1
|
Yao Z, Fan Y, Lin L, Kellems RE, Xia Y. Tissue transglutaminase: a multifunctional and multisite regulator in health and disease. Physiol Rev 2024; 104:281-325. [PMID: 37712623 DOI: 10.1152/physrev.00003.2023] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 09/07/2023] [Accepted: 09/10/2023] [Indexed: 09/16/2023] Open
Abstract
Tissue transglutaminase (TG2) is a widely distributed multifunctional protein involved in a broad range of cellular and metabolic functions carried out in a variety of cellular compartments. In addition to transamidation, TG2 also functions as a Gα signaling protein, a protein disulfide isomerase (PDI), a protein kinase, and a scaffolding protein. In the nucleus, TG2 modifies histones and transcription factors. The PDI function catalyzes the trimerization and activation of heat shock factor-1 in the nucleus and regulates the oxidation state of several mitochondrial complexes. Cytosolic TG2 modifies proteins by the addition of serotonin or other primary amines and in this way affects cell signaling. Modification of protein-bound glutamines reduces ubiquitin-dependent proteasomal degradation. At the cell membrane, TG2 is associated with G protein-coupled receptors (GPCRs), where it functions in transmembrane signaling. TG2 is also found in the extracellular space, where it functions in protein cross-linking and extracellular matrix stabilization. Of particular importance in transglutaminase research are recent findings concerning the role of TG2 in gene expression, protein homeostasis, cell signaling, autoimmunity, inflammation, and hypoxia. Thus, TG2 performs a multitude of functions in multiple cellular compartments, making it one of the most versatile cellular proteins. Additional evidence links TG2 with multiple human diseases including preeclampsia, hypertension, cardiovascular disease, organ fibrosis, cancer, neurodegenerative diseases, and celiac disease. In conclusion, TG2 provides a multifunctional and multisite response to physiological stress.
Collapse
Affiliation(s)
- Zhouzhou Yao
- National Medical Metabolomics International Collaborative Research Center, Central South University, Changsha, Hunan, People's Republic of China
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Yuhua Fan
- National Medical Metabolomics International Collaborative Research Center, Central South University, Changsha, Hunan, People's Republic of China
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Lizhen Lin
- National Medical Metabolomics International Collaborative Research Center, Central South University, Changsha, Hunan, People's Republic of China
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Rodney E Kellems
- Department of Biochemistry and Molecular Biology, The University of Texas McGovern Medical School at Houston, Houston, Texas, United States
| | - Yang Xia
- National Medical Metabolomics International Collaborative Research Center, Central South University, Changsha, Hunan, People's Republic of China
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| |
Collapse
|
2
|
Loppinet E, Besser HA, Sewa AS, Yang FC, Jabri B, Khosla C. LRP-1 links post-translational modifications to efficient presentation of celiac disease-specific T cell antigens. Cell Chem Biol 2023; 30:55-68.e10. [PMID: 36608691 PMCID: PMC9868102 DOI: 10.1016/j.chembiol.2022.12.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/17/2022] [Accepted: 12/15/2022] [Indexed: 01/07/2023]
Abstract
Celiac disease (CeD) is an autoimmune disorder in which gluten-derived antigens trigger inflammation. Antigenic peptides must undergo site-specific deamidation to be presentable to CD4+ T cells in an HLA-DQ2 or -DQ8 restricted manner. While the biochemical basis for this post-translational modification is understood, its localization in the patient's intestine remains unknown. Here, we describe a mechanism by which gluten peptides undergo deamidation and concentration in the lysosomes of antigen-presenting cells, explaining how the concentration of gluten peptides necessary to elicit an inflammatory response in CeD patients is achieved. A ternary complex forms between a gluten peptide, transglutaminase-2 (TG2), and ubiquitous plasma protein α2-macroglobulin, and is endocytosed by LRP-1. The covalent TG2-peptide adduct undergoes endolysosomal decoupling, yielding the expected deamidated epitope. Our findings invoke a pathogenic role for dendritic cells and/or macrophages in CeD and implicate TG2 in the lysosomal clearance of unwanted self and foreign extracellular proteins.
