1
|
Li M, Yuan Z, Tang Z. ADAMTS12, a novel prognostic predictor, promotes cell proliferation, migration, and invasion in head and neck squamous cell carcinoma. Oral Dis 2024; 30:235-246. [PMID: 36222542 DOI: 10.1111/odi.14403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 09/06/2022] [Accepted: 10/04/2022] [Indexed: 11/30/2022]
Abstract
OBJECTIVES The prognostic significance and potential carcinogenic mechanism of ADAM metallopeptidase with thrombospondin type 1 motif 12 (ADAMTS12) in head and neck squamous cell carcinoma (HNSC) remain unclear. MATERIALS AND METHODS Immunohistochemistry was used to analyze the correlation between ADAMTS12 protein expression and clinicopathological factors in tumor samples from 195 patients with HNSC. Based on clinicopathological data of patients, Cox regression and Kaplan-Meier analysis were used to identify the prognostic significance of the ADAMTS12 expression. The carcinogenicity of the ADAMTS12 in HNSC cells was analyzed by CCK-8 assay, the wound-healing assay, and transwell assays after transfection of ADAMTS12 overexpression or knock-down vector. RESULTS The expression of ADAMTS12 was up-regulated in HNSC compared with normal tissue, related to pathology grade and lymph node metastasis of patients with HNSC, which was an independent prognostic factor. ADAMTS12 overexpression facilitated cell viability, invasion, and migration of HNSC cells, while ADAMTS12 knock-down had inverse results. Moreover, enrichment analysis, ADAMTS12 overexpression assay, and ADAMTS12 knock-down assay confirmed that ADAMTS12 mediated the activation of P13K/Akt pathway in HNSC. CONCLUSIONS Our studies indicated that ADAMTS12 was a novel prognostic biomarker and potentially therapeutic target in HNSC.
Collapse
Affiliation(s)
- Ming Li
- Hunan Key Laboratory of Oral Health Research & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, China
| | | | - Zhangui Tang
- Hunan Key Laboratory of Oral Health Research & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, China
| |
Collapse
|
2
|
Meibom D, Wasnaire P, Beyer K, Broehl A, Cancho-Grande Y, Elowe N, Henninger K, Johannes S, Jungmann N, Krainz T, Lindner N, Maassen S, MacDonald B, Menshykau D, Mittendorf J, Sanchez G, Schaefer M, Stefan E, Torge A, Xing Y, Zubov D. BAY-9835: Discovery of the First Orally Bioavailable ADAMTS7 Inhibitor. J Med Chem 2024; 67:2907-2940. [PMID: 38348661 PMCID: PMC10895658 DOI: 10.1021/acs.jmedchem.3c02036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 02/23/2024]
Abstract
The matrix metalloprotease ADAMTS7 has been identified by multiple genome-wide association studies as being involved in the development of coronary artery disease. Subsequent research revealed the proteolytic function of the enzyme to be relevant for atherogenesis and restenosis after vessel injury. Based on a publicly known dual ADAMTS4/ADAMTS5 inhibitor, we have in silico designed an ADAMTS7 inhibitor of the catalytic domain, which served as a starting point for an optimization campaign. Initially our inhibitors suffered from low selectivity vs MMP12. An X-ray cocrystal structure inspired us to exploit amino acid differences in the binding site of MMP12 and ADAMTS7 to improve selectivity. Further optimization composed of employing 5-membered heteroaromatic groups as hydantoin substituents to become more potent on ADAMTS7. Finally, fine-tuning of DMPK properties yielded BAY-9835, the first orally bioavailable ADAMTS7 inhibitor. Further optimization to improve selectivity vs ADAMTS12 seems possible, and a respective starting point could be identified.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Eric Stefan
- Broad
Institute, 02142 Cambridge, United States
| | | | - Yi Xing
- Broad
Institute, 02142 Cambridge, United States
| | | |
Collapse
|
3
|
Mohamedi Y, Fontanil T, Vega JA, Cobo T, Cal S, Obaya ÁJ. Lung Inflammatory Phenotype in Mice Deficient in Fibulin-2 and ADAMTS-12. Int J Mol Sci 2024; 25:2024. [PMID: 38396702 PMCID: PMC10888546 DOI: 10.3390/ijms25042024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/23/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
Interaction between extracellular matrix (ECM) components plays an important role in the regulation of cellular behavior and hence in tissue function. Consequently, characterization of new interactions within ECM opens the possibility of studying not only the functional but also the pathological consequences derived from those interactions. We have previously described the interaction between fibulin2 and ADAMTS-12 in vitro and the effects of that interaction using cellular models of cancer. Now, we generate a mouse deficient in both ECM components and evaluate functional consequences of their absence using different cancer and inflammation murine models. The main findings indicate that mice deficient in both fibulin2 and ADAMTS12 markedly increase the development of lung tumors following intraperitoneal urethane injections. Moreover, inflammatory phenotype is exacerbated in the lung after LPS treatment as can be inferred from the accumulation of active immune cells in lung parenchyma. Overall, our results suggest that protective effects in cancer or inflammation shown by fibulin2 and ADAMTS12 as interactive partners in vitro are also shown in a more realistic in vivo context.
Collapse
Affiliation(s)
- Yamina Mohamedi
- Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Tania Fontanil
- Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, 33006 Oviedo, Spain
| | - José A. Vega
- Departamento de Morfología y Biología Celular, Universidad de Oviedo, 33006 Oviedo, Spain
- Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Providencia—Área Metropolinana, Santiago de Chile 7500912, Chile
| | - Teresa Cobo
- Departamento de Cirugía y Especialidades Médico-Quirúrgicas, Universidad de Oviedo, 33006 Oviedo, Spain
- Instituto Asturiano de Odontología (IAO), 33006 Oviedo, Spain
| | - Santiago Cal
- Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Álvaro J. Obaya
- Departamento de Biología Funcional, Área de Fisiología, Universidad de Oviedo, 33006 Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), 33006 Oviedo, Spain
| |
Collapse
|
4
|
Chen R, Chen J, Chen M, Zhou S, Jiang P. Metformin suppresses proliferation and glycolysis of gastric cancer by modulating ADAMTS12. Genes Environ 2024; 46:1. [PMID: 38167385 PMCID: PMC10763268 DOI: 10.1186/s41021-023-00296-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 12/17/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Gastric cancer (GC) is a common malignancy with its morbidity increasing worldwide. Hence, it is imperative to develop effective treatments. Studies have shown that metformin has potential antitumor effects. The objective of this study was to probe the antitumor mechanism of metformin in GC. METHODS The expression of ADAMTS12 in GC tissues and its enrichment pathways were analyzed by bioinformatics methods. ADAMTS12 expression in GC cells was assessed by qRT-PCR. Cell viability and proliferation were analyzed by CCK-8 and colony formation assays, respectively. Extracellular acidification rate (ECAR) and oxygen consumption rate (OCR) of GC cells in different treatment groups were analyzed by Seahorse XP 96, and glycolysis metabolites were detected by corresponding kits. Western blot was employed to analyze the level of glycolysis pathway related protein HK-2, and cell functional assays were conducted to verify the functions of metformin on GC cells. A xenograft model was constructed to validate the inhibitory role of metformin in GC. RESULTS ADAMTS12 expression was elevated in GC tissues/cells and concentrated in glycolysis pathway. Cell functional assays found that ADAMTS12 promoted the proliferation and glycolysis of GC cells. Rescue experiments showed that metformin could reduce the promoting effect of ADAMTS12 overexpression on the proliferation and glycolysis of GC cells. In vivo studies confirmed that metformin suppressed the proliferation and glycolysis process via ADAMTS12 in GC cells. CONCLUSION Metformin can repress the proliferation and glycolysis of GC cells via ADAMTS12. The results suggest the potential of ADAMTS12 being a target for the metformin therapy of GC.
Collapse
Affiliation(s)
- Rui Chen
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province, 317000, Taizhou, Zhejiang, PR China
| | - Jianhui Chen
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province, 317000, Taizhou, Zhejiang, PR China
| | - Miaoliang Chen
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province, 317000, Taizhou, Zhejiang, PR China
| | - Shenkang Zhou
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province, 317000, Taizhou, Zhejiang, PR China
| | - Pinlu Jiang
- Department of Emergency, Taizhou Hospital of Zhejiang Province, 150# Ximen Street, 317000, Taizhou, Zhejiang, PR China.
| |
Collapse
|
5
|
Zou R, Gu R, Tu X, Chen J, Liu S, Xue X, Li W, Zhang Y. Effects of metalloprotease ADAMTS12 on cervical cancer cell phenotype and its potential mechanism. Discov Oncol 2023; 14:162. [PMID: 37642715 PMCID: PMC10465472 DOI: 10.1007/s12672-023-00776-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 08/21/2023] [Indexed: 08/31/2023] Open
Abstract
ADAMTS12 is a gene widely expressed in human tissues. We studied the expression level of ADAMTS12 in cervical cancer tissue and its relationship with clinicopathological features. We also explored the function of ADAMTS12 in cervical cancer cells and its underlying mechanisms. We found the higher expression level of ADAMTS12 in cancer tissues, which was associated with the worse overall survival rate. The immunofluorescence assay showed that the cytoplasm of cervical cancer cells is the main expression site of ADAMTS12. Overexpression of ADAMTS12 in HeLa and CaSki cells prominently promoted the cell proliferation, migration and invasion. We found that 2032 genes were correlated with ADAMTS12, which was mainly related to extracellular matrix, TGF-β signaling pathway. The phosphorylation levels of mTOR and 4E-BP1 were upregulated in ADAMTS12-overexpressing cells. Co-Immunoprecipitation combined with protein mass spectrometry showed that TGF-β signaling pathway-related proteins interacting with ADAMTS12 were screened from HeLa cells with ADAMTS12 overexpression. Therefore, we concluded that ADAMTS12 may affect the mTOR signaling pathway through the interacting with TGF-β1, and then affect the biological function of cervical cancer cells.
Collapse
Affiliation(s)
- Ruanmin Zou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, People's Republic of China.
| | - Ruihong Gu
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, College of Basic Medicine, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Xinyu Tu
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, College of Basic Medicine, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Jiani Chen
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, College of Basic Medicine, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Songjun Liu
- Department of Gynecology, Tongde Hospital of Zhejiang Province, Hangzhou, People's Republic of China
| | - Xiangyang Xue
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, College of Basic Medicine, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Wensu Li
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, College of Basic Medicine, Wenzhou Medical University, Wenzhou, People's Republic of China.
| | - Yuyang Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, People's Republic of China.
| |
Collapse
|
6
|
Schnellmann R. Advances in ADAMTS biomarkers. Adv Clin Chem 2022; 106:1-32. [PMID: 35152971 DOI: 10.1016/bs.acc.2021.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
A Disintegrin and Metalloproteinase with Thrombospondin motifs (ADAMTS) are major mediators in extracellular matrix (ECM) turnover and have gained increasing interest over the last years as major players in ECM remodeling during tissue homeostasis and the development of diseases. Although, ADAMTSs are recognized in playing important roles during tissue remodeling, and loss of function in various member of the ADAMTS family could be associated with the development of numerous diseases, limited knowledge is available about their specific substrates and mechanism of action. In this chapter, we will review current knowledge about ADAMTSs and their use as disease biomarkers.
Collapse
Affiliation(s)
- Rahel Schnellmann
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, United States.
| |
Collapse
|
7
|
Mohamedi Y, Fontanil T, Cal S, Cobo T, Obaya ÁJ. ADAMTS-12: Functions and Challenges for a Complex Metalloprotease. Front Mol Biosci 2021; 8:686763. [PMID: 33996918 PMCID: PMC8119882 DOI: 10.3389/fmolb.2021.686763] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 04/21/2021] [Indexed: 12/12/2022] Open
Abstract
Nineteen members of the ADAMTS family of secreted zinc metalloproteinases are present in the human degradome. A wide range of different functions are being attributed to these enzymes and the number of their known substrates is considerably increasing in recent years. ADAMTSs can participate in processes such as fertility, inflammation, arthritis, neuronal and behavioral disorders, as well as cancer. Since its first annotation in 2001, ADAMTS-12 has been described to participate in different processes displayed by members of this family of proteinases. In this sense, ADAMTS-12 performs essential roles in modulation and recovery from inflammatory processes such as colitis, endotoxic sepsis and pancreatitis. ADAMTS-12 has also been involved in cancer development acting either as a tumor suppressor or as a pro-tumoral agent. Furthermore, participation of ADAMTS-12 in arthritis or in neuronal disorders has also been suggested through degradation of components of the extracellular matrix. In addition, ADAMTS-12 proteinase activity can also be modified by interaction with other proteins and thus, can be an alternative way of modulating ADAMTS-12 functions. In this review we revised the most relevant findings about ADAMTS-12 function on the 20th anniversary of its identification.
