, Milan Unit, National Research Council, Milan, Italy
| | - Mario Abinun
- Children's Haematopoietic Stem Cell Transplantation Unit, Great North Children's Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK; Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Anna Villa
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy; Institute of Genetic and Biomedical Research, Milan Unit, National Research Council, Milan, Italy.
| |
Collapse
|
22
|
Luong LH, Nguyen HD, Trung TN, Minh TMT, Khanh TL, Son TP, Tran TD, Nguyen TT. Case report of mild TCIRG1-associated autosomal recessive osteopetrosis in Vietnam. Am J Med Genet A 2022; 188:3096-3099. [PMID: 35915932 DOI: 10.1002/ajmg.a.62897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/07/2022] [Accepted: 06/24/2022] [Indexed: 01/31/2023]
Abstract
Autosomal recessive osteopetrosis (ARO) is a group of disease characterized by osteoclast dysfunction inhibiting bone resorption and bone turnover, with TCIRG1-associated ARO being more common leading to autosomal recessive infantile malignant osteopetrosis (OPTB1, MIM entry number # 259700). While most patients with TCIRG1-associated osteopetrosis present a malignant clinical course and shortened lifespan, a few cases of non-malignant TCIRG1-associated osteopetrosis have been reported. 24-year-old female patient came to us with limp gait, hip pain in both sides, and severe stiffness. She had suffered many fractures, bilateral hip osteoarthritis, right leg was 2 cm shorter compared with left leg. Whole Exome Sequencing was conducted, the result and subsequent Sanger's sequencing shown the patient had a compound heterozygous genotype at TCIRG1 (c.1194dup, p.Gly399ArgTer and c.334G>A, p.Gly112Arg), these two variants found were not previously reported. Sanger's sequencing revealed two other siblings whom suffer the same disorder had similar genotype to the proband; the parents were found to be heterozygous. This is the first case of TCIRG1-associated osteopetrosis reported in Vietnam and one of the few cases of nonmalignant TCIRG1-associated osteopetrosis, in which detailed clinical and genetic work-up were performed.
Collapse
Affiliation(s)
| | - Hieu Dinh Nguyen
- National E Hospital, Hanoi, Vietnam.,VNU University of Medicine and Pharmacy, Hanoi, Vietnam
| | - Tuyen Nguyen Trung
- National E Hospital, Hanoi, Vietnam.,Hanoi Medical University, Hanoi, Vietnam
| | | | | | | | | | | |
Collapse
|
23
|
Vacher J. OSTM1 pleiotropic roles from osteopetrosis to neurodegeneration. Bone 2022; 163:116505. [PMID: 35902071 DOI: 10.1016/j.bone.2022.116505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 11/28/2022]
Abstract
Autosomal recessive osteopetroses (ARO) are rare genetic skeletal disorders of high clinical and molecular heterogeneity with an estimated frequency of 1:250,000 worldwide. The manifestations are diverse and although individually rare, the various forms contribute to the prevalence of a significant number of affected individuals with considerable morbidity and mortality. Among the ARO classification, the most severe form is the autosomal recessive-5 (OPTB5) osteopetrosis (OMIM 259720) that results from homozygous mutation in the OSTM1 gene (607649). OSTM1 mutations account for approximately 5 % of instances of autosomal recessive osteopetrosis and lead to a highly debilitating form of the disease in infancy and death within the first few years of life (Sobacchi et al., 2013) [1].
Collapse
Affiliation(s)
- Jean Vacher
- Institut de Recherches Cliniques de Montréal (IRCM), 110 avenue des Pins Ouest, Montréal, Québec H2W 1R7, Canada; Département de Médecine, Université de Montréal, Montréal, Québec, Canada.