Collapse
Affiliation(s)
- Elise Loppinet
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Harrison A Besser
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA; Stanford Medical Scientist Training Program, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Agnele Sylvia Sewa
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Fu-Chen Yang
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Bana Jabri
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Chaitan Khosla
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA; Department of Chemistry, Stanford University, Stanford, CA 94305, USA; Sarafan ChEM-H, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
3
|
Langlois B, Martin J, Schneider C, Hachet C, Terryn C, Rioult D, Martiny L, Théret L, Salesse S, Dedieu S. LRP-1-dependent control of calpain expression and activity: A new mechanism regulating thyroid carcinoma cell adhesion. Front Oncol 2022; 12:981927. [PMID: 36052226 PMCID: PMC9424861 DOI: 10.3389/fonc.2022.981927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
The low-density lipoprotein receptor-related protein 1 (LRP1) is a multifunctional endocytic receptor mediating the clearance of various molecules from the extracellular matrix. LRP1 also regulates cell surface expression of matrix receptors by modulating both extracellular and intracellular signals, though current knowledge of the underlying mechanisms remains partial in the frame of cancer cells interaction with matricellular substrates. In this study we identified that LRP1 downregulates calpain activity and calpain 2 transcriptional expression in an invasive thyroid carcinoma cell model. LRP1-dependent alleviation of calpain activity limits cell-matrix attachment strength and contributes to FTC133 cells invasive abilities in a modified Boyden chamber assays. In addition, using enzymatic assays and co-immunoprecipitation experiments, we demonstrated that LRP1 exerts post-translational inhibition of calpain activity through PKA-dependent phosphorylation of calpain-2. This LRP-1 dual mode of control of calpain activity fine-tunes carcinoma cell spreading. We showed that LRP1-mediated calpain inhibition participates in talin-positive focal adhesions dissolution and limits β1-integrin expression at carcinoma cell surface. In conclusion, we identified an additional and innovative intracellular mechanism which demonstrates LRP-1 pro-motile action in thyroid cancer cells. LRP-1 ability to specifically control calpain-2 expression and activity highlights a novel facet of its de-adhesion receptor status.
Collapse
Affiliation(s)
- Benoit Langlois
- UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, Reims, France
- Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, UMR 7369 CNRS, Reims, France
- *Correspondence: Benoit Langlois,
| | - Julie Martin
- UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, Reims, France
- Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, UMR 7369 CNRS, Reims, France
| | - Christophe Schneider
- UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, Reims, France
- Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, UMR 7369 CNRS, Reims, France
| | - Cathy Hachet
- UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, Reims, France
- Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, UMR 7369 CNRS, Reims, France
| | - Christine Terryn
- Plate-Forme Imagerie Cellulaire et Tissulaire (PICT), Université de Reims Champagne-Ardenne, UFR Médecine, Reims, France
| | - Damien Rioult
- Plateau Technique Mobile de Cytométrie Environnementale MOBICYTE, Université de Reims Champagne-Ardenne/INERIS, Reims, France
| | - Laurent Martiny
- UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, Reims, France
- Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, UMR 7369 CNRS, Reims, France
| | - Louis Théret
- UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, Reims, France
- Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, UMR 7369 CNRS, Reims, France
| | - Stéphanie Salesse
- UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, Reims, France
- Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, UMR 7369 CNRS, Reims, France
| | - Stéphane Dedieu
- UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, Reims, France
- Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, UMR 7369 CNRS, Reims, France
| |
Collapse
|
4
|
Bianchi L, Altera A, Barone V, Bonente D, Bacci T, De Benedetto E, Bini L, Tosi GM, Galvagni F, Bertelli E. Untangling the Extracellular Matrix of Idiopathic Epiretinal Membrane: A Path Winding among Structure, Interactomics and Translational Medicine. Cells 2022; 11:cells11162531. [PMID: 36010606 PMCID: PMC9406781 DOI: 10.3390/cells11162531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 12/16/2022] Open
Abstract
Idiopathic epiretinal membranes (iERMs) are fibrocellular sheets of tissue that develop at the vitreoretinal interface. The iERMs consist of cells and an extracellular matrix (ECM) formed by a complex array of structural proteins and a large number of proteins that regulate cell–matrix interaction, matrix deposition and remodelling. Many components of the ECM tend to produce a layered pattern that can influence the tractional properties of the membranes. We applied a bioinformatics approach on a list of proteins previously identified with an MS-based proteomic analysis on samples of iERM to report the interactome of some key proteins. The performed pathway analysis highlights interactions occurring among ECM molecules, their cell receptors and intra- or extracellular proteins that may play a role in matrix biology in this special context. In particular, integrin β1, cathepsin B, epidermal growth factor receptor, protein-glutamine gamma-glutamyltransferase 2 and prolow-density lipoprotein receptor-related protein 1 are key hubs in the outlined protein–protein cross-talks. A section on the biomarkers that can be found in the vitreous humor of patients affected by iERM and that can modulate matrix deposition is also presented. Finally, translational medicine in iERM treatment has been summed up taking stock of the techniques that have been proposed for pharmacologic vitreolysis.