Collapse
Affiliation(s)
- Yamina Mohamedi
- Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, Oviedo, Spain
| | - Tania Fontanil
- Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, Oviedo, Spain.,Departamento de Investigación, Instituto Ordóñez, Oviedo, Spain
| | - Santiago Cal
- Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, Oviedo, Spain.,Instituto Universitario de Oncología, IUOPA, Universidad de Oviedo, Oviedo, Spain
| | - Teresa Cobo
- Departamento de Cirugía y Especialidades Médico-Quirúrgicas, Universidad de Oviedo, Oviedo, Spain.,Instituto Asturiano de Odontología, Oviedo, Spain
| | - Álvaro J Obaya
- Instituto Universitario de Oncología, IUOPA, Universidad de Oviedo, Oviedo, Spain.,Departamento de Biología Funcional, Área de Fisiología, Universidad de Oviedo, Oviedo, Spain
| |
Collapse
|
8
|
Rabadán R, Mohamedi Y, Rubin U, Chu T, Alghalith AN, Elliott O, Arnés L, Cal S, Obaya ÁJ, Levine AJ, Cámara PG. Identification of relevant genetic alterations in cancer using topological data analysis. Nat Commun 2020; 11:3808. [PMID: 32732999 PMCID: PMC7393176 DOI: 10.1038/s41467-020-17659-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 07/09/2020] [Indexed: 01/05/2023] Open
Abstract
Large-scale cancer genomic studies enable the systematic identification of mutations that lead to the genesis and progression of tumors, uncovering the underlying molecular mechanisms and potential therapies. While some such mutations are recurrently found in many tumors, many others exist solely within a few samples, precluding detection by conventional recurrence-based statistical approaches. Integrated analysis of somatic mutations and RNA expression data across 12 tumor types reveals that mutations of cancer genes are usually accompanied by substantial changes in expression. We use topological data analysis to leverage this observation and uncover 38 elusive candidate cancer-associated genes, including inactivating mutations of the metalloproteinase ADAMTS12 in lung adenocarcinoma. We show that ADAMTS12-/- mice have a five-fold increase in the susceptibility to develop lung tumors, confirming the role of ADAMTS12 as a tumor suppressor gene. Our results demonstrate that data integration through topological techniques can increase our ability to identify previously unreported cancer-related alterations.
Collapse
Affiliation(s)
- Raúl Rabadán
- Departments of Systems Biology and Biomedical Informatics, Columbia University, 1130 St. Nicholas Ave., New York, NY, 10032, USA.
| | - Yamina Mohamedi
- Departamento de Bioquimica y Biologia Molecular, Universidad de Oviedo, Oviedo, Asturias, Spain
- IUOPA, Instituto Universitario de Oncologia, Oviedo, Asturias, Spain
| | - Udi Rubin
- Departments of Systems Biology and Biomedical Informatics, Columbia University, 1130 St. Nicholas Ave., New York, NY, 10032, USA
- Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA
| | - Tim Chu
- Departments of Systems Biology and Biomedical Informatics, Columbia University, 1130 St. Nicholas Ave., New York, NY, 10032, USA
| | - Adam N Alghalith
- Department of Genetics and Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd., Philadelphia, PA, 19104, USA
| | - Oliver Elliott
- Departments of Systems Biology and Biomedical Informatics, Columbia University, 1130 St. Nicholas Ave., New York, NY, 10032, USA
| | - Luis Arnés
- Departments of Systems Biology and Biomedical Informatics, Columbia University, 1130 St. Nicholas Ave., New York, NY, 10032, USA
| | - Santiago Cal
- Departamento de Bioquimica y Biologia Molecular, Universidad de Oviedo, Oviedo, Asturias, Spain
- IUOPA, Instituto Universitario de Oncologia, Oviedo, Asturias, Spain
| | - Álvaro J Obaya
- IUOPA, Instituto Universitario de Oncologia, Oviedo, Asturias, Spain
- Departamento de Biologia Funcional, Universidad de Oviedo, Oviedo, Asturias, Spain
| | - Arnold J Levine
- The Simons Center for Systems Biology, Institute for Advanced Study, Princeton, NJ, 08540, USA.
| | - Pablo G Cámara
- Department of Genetics and Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd., Philadelphia, PA, 19104, USA.
| |
Collapse
|
9
|
Pu X, Chan K, Yang W, Xiao Q, Zhang L, Moore AD, Liu C, Webb TR, Caulfield MJ, Samani NJ, Zhu J, Ye S. Effect of a coronary-heart-disease-associated variant of ADAMTS7 on endothelial cell angiogenesis. Atherosclerosis 2020; 296:11-17. [PMID: 32005000 DOI: 10.1016/j.atherosclerosis.2020.01.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/20/2019] [Accepted: 01/16/2020] [Indexed: 02/05/2023]
Abstract
BACKGROUND AND AIMS Recent studies have unveiled an association between ADAMTS7 gene variation and coronary artery disease (CAD) caused by atherosclerosis. We investigated if the ADAMTS7 Serine214-to-Proline substitution arising from a CAD-associated variant affected angiogenesis, since neovascularization plays an important role in atherosclerosis. METHODS AND RESULTS ADAMTS7 knockdown in vascular endothelial cells (ECs) attenuated their angiogenesis potential, whereas augmented ADAMTS7-Ser214 expression had the opposite effect, leading to increased ECs migratory and tube formation ability. Proteomics analysis showed an increase in thrombospondin-1, a reported angiogenesis inhibitor, in culture media conditioned by ECs with ADAMTS7 knockdown and a decrease of thrombospondin-1 in media conditioned by ECs with ADAMTS7-Ser214 overexpression. Cleavage assay indicated that ADAMTS7 possessed thrombospondin-1 degrading activity, which was reduced by the Ser214-to-Pro substitution. The pro-angiogenic effect of ADAMTS7-Ser214 diminished in the presence of a thrombospondin-1 blocking antibody. CONCLUSIONS The ADAMTS7 Ser217-to-Pro substitution as a result of ADAMTS7 polymorphism affects thrombospondin-1 degradation, thereby promoting atherogenesis through increased EC migration and tube formation.
Collapse
Affiliation(s)
- Xiangyuan Pu
- First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Kenneth Chan
- William Harvey Research Institute, Queen Mary University of London, London, UK; Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Wei Yang
- Shantou University Medical College, Shantou, China
| | - Qingzhong Xiao
- William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Li Zhang
- First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Andrew D Moore
- William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Chuanju Liu
- Musculoskeletal Research Center, New York University School of Medicine, New York, NY, USA
| | - Tom R Webb
- Department of Cardiovascular Sciences and NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
| | - Mark J Caulfield
- William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Nilesh J Samani
- Department of Cardiovascular Sciences and NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
| | - Jianhua Zhu
- First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shu Ye
- Shantou University Medical College, Shantou, China; Department of Cardiovascular Sciences and NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK.
| |
Collapse
|
10
|
Fontanil T, Mohamedi Y, Cobo T, Cal S, Obaya ÁJ. Novel Associations Within the Tumor Microenvironment: Fibulins Meet ADAMTSs. Front Oncol 2019; 9:796. [PMID: 31508361 PMCID: PMC6714394 DOI: 10.3389/fonc.2019.00796] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/06/2019] [Indexed: 01/08/2023] Open
Abstract
The maintenance of tissue homeostasis in any organism is a very complex and delicate process in which numerous factors intervene. Cellular homeostasis not only depends on intrinsic factors but also relies on external factors that compose the microenvironment or cellular niche. Thus, extracellular matrix (ECM) components play a very important role in maintaining cell survival and behavior, and alterations in the ECM composition can lead to different pathologies. Fibulins and ADAMTS metalloproteases play crucial roles in the upkeep and function of the ECM in different tissues. In fact, members of both of these families of secreted multidomain proteins can interact with numerous other ECM components and thus shape or regulate the molecular environment. Individual members of both families have been implicated in tumor-related processes by exhibiting either pro- or antitumor properties. Recent studies have shown both an important relation among members of both families and their participation in several pathologies, including cardiogenesis or cancer. In this review, we summarize the associations among fibulins and ADAMTSs and the effects elicited by those interactions on cellular behavior.
Collapse
Affiliation(s)
- Tania Fontanil
- Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, Oviedo, Spain.,Departamento de Investigación, Instituto Órdoñez, Oviedo, Spain.,Instituto Universitario de Oncología, IUOPA, Universidad de Oviedo, Oviedo, Spain
| | - Yamina Mohamedi
- Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, Oviedo, Spain.,Instituto Universitario de Oncología, IUOPA, Universidad de Oviedo, Oviedo, Spain
| | - Teresa Cobo
- Departamento de Cirugía y Especialidades Médico-Quirúrgicas, Instituto Asturiano de Odontología, Universidad de Oviedo, Oviedo, Spain
| | - Santiago Cal
- Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, Oviedo, Spain.,Instituto Universitario de Oncología, IUOPA, Universidad de Oviedo, Oviedo, Spain
| | - Álvaro J Obaya
- Instituto Universitario de Oncología, IUOPA, Universidad de Oviedo, Oviedo, Spain.,Departamento de Biología Funcional, Área de Fisiología, Universidad de Oviedo, Oviedo, Spain
| |
Collapse
|
11
|
Li X, Xiao X, Chang R, Zhang C. Comprehensive bioinformatics analysis identifies lncRNA HCG22 as a migration inhibitor in esophageal squamous cell carcinoma. J Cell Biochem 2019; 121:468-481. [PMID: 31236983 DOI: 10.1002/jcb.29218] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 06/04/2019] [Indexed: 12/18/2022]
Abstract
Esophageal cancer is one of the most lethal malignancies worldwide, and esophageal squamous cell carcinoma (ESCC) is the dominant histological type. However, the long noncoding RNA (lncRNA) alterations in ESCC have not been elucidated to date. In this study, reliable databases from Gene Expression Omnibus (GEO), which analyzed lncRNA expression in ESCC tumor tissues and adjacent normal tissues were searched, and common differentially expressed lncRNAs and genes were analyzed. Next, cis- trans analysis was performed to predict the underlying relationships between altered lncRNAs and mRNAs, and the lncRNA-mRNA regulatory network was established. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses of altered lncRNA-related genes were performed. The promising lncRNA HCG22 was validated by quantitative polymerase chain reaction (qPCR), and clinicopathological data were collected to identify the relationship between lncRNA HCG22 expression level and clinical features. Finally, Transwell assays were performed to explore the biological functions of lncRNA HCG22 in ESCC cells. Two hundred forty-one lncRNAs and 835 mRNAs were observed to be remarkably altered between ESCC tumor tissues and adjacent normal tissues. The lncRNA-mRNA regulatory network showed the coexpression association between lncRNA HCG22 and SPINK7 and ADAMTS12. GO and KEGG analyses showed that HCG22 and ADAMTS12 had potential biological functions in the cell migration of ESCC. The downregulation of lncRNA HCG22 in ESCC tumor tissues was validated by qPCR, and the clinicopathological data showed a noticeable correlation between lncRNA HCG22 expression level and the ESCC differentiational degree and clinical TNM stage. Kaplan-Meier analysis showed that patients with ESCC having low lncRNA HCG22 expression in ESCC tissues had considerably shorter overall survival compared with patients with ESCC having high lncRNA HCG22 expression. Following Transwell assays confirmed the migratory role of lncRNA HCG22 in ESCC cells. In conclusion, lncRNA HCG22 was downregulated in ESCC tissues and can be a migration inhibitor of ESCC cells, and SPINK7 and ADAMTS12 are promising to be the regulatory targets of lncRNA HCG22.
Collapse
Affiliation(s)
- Xizhe Li
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaoxiong Xiao
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ruimin Chang
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chunfang Zhang
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
12
|
Placental Ras Regulates Inflammation Associated with Maternal Obesity. Mediators Inflamm 2018; 2018:3645386. [PMID: 30402038 PMCID: PMC6196914 DOI: 10.1155/2018/3645386] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 09/11/2018] [Indexed: 02/07/2023] Open
Abstract
Heightened placental inflammation and dysfunction are commonly associated in pregnant obese women compared to their pregnant lean counterparts. The small GTPase superfamily members known as the rat sarcoma viral oncogene homolog (Ras) proteins, in particular, the K-Ras and H-Ras isoforms, have been implicated to regulate inflammation. The aims were to determine the placental Ras expression and activity with maternal obesity and its role in regulating placental inflammation. Human placenta was obtained at term Caesarean section from lean and obese pregnant women to determine the effect of maternal obesity on Ras protein expression and activity. To determine the effect of Ras on inflammation induced by bacterial endotoxin LPS and proinflammatory cytokines TNF-α or IL-1β, the chemical inhibitor lonafarnib (total Ras inhibitor) and siRNA (siKRAS and siHRAS) were used. Total Ras protein expression together with combined K-Ras and H-Ras activity was significantly increased in the placenta of obese pregnant women and when stimulated with LPS, IL-1β, or TNF-α. Lonafarnib significantly suppressed LPS-, IL-1β-, or TNF-α-induced IL-6, IL-8, MCP-1, and GRO-α expression and secretion in placental tissue. Primary trophoblast cells transfected with siKRAS or siHRAS demonstrated only K-Ras silencing significantly decreased IL-1β-, TNF-α-, or LPS-induced IL-6, IL-8, and MCP-1 expression and secretion. Furthermore, siKRAS significantly reduced downstream ERK-1/2 activation induced by LPS. In trophoblast cells, ERK-1/2 signalling is required for IL-6, IL-8, MCP-1, and GRO-α secretion. These studies implicate a role for K-Ras in regulating inflammation in human placenta. Suppressing overactive placental K-Ras function may prevent adverse fetal outcomes complicated by maternal obesity.