| |
Collapse
|
24
|
Hofstaetter JG, Atkins GJ, Kato H, Kogawa M, Blouin S, Misof BM, Roschger P, Evdokiou A, Yang D, Solomon LB, Findlay DM, Ito N. A Mild Case of Autosomal Recessive Osteopetrosis Masquerading as the Dominant Form Involving Homozygous Deep Intronic Variations in the CLCN7 Gene. Calcif Tissue Int 2022; 111:430-444. [PMID: 35618777 PMCID: PMC9474465 DOI: 10.1007/s00223-022-00988-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 05/06/2022] [Indexed: 11/28/2022]
Abstract
Osteopetrosis is a heterogeneous group of rare hereditary diseases characterized by increased bone mass of poor quality. Autosomal-dominant osteopetrosis type II (ADOII) is most often caused by mutation of the CLCN7 gene leading to impaired bone resorption. Autosomal recessive osteopetrosis (ARO) is a more severe form and is frequently accompanied by additional morbidities. We report an adult male presenting with classical clinical and radiological features of ADOII. Genetic analyses showed no amino-acid-converting mutation in CLCN7 but an apparent haploinsufficiency and suppression of CLCN7 mRNA levels in peripheral blood mononuclear cells. Next generation sequencing revealed low-frequency intronic homozygous variations in CLCN7, suggesting recessive inheritance. In silico analysis of an intronic duplication c.595-120_595-86dup revealed additional binding sites for Serine- and Arginine-rich Splicing Factors (SRSF), which is predicted to impair CLCN7 expression. Quantitative backscattered electron imaging and histomorphometric analyses revealed bone tissue and material abnormalities. Giant osteoclasts were present and additionally to lamellar bone, and abundant woven bone and mineralized cartilage were observed, together with increased frequency and thickness of cement lines. Bone mineralization density distribution (BMDD) analysis revealed markedly increased average mineral content of the dense bone (CaMean T-score + 10.1) and frequency of bone with highest mineral content (CaHigh T-score + 19.6), suggesting continued mineral accumulation and lack of bone remodelling. Osteocyte lacunae sections (OLS) characteristics were unremarkable except for an unusually circular shape. Together, our findings suggest that the reduced expression of CLCN7 mRNA in osteoclasts, and possibly also osteocytes, causes poorly remodelled bone with abnormal bone matrix with high mineral content. This together with the lack of adequate bone repair mechanisms makes the material brittle and prone to fracture. While the skeletal phenotype and medical history were suggestive of ADOII, genetic analysis revealed that this is a possible mild case of ARO due to deep intronic mutation.
Collapse
Affiliation(s)
- Jochen G Hofstaetter
- 1st Medical Dept., Hanusch Hospital, Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, Vienna, Austria
- Michael Ogon Laboratory, Orthopaedic Hospital Vienna-Speising, Vienna, Austria
| | - Gerald J Atkins
- Centre for Orthopaedic & Trauma Research, Faculty of Health and Medical Sciences, Adelaide Health and Medical Sciences Building, The University of Adelaide, North Terrace, Adelaide, SA, 5005, Australia.
| | - Hajime Kato
- Division of Nephrology and Endocrinology, The University of Tokyo Hospital, Tokyo, Japan
- Osteoporosis Center, The University of Tokyo Hospital, Tokyo, Japan
| | - Masakazu Kogawa
- Centre for Orthopaedic & Trauma Research, Faculty of Health and Medical Sciences, Adelaide Health and Medical Sciences Building, The University of Adelaide, North Terrace, Adelaide, SA, 5005, Australia
| | - Stéphane Blouin
- 1st Medical Dept., Hanusch Hospital, Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, Vienna, Austria
| | - Barbara M Misof
- 1st Medical Dept., Hanusch Hospital, Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, Vienna, Austria
| | - Paul Roschger
- 1st Medical Dept., Hanusch Hospital, Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, Vienna, Austria
| | - Andreas Evdokiou
- Centre for Orthopaedic & Trauma Research, Faculty of Health and Medical Sciences, Adelaide Health and Medical Sciences Building, The University of Adelaide, North Terrace, Adelaide, SA, 5005, Australia