Collapse
Affiliation(s)
- Laura Bianchi
- Department of Life Sciences, University of Siena, 53100 Siena, Italy
| | - Annalisa Altera
- Department of Life Sciences, University of Siena, 53100 Siena, Italy
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
| | - Virginia Barone
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
| | - Denise Bonente
- Department of Life Sciences, University of Siena, 53100 Siena, Italy
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
| | - Tommaso Bacci
- Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy
| | - Elena De Benedetto
- Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy
| | - Luca Bini
- Department of Life Sciences, University of Siena, 53100 Siena, Italy
| | - Gian Marco Tosi
- Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy
| | - Federico Galvagni
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Eugenio Bertelli
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
- Correspondence:
| |
Collapse
|
5
|
Kitakaze T, Yoshikawa M, Kobayashi Y, Kimura N, Goshima N, Ishikawa T, Ogata Y, Yamashita Y, Ashida H, Harada N, Yamaji R. Extracellular transglutaminase 2 induces myotube hypertrophy through G protein-coupled receptor 56. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2020; 1867:118563. [PMID: 31666191 DOI: 10.1016/j.bbamcr.2019.118563] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/16/2019] [Accepted: 10/17/2019] [Indexed: 12/15/2022]
Abstract
Skeletal muscle secretes biologically active proteins that contribute to muscle hypertrophy in response to either exercise or dietary intake. The identification of skeletal muscle-secreted proteins that induces hypertrophy can provide critical information regarding skeletal muscle health. Dietary provitamin A, β-carotene, induces hypertrophy of the soleus muscle in mice. Here, we hypothesized that skeletal muscle produces hypertrophy-inducible secretory proteins via dietary β-carotene. Knockdown of retinoic acid receptor (RAR) γ inhibited the β-carotene-induced increase soleus muscle mass in mice. Using RNA sequencing, bioinformatic analyses, and literature searching, we predicted transglutaminase 2 (TG2) to be an all-trans retinoic acid (ATRA)-induced secretory protein in cultured C2C12 myotubes. Tg2 mRNA expression increased in ATRA- or β-carotene-stimulated myotubes and in the soleus muscle of β-carotene-treated mice. Knockdown of RARγ inhibited β-carotene-increased mRNA expression of Tg2 in the soleus muscle. ATRA increased endogenous TG2 levels in conditioned medium from myotubes. Extracellular TG2 promoted the phosphorylation of Akt, mechanistic target of rapamycin (mTOR), and ribosomal p70 S6 kinase (p70S6K), and inhibitors of mTOR, phosphatidylinositol 3-kinase, and Src (rapamycin, LY294002, and Src I1, respectively) inhibited TG2-increased phosphorylation of mTOR and p70S6K. Furthermore, extracellular TG2 promoted protein synthesis and hypertrophy in myotubes. TG2 mutant lacking transglutaminase activity exerted the same effects as wild-type TG2. Knockdown of G protein-coupled receptor 56 (GPR56) inhibited the effects of TG2 on mTOR signaling, protein synthesis, and hypertrophy. These results indicated that TG2 expression was upregulated through ATRA-mediated RARγ and that extracellular TG2 induced myotube hypertrophy by activating mTOR signaling-mediated protein synthesis through GPR56, independent of transglutaminase activity.