Collapse
|
13
|
Wei JL, Fu W, Hettinghouse A, He WJ, Lipson KE, Liu CJ. Role of ADAMTS-12 in Protecting Against Inflammatory Arthritis in Mice By Interacting With and Inactivating Proinflammatory Connective Tissue Growth Factor. Arthritis Rheumatol 2018; 70:1745-1756. [PMID: 29750395 DOI: 10.1002/art.40552] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 05/03/2018] [Indexed: 12/19/2022]
Abstract
OBJECTIVE It has been reported that ADAMTS-12 is a susceptibility gene for rheumatoid arthritis (RA) development, and its level is significantly increased in RA patients. In addition, ADAMTS-12 is reported to be required for inflammation in otherwise healthy subjects. This study was undertaken to determine the role of ADAMTS-12 and the underlying mechanisms in the pathogenesis of inflammatory arthritis. METHODS The collagen-induced arthritis (CIA) model was established in ADAMTS-12-deficient mice and their control littermates to determine the role of ADAMTS-12 in vivo. Micro-computed tomography scanning was used to demonstrate the destruction of the ankle joint; histologic analysis illustrated synovitis, pannus formation, and bone and cartilage destruction; enzyme-linked immunosorbent assay was performed to measure serum levels of inflammatory cytokines; and protein-protein interaction assays were performed to detect the interactions of ADAMTS-12 and its various deletion mutants with connective tissue growth factor (CTGF). RESULTS Deficiency of ADAMTS-12 led to accelerated inflammatory arthritis in the CIA mouse model. Loss of ADAMTS-12 caused enhanced osteoclastogenesis. In vitro and in vivo protein-protein interaction assays demonstrated that ADAMTS-12 bound and processed CTGF, a previously unrecognized substrate of ADAMTS-12. In addition, deletion of ADAMTS-12 enhanced, while overexpression of ADMATS-12 reduced, CTGF-mediated inflammation. Furthermore, ADAMTS-12 regulation of inflammation was largely lost in CTGF-deficient macrophages. Importantly, blocking of CTGF attenuated elevated inflammatory arthritis seen in the ADAMTS-12-deficient CIA mouse model. CONCLUSION This study provides evidence that ADAMTS-12 is a critical regulator of inflammatory arthritis and that this is mediated, at least in part, through control of CTGF turnover.
Collapse
Affiliation(s)
- Jian-Lu Wei
- New York University Medical Center, New York, New York, and Shandong University Qilu Hospital, Jinan, China
| | - Wenyu Fu
- New York University Medical Center, New York, New York
| | | | - Wen-Jun He
- New York University Medical Center, New York, New York
| | | | - Chuan-Ju Liu
- New York University Medical Center and New York University School of Medicine, New York, New York
| |
Collapse
|
14
|
Reimer C, Rubin CJ, Sharifi AR, Ha NT, Weigend S, Waldmann KH, Distl O, Pant SD, Fredholm M, Schlather M, Simianer H. Analysis of porcine body size variation using re-sequencing data of miniature and large pigs. BMC Genomics 2018; 19:687. [PMID: 30231878 PMCID: PMC6146782 DOI: 10.1186/s12864-018-5009-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 08/14/2018] [Indexed: 12/30/2022] Open
Abstract
Background Domestication has led to substantial phenotypic and genetic variation in domestic animals. In pigs, the size of so called minipigs differs by one order of magnitude compared to breeds of large body size. We used biallelic SNPs identified from re-sequencing data to compare various publicly available wild and domestic populations against two minipig breeds to gain better understanding of the genetic background of the extensive body size variation. We combined two complementary measures, expected heterozygosity and the composite likelihood ratio test implemented in “SweepFinder”, to identify signatures of selection in Minipigs. We intersected these sweep regions with a measure of differentiation, namely FST, to remove regions of low variation across pigs. An extraordinary large sweep between 52 and 61 Mb on chromosome X was separately analyzed based on SNP-array data of F2 individuals from a cross of Goettingen Minipigs and large pigs. Results Selective sweep analysis identified putative sweep regions for growth and subsequent gene annotation provided a comprehensive set of putative candidate genes. A long swept haplotype on chromosome X, descending from the Goettingen Minipig founders was associated with a reduction of adult body length by 3% in F2 cross-breds. Conclusion The resulting set of genes in putative sweep regions implies that the genetic background of body size variation in pigs is polygenic rather than mono- or oligogenic. Identified genes suggest alterations in metabolic functions and a possible insulin resistance to contribute to miniaturization. A size QTL located within the sweep on chromosome X, with an estimated effect of 3% on body length, is comparable to the largest known in pigs or other species. The androgen receptor AR, previously known to influence pig performance and carcass traits, is the most obvious potential candidate gene within this region. Electronic supplementary material The online version of this article (10.1186/s12864-018-5009-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- C Reimer
- Animal Breeding and Genetics Group, Department of Animal Sciences, University of Goettingen, Albrecht-Thaer-Weg 3, 37075, Goettingen, Germany. .,Center for Integrated Breeding Research, University of Goettingen, Albrecht-Thaer-Weg 3, 37075, Goettingen, Germany.
| | - C-J Rubin
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala Biomedicinska centrum BMC, Husargatan 3, 75237, Uppsala, Sweden
| | - A R Sharifi
- Animal Breeding and Genetics Group, Department of Animal Sciences, University of Goettingen, Albrecht-Thaer-Weg 3, 37075, Goettingen, Germany.,Center for Integrated Breeding Research, University of Goettingen, Albrecht-Thaer-Weg 3, 37075, Goettingen, Germany
| | - N-T Ha
- Animal Breeding and Genetics Group, Department of Animal Sciences, University of Goettingen, Albrecht-Thaer-Weg 3, 37075, Goettingen, Germany.,Center for Integrated Breeding Research, University of Goettingen, Albrecht-Thaer-Weg 3, 37075, Goettingen, Germany
| | - S Weigend
- Institute of Farm Animal Genetics of the Friedrich-Loeffler-Institut, Höltystraße 10, 31535, Neustadt-Mariensee, Germany.,Center for Integrated Breeding Research, University of Goettingen, Albrecht-Thaer-Weg 3, 37075, Goettingen, Germany
| | - K-H Waldmann
- Clinic for Swine, Small Ruminants, Forensic Medicine and Ambulatory Service, University of Veterinary Medicine - Foundation, Bischofsholer Damm 15, 30173, Hannover, Germany
| | - O Distl
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine - Foundation, Bünteweg 17p, 30559, Hannover, Germany
| | - S D Pant
- Graham Centre for Agricultural Innovation, School of Animal & Veterinary Sciences, Charles Sturt University, Locked Bag 588, Boorooma St., Wagga Wagga, NSW, Australia
| | - M Fredholm
- Department of Veterinary- and Animal Sciences, University of Copenhagen, Grønnegårdsvej 3, 1870, Frederiksberg C, Denmark
| | - M Schlather
- School of Business Informatics and Mathematics, University of Mannheim, A5 6, 68131, Mannheim, Germany.,Center for Integrated Breeding Research, University of Goettingen, Albrecht-Thaer-Weg 3, 37075, Goettingen, Germany
| | - H Simianer
- Animal Breeding and Genetics Group, Department of Animal Sciences, University of Goettingen, Albrecht-Thaer-Weg 3, 37075, Goettingen, Germany.,Center for Integrated Breeding Research, University of Goettingen, Albrecht-Thaer-Weg 3, 37075, Goettingen, Germany
| |
Collapse
|
15
|
ADAMTS6 suppresses tumor progression via the ERK signaling pathway and serves as a prognostic marker in human breast cancer. Oncotarget 2018; 7:61273-61283. [PMID: 27542224 PMCID: PMC5308650 DOI: 10.18632/oncotarget.11341] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Accepted: 07/27/2016] [Indexed: 02/05/2023] Open
Abstract
A disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS) family is involved in tumor development. However, how ADAMTS6 influences cancer remains unknown. We investigated the biological function and clinical implications of ADAMTs6 in breast cancer (BC). Its functional significance in BC cell lines was confirmed by ADAMTs6 overexpression or downregulation both in vitro and in vivo studies. Enhanced ADAMTS6 expression suppressed cell migration, invasion, and tumorigenesis, whereas knockdown promoted these characteristics. The extracellular signal-regulated kinase (ERK) pathway was partially involved in ADAMTS6-mediated inhibition of BC development, and miR-221-3p was identified as a predicted target for ADAMTS6. Results from the luciferase assay confirmed that miR-221-3p directly inhibited ADAMTS6 expression by binding its 3′-untranslated region. In addition, immunohistochemistry data from specimens from 182 BC patients showed that high ADAMTS6 expression was significantly correlated with favorable disease-free survival (DFS, p = 0.045). Subgroup analysis of patients with ER positive, PR positive or HER-2 negative tumors revealed that high ADAMTS6 expression more strongly extended DFS compared to low expression (p = 0.004, p = 0.009, p = 0.017). Multivariate analyses confirmed that ADAMTS6 expression was an independent risk factor for DFS (p = 0.011). Together, these data demonstrate that ADAMTS6 inhibits tumor development by regulating the ERK pathway via binding of miR-221-3p. Thus, its expression may be a potential prognostic biomarker for BC.
Collapse
|
16
|
Fontanil T, Álvarez-Teijeiro S, Villaronga MÁ, Mohamedi Y, Solares L, Moncada-Pazos A, Vega JA, García-Suárez O, Pérez-Basterrechea M, García-Pedrero JM, Obaya AJ, Cal S. Cleavage of Fibulin-2 by the aggrecanases ADAMTS-4 and ADAMTS-5 contributes to the tumorigenic potential of breast cancer cells. Oncotarget 2017; 8:13716-13729. [PMID: 28099917 PMCID: PMC5355132 DOI: 10.18632/oncotarget.14627] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 01/04/2017] [Indexed: 11/30/2022] Open
Abstract
Fibulin-2 participates in the assembly of extracellular matrix components through interactions with multiple ligands and promotes contacts between cells and their surrounding environment. Consequently, identification of processes that could lead to an altered Fibulin-2 could have a major impact not only in the maintenance of tissue architecture and morphogenesis but also in pathological situations including cancer. Herein, we have investigated the ability of the secreted metalloproteases ADAMTS-4 and ADAMTS-5 to digest Fibulin-2. Using in vitro approaches and cultured breast cancer cell lines we demonstrate that Fibulin-2 is a better substrate for ADAMTS-5 than it is for ADAMTS-4. Moreover, Fibulin-2 degradation is associated to an enhancement of the invasive potential of T47D, MCF-7 and SK-BR-3 cells. We have also found that conditioned medium from MCF-7 cells that simultaneously overexpress Fibulin-2 and ADAMTS-5 significantly induced the migratory and invasive ability of normal breast fibroblasts using 3D collagen matrices. Immunohistochemical analysis highlights the close proximity or partial overlap of both Fibulin-2 and ADAMTS-5 in breast tumor samples. Additionally, proteolytic products derived from a potential degradation of Fibulin-2 by ADAMTS-5 were also identified in these samples. Finally, we also show that the cleavage of Fibulin-2 by ADAMTS-5 is counteracted by ADAMTS-12, a metalloprotease that interacts with Fibulin-2. Overall, our results provide direct evidence indicating that Fibulin-2 is a novel substrate of ADAMTS-5 and that this proteolysis could alter the cellular microenvironment affecting the balance between protumor and antitumor effects associated to both Fibulin-2 and the ADAMTSs metalloproteases.