| | - Dongqing Yang
- Centre for Orthopaedic & Trauma Research, Faculty of Health and Medical Sciences, Adelaide Health and Medical Sciences Building, The University of Adelaide, North Terrace, Adelaide, SA, 5005, Australia
| | - Lucian B Solomon
- Centre for Orthopaedic & Trauma Research, Faculty of Health and Medical Sciences, Adelaide Health and Medical Sciences Building, The University of Adelaide, North Terrace, Adelaide, SA, 5005, Australia
- Department of Orthopaedics and Trauma, Royal Adelaide Hospital, Adelaide, SA, 5000, Australia
| | - David M Findlay
- Centre for Orthopaedic & Trauma Research, Faculty of Health and Medical Sciences, Adelaide Health and Medical Sciences Building, The University of Adelaide, North Terrace, Adelaide, SA, 5005, Australia
| | - Nobuaki Ito
- Centre for Orthopaedic & Trauma Research, Faculty of Health and Medical Sciences, Adelaide Health and Medical Sciences Building, The University of Adelaide, North Terrace, Adelaide, SA, 5005, Australia
- Division of Nephrology and Endocrinology, The University of Tokyo Hospital, Tokyo, Japan
- Osteoporosis Center, The University of Tokyo Hospital, Tokyo, Japan
| |
Collapse
|
25
|
Alam I, Gerard-O’Riley RL, Acton D, Hardman SL, Murphy M, Alvarez MB, Blosser RJ, Sinn A, Srour EF, Kacena MA, Econs MJ. Bone marrow transplantation as a therapy for autosomal dominant osteopetrosis type 2 in mice. FASEB J 2022; 36:e22471. [PMID: 35959867 PMCID: PMC9397585 DOI: 10.1096/fj.202200678r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/01/2022] [Accepted: 07/14/2022] [Indexed: 01/02/2023]
Abstract
Autosomal dominant osteopetrosis type II (ADO2) is a heritable bone disease of impaired osteoclastic bone resorption caused by missense mutations in the chloride channel 7 (CLCN7) gene. Clinical features of ADO2 include fractures, osteomyelitis of jaw, vision loss, and in severe cases, bone marrow failure. Currently, there is no effective therapy for ADO2, and patients usually receive symptomatic treatments. Theoretically, bone marrow transplantation (BMT), which is commonly used in recessive osteopetrosis, could be used to treat ADO2, although the frequency of complications related to BMT is quite high. We created an ADO2 knock-in (p.G213R mutation) mouse model on the 129 genetic background, and their phenotypes mimic the human disease of ADO2. To test whether BMT could restore osteoclast function and rescue the bone phenotypes in ADO2 mice, we transplanted bone marrow cells from 6-8 weeks old male WT donor mice into recipient female ADO2 mice. Also, to determine whether age at the time of transplant may play a role in transplant success, we performed BMT in young (12-week-old) and old (9-month-old) ADO2 mice. Our data indicate that ADO2 mice transplanted with WT marrow achieved more than 90% engraftment up to 6 months post-transplantation at both young and old ages. The in-vivo DXA data revealed that young ADO2 mice transplanted with WT marrow had significantly lower whole body and spine areal bone mineral density (aBMD) at month 6 post-transplantation compared to the ADO2 control mice. The old ADO2 mice also displayed significantly lower whole body, femur, and spine aBMD at months 4 and 5 post-transplantation compared to the age-matched control mice. The in-vivo micro-CT data showed that ADO2 experimental mice transplanted with WT marrow had significantly lower BV/TV at months 2 and 4 post-transplantation compared to the ADO2 control mice at a young age. In contrast, ADO2 control and experimental mice displayed similar BV/TV values for all post-transplantation time points at old age. In addition, serum CTX was significantly higher at month 2 post-transplantation in both young and old ADO2 experimental mice compared to the ADO2 control mice. Serum P1NP levels in young ADO2 experimental mice were significantly higher at baseline and month 2 post-transplantation compared to the ADO2 control mice. These data suggest that BMT may provide, at least, some beneficial effect at both young and adult ages.