Collapse
MESH Headings
- Animals
- Cell Enlargement/drug effects
- Cell Line
- GTP-Binding Proteins/genetics
- GTP-Binding Proteins/metabolism
- Insulin-Like Growth Factor I/genetics
- Insulin-Like Growth Factor I/metabolism
- Mice
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Myoblasts/cytology
- Myoblasts/metabolism
- Phosphorylation/drug effects
- Protein Glutamine gamma Glutamyltransferase 2
- Proto-Oncogene Proteins c-akt/metabolism
- RNA Interference
- RNA, Small Interfering/metabolism
- Receptors, G-Protein-Coupled/antagonists & inhibitors
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Receptors, Retinoic Acid/antagonists & inhibitors
- Receptors, Retinoic Acid/genetics
- Receptors, Retinoic Acid/metabolism
- Retinoic Acid Receptor alpha/antagonists & inhibitors
- Retinoic Acid Receptor alpha/genetics
- Retinoic Acid Receptor alpha/metabolism
- Ribosomal Protein S6 Kinases, 70-kDa/metabolism
- Signal Transduction/drug effects
- TOR Serine-Threonine Kinases/metabolism
- Transglutaminases/genetics
- Transglutaminases/metabolism
- Tretinoin/pharmacology
- beta Carotene/administration & dosage
- beta Carotene/pharmacology
- Retinoic Acid Receptor gamma
Collapse
Affiliation(s)
- Tomoya Kitakaze
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, Japan; Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo, Japan
| | - Miki Yoshikawa
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, Japan
| | - Yasuyuki Kobayashi
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, Japan
| | - Naohiro Kimura
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, Japan
| | - Naoki Goshima
- National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
| | - Takahiro Ishikawa
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, Matsue, Shimane, Japan
| | - Yoshiyuki Ogata
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, Japan
| | - Yoko Yamashita
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo, Japan
| | - Hitoshi Ashida
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo, Japan
| | - Naoki Harada
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, Japan
| | - Ryoichi Yamaji
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, Japan.
| |
Collapse
|
6
|
Brophy ML, Dong Y, Tao H, Yancey PG, Song K, Zhang K, Wen A, Wu H, Lee Y, Malovichko MV, Sithu SD, Wong S, Yu L, Kocher O, Bischoff J, Srivastava S, Linton MF, Ley K, Chen H. Myeloid-Specific Deletion of Epsins 1 and 2 Reduces Atherosclerosis by Preventing LRP-1 Downregulation. Circ Res 2019; 124:e6-e19. [PMID: 30595089 DOI: 10.1161/circresaha.118.313028] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
RATIONALE Atherosclerosis is, in part, caused by immune and inflammatory cell infiltration into the vascular wall, leading to enhanced inflammation and lipid accumulation in the aortic endothelium. Understanding the molecular mechanisms underlying this disease is critical for the development of new therapies. Our recent studies demonstrate that epsins, a family of ubiquitin-binding endocytic adaptors, are critical regulators of atherogenicity. Given the fundamental contribution lesion macrophages make to fuel atherosclerosis, whether and how myeloid-specific epsins promote atherogenesis is an open and significant question. OBJECTIVE We will determine the role of myeloid-specific epsins in regulating lesion macrophage function during atherosclerosis. METHODS AND RESULTS We engineered myeloid cell-specific epsins double knockout mice (LysM-DKO) on an ApoE-/- background. On Western diet, these mice exhibited marked decrease in atherosclerotic lesion formation, diminished immune and inflammatory cell content in aortas, and reduced necrotic core content but increased smooth muscle cell content in aortic root sections. Epsins deficiency hindered foam cell formation and suppressed proinflammatory macrophage phenotype but increased efferocytosis and anti-inflammatory macrophage phenotype in primary macrophages. Mechanistically, we show that epsin loss specifically increased total and surface levels of LRP-1 (LDLR [low-density lipoprotein receptor]-related protein 1), an efferocytosis receptor with antiatherosclerotic properties. We further show that epsin and LRP-1 interact via epsin's ubiquitin-interacting motif domain. ox-LDL (oxidized LDL) treatment increased LRP-1 ubiquitination, subsequent binding to epsin, and its internalization from the cell surface, suggesting that epsins promote the ubiquitin-dependent internalization and downregulation of LRP-1. Crossing ApoE-/-/LysM-DKO mice onto an LRP-1 heterozygous background restored, in part, atherosclerosis, suggesting that epsin-mediated LRP-1 downregulation in macrophages plays a pivotal role in propelling atherogenesis. CONCLUSIONS Myeloid epsins promote atherogenesis by facilitating proinflammatory macrophage recruitment and inhibiting efferocytosis in part by downregulating LRP-1, implicating that targeting epsins in macrophages may serve as a novel therapeutic strategy to treat atherosclerosis.