Collapse
Affiliation(s)
- Tania Fontanil
- Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, Asturias Spain.,Instituto Universitario de Oncología, IUOPA, Universidad de Oviedo, Asturias, Spain
| | - Saúl Álvarez-Teijeiro
- Instituto Universitario de Oncología, IUOPA, Universidad de Oviedo, Asturias, Spain.,Hospital Universitario Central de Asturias, Universidad de Oviedo, Asturias, and CIBERONC, Madrid, Spain
| | - M Ángeles Villaronga
- Instituto Universitario de Oncología, IUOPA, Universidad de Oviedo, Asturias, Spain.,Hospital Universitario Central de Asturias, Universidad de Oviedo, Asturias, and CIBERONC, Madrid, Spain
| | - Yamina Mohamedi
- Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, Asturias Spain.,Instituto Universitario de Oncología, IUOPA, Universidad de Oviedo, Asturias, Spain
| | - Laura Solares
- Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, Asturias Spain.,Instituto Universitario de Oncología, IUOPA, Universidad de Oviedo, Asturias, Spain
| | - Angela Moncada-Pazos
- Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, Asturias Spain.,Instituto Universitario de Oncología, IUOPA, Universidad de Oviedo, Asturias, Spain.,Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | - José A Vega
- Department of Morphology and Cellular Biology, Faculty of Medicine, University of Oviedo, Oviedo, Spain.,Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Chile
| | - Olivia García-Suárez
- Department of Morphology and Cellular Biology, Faculty of Medicine, University of Oviedo, Oviedo, Spain
| | - Marcos Pérez-Basterrechea
- Unidad de Trasplantes, Terapia Celular y Medicina Regenerativa, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Juana M García-Pedrero
- Instituto Universitario de Oncología, IUOPA, Universidad de Oviedo, Asturias, Spain.,Hospital Universitario Central de Asturias, Universidad de Oviedo, Asturias, and CIBERONC, Madrid, Spain
| | - Alvaro J Obaya
- Instituto Universitario de Oncología, IUOPA, Universidad de Oviedo, Asturias, Spain.,Departamento de Biología Funcional, Area de Fisiología, Universidad de Oviedo, Asturias, Spain
| | - Santiago Cal
- Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, Asturias Spain.,Instituto Universitario de Oncología, IUOPA, Universidad de Oviedo, Asturias, Spain
| |
Collapse
|
17
|
Lu T, Dang S, Zhu R, Wang Y, Nie Z, Hong T, Zhang W. Adamts18 deficiency promotes colon carcinogenesis by enhancing β-catenin and p38MAPK/ERK1/2 signaling in the mouse model of AOM/DSS-induced colitis-associated colorectal cancer. Oncotarget 2017; 8:18979-18990. [PMID: 28145888 PMCID: PMC5386663 DOI: 10.18632/oncotarget.14866] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 01/18/2017] [Indexed: 12/19/2022] Open
Abstract
ADAMTS18 is a novel tumor suppressor and is critical to the pathology of human colorectal cancer. However, the underlying mechanism is not clear. Here we generated an Adamts18-deficient mouse strain as an in vivo model to investigate the role of ADAMTS18 in the pathogenesis of colorectal cancer. In AOM/DSS-induced colitis-associated colorectal cancer, the deficiency of Adamts18 in mice resulted in enhanced tumorigenesis and colon inflammation that could be attributed in part to enhanced nuclear translocation of β-catenin and elevated expression of its downstream target genes, cyclin D1 and c-myc. Moreover, increased p38MAPK and ERK1/2 activities were detected in colon cancer cells from Adamts18-deficient mice. Further studies revealed that ADAMTS18 deficiency reduced intestinal E-cadherin levels in mice, which ultimately led to intestinal barrier dysfunction. These data indicate that Adamts18 deficiency enhances tumorigenesis and intestinal inflammation through elevated Wnt/β-catenin and p38MAPK/ERK1/2 signaling and promotes colon cancer in this mouse model.
Collapse
Affiliation(s)
- Tiantian Lu
- Key Laboratory of Brain Functional Genomics, Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Science, East China Normal University, Shanghai, China
| | - Suying Dang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Research Center for Model Organisms, Shanghai, China
| | - Rui Zhu
- Key Laboratory of Brain Functional Genomics, Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Science, East China Normal University, Shanghai, China
| | - Ying Wang
- Key Laboratory of Brain Functional Genomics, Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Science, East China Normal University, Shanghai, China
| | - Zongying Nie
- Key Laboratory of Brain Functional Genomics, Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Science, East China Normal University, Shanghai, China
| | - Tao Hong
- Key Laboratory of Brain Functional Genomics, Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Science, East China Normal University, Shanghai, China
| | - Wei Zhang
- Key Laboratory of Brain Functional Genomics, Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Science, East China Normal University, Shanghai, China
| |
Collapse
|
18
|
Alterations in ADAMTS12 gene expression in salivary glands of radioiodine-131-administered rats. Nucl Med Commun 2017; 37:1010-5. [PMID: 27295306 DOI: 10.1097/mnm.0000000000000556] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE The aim of this study was to evaluate the alterations in ADAMTS12 expression after radioiodine-131 (RAI)-induced salivary gland damage. MATERIALS AND METHODS A total of 30 Wistar male albino rats (260±45 g, 6 months old) were studied for ADAMTS12 gene expression levels and histological changes in the parotid and submandibular salivary glands of rats after the administration of RAI. A series of healthy rats were used as controls. A 3 mCi (111 MBq) dose of RAI was administered to rats in group 1 (n=6), group 2 (n=6), group 3 (n=6), and group 4 (n=6) to induce salivary gland damage. Evaluations were performed at 24 h in controls and at 4, 24 h, 7, and 30 days after the administration of RAI. Quantitative and statistical analyses were carried out. RESULTS In RAI-administered groups, the mean values of ADAMTS12 gene expression showed a distinct suppression over time for the parotid gland (groups 1-4: 0.38, 0.11, 0.10, and 0.18, respectively; P<0.05), but the values remained similar over time for the submandibular gland (groups 1-4: 1.59, 1.57, 1.03, and 1.00, respectively; P>0.05) compared with the controls. Histological evaluation indicated that RAI-administered groups had significant common nuclear coarsening and focal subnuclear vacuolization, but not in the control samples. Histological changes were more prominent in the parotid gland samples. CONCLUSION Alterations in ADAMTS12 gene expression may play a role in RAI-induced salivary gland damage in rats.
Collapse
|
19
|
Binder MJ, McCoombe S, Williams ED, McCulloch DR, Ward AC. The extracellular matrix in cancer progression: Role of hyalectan proteoglycans and ADAMTS enzymes. Cancer Lett 2016; 385:55-64. [PMID: 27838414 DOI: 10.1016/j.canlet.2016.11.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 10/28/2016] [Accepted: 11/01/2016] [Indexed: 01/08/2023]
Abstract
Remodelling of the extracellular matrix (ECM) has emerged as a key factor in cancer progression. Proteoglycans, including versican and other hyalectans, represent major structural elements of the ECM where they interact with other important molecules, including the glycosaminoglycan hyaluronan and the CD44 cell surface receptor. The hyalectan proteoglycans are regulated through cleavage by the proteolytic actions of A Disintegrin-like And Metalloproteinase domain with Thrombospondin-1 motif (ADAMTS) family members. Alteration in the balance between hyalectan proteoglycans and ADAMTS enzymes has been proposed to be a crucial factor in cancer progression either in a positive or negative manner depending on the context. Further complexity arises due to the formation of bioactive cleavage products, such as versikine, which may also play a role, and non-enzymatic functions for ADAMTS proteins. This research is providing fresh insights into cancer biology and opportunities for the development of new diagnostic and treatment strategies.
Collapse
Affiliation(s)
- Marley J Binder
- School of Medicine, Deakin University, Waurn Ponds, Victoria 3216, Australia
| | - Scott McCoombe
- School of Medicine, Deakin University, Waurn Ponds, Victoria 3216, Australia
| | - Elizabeth D Williams
- Australian Prostate Cancer Research Centre, Institute of Health and Biomedical Innovation, Queensland University of Technology, Princess Alexandra Hospital, Translational Research Institute, Brisbane, Queensland 4000, Australia
| | - Daniel R McCulloch
- School of Medicine, Deakin University, Waurn Ponds, Victoria 3216, Australia; Centre for Molecular and Medical Research, Deakin University, Waurn Ponds, Victoria 3216, Australia
| | - Alister C Ward
- School of Medicine, Deakin University, Waurn Ponds, Victoria 3216, Australia; Centre for Molecular and Medical Research, Deakin University, Waurn Ponds, Victoria 3216, Australia.
| |
Collapse
|
20
|
Pérez-García S, Gutiérrez-Cañas I, Seoane IV, Fernández J, Mellado M, Leceta J, Tío L, Villanueva-Romero R, Juarranz Y, Gomariz RP. Healthy and Osteoarthritic Synovial Fibroblasts Produce a Disintegrin and Metalloproteinase with Thrombospondin Motifs 4, 5, 7, and 12: Induction by IL-1β and Fibronectin and Contribution to Cartilage Damage. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:2449-61. [PMID: 27449198 DOI: 10.1016/j.ajpath.2016.05.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 05/20/2016] [Accepted: 05/23/2016] [Indexed: 12/22/2022]
Abstract
Current description of osteoarthritis includes the involvement of synovial inflammation. Studies contributing to understanding the mechanisms of cross-talk and feedback among the joint tissues could be relevant to the development of therapies that block disease progression. During osteoarthritis, synovial fibroblasts exposed to anomalous mechanical forces and an inflammatory microenvironment release factors such as a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS) metalloproteinases that mediate tissue damage and perpetuate inflammation. We therefore studied the production of ADAMTS by synovial fibroblasts and their contribution to cartilage degradation. Moreover, we analyzed the implication of two mediators present in the osteoarthritis joint, IL-1β as proinflammatory cytokine, and 45-kDa fibronectin fragments as products of matrix degradation. We reported that synovial fibroblasts constitutively express and release ADAMTS 4, 5, 7, and 12. Despite the contribution of both mediators to the stimulation of Runx2 and Wnt/β-catenin signaling pathways, as well as to ADAMTS expression, promoting the degradation of aggrecan and cartilage oligomeric matrix protein from cartilage, fibronectin fragments rather than IL-1β played the major pathological role in osteoarthritis, contributing to the maintenance of the disease. Moreover, higher levels of ADAMTS 4 and 7 and a specific regulation of ADAMTS-12 were observed in osteoarthritis, suggesting them as new potential therapeutic targets. Therefore, synovial fibroblasts provide the biochemical tools to the chronicity and destruction of the osteoarthritic joints.
Collapse
Affiliation(s)
- Selene Pérez-García
- Department of Cell Biology, Faculty of Biology, Complutense University of Madrid, Madrid, Spain
| | - Irene Gutiérrez-Cañas
- Department of Cell Biology, Faculty of Biology, Complutense University of Madrid, Madrid, Spain
| | - Iria V Seoane
- Department of Cell Biology, Faculty of Biology, Complutense University of Madrid, Madrid, Spain
| | - Julián Fernández
- Traumatology Service, Hospital Universitario de La Princesa, Medical Research Institute, Madrid, Spain
| | - Mario Mellado
- Department of Immunology and Oncology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Javier Leceta
- Department of Cell Biology, Faculty of Biology, Complutense University of Madrid, Madrid, Spain
| | - Laura Tío
- Cellular Inflammation and Cartilage Research Group, Hospital del Mar Research Institute (IMIM), Barcelona, Spain
| | - Raúl Villanueva-Romero
- Department of Cell Biology, Faculty of Biology, Complutense University of Madrid, Madrid, Spain
| | - Yasmina Juarranz
- Department of Cell Biology, Faculty of Biology, Complutense University of Madrid, Madrid, Spain
| | - Rosa P Gomariz
- Department of Cell Biology, Faculty of Biology, Complutense University of Madrid, Madrid, Spain.
| |
Collapse
|
21
|
Iourov IY, Vorsanova SG, Demidova IA, Aliamovskaia GA, Keshishian ES, Yurov YB. 5p13.3p13.2 duplication associated with developmental delay, congenital malformations and chromosome instability manifested as low-level aneuploidy. SPRINGERPLUS 2015; 4:616. [PMID: 26543751 PMCID: PMC4628017 DOI: 10.1186/s40064-015-1399-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 10/05/2015] [Indexed: 01/07/2023]
Abstract
Recent developments in molecular cytogenetics allow the detection of genomic rearrangements at an unprecedented level leading to discoveries of previously unknown chromosomal imbalances (zygotic and post-zygotic/mosaic). These can be accompanied by a different kind of pathological genome variations, i.e. chromosome instability (CIN) manifested as structural chromosomal rearrangements and low-level mosaic aneuploidy. Fortunately, combining whole-genome and single-cell molecular cytogenetic techniques with bioinformatics offers an opportunity to link genomic changes to specific molecular or cellular pathology. High-resolution chromosomal SNP microarray analysis was performed to study the genome of a 15-month-aged boy presented with developmental delay, congenital malformations, feeding problems, deafness, epileptiform activity, and eye pathology. In addition, somatic chromosomal mutations (CIN) were analyzed by fluorescence in situ hybridization (FISH). Interstitial 5p13.3p13.2 duplication was revealed in the index patient. Moreover, CIN manifested almost exclusively as chromosome losses and gains (aneuploidy) was detected. Using bioinformatic analysis of SNP array data and FISH results, CIN association with the genomic imbalance resulted from the duplication was proposed. The duplication was demonstrated to encompass genes implicated in cell cycle, programmed cell death, chromosome segregation and genome stability maintenance pathways as shown by an interactomic analysis. Genotype-phenotype correlations were observed, as well. To the best our knowledge, identical duplications have not been reported in the available literature. Apart from genotype-phenotype correlations, it was possible to propose a link between the duplication and CIN (aneuploidy). This case study demonstrates that combining SNP array genomic analysis, bioinformatics and molecular cytogenetic evaluation of somatic genome variations is able to provide a view on cellular and molecular pathology in a personalized manner. Therefore, one can speculate that similar approaches targeting both interindividual and intercellular genomic variations could be useful for a better understanding of disease mechanisms and disease-related biological processes.