Collapse
Affiliation(s)
- Imranul Alam
- Medicine, Indiana University School of Medicine, IN 46202, USA
| | | | - Dena Acton
- Medicine, Indiana University School of Medicine, IN 46202, USA
| | - Sara L. Hardman
- Medicine, Indiana University School of Medicine, IN 46202, USA
| | - Madeline Murphy
- Medicine, Indiana University School of Medicine, IN 46202, USA
| | - Marta B. Alvarez
- Orthopaedic Surgery, Indiana University School of Medicine, IN 46202, USA
| | - Rachel J. Blosser
- Orthopaedic Surgery, Indiana University School of Medicine, IN 46202, USA
| | - Anthony Sinn
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, IN 46202, USA
| | - Edward F. Srour
- Medicine, Indiana University School of Medicine, IN 46202, USA
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, IN 46202, USA
| | - Melissa A. Kacena
- Orthopaedic Surgery, Indiana University School of Medicine, IN 46202, USA
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, IN 46202, USA
| | - Michael J. Econs
- Medicine, Indiana University School of Medicine, IN 46202, USA
- Medical and Molecular Genetics, Indiana University School of Medicine, IN 46202, USA
| |
Collapse
|
26
|
Jimi E, Katagiri T. Critical Roles of NF-κB Signaling Molecules in Bone Metabolism Revealed by Genetic Mutations in Osteopetrosis. Int J Mol Sci 2022; 23:7995. [PMID: 35887342 PMCID: PMC9322175 DOI: 10.3390/ijms23147995] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 01/05/2023] Open
Abstract
The nuclear factor-κB (NF-κB) transcription factor family consists of five related proteins, RelA (p65), c-Rel, RelB, p50/p105 (NF-κB1), and p52/p100 (NF-κB2). These proteins are important not only for inflammation and the immune response but also for bone metabolism. Activation of NF-κB occurs via the classic and alternative pathways. Inflammatory cytokines, such as tumor necrosis factor (TNF)-α and interleukin (IL)-1β, activate the former, and cytokines involved in lymph node formation, such as receptor activator of NF-κB ligand (RANKL) and CD40L, activate the latter. p50 and p52 double-knockout mice revealed severe osteopetrosis due to the total lack of osteoclasts, which are specialized cells for bone resorption. This finding suggests that the activation of NF-κB is required for osteoclast differentiation. The NF-κB signaling pathway is controlled by various regulators, including NF-κB essential modulator (NEMO), which is encoded by the IKBKG gene. In recent years, mutant forms of the IKBKG gene have been reported as causative genes of osteopetrosis, lymphedema, hypohidrotic ectodermal dysplasia, and immunodeficiency (OL-EDA-ID). In addition, a mutation in the RELA gene, encoding RelA, has been reported for the first time in newborns with high neonatal bone mass. Osteopetrosis is characterized by a diffuse increase in bone mass, ranging from a lethal form observed in newborns to an asymptomatic form that appears in adulthood. This review describes the genetic mutations in NF-κB signaling molecules that have been identified in patients with osteopetrosis.
Collapse
Affiliation(s)
- Eijiro Jimi
- Laboratory of Molecular and Cellular Biochemistry, Division of Oral Biological Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
- Oral Health/Brain Health/Total Health Research Center, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Takenobu Katagiri
- Research Center for Genomic Medicine, Division of Biomedical Sciences, Saitama Medical University, 1397-1 Yamane, Hidaka-shi, Saitama 350-1241, Japan;
| |
Collapse
|
27
|