Collapse
Affiliation(s)
- Megan L Brophy
- From the Vascular Biology Program and Department of Surgery, Boston Children's Hospital (M.L.B., Y.D., K.S., K.Z., A.W., H.W., Y.L., S.W., L.Y., J.B., H.C.), Harvard Medical School, MA.,Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center (M.L.B.)
| | - Yunzhou Dong
- From the Vascular Biology Program and Department of Surgery, Boston Children's Hospital (M.L.B., Y.D., K.S., K.Z., A.W., H.W., Y.L., S.W., L.Y., J.B., H.C.), Harvard Medical School, MA
| | - Huan Tao
- Atherosclerosis Research Unit, Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (H.T., P.G.Y., M.F.L.)
| | - Patricia G Yancey
- Atherosclerosis Research Unit, Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (H.T., P.G.Y., M.F.L.)
| | - Kai Song
- From the Vascular Biology Program and Department of Surgery, Boston Children's Hospital (M.L.B., Y.D., K.S., K.Z., A.W., H.W., Y.L., S.W., L.Y., J.B., H.C.), Harvard Medical School, MA
| | - Kun Zhang
- From the Vascular Biology Program and Department of Surgery, Boston Children's Hospital (M.L.B., Y.D., K.S., K.Z., A.W., H.W., Y.L., S.W., L.Y., J.B., H.C.), Harvard Medical School, MA.,Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China (K.Z.)
| | - Aiyun Wen
- From the Vascular Biology Program and Department of Surgery, Boston Children's Hospital (M.L.B., Y.D., K.S., K.Z., A.W., H.W., Y.L., S.W., L.Y., J.B., H.C.), Harvard Medical School, MA
| | - Hao Wu
- From the Vascular Biology Program and Department of Surgery, Boston Children's Hospital (M.L.B., Y.D., K.S., K.Z., A.W., H.W., Y.L., S.W., L.Y., J.B., H.C.), Harvard Medical School, MA
| | - Yang Lee
- From the Vascular Biology Program and Department of Surgery, Boston Children's Hospital (M.L.B., Y.D., K.S., K.Z., A.W., H.W., Y.L., S.W., L.Y., J.B., H.C.), Harvard Medical School, MA
| | - Marina V Malovichko
- Division of Cardiovascular Medicine, Department of Medicine, University of Louisville, KY (M.V.M., S.D.S., S.S.)
| | - Srinivas D Sithu
- Division of Cardiovascular Medicine, Department of Medicine, University of Louisville, KY (M.V.M., S.D.S., S.S.)
| | - Scott Wong
- From the Vascular Biology Program and Department of Surgery, Boston Children's Hospital (M.L.B., Y.D., K.S., K.Z., A.W., H.W., Y.L., S.W., L.Y., J.B., H.C.), Harvard Medical School, MA
| | - Lili Yu
- From the Vascular Biology Program and Department of Surgery, Boston Children's Hospital (M.L.B., Y.D., K.S., K.Z., A.W., H.W., Y.L., S.W., L.Y., J.B., H.C.), Harvard Medical School, MA
| | - Olivier Kocher
- Department of Pathology and Center for Vascular Biology Research, Beth Israel Medical Deaconess Medical Center (O.K.), Harvard Medical School, MA
| | - Joyce Bischoff
- From the Vascular Biology Program and Department of Surgery, Boston Children's Hospital (M.L.B., Y.D., K.S., K.Z., A.W., H.W., Y.L., S.W., L.Y., J.B., H.C.), Harvard Medical School, MA
| | - Sanjay Srivastava
- Division of Cardiovascular Medicine, Department of Medicine, University of Louisville, KY (M.V.M., S.D.S., S.S.)
| | - MacRae F Linton
- Atherosclerosis Research Unit, Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (H.T., P.G.Y., M.F.L.)
| | - Klaus Ley
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, CA (K.L.)