Collapse
Affiliation(s)
- Ivan Y Iourov
- Mental Health Research Center, Russian Academy of Medical Sciences, Moscow, 117152 Russia ; Russian National Research Medical University named after N.I. Pirogov, Separated Structural Unit "Clinical Research Institute of Pediatrics", Ministry of Health of Russian Federation, Moscow, 125412 Russia ; Department of Medical Genetics, Russian Medical Academy of Postgraduate Education, Moscow, 123995 Russia
| | - Svetlana G Vorsanova
- Mental Health Research Center, Russian Academy of Medical Sciences, Moscow, 117152 Russia ; Russian National Research Medical University named after N.I. Pirogov, Separated Structural Unit "Clinical Research Institute of Pediatrics", Ministry of Health of Russian Federation, Moscow, 125412 Russia
| | - Irina A Demidova
- Mental Health Research Center, Russian Academy of Medical Sciences, Moscow, 117152 Russia ; Russian National Research Medical University named after N.I. Pirogov, Separated Structural Unit "Clinical Research Institute of Pediatrics", Ministry of Health of Russian Federation, Moscow, 125412 Russia
| | - Galina A Aliamovskaia
- Russian National Research Medical University named after N.I. Pirogov, Separated Structural Unit "Clinical Research Institute of Pediatrics", Ministry of Health of Russian Federation, Moscow, 125412 Russia
| | - Elena S Keshishian
- Russian National Research Medical University named after N.I. Pirogov, Separated Structural Unit "Clinical Research Institute of Pediatrics", Ministry of Health of Russian Federation, Moscow, 125412 Russia
| | - Yuri B Yurov
- Mental Health Research Center, Russian Academy of Medical Sciences, Moscow, 117152 Russia ; Russian National Research Medical University named after N.I. Pirogov, Separated Structural Unit "Clinical Research Institute of Pediatrics", Ministry of Health of Russian Federation, Moscow, 125412 Russia
| |
Collapse
|
22
|
Kelwick R, Desanlis I, Wheeler GN, Edwards DR. The ADAMTS (A Disintegrin and Metalloproteinase with Thrombospondin motifs) family. Genome Biol 2015; 16:113. [PMID: 26025392 PMCID: PMC4448532 DOI: 10.1186/s13059-015-0676-3] [Citation(s) in RCA: 421] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The ADAMTS (A Disintegrin and Metalloproteinase with Thrombospondin motifs) enzymes are secreted, multi-domain matrix-associated zinc metalloendopeptidases that have diverse roles in tissue morphogenesis and patho-physiological remodeling, in inflammation and in vascular biology. The human family includes 19 members that can be sub-grouped on the basis of their known substrates, namely the aggrecanases or proteoglycanases (ADAMTS1, 4, 5, 8, 9, 15 and 20), the procollagen N-propeptidases (ADAMTS2, 3 and 14), the cartilage oligomeric matrix protein-cleaving enzymes (ADAMTS7 and 12), the von-Willebrand Factor proteinase (ADAMTS13) and a group of orphan enzymes (ADAMTS6, 10, 16, 17, 18 and 19). Control of the structure and function of the extracellular matrix (ECM) is a central theme of the biology of the ADAMTS, as exemplified by the actions of the procollagen-N-propeptidases in collagen fibril assembly and of the aggrecanases in the cleavage or modification of ECM proteoglycans. Defects in certain family members give rise to inherited genetic disorders, while the aberrant expression or function of others is associated with arthritis, cancer and cardiovascular disease. In particular, ADAMTS4 and 5 have emerged as therapeutic targets in arthritis. Multiple ADAMTSs from different sub-groupings exert either positive or negative effects on tumorigenesis and metastasis, with both metalloproteinase-dependent and -independent actions known to occur. The basic ADAMTS structure comprises a metalloproteinase catalytic domain and a carboxy-terminal ancillary domain, the latter determining substrate specificity and the localization of the protease and its interaction partners; ancillary domains probably also have independent biological functions. Focusing primarily on the aggrecanases and proteoglycanases, this review provides a perspective on the evolution of the ADAMTS family, their links with developmental and disease mechanisms, and key questions for the future.
Collapse
Affiliation(s)
- Richard Kelwick
- School of Biological Sciences, Biomedical Research Centre, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
| | - Ines Desanlis
- School of Biological Sciences, Biomedical Research Centre, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
| | - Grant N Wheeler
- School of Biological Sciences, Biomedical Research Centre, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
| | - Dylan R Edwards
- School of Biological Sciences, Biomedical Research Centre, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
| |
Collapse
|
23
|
Li M, Liu L, Zang W, Wang Y, Du Y, Chen X, Li P, Li J, Zhao G. miR‑365 overexpression promotes cell proliferation and invasion by targeting ADAMTS-1 in breast cancer. Int J Oncol 2015; 47:296-302. [PMID: 25998153 DOI: 10.3892/ijo.2015.3015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 05/08/2015] [Indexed: 11/05/2022] Open
Abstract
MicroRNAs (miRNAs) have important roles in the initiation and progression of human cancer, including breast cancer. We evaluated miR‑365 expression in breast cancer tissues, and investigated its effects on cell growth, cell cycle, cell invasion, and expression of its target gene ADAMTS-1. miR‑365 expression levels were analyzed in breast cancer tissues and adjacent normal tissues using qRT-PCR. CCK-8, cell cycle, and invasion assays were used to explore the role of miR‑365 expression in breast cancer cells. We conducted luciferase reporter and western blot assays to test whether ADAMTS-1 is a direct target of miR‑365. We found that miR‑365 expression levels were significantly higher in breast cancer tissues compared with adjacent non-tumor tissues (P<0.05). These relatively high expression levels were significantly associated with advanced clinical stages (P<0.05). In breast cancer cell lines, transfection with miR‑365 inhibitor suppressed proliferation and invasion, and resulted in cell cycle arrest. Subsequent experiments indicated that miR‑365 bound the 3'-UTR of ADAMTS-1 and downregulated its expression. Our findings indicated that the inhibition of miR‑365 reduced cell proliferation and cell invasion. Additionally, miR‑365 may function as a novel oncogene in breast cancer through targeting ADAMTS-1. These findings provide insight into the mechanism of breast cancer pathogenesis.
Collapse
Affiliation(s)
- Min Li
- College of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, P.R. China
| | - Lulu Liu
- College of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, P.R. China
| | - Wenqiao Zang
- College of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, P.R. China
| | - Yuanyuan Wang
- College of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, P.R. China
| | - Yuwen Du
- College of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, P.R. China
| | - Xiaonan Chen
- College of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, P.R. China
| | - Ping Li
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P.R. China
| | - Juan Li
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P.R. China
| | - Guoqiang Zhao
- College of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, P.R. China
| |
Collapse
|
24
|
The roles of ADAMTS in angiogenesis and cancer. Tumour Biol 2015; 36:4039-51. [PMID: 25916206 DOI: 10.1007/s13277-015-3461-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 04/14/2015] [Indexed: 10/23/2022] Open
Abstract
Angiogenesis is an indispensable mechanism involved in both physiological processes and various pathological conditions, such as inflammation, aberrant wound healing, tumor progression, and metastasis. Among many angiogenic stimulators and inhibitors, vascular endothelial growth factor (VEGF) is regarded as one of the most important members of the signaling protein family involved in blood vessel formation and maturation. The a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTSs) proteins are a family of multifunctional proteinases. Such proteolytic enzymes are associated with various physiological processes, such as collagen maturation, organogenesis, angiogenesis, and reproduction. Importantly, deficiency or overexpression of certain ADAMTS proteinases has been shown to be directly involved in a number of serious diseases, including tumor progression and metastasis. This review explores in-depth the connections between ADAMTS proteinases as positive/negative mediators during angiogenesis and VEGF.
Collapse
|
25
|
Chen J, Zhang C, Xu X, Zhu X, Dai D. Downregulation of A disintegrin and metallopeptidase with thrombospondin motif type 1 by DNA hypermethylation in human gastric cancer. Mol Med Rep 2015; 12:2487-94. [PMID: 25936341 PMCID: PMC4464468 DOI: 10.3892/mmr.2015.3667] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Accepted: 03/23/2015] [Indexed: 11/06/2022] Open
Abstract
A disintegrin and metallopeptidase with thrombospondin motif type 1 (ADAMTS1) is a metalloproteinase with antiangiogenic activity. It was previously observed that the mRNA and protein levels of ADAMTS1 are downregulated in primary gastric tumors. The aim of the present study was to examine whether the reduction in the expression of ADAMTS1 is due to aberrant methylation of the gene in primary gastric tumor tissues and gastric cancer cell lines. In addition, the association between ADAMTS1 methylation and clinicopathological features in were investigated in patients with primary gastric cancer. The results revealed that the frequency of ADAMTS1 methylation in primary gastric tumor tissues was significantly higher, compared with the corresponding normal gastric tissues. The relative mRNA expression levels of ADAMTS1 were significantly lower in the methylated primary gastric tumor tissues, compared with the unmethylated primary gastric tumor tissuess. A significant association was observed between the ADAMTS1 methylation status and the depth of tumor invasion and tumor, node, metastasis stage in primary gastric cancer. The mRNA expression of ADAMTS1 was significantly lower in 60% (3 of 5) of the gastric cancer cell lines. The relative mRNA expression levels of ADAMTS1 were significantly lower in the methylated gastric cancer cell lines, compared with the unmethylated gastric cancer cell lines. Furthermore, the expression of ADAMTS1 was significantly restored following treatment with the 5-Aza-2′-deoxycytidine demethylating agent in the MGC-803, HGC-27 and AGS gastric cancer cell lines, and the demethylation of the MGC-803 cell line inhibited cell invasion. Together, these results suggested for the first time, to the best of our knowledge, ADAMTS1 as a novel antitumor protease, and this function was lost following epigenetic silencing in the gastric cancer cells and gastric tumor tissues. Therefore, the aberrant methylation of ADAMTS1 may be involved in the development and progression of gastric cancer.
Collapse
Affiliation(s)
- Jing Chen
- Department of Gastrointestinal Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, P.R. China
| | - Chundong Zhang
- Department of Gastrointestinal Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, P.R. China
| | - Xiaoyang Xu
- Department of Gastrointestinal Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, P.R. China
| | - Xinjiang Zhu
- Department of Gastrointestinal Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, P.R. China
| | - Dongqiu Dai
- Department of Gastrointestinal Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, P.R. China
| |
Collapse
|
26
|
Rodríguez-Manzaneque JC, Fernández-Rodríguez R, Rodríguez-Baena FJ, Iruela-Arispe ML. ADAMTS proteases in vascular biology. Matrix Biol 2015; 44-46:38-45. [PMID: 25698314 DOI: 10.1016/j.matbio.2015.02.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 02/09/2015] [Accepted: 02/10/2015] [Indexed: 02/03/2023]
Abstract
ADAMTS (a disintegrin and metalloprotease with thrombospondin motifs) proteases comprise the most recently discovered branch of the extracellular metalloenzymes. Research during the last 15years, uncovered their association with a variety of physiological and pathological processes including blood coagulation, tissue repair, fertility, arthritis and cancer. Importantly, a frequent feature of ADAMTS enzymes relates to their effects on vascular-related phenomena, including angiogenesis. Their specific roles in vascular biology have been clarified by information on their expression profiles and substrate specificity. Through their catalytic activity, ADAMTS proteases modify rather than degrade extracellular proteins. They predominantly target proteoglycans and glycoproteins abundant in the basement membrane, therefore their broad contributions to the vasculature should not come as a surprise. Furthermore, in addition to their proteolytic functions, non-enzymatic roles for ADAMTS have also been identified expanding our understanding on the multiple activities of these enzymes in vascular-related processes.