Dinh HN, Luong LH, Trung TN, Minh TMT, Tran TD, Nguyen TT. Successful total hip arthroplasty for patient with TCIRG1-associated autosomal recessive osteopetrosis. Int J Surg Case Rep 2022. [PMCID: PMC9178469 DOI: 10.1016/j.ijscr.2022.107262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Introduction and importance Autosomal recessive osteopetrosis (ARO) is a group of disease characterized by osteoclast dysfunction inhibiting bone resorption and bone turnover, with TCIRG1-associated ARO leading to autosomal recessive infantile malignant osteopetrosis (OPTB1, MIM entry number # 259700). While most patients with TCIRG1-associated osteopetrosis present a malignant clinical course and shortened lifespan, a few cases of mild osteopetrosis associated with TCIRG1 have been reported recently. In this study we report a rare case of non-malignant TCIRG1-associated osteopetrosis, with detail clinical characterization, genetic analysis and underwent successful total hip replacement surgery. Case presentation 24-year-old female patient came to us with limp gait, hip pain in both sides, severe stiffness. She suffered multiple fractures, bilateral hip osteoarthritis, right leg was 2 cm shorter compared with left leg. The patient had a limp gait due to severe pain and leg length discrepancy. Clinical discussion Whole Exome Sequencing, result of genetic analysis shown the patient had a compound heterozygous genotype at TCIRG1 (c.1194dup, p.Gly399ArgTer and c.334G > A, p.Gly112Arg). Total hip replacement was performed. The joint exposure and femoral canal reaming was difficult due to complete deformity of femoral head, loss of canal and high bone density. Post-operation period was uneventful; the patient rehabilitated as planned without further complication. Conclusion This is the first case of TCIRG1-associated osteopetrosis reported in Vietnam and one of the few cases of non-malignant TCIRG1-associated osteopetrosis. This case report suggests that total hip replacement is a viable option for the treatment of hip osteoarthritis in patients with mild form osteopetrosis. This is the first case of TCIRG1-associated osteopetrosis reported in Vietnam with clinical and genetic workup. This study detailed the surgical processes as well as the rehabilitation period of a patient with mild form of osteopetrosis. Total hip arthroplasty is a feasible option for the treatment of hip osteoarthritis in osteopetrosis patients High bone density, brittle/fragile bone, deformed acetabulum, narrow or sealed femoral canal leads to difficulty in surgery.
Collapse
|
28
|
Even-Or E, Schiesel G, Simanovsky N, NaserEddin A, Zaidman I, Elpeleg O, Mor-Shaked H, Stepensky P. Clinical presentation and analysis of genotype-phenotype correlations in patients with malignant infantile osteopetrosis. Bone 2022; 154:116229. [PMID: 34624559 DOI: 10.1016/j.bone.2021.116229] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/19/2021] [Accepted: 09/29/2021] [Indexed: 11/02/2022]
Abstract
Malignant infantile osteopetrosis (MIOP) is the autosomal recessive, severe form of osteopetrosis. This rare genetic syndrome usually presents soon after birth and is often fatal if left untreated. Early diagnosis is key for proper management but clinical presentation is diverse, and oftentimes diagnosis may be challenging. In this study, we retrospectively collected data of genetic mutations and phenotypic characteristics at the initial presentation of 81 MIOP patients and analyzed genotype-phenotype correlations. The most common genetic mutation was in the TCIRG1 gene (n = 46, 56.8%), followed by SNX10 (n = 20, 25%). Other genetic mutations included RANK (n = 7, 8.7%), CLCN7 (n = 5, 6.2%) and CA2 (n = 3, 3.7%). More than half of the patients presented with growth retardation (n = 46, 56.8%). Twenty-one of the patients were blind (26%) and thirty-seven patients had other neurological deficits (45.7%) at the time of initial presentation. Most patients presented with hematological signs of bone marrow failure including anemia (n = 69, 85.2%) and thrombocytopenia (n = 33, 40.7%). Thrombocytopenia at initial presentation was significantly more prevalent in patients with mutations in the TCIRG1 gene (p = 0.036). Other phenotypic presenting features were not found to be significantly correlated to specific gene mutations. In conclusion, the initial presentation of MIOP is variable, but some features are common such as growth retardation, visual impairment, and cytopenias. High awareness of MIOP presenting signs is essential for prompt diagnosis of this challenging disease.