| | - Hong Chen
- From the Vascular Biology Program and Department of Surgery, Boston Children's Hospital (M.L.B., Y.D., K.S., K.Z., A.W., H.W., Y.L., S.W., L.Y., J.B., H.C.), Harvard Medical School, MA
| |
Collapse
|
7
|
Mattei V, Manganelli V, Martellucci S, Capozzi A, Mantuano E, Longo A, Ferri A, Garofalo T, Sorice M, Misasi R. A multimolecular signaling complex including PrP C and LRP1 is strictly dependent on lipid rafts and is essential for the function of tissue plasminogen activator. J Neurochem 2019; 152:468-481. [PMID: 31602645 DOI: 10.1111/jnc.14891] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 10/04/2019] [Accepted: 10/07/2019] [Indexed: 12/17/2022]
Abstract
Prion protein (PrPC ) localizes stably in lipid rafts microdomains and is able to recruit downstream signal transduction pathways by the interaction with promiscuous partners. Other proteins have the ability to occasionally be recruited to these specialized membrane areas, within multimolecular complexes. Among these, we highlight the presence of the low-density lipoprotein receptor-related protein 1 (LRP1), which was found localized transiently in lipid rafts, suggesting a different function of this receptor that through lipid raft becomes able to activate a signal transduction pathway triggered by specific ligands, including Tissue plasminogen activator (tPA). Since it has been reported that PrPC participates in the tPA-mediated plasminogen activation, in this study, we describe the role of lipid rafts in the recruitment and activation of downstream signal transduction pathways mediated by the interaction among tPA, PrPC and LRP1 in human neuroblastoma SK-N-BE2 cell line. Co-immunoprecipitation analysis reveals a consistent association between PrPC and GM1, as well as between LRP1 and GM1, indicating the existence of a glycosphingolipid-enriched multimolecular complex. In our cell model, knocking-down PrPC by siRNA impairs ERK phosphorylation induced by tPA. Moreover the alteration of the lipidic milieu of lipid rafts, perturbing the physical/functional interaction between PrPC and LRP1, inhibits this response. We show that LRP1 and PrPC , following tPA stimulation, may function as a system associated with lipid rafts, involved in receptor-mediated neuritogenic pathway. We suggest this as a multimolecular signaling complex, whose activity depends strictly on the integrity of lipid raft and is involved in the neuritogenic signaling.
Collapse
Affiliation(s)
- Vincenzo Mattei
- Biomedicine and Advanced Technologies Rieti Center, Sabina Universitas, Rieti, Italy.,Department of Experimental Medicine, Sapienza University, Rome, Italy
| | | | - Stefano Martellucci
- Biomedicine and Advanced Technologies Rieti Center, Sabina Universitas, Rieti, Italy.,Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Antonella Capozzi
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Elisabetta Mantuano
- Department of Experimental Medicine, Sapienza University, Rome, Italy.,Department of Pathology, University of California at San Diego, La Jolla, CA, USA
| | - Agostina Longo
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Alberto Ferri
- Institute of Cell Biology and Neurobiology, CNR, Rome, Italy.,Fondazione Santa Lucia IRCCS, c/o CERC, Rome, Italy
| | - Tina Garofalo
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Maurizio Sorice
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Roberta Misasi
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| |
Collapse
|
8
|
Bres EE, Faissner A. Low Density Receptor-Related Protein 1 Interactions With the Extracellular Matrix: More Than Meets the Eye. Front Cell Dev Biol 2019; 7:31. [PMID: 30931303 PMCID: PMC6428713 DOI: 10.3389/fcell.2019.00031] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 02/25/2019] [Indexed: 12/12/2022] Open
Abstract
The extracellular matrix (ECM) is a biological substrate composed of collagens, proteoglycans and glycoproteins that ensures proper cell migration and adhesion and keeps the cell architecture intact. The regulation of the ECM composition is a vital process strictly controlled by, among others, proteases, growth factors and adhesion receptors. As it appears, ECM remodeling is also essential for proper neuronal and glial development and the establishment of adequate synaptic signaling. Hence, disturbances in ECM functioning are often present in neurodegenerative diseases like Alzheimer’s disease. Moreover, mutations in ECM molecules are found in some forms of epilepsy and malfunctioning of ECM-related genes and pathways can be seen in, for example, cancer or ischemic injury. Low density lipoprotein receptor-related protein 1 (Lrp1) is a member of the low density lipoprotein receptor family. Lrp1 is involved not only in ligand uptake, receptor mediated endocytosis and lipoprotein transport—functions shared by low density lipoprotein receptor family members—but also regulates cell surface protease activity, controls cellular entry and binding of toxins and viruses, protects against atherosclerosis and acts on many cell signaling pathways. Given the plethora of functions, it is not surprising that Lrp1 also impacts the ECM and is involved in its remodeling. This review focuses on the role of Lrp1 and some of its major ligands on ECM function. Specifically, interactions with two Lrp1 ligands, integrins and tissue plasminogen activator are described in more detail.