Collapse
Affiliation(s)
| | - Rubén Fernández-Rodríguez
- GENYO, Centre for Genomics and Oncological Research, Pfizer, Universidad de Granada, Junta de Andalucía, 18016 Granada, Spain
| | | | - M Luisa Iruela-Arispe
- Department of Molecular, Cell, and Developmental Biology, Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
27
|
Cal S, López-Otín C. ADAMTS proteases and cancer. Matrix Biol 2015; 44-46:77-85. [PMID: 25636539 DOI: 10.1016/j.matbio.2015.01.013] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 01/19/2015] [Accepted: 01/19/2015] [Indexed: 11/17/2022]
Abstract
ADAMTSs (A disintegrin and metalloprotease domains with thrombospondins motifs) are complex extracellular proteases that have been related to both oncogenic and tumor-protective functions. These enzymes can be secreted by cancer and stromal cells and may contribute to modify the tumor microenvironment by multiple mechanisms. Thus, ADAMTSs can cleave or interact with a wide range of extracellular matrix components or regulatory factors, and therefore affect cell adhesion, migration, proliferation and angiogenesis. The balance of protumor versus antitumor effects of ADAMTSs may depend on the nature of their substrates or interacting-partners upon secretion from the cell. Moreover, different ADAMTS genes have been found overexpressed, mutated or epigenetically silenced in tumors from different origins, suggesting the direct impact of these metalloproteases in cancer development. However, despite the important advances on the tumor biology of ADAMTSs in recent years, more mechanistic and functional studies are necessary to fully understand how these proteases can influence tumor microenvironment to potentiate cancer growth or to induce tumor regression. This review outlines current and emerging connections between ADAMTSs and cancer.
Collapse
Affiliation(s)
- Santiago Cal
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología del Principado de Asturias, IUOPA, Universidad de Oviedo, 33006 Oviedo, Asturias, Spain.
| | - Carlos López-Otín
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología del Principado de Asturias, IUOPA, Universidad de Oviedo, 33006 Oviedo, Asturias, Spain
| |
Collapse
|
28
|
Fontanil T, Rúa S, Llamazares M, Moncada-Pazos A, Quirós PM, García-Suárez O, Vega JA, Sasaki T, Mohamedi Y, Esteban MM, Obaya AJ, Cal S. Interaction between the ADAMTS-12 metalloprotease and fibulin-2 induces tumor-suppressive effects in breast cancer cells. Oncotarget 2015; 5:1253-64. [PMID: 24457941 PMCID: PMC4012729 DOI: 10.18632/oncotarget.1690] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Balance between pro-tumor and anti-tumor effects may be affected by molecular interactions within tumor microenvironment. On this basis we searched for molecular partners of ADAMTS-12, a secreted metalloprotease that shows both oncogenic and tumor-suppressive effects. Using its spacer region as a bait in a yeast two-hybrid screen, we identified fibulin-2 as a potential ADAMTS-12-interacting protein. Fibulins are components of basement membranes and elastic matrix fibers in connective tissue. Besides this structural function, fibulins also play crucial roles in different biological events, including tumorigenesis. To examine the functional consequences of the ADAMTS-12/fibulin-2 interaction, we performed different in vitro assays using two breast cancer cell lines: the poorly invasive MCF-7 and the highly invasive MDA-MB-231. Overall our data indicate that this interaction promotes anti-tumor effects in breast cancer cells. To assess the in vivo relevance of this interaction, we induced tumors in nude mice using MCF-7 cells expressing both ADAMTS-12 and fibulin-2 that showed a remarkable growth deficiency. Additionally, we also found that ADAMTS-12 may elicit pro-tumor effects in the absence of fibulin-2. Immunohistochemical staining of breast cancer samples allowed the detection of both ADAMTS-12 and fibulin-2 in the connective tissue surrounding tumor area in less aggressive carcinomas. However, both proteins are hardly detected in more aggressive tumors. These data and survival analysis plots of breast cancer patients suggest that concomitant detection of ADAMTS-12 and fibulin-2 could be a good prognosis marker in breast cancer diagnosis.
Collapse
Affiliation(s)
- Tania Fontanil
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Oviedo, Asturias, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Kelwick R, Wagstaff L, Decock J, Roghi C, Cooley LS, Robinson SD, Arnold H, Gavrilović J, Jaworski DM, Yamamoto K, Nagase H, Seubert B, Krüger A, Edwards DR. Metalloproteinase-dependent and -independent processes contribute to inhibition of breast cancer cell migration, angiogenesis and liver metastasis by a disintegrin and metalloproteinase with thrombospondin motifs-15. Int J Cancer 2014; 136:E14-26. [PMID: 25099234 DOI: 10.1002/ijc.29129] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 07/15/2014] [Accepted: 07/18/2014] [Indexed: 01/10/2023]
Abstract
The ADAMTS proteinases are a family of secreted, matrix-associated enzymes that have diverse roles in the regulation of tissue organization and vascular homeostasis. Several of the 19 human family members have been identified as having either tumor promoting or suppressing roles. We previously demonstrated that decreased ADAMTS15 expression correlated with a worse clinical outcome in mammary carcinoma (e.g., Porter et al., Int J Cancer 2006;118:1241-7). We have explored the effects of A Disintegrin and Metalloproteinase with Thrombospondin motifs-15 (ADAMTS-15) on the behavior of MDA-MB-231 and MCF-7 breast cancer cells by stable expression of either a wild-type (wt) or metalloproteinase-inactive (E362A) protein. No effects on mammary cancer cell proliferation or apoptosis were observed for either form of ADAMTS-15. However, both forms reduced cell migration on fibronectin or laminin matrices, though motility on a Type I collagen matrix was unimpaired. Knockdown of syndecan-4 attenuated the inhibitory effects of ADAMTS-15 on cell migration. In contrast to its effects on cell migration, wt ADAMTS-15 but not the E362A inactive mutant inhibited endothelial tubulogenesis in 3D collagen gels and angiogenesis in the aortic ring assay. In experimental metastasis assays in nude mice, MDA-MB-231 cells expressing either form of ADAMTS-15 showed reduced spread to the liver, though lung colonization was enhanced for cells expressing wt ADAMTS-15. These studies indicate that extracellular ADAMTS-15 has multiple actions on tumor pathophysiology. Via modulation of cell-ECM interactions, which likely involve syndecan-4, it attenuates mammary cancer cell migration independent of its metalloproteinase activity; however, its antiangiogenic action requires catalytic functionality, and its effects on metastasis in vivo are tissue niche-dependent.
Collapse
Affiliation(s)
- Richard Kelwick
- School of Biological Sciences, Biomedical Research Centre, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
ADAMTS-12: a multifaced metalloproteinase in arthritis and inflammation. Mediators Inflamm 2014; 2014:649718. [PMID: 24876675 PMCID: PMC4020202 DOI: 10.1155/2014/649718] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 03/28/2014] [Accepted: 04/07/2014] [Indexed: 12/12/2022] Open
Abstract
ADAMTS-12 is a member of a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS) family of proteases, which were known to play important roles in various biological and pathological processes, such as development, angiogenesis, inflammation, cancer, arthritis, and atherosclerosis. In this review, we briefly summarize the structural organization of ADAMTS-12; concentrate on the emerging role of ADAMTS-12 in several pathophysiological conditions, including intervertebral disc degeneration, tumorigenesis and angioinhibitory effects, pediatric stroke, gonad differentiation, trophoblast invasion, and genetic linkage to schizophrenia and asthma, with special focus on its role in arthritis and inflammation; and end with the perspective research of ADAMTS-12 and its potential as a promising diagnostic and therapeutic target in various kinds of diseases and conditions.
Collapse
|
31
|
Choi GCG, Li J, Wang Y, Li L, Zhong L, Ma B, Su X, Ying J, Xiang T, Rha SY, Yu J, Sung JJY, Tsao SW, Chan ATC, Tao Q. The Metalloprotease ADAMTS8 Displays Antitumor Properties through Antagonizing EGFR–MEK–ERK Signaling and Is Silenced in Carcinomas by CpG Methylation. Mol Cancer Res 2013; 12:228-38. [PMID: 24184540 DOI: 10.1158/1541-7786.mcr-13-0195] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Gigi C G Choi
- Room 315, Cancer Center, PWH, The Chinese University of Hong Kong, Shatin, Hong Kong.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Rao N, Ke Z, Liu H, Ho CJ, Kumar S, Xiang W, Zhu Y, Ge R. ADAMTS4 and its proteolytic fragments differentially affect melanoma growth and angiogenesis in mice. Int J Cancer 2013; 133:294-306. [DOI: 10.1002/ijc.28037] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Affiliation(s)
- Nithya Rao
- Department of Biological Sciences; Faculty of Science, National University of Singapore; Singapore; Singapore
| | - Zhiyuan Ke
- Department of Biological Sciences; Faculty of Science, National University of Singapore; Singapore; Singapore
| | - Hongrui Liu
- Department of Pharmacology; School of Pharmacy, Fudan University; Shanghai; People's Republic of China
| | - Chao-Jin Ho
- Department of Biological Sciences; Faculty of Science, National University of Singapore; Singapore; Singapore
| | - Saran Kumar
- Department of Biological Sciences; Faculty of Science, National University of Singapore; Singapore; Singapore
| | - Wei Xiang
- Department of Biological Sciences; Faculty of Science, National University of Singapore; Singapore; Singapore
| | - Yizhun Zhu
- Department of Pharmacology; School of Pharmacy, Fudan University; Shanghai; People's Republic of China
| | - Ruowen Ge
- Department of Biological Sciences; Faculty of Science, National University of Singapore; Singapore; Singapore
| |
Collapse
|
33
|
Cifola I, Pietrelli A, Consolandi C, Severgnini M, Mangano E, Russo V, De Bellis G, Battaglia C. Comprehensive genomic characterization of cutaneous malignant melanoma cell lines derived from metastatic lesions by whole-exome sequencing and SNP array profiling. PLoS One 2013; 8:e63597. [PMID: 23704925 PMCID: PMC3660556 DOI: 10.1371/journal.pone.0063597] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 04/04/2013] [Indexed: 02/08/2023] Open
Abstract
Cutaneous malignant melanoma is the most fatal skin cancer and although improved comprehension of its pathogenic pathways allowed to realize some effective molecular targeted therapies, novel targets and drugs are still needed. Aiming to add genetic information potentially useful for novel targets discovery, we performed an extensive genomic characterization by whole-exome sequencing and SNP array profiling of six cutaneous melanoma cell lines derived from metastatic patients. We obtained a total of 3,325 novel coding single nucleotide variants, including 2,172 non-synonymous variants. We catalogued the coding mutations according to Sanger COSMIC database and to a manually curated list including genes involved in melanoma pathways identified by mining recent literature. Besides confirming the presence of known melanoma driver mutations (BRAF(V600E), NRAS(Q61R) ), we identified novel mutated genes involved in signalling pathways crucial for melanoma pathogenesis and already addressed by current targeted therapies (such as MAPK and glutamate pathways). We also identified mutations in four genes (MUC19, PAICS, RBMXL1, KIF23) never reported in melanoma, which might deserve further investigations. All data are available to the entire research community in our Melanoma Exome Database (at https://155.253.6.64/MExDB/). In summary, these cell lines are valuable biological tools to improve the genetic comprehension of this complex cancer disease and to study functional relevance of individual mutational events, and these findings could provide insights potentially useful for identification of novel therapeutic targets for cutaneous malignant melanoma.
Collapse
Affiliation(s)
- Ingrid Cifola
- Institute for Biomedical Technologies, National Research Council, Milan, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Tan IDA, Ricciardelli C, Russell DL. The metalloproteinase ADAMTS1: a comprehensive review of its role in tumorigenic and metastatic pathways. Int J Cancer 2013; 133:2263-76. [PMID: 23444028 DOI: 10.1002/ijc.28127] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 02/14/2013] [Indexed: 01/07/2023]
Abstract
As it was first characterized in 1997, the ADAMTS (A Disintegrin and Metalloprotease with ThromboSpondin motifs) metalloprotease family has been associated with many physiological and pathological conditions. Of the 19 proteases belonging to this family, considerable attention has been devoted to the role of its first member ADAMTS1 in cancer. Elevated ADAMTS1 promotes pro-tumorigenic changes such as increased tumor cell proliferation, inhibited apoptosis and altered vascularization. Importantly, it facilitates significant peritumoral remodeling of the extracellular matrix environment to promote tumor progression and metastasis. However, discrepancy exists, as several studies also depict ADAMTS1 as a tumor suppressor. This article reviews the current understanding of ADAMTS1 regulation and the consequence of its dysregulation in primary cancer and ADAMTS1-mediated pathways of cancer progression and metastasis.