Collapse
Affiliation(s)
- Ehud Even-Or
- Faculty of Medicine, The Hebrew University of Jerusalem, Ein Kerem, P.O. Box 12271, Jerusalem 9112102, Israel; Department of Bone Marrow Transplantation and Cancer Immunotherapy, Hadassah Medical Center, Kalman Ya'Akov Man Street, Jerusalem, Israel.
| | - Gali Schiesel
- Faculty of Medicine, The Hebrew University of Jerusalem, Ein Kerem, P.O. Box 12271, Jerusalem 9112102, Israel
| | - Natalia Simanovsky
- Faculty of Medicine, The Hebrew University of Jerusalem, Ein Kerem, P.O. Box 12271, Jerusalem 9112102, Israel; Department of Medical Imaging, Hadassah Medical Center, Kalman Ya'Akov Man Street, Jerusalem, Israel
| | - Adeeb NaserEddin
- Faculty of Medicine, The Hebrew University of Jerusalem, Ein Kerem, P.O. Box 12271, Jerusalem 9112102, Israel; Department of Bone Marrow Transplantation and Cancer Immunotherapy, Hadassah Medical Center, Kalman Ya'Akov Man Street, Jerusalem, Israel
| | - Irina Zaidman
- Faculty of Medicine, The Hebrew University of Jerusalem, Ein Kerem, P.O. Box 12271, Jerusalem 9112102, Israel; Department of Bone Marrow Transplantation and Cancer Immunotherapy, Hadassah Medical Center, Kalman Ya'Akov Man Street, Jerusalem, Israel
| | - Orly Elpeleg
- Faculty of Medicine, The Hebrew University of Jerusalem, Ein Kerem, P.O. Box 12271, Jerusalem 9112102, Israel; Department of Genetic and Metabolic Diseases, Hadassah Medical Center, Kalman Ya'Akov Man Street, Jerusalem, Israel
| | - Hagar Mor-Shaked
- Faculty of Medicine, The Hebrew University of Jerusalem, Ein Kerem, P.O. Box 12271, Jerusalem 9112102, Israel; Department of Genetic and Metabolic Diseases, Hadassah Medical Center, Kalman Ya'Akov Man Street, Jerusalem, Israel
| | - Polina Stepensky
- Faculty of Medicine, The Hebrew University of Jerusalem, Ein Kerem, P.O. Box 12271, Jerusalem 9112102, Israel; Department of Bone Marrow Transplantation and Cancer Immunotherapy, Hadassah Medical Center, Kalman Ya'Akov Man Street, Jerusalem, Israel
| |
Collapse
|
29
|
Overexpression of miR-125b in Osteoblasts Improves Age-Related Changes in Bone Mass and Quality through Suppression of Osteoclast Formation. Int J Mol Sci 2021; 22:ijms22136745. [PMID: 34201781 PMCID: PMC8267655 DOI: 10.3390/ijms22136745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/06/2021] [Accepted: 06/21/2021] [Indexed: 12/21/2022] Open
Abstract
We recently reported an unexpected role of osteoblast-derived matrix vesicles in the delivery of microRNAs to bone matrix. Of such microRNAs, we found that miR-125b inhibited osteoclast formation by targeting Prdm1 encoding a transcriptional repressor of anti-osteoclastogenesis factors. Transgenic (Tg) mice overexpressing miR-125b in osteoblasts by using human osteocalcin promoter grow normally but exhibit high trabecular bone mass. We have now further investigated the effects of osteoblast-mediated miR-125b overexpression on skeletal morphogenesis and remodeling during development, aging and in a situation of skeletal repair, i.e., fracture healing. There were no significant differences in the growth plate, primary spongiosa or lateral (periosteal) bone formation and mineral apposition rate between Tg and wild-type (WT) mice during early bone development. However, osteoclast number and medial (endosteal) bone resorption were less in Tg compared to WT mice, concomitant with increased trabecular bone mass. Tg mice were less susceptible to age-dependent changes in bone mass, phosphate/amide I ratio and mechanical strength. In a femoral fracture model, callus formation progressed similarly in Tg and WT mice, but callus resorption was delayed, reflecting the decreased osteoclast numbers associated with the Tg callus. These results indicate that the decreased osteoclastogenesis mediated by miR-125b overexpression in osteoblasts leads to increased bone mass and strength, while preserving bone formation and quality. They also suggest that, in spite of the fact that single miRNAs may target multiple genes, the miR-125b axis may be an attractive therapeutic target for bone loss in various age groups.
Collapse
|