Collapse
Affiliation(s)
- Ewa E Bres
- Department of Cell Morphology and Molecular Neurobiology, Ruhr University Bochum, Bochum, Germany
| | - Andreas Faissner
- Department of Cell Morphology and Molecular Neurobiology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
9
|
Martucciello S, Paolella G, Esposito C, Lepretti M, Caputo I. Anti-type 2 transglutaminase antibodies as modulators of type 2 transglutaminase functions: a possible pathological role in celiac disease. Cell Mol Life Sci 2018; 75:4107-4124. [PMID: 30136165 PMCID: PMC11105699 DOI: 10.1007/s00018-018-2902-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 07/30/2018] [Accepted: 08/08/2018] [Indexed: 12/19/2022]
Abstract
Auto-antibodies to the ubiquitous enzyme type-2 transglutaminase (TG2) are a specific hallmark of celiac disease (CD), a widely diffused, multi-factorial disease, affecting genetically predisposed subjects. In CD an inflammatory response, at the intestinal level, is triggered by diet consumption of gluten-containing cereals. Intestinal mucosa displays various degrees of atrophy and hyperplasia, with consequent global intestinal dysfunction and other relevant extra-intestinal symptoms. Through deamidation of specific glutamines of gluten-derived gliadin peptides, TG2 strongly enhances gliadin immunogenicity. In addition, TG2 cross-linking activity may generate complexes between TG2 itself and gliadin peptides, and these complexes seem to cause the auto-immune response by means of an apten-carrier-like mechanism of antigen presentation. Anti-TG2 antibodies can be early detected in the intestinal mucosa of celiac patients and are also abundantly present into the serum, thus potentially reaching other organs and tissues by blood circulation. Recently, the possible pathogenetic role of auto-antibodies to TG2 in CD has been investigated. Here, we report an overview about the genesis of these antibodies, their specificity, their modulating ability toward TG2 enzymatic or non-enzymatic activities and their biological effects exerted by interacting with extracellular TG2 or with cell-surface TG2. We also discuss the auto-immune response occurring in CD against other TG members (i.e. type 3 and type 6) and analyze the occurrence of anti-TG2 antibodies in other auto-immune CD-related diseases. Data now available let us to suppose that, even if antibodies to TG2 do not represent the triggering molecules in CD, they could be important players in disease progression and manifestations.
Collapse
Affiliation(s)
- Stefania Martucciello
- Department of Chemistry and Biology, University of Salerno, via Giovanni Paolo II, 132, 84084, Fisciano (SA), Italy
| | - Gaetana Paolella
- Department of Chemistry and Biology, University of Salerno, via Giovanni Paolo II, 132, 84084, Fisciano (SA), Italy
| | - Carla Esposito
- Department of Chemistry and Biology, University of Salerno, via Giovanni Paolo II, 132, 84084, Fisciano (SA), Italy
- Interuniversity Centre "European Laboratory for the Investigation of Food-Induced Diseases" (ELFID), University of Salerno, Fisciano (SA), Italy
| | - Marilena Lepretti
- Department of Chemistry and Biology, University of Salerno, via Giovanni Paolo II, 132, 84084, Fisciano (SA), Italy
| | - Ivana Caputo
- Department of Chemistry and Biology, University of Salerno, via Giovanni Paolo II, 132, 84084, Fisciano (SA), Italy.
- Interuniversity Centre "European Laboratory for the Investigation of Food-Induced Diseases" (ELFID), University of Salerno, Fisciano (SA), Italy.
| |
Collapse
|
10
|
Bioprocess development of antibody-drug conjugate production for cancer treatment. PLoS One 2018; 13:e0206246. [PMID: 30352095 PMCID: PMC6198984 DOI: 10.1371/journal.pone.0206246] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 10/09/2018] [Indexed: 11/19/2022] Open
Abstract
Antibody-drug conjugate (ADC) is a class of targeted cancer therapies that combine the advantages of monoclonal antibody (mAb)'s specific targeting and chemotherapy's potent cytotoxicity. The therapeutic effect of ADC is significantly affected by its bioproduction process. This study aims to develop an effective ADC production process using anti-HER2 mAb-drug as a model therapeutic. First, a high titer (>2 g/L) of mAb was produced by Chinese hamster ovary cells from fed-batch cell culture. Both live-cell confocal microscopy imaging and flow cytometry analysis demonstrated that the produced mAb and ADC had strong and specific binding to HER2+ cell line BT474. Second, various conjugation conditions of mAb and drug, including linker selection, ratio of drug and mAb, and conjugation approaches, were investigated to improve the production yield and product quality. Finally, the ADC structure and biological quality were evaluated by SDS-PAGE and anti-breast cancer toxicity study, respectively. The ADC with integral molecular structure and high cytotoxicity (IC50 of 1.95 nM) was produced using the optimized production process. The robust bioproduction process could guide the development of ADC-based biopharmaceuticals.