Collapse
Affiliation(s)
- Izza de Arao Tan
- Robinson Institute, School of Paediatrics and Reproductive Health, Department of Obstetrics and Gynaecology, Univeristy of Adelaide, South Australia, Australia
| | | | | |
Collapse
|
35
|
Ai H, Huang L, Ren J. Genetic diversity, linkage disequilibrium and selection signatures in chinese and Western pigs revealed by genome-wide SNP markers. PLoS One 2013; 8:e56001. [PMID: 23409110 PMCID: PMC3567019 DOI: 10.1371/journal.pone.0056001] [Citation(s) in RCA: 167] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2012] [Accepted: 01/03/2013] [Indexed: 11/18/2022] Open
Abstract
To investigate population structure, linkage disequilibrium (LD) pattern and selection signature at the genome level in Chinese and Western pigs, we genotyped 304 unrelated animals from 18 diverse populations using porcine 60 K SNP chips. We confirmed the divergent evolution between Chinese and Western pigs and showed distinct topological structures of the tested populations. We acquired the evidence for the introgression of Western pigs into two Chinese pig breeds. Analysis of runs of homozygosity revealed that historical inbreeding reduced genetic variability in several Chinese breeds. We found that intrapopulation LD extents are roughly comparable between Chinese and Western pigs. However, interpopulation LD is much longer in Western pigs compared with Chinese pigs with average r(2) (0.3) values of 125 kb for Western pigs and only 10.5 kb for Chinese pigs. The finding indicates that higher-density markers are required to capture LD with causal variants in genome-wide association studies and genomic selection on Chinese pigs. Further, we looked across the genome to identify candidate loci under selection using F(ST) outlier tests on two contrast samples: Tibetan pigs versus lowland pigs and belted pigs against non-belted pigs. Interestingly, we highlighted several genes including ADAMTS12, SIM1 and NOS1 that show signatures of natural selection in Tibetan pigs and are likely important for genetic adaptation to high altitude. Comparison of our findings with previous reports indicates that the underlying genetic basis for high-altitude adaptation in Tibetan pigs, Tibetan peoples and yaks is likely distinct from one another. Moreover, we identified the strongest signal of directional selection at the EDNRB loci in Chinese belted pigs, supporting EDNRB as a promising candidate gene for the white belt coat color in Chinese pigs. Altogether, our findings advance the understanding of the genome biology of Chinese and Western pigs.
Collapse
Affiliation(s)
- Huashui Ai
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, China
| | - Lusheng Huang
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, China
- * E-mail: (JR); (LH)
| | - Jun Ren
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, China
- * E-mail: (JR); (LH)
| |
Collapse
|
36
|
Chen J, Zhi Y, Chang X, Zhang S, Dai D. Expression of ADAMTS1 and its correlation with angiogenesis in primary gastric cancer and lymph node metastasis. Dig Dis Sci 2013; 58:405-13. [PMID: 23001403 DOI: 10.1007/s10620-012-2379-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2011] [Accepted: 08/20/2012] [Indexed: 12/09/2022]
Abstract
BACKGROUND A disintegrin and metallopeptidase with thrombospondin motif type 1 (ADAMTS1) is a recently discovered metalloproteinase with antiangiogenic activity. The function of ADAMTS1 in gastric cancer remains unknown. Therefore, we were interested in examining ADAMTS1 expression in human gastric cancer, as well as its possible correlation with angiogenesis. METHODS The mRNA and protein expression of ADAMTS1, thrombospondin type I (TSP1), and vascular endothelial growth factor (VEGF) was evaluated by RT-PCR and immunohistochemistry, respectively, in 56 paired tumor and normal tissue samples, and corresponding metastatic lymph nodes (n = 42). Microvessel density (MVD) was also evaluated by immunohistochemistry. RESULTS ADAMTS1 mRNA and protein levels were significantly lower in primary tumors than in corresponding normal tissues, and were significantly higher in metastatic lymph nodes compared to their matched primary tumors. High ADAMTS1 mRNA and protein expression was found to be significantly associated with lymph node metastasis in primary tumors. There was a negative correlation between ADAMTS1 and VEGF mRNA and protein expression in primary gastric tumors and normal tissues. A negative correlation was also found between ADAMTS1 protein expression and MVD in primary gastric tumors. In contrast, no correlation was detected between ADAMTS1 and TSP1 mRNA and protein expression in primary gastric tumors, normal tissues, and metastatic lymph nodes. CONCLUSIONS These findings suggest that ADAMTS1 expression is altered in primary gastric cancer and paired lymph node metastasis. In addition, ADAMTS1 has angioinhibitory effects in primary gastric cancer due to its low expression and negative correlation with VEGF and MVD. However, it appears to lose its anti-angiogenic activity in metastatic lymph nodes in gastric cancer.
Collapse
Affiliation(s)
- Jing Chen
- Department of Gastrointestinal Surgery, Fourth Affiliated Hospital, China Medical University, Chongshan East Road 4, Shenyang, 110032, Liaoning, China.
| | | | | | | | | |
Collapse
|
37
|
Kumar S, Rao N, Ge R. Emerging Roles of ADAMTSs in Angiogenesis and Cancer. Cancers (Basel) 2012; 4:1252-99. [PMID: 24213506 PMCID: PMC3712723 DOI: 10.3390/cancers4041252] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 11/21/2012] [Accepted: 11/23/2012] [Indexed: 12/18/2022] Open
Abstract
A Disintegrin-like And Metalloproteinase with ThromboSpondin motifs—ADAMTSs—are a multi-domain, secreted, extracellular zinc metalloproteinase family with 19 members in humans. These extracellular metalloproteinases are known to cleave a wide range of substrates in the extracellular matrix. They have been implicated in various physiological processes, such as extracellular matrix turnover, melanoblast development, interdigital web regression, blood coagulation, ovulation, etc. ADAMTSs are also critical in pathological processes such as arthritis, atherosclerosis, cancer, angiogenesis, wound healing, etc. In the past few years, there has been an explosion of reports concerning the role of ADAMTS family members in angiogenesis and cancer. To date, 10 out of the 19 members have been demonstrated to be involved in regulating angiogenesis and/or cancer. The mechanism involved in their regulation of angiogenesis or cancer differs among different members. Both angiogenesis-dependent and -independent regulation of cancer have been reported. This review summarizes our current understanding on the roles of ADAMTS in angiogenesis and cancer and highlights their implications in cancer therapeutic development.
Collapse
Affiliation(s)
- Saran Kumar
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore.
| | | | | |
Collapse
|
38
|
Moncada-Pazos A, Obaya AJ, Llamazares M, Heljasvaara R, Suárez MF, Colado E, Noël A, Cal S, López-Otín C. ADAMTS-12 metalloprotease is necessary for normal inflammatory response. J Biol Chem 2012; 287:39554-63. [PMID: 23019333 DOI: 10.1074/jbc.m112.408625] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
ADAMTSs (a disintegrin and metalloprotease with thrombospondin domains) are a family of enzymes with both proteolytic and protein interaction functions, which have been implicated in distinct pathologies. In this work, we have investigated the putative role of ADAMTS-12 in inflammation by using a mouse model deficient in this metalloprotease. Control and mutant mice were subjected to different experimental conditions to induce colitis, endotoxic sepsis, and pancreatitis. We have observed that Adamts12-deficient mice exhibit more severe inflammation and a delayed recovery from these challenges compared with their wild-type littermates. These changes are accompanied by an increase in inflammatory markers including several cytokines, as assessed by microarray expression analysis and proteomic-based approaches. Interestingly, the clinical symptoms observed in Adamts12-deficient mice are also concomitant with an elevation in the number of neutrophils in affected tissues. Finally, isolation and in vitro culture of human neutrophils demonstrate that the presence of ADAMTS-12 induces neutrophil apoptosis. On the basis of these results, we propose that ADAMTS-12 is implicated in the inflammatory response by modulating normal neutrophil apoptosis.
Collapse
Affiliation(s)
- Angela Moncada-Pazos
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, 33006 Oviedo, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Paulissen G, El Hour M, Rocks N, Guéders MM, Bureau F, Foidart JM, Lopez-Otin C, Noel A, Cataldo DD. Control of allergen-induced inflammation and hyperresponsiveness by the metalloproteinase ADAMTS-12. THE JOURNAL OF IMMUNOLOGY 2012; 189:4135-43. [PMID: 22962682 DOI: 10.4049/jimmunol.1103739] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS) constitute a family of endopeptidases related to matrix metalloproteinases. These proteinases have been largely implicated in tissue remodeling associated with pathological processes. Among them, ADAMTS12 was identified as an asthma-associated gene in a human genome screening program. However, its functional implication in asthma is not yet documented. The present study aims at investigating potential ADAMTS-12 functions in experimental models of allergic airways disease. Two different in vivo protocols of allergen-induced airways disease were applied to the recently generated Adamts12-deficient mice and corresponding wild-type mice. In this study, we provide evidence for a protective effect of ADAMTS-12 against bronchial inflammation and hyperresponsiveness. In the absence of Adamts12, challenge with different allergens (OVA and house dust mite) led to exacerbated eosinophilic inflammation in the bronchoalveolar lavage fluid and in lung tissue, along with airway dysfunction assessed by increased airway responsiveness following methacholine exposure. Furthermore, mast cell counts and ST2 receptor and IL-33 levels were higher in the lungs of allergen-challenged Adamts12-deficient mice. The present study provides, to our knowledge, the first experimental evidence for a contribution of ADAMTS-12 as a key mediator in airways disease, interfering with immunological processes leading to inflammation and airway hyperresponsiveness.
Collapse
Affiliation(s)
- Geneviève Paulissen
- Laboratory of Tumor and Developmental Biology, Interdisciplinary Group of Applied Genoproteomics-Cancer (GIGA-Cancer), University of Liège and University Hospital of Liège, 4000 Liège, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Noël A, Gutiérrez-Fernández A, Sounni NE, Behrendt N, Maquoi E, Lund IK, Cal S, Hoyer-Hansen G, López-Otín C. New and paradoxical roles of matrix metalloproteinases in the tumor microenvironment. Front Pharmacol 2012; 3:140. [PMID: 22822400 PMCID: PMC3398411 DOI: 10.3389/fphar.2012.00140] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 06/27/2012] [Indexed: 12/12/2022] Open
Abstract
Processes such as cell proliferation, angiogenesis, apoptosis, or invasion are strongly influenced by the surrounding microenvironment of the tumor. Therefore, the ability to change these surroundings represents an important property through which tumor cells are able to acquire specific functions necessary for tumor growth and dissemination. Matrix metalloproteinases (MMPs) constitute key players in this process, allowing tumor cells to modify the extracellular matrix (ECM) and release cytokines, growth factors, and other cell-surface molecules, ultimately facilitating protease-dependent tumor progression. Remodeling of the ECM by collagenolytic enzymes such as MMP1, MMP8, MMP13, or the membrane-bound MT1-MMP as well as by other membrane-anchored proteases is required for invasion and recruitment of novel blood vessels. However, the multiple roles of the MMPs do not all fit into a simple pattern. Despite the pro-tumorigenic function of certain metalloproteinases, recent studies have shown that other members of these families, such as MMP8 or MMP11, have a protective role against tumor growth and metastasis in animal models. These studies have been further expanded by large-scale genomic analysis, revealing that the genes encoding metalloproteinases, such as MMP8, MMP27, ADAM7, and ADAM29, are recurrently mutated in specific tumors, while several ADAMTSs are epigenetically silenced in different cancers. The importance of these proteases in modifying the tumor microenvironment highlights the need for a deeper understanding of how stroma cells and the ECM can modulate tumor progression.
Collapse
Affiliation(s)
- Agnès Noël
- Laboratory of Tumor and Development Biology, GIGA-Cancer, University of Liège Liège, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Kumar S, Sharghi-Namini S, Rao N, Ge R. ADAMTS5 functions as an anti-angiogenic and anti-tumorigenic protein independent of its proteoglycanase activity. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 181:1056-68. [PMID: 22796434 DOI: 10.1016/j.ajpath.2012.05.022] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 04/20/2012] [Accepted: 05/17/2012] [Indexed: 12/21/2022]
Abstract
ADAMTS5 is a member of the A Disintegrin-like And Metalloproteinase with ThromboSpondin motifs (ADAMTS) family of secreted metalloproteinases with multiple proteoglycan substrates. Although well characterized for its role in cartilage degradation and arthritis, how it influences cancer remains unclear. We have previously shown that the first thrombospondin type 1 repeat (TSR1, the central TSR) but not TSR2 (the C-terminal TSR) of ADAMTS5 is anti-angiogenic in vitro. Coupled with previous reports that ADAMTS5 expression is altered in several human cancers, we hypothesized that this proteoglycanase may play an important role in cancer and angiogenesis. Here, we demonstrated that overexpression of full-length ADAMTS5 suppressed B16 melanoma growth in mice. The reduced tumor growth is correlated with diminished tumor angiogenesis, together with reduced tumor cell proliferation and increased tumor cell apoptosis. Catalytically active ADAMTS5 proteolytic fragment also suppressed angiogenesis in vitro. The catalytic activity of ADAMTS5 is dispensable for its anti-tumorigenic function, as the full-length active site mutant E411A presented similar tumor suppression activity. Domain mapping and mechanistic studies revealed that ADAMTS5 inhibits B16 tumorigenesis through its TSR1 by suppressing tumor angiogenesis, likely by down-regulating pro-angiogenic factors such as vascular endothelial growth factor (VEGF), placenta growth factor (PlGF), and platelet-derived endothelial growth factor (PD-ECGF) in the tumor milieu. This is the first report that ADAMTS5 is an anti-angiogenic and anti-tumorigenic protein independent of its proteoglycanase activity.
Collapse
Affiliation(s)
- Saran Kumar
- Department of Biological Sciences, National University of Singapore, Singapore
| | | | | | | |
Collapse
|
42
|
Abstract
Angiogenesis is an indispensable mechanism in development and in many pathologies, including cancer, synovitis and aberrant wound healing. Many angiogenic stimulators and inhibitors have been investigated, and some have progressed to the clinic. A disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS) is a group of multifunctional proteinases. ADAMTS-1 and ADAMTS-8 have been reported to be anti-angiogenic. Here, we provide evidence that ADAMTS-4, like ADAMTS-1, is expressed by endothelial cells and binds to vascular endothelial groth factor (VEGF). Moreover, ADAMTS-4 inhibited human dermal microvascular endothelial cells (HuDMEC) VEGF-stimulated VEGF receptor (R) R2 phosphorylation, differentiation and migration, suggesting that ADAMTS-4 may be a novel anti-angiogenic molecule.
Collapse
Affiliation(s)
- Yi-Ping Hsu
- Academic Unit of Molecular Medicine and Rheumatology, University of Sheffield Medical School, Sheffield, UK
| | | | | | | |
Collapse
|
43
|
Bespalova IN, Angelo GW, Ritter BP, Hunter J, Reyes-Rabanillo ML, Siever LJ, Silverman JM. Genetic variations in the ADAMTS12 gene are associated with schizophrenia in Puerto Rican patients of Spanish descent. Neuromolecular Med 2012; 14:53-64. [PMID: 22322903 DOI: 10.1007/s12017-012-8169-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 01/20/2012] [Indexed: 02/07/2023]
Abstract
ADAMTS12 belongs to the family of metalloproteinases that mediate a communication between specific cell types and play a key role in the regulation of normal tissue development, remodeling, and degradation. Members of this family have been implicated in neurodegenerative and neuroinflammatory, as well as in muscular-skeletal, cardiovascular, respiratory and renal diseases, and cancer. Several metalloproteinases have been associated with schizophrenia. In our previous study of the pedigree from a genetic isolate of Spanish origin in Puerto Rico, we identified a schizophrenia susceptibility locus on chromosome 5p13 containing ADAMTS12. This gene, therefore, is not only a functional but also a positional candidate gene for susceptibility to the disorder. In order to examine possible involvement of ADAMTS12 in schizophrenia, we performed mutation analysis of the coding, 5'- and 3'-untranslated, and putative promoter regions of the gene in affected members of the pedigree and identified 18 sequence variants segregated with schizophrenia. We then tested these variants in 135 unrelated Puerto Rican schizophrenia patients of Spanish origin and 203 controls and identified the intronic variant rs256792 (P = 0.0035; OR = 1.59; 95% CI = 1.16-2.17) and the two-SNP haplotype rs256603-rs256792 (P = 0.0023; OR = 1.62; 95% CI = 1.19-2.21) associated with the disorder. The association remained significant after correction for multiple testing. Our data support the hypothesis that genetic variations in ADAMTS12 influence the risk of schizophrenia.
Collapse
Affiliation(s)
- Irina N Bespalova
- Department of Psychiatry, Mount Sinai School of Medicine, New York, NY 10029, USA.
| | | | | | | | | | | | | |
Collapse
|
44
|
Expression of ADAMTS12 in colorectal cancer-associated stroma prevents cancer development and is a good prognostic indicator of colorectal cancer. Dig Dis Sci 2011; 56:3281-7. [PMID: 21559743 DOI: 10.1007/s10620-011-1723-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Accepted: 04/15/2011] [Indexed: 12/09/2022]
Abstract
AIM The aim of this study was to investigate the role of ADAMTS12 in colorectal cancer progression and to examine whether ADAMTS-12 can be considered as a prognostic indicator for colorectal cancer. METHODS This study was performed on formalin-fixed paraffin-embedded resected specimens obtained from 112 patients with colorectal cancer. The expression level of ADAMTS12 was investigated by immunohistochemical staining to assess the relationship between ADAMTS12 expression and the clinicopathologic factors and to study the prognostic significance of ADAMTS12 in colorectal cancer patients. RESULTS ADAMTS12 expression was mainly localized in the fibroblasts adjacent to the tumor cells or in macrophages in front of the invasive cancer margins. The ADAMTS12 expression was significantly correlated with the tumor histological grade, depth of tumor invasion, lymph node metastasis, and Dukes' stage. Patients with low or no ADAMTS12 expression in the tumor stroma had a significantly poor overall survival or disease-free survival. CONCLUSION The expression of ADAMTS12 in colorectal cancer stroma plays an important role in inhibiting tumor development. Patients with ADAMTS12 expression showed better prognosis than those without ADAMTS12 expression. Thus, ADAMTS12 expression may be a good prognostic marker for colorectal cancer.
Collapse
|
45
|
Gene expression profile of ADAMs and ADAMTSs metalloproteinases in normal and malignant plasma cells and in the bone marrow environment. Exp Hematol 2011; 39:546-557.e8. [DOI: 10.1016/j.exphem.2011.02.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Revised: 01/28/2011] [Accepted: 02/03/2011] [Indexed: 01/15/2023]
|
46
|
Beristain AG, Zhu H, Leung PCK. Regulated expression of ADAMTS-12 in human trophoblastic cells: a role for ADAMTS-12 in epithelial cell invasion? PLoS One 2011; 6:e18473. [PMID: 21494557 PMCID: PMC3073978 DOI: 10.1371/journal.pone.0018473] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 03/07/2011] [Indexed: 12/23/2022] Open
Abstract
Metastatic carcinoma cells exploit the same molecular machinery that allows human placental cytotrophoblasts to develop an invasive phenotype. As altered expression levels of ADAMTS (ADisintegrin And Metalloproteinase with ThromboSpondin repeats) subtypes have been associated with cancer progression, we have examined the function and regulation of members of this gene family in epithelial cell invasion using cultures of highly invasive extravillous cytotrophoblasts and the poorly invasive JEG-3 cytotrophoblast cell line as model systems. Of the multiple ADAMTS subtypes identified in first trimester human placenta and these two trophoblastic cell types, only ADAMTS-12 was preferentially expressed by extravillous cytotrophoblasts. Transforming growth factor-β1 and interleukin-1β, two cytokines that promote and restrain cytotrophoblast invasion in vitro, were also found to differentially regulate trophoblastic ADAMTS-12 mRNA levels. Loss- or gain-of-function studies confirmed that ADAMTS-12, independent of its proteolytic activity, plays a specific, non-redundant role in trophoblast invasion. Furthermore, we demonstrated that ADAMTS-12 regulated cell-extracellular matrix adhesion and invasion through a mechanism involving the αvβ3 integrin heterodimer. This study identifies a novel biological role for ADAMTS-12, and highlights the importance and complexity of its non-proteolytic domain(s) pertaining to its function.
Collapse
Affiliation(s)
- Alexander G Beristain
- Division of Cell Signaling Biology, Ontario Cancer Institute, Toronto, Ontario, Canada.
| | | | | |
Collapse
|
47
|
Dubail J, Kesteloot F, Deroanne C, Motte P, Lambert V, Rakic JM, Lapière C, Nusgens B, Colige A. ADAMTS-2 functions as anti-angiogenic and anti-tumoral molecule independently of its catalytic activity. Cell Mol Life Sci 2010; 67:4213-32. [PMID: 20574651 PMCID: PMC11115784 DOI: 10.1007/s00018-010-0431-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Revised: 05/26/2010] [Accepted: 06/02/2010] [Indexed: 01/30/2023]
Abstract
ADAMTS-2 is a metalloproteinase that plays a key role in the processing of fibrillar procollagen precursors into mature collagen molecules by excising the amino-propeptide. We demonstrate that recombinant ADAMTS-2 is also able to reduce proliferation of endothelial cells, and to induce their retraction and detachment from the substrate resulting in apoptosis. Dephosphorylation of Erk1/2 and MLC largely precedes the ADAMTS-2 induced morphological alterations. In 3-D culture models, ADAMTS-2 strongly reduced branching of capillary-like structures formed by endothelial cells and their long-term maintenance and inhibited vessels formation in embryoid bodies (EB). Growth and vascularization of tumors formed in nude mice by HEK 293-EBNA cells expressing ADAMTS-2 were drastically reduced. A similar anti-tumoral activity was observed when using cells expressing recombinant deleted forms of ADAMTS-2, including catalytically inactive enzyme. Nucleolin, a nuclear protein also found to be associated with the cell membrane, was identified as a potential receptor mediating the antiangiogenic properties of ADAMTS-2.
Collapse
Affiliation(s)
- J. Dubail
- Laboratory of Connective Tissues Biology, GIGA-R, Tour de Pathologie, B23/3, 4000 Sart Tilman, Belgium
| | - F. Kesteloot
- Laboratory of Connective Tissues Biology, GIGA-R, Tour de Pathologie, B23/3, 4000 Sart Tilman, Belgium
| | - C. Deroanne
- Laboratory of Connective Tissues Biology, GIGA-R, Tour de Pathologie, B23/3, 4000 Sart Tilman, Belgium
| | - P. Motte
- Laboratory of Plant Cellular Biology, Sart Tilman, Belgium
| | - V. Lambert
- Laboratory of Development and Tumor Biology, University of Liège, Sart Tilman, Belgium
| | - J.-M. Rakic
- Department of Ophthalmology, University Hospital, Sart Tilman, Belgium
| | - C. Lapière
- Laboratory of Connective Tissues Biology, GIGA-R, Tour de Pathologie, B23/3, 4000 Sart Tilman, Belgium
| | - B. Nusgens
- Laboratory of Connective Tissues Biology, GIGA-R, Tour de Pathologie, B23/3, 4000 Sart Tilman, Belgium
| | - A. Colige
- Laboratory of Connective Tissues Biology, GIGA-R, Tour de Pathologie, B23/3, 4000 Sart Tilman, Belgium
| |
Collapse
|
48
|
Wei X, Prickett TD, Viloria CG, Molinolo A, Lin JC, Cardenas-Navia I, Cruz P, Rosenberg SA, Davies MA, Gershenwald JE, López-Otín C, Samuels Y. Mutational and functional analysis reveals ADAMTS18 metalloproteinase as a novel driver in melanoma. Mol Cancer Res 2010; 8:1513-25. [PMID: 21047771 DOI: 10.1158/1541-7786.mcr-10-0262] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The disintegrin-metalloproteinases with thrombospondin domains (ADAMTS) genes have been suggested to function as tumor suppressors as several have been found to be epigenetically silenced in various cancers. We performed a mutational analysis of the ADAMTS gene family in human melanoma and identified a large fraction of melanomas to harbor somatic mutations. To evaluate the functional consequences of the most commonly mutated gene, ADAMTS18, six of its mutations were biologically examined. ADAMTS18 mutations had little effect on melanoma cell growth under standard conditions, but reduced cell dependence on growth factors. ADAMTS18 mutations also reduced adhesion to laminin and increased migration in vitro and metastasis in vivo. Melanoma cells expressing mutant ADAMTS18 had reduced cell migration after short hairpin RNA-mediated knockdown of ADAMTS18, suggesting that ADAMTS18 mutations promote growth, migration, and metastasis in melanoma.
Collapse
Affiliation(s)
- Xiaomu Wei
- National Human Genome Research Institute, Room 5140, Building 50, 50 South Drive, MSC 8000, Bethesda, MD 20892-8000, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
D'Andrea LD, Romanelli A, Di Stasi R, Pedone C. Bioinorganic aspects of angiogenesis. Dalton Trans 2010; 39:7625-36. [PMID: 20535417 DOI: 10.1039/c002439b] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Angiogenesis is a physiologic process characterized by the sprouting of a new blood vessel from a pre-existing one. In mammalians the angiogenesis process is dormant, except for few physiological conditions such as wound healing and ovulation. In healthy individuals angiogenesis is finely tuned by pro- and anti-angiogenic factors. The shift from this equilibrium, under pathological conditions (pathological angiogenesis) is associated with several human diseases of high social impact. An efficient angiogenesis also requires that angiogenic factors cooperate with microenvironment derived co-factors, including metals. In this Perspective we describe the bioinorganic aspects of angiogenesis which contribute to a better understanding of the molecular mechanisms and regulation of angiogenesis. In particular, the role of metals, especially copper, metalloproteinases, and the current status on the imaging of angiogenesis targeting VEGF or VEGF receptors will be discussed.
Collapse
|
50
|
Higher sensitivity of Adamts12-deficient mice to tumor growth and angiogenesis. Oncogene 2010; 29:3025-32. [DOI: 10.1038/onc.2010.49] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|