Collapse
|
11
|
Wujak L, Schnieder J, Schaefer L, Wygrecka M. LRP1: A chameleon receptor of lung inflammation and repair. Matrix Biol 2017; 68-69:366-381. [PMID: 29262309 DOI: 10.1016/j.matbio.2017.12.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 12/12/2017] [Accepted: 12/12/2017] [Indexed: 12/17/2022]
Abstract
The lung displays a remarkable capability to regenerate following injury. Considerable effort has been made thus far to understand the cardinal processes underpinning inflammation and reconstruction of lung tissue. However, the factors determining the resolution or persistence of inflammation and efficient wound healing or aberrant remodeling remain largely unknown. Low density lipoprotein receptor-related protein 1 (LRP1) is an endocytic/signaling cell surface receptor which controls cellular and molecular mechanisms driving the physiological and pathological inflammatory reactions and tissue remodeling in several organs. In this review, we will discuss the impact of LRP1 on the consecutive steps of the inflammatory response and its role in the balanced tissue repair and aberrant remodeling in the lung.
Collapse
Affiliation(s)
- Lukasz Wujak
- Department of Biochemistry, Justus Liebig University, Friedrichstrasse 24, 35392 Giessen, Germany
| | - Jennifer Schnieder
- Department of Biochemistry, Justus Liebig University, Friedrichstrasse 24, 35392 Giessen, Germany
| | - Liliana Schaefer
- Goethe University School of Medicine, University Hospital, Theodor-Stern Kai 7, 60590 Frankfurt am Main, Germany
| | - Malgorzata Wygrecka
- Department of Biochemistry, Justus Liebig University, Friedrichstrasse 24, 35392 Giessen, Germany; Member of the German Center for Lung Research (DZL), Germany.
| |
Collapse
|
12
|
CHIP-mediated degradation of transglutaminase 2 negatively regulates tumor growth and angiogenesis in renal cancer. Oncogene 2015; 35:3718-28. [PMID: 26568304 DOI: 10.1038/onc.2015.439] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 10/03/2015] [Accepted: 10/19/2015] [Indexed: 11/08/2022]
Abstract
The multifunctional enzyme transglutaminase 2 (TG2) primarily catalyzes cross-linking reactions of proteins via (γ-glutamyl) lysine bonds. Several recent findings indicate that altered regulation of intracellular TG2 levels affects renal cancer. Elevated TG2 expression is observed in renal cancer. However, the molecular mechanism underlying TG2 degradation is not completely understood. Carboxyl-terminus of Hsp70-interacting protein (CHIP) functions as an ubiquitin E3 ligase. Previous studies reveal that CHIP deficiency mice displayed a reduced life span with accelerated aging in kidney tissues. Here we show that CHIP promotes polyubiquitination of TG2 and its subsequent proteasomal degradation. In addition, TG2 upregulation contributes to enhanced kidney tumorigenesis. Furthermore, CHIP-mediated TG2 downregulation is critical for the suppression of kidney tumor growth and angiogenesis. Notably, our findings are further supported by decreased CHIP expression in human renal cancer tissues and renal cancer cells. The present work reveals that CHIP-mediated TG2 ubiquitination and proteasomal degradation represent a novel regulatory mechanism that controls intracellular TG2 levels. Alterations in this pathway result in TG2 hyperexpression and consequently contribute to renal cancer.
Collapse
|
13
|
Kanchan K, Fuxreiter M, Fésüs L. Physiological, pathological, and structural implications of non-enzymatic protein-protein interactions of the multifunctional human transglutaminase 2. Cell Mol Life Sci 2015; 72:3009-35. [PMID: 25943306 PMCID: PMC11113818 DOI: 10.1007/s00018-015-1909-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 04/10/2015] [Accepted: 04/13/2015] [Indexed: 12/26/2022]
Abstract
Transglutaminase 2 (TG2) is a ubiquitously expressed member of an enzyme family catalyzing Ca(2+)-dependent transamidation of proteins. It is a multifunctional protein having several well-defined enzymatic (GTP binding and hydrolysis, protein disulfide isomerase, and protein kinase activities) and non-enzymatic (multiple interactions in protein scaffolds) functions. Unlike its enzymatic interactions, the significance of TG2's non-enzymatic regulation of its activities has recently gained importance. In this review, we summarize all the partners that directly interact with TG2 in a non-enzymatic manner and analyze how these interactions could modulate the crosslinking activity and cellular functions of TG2 in different cell compartments. We have found that TG2 mostly acts as a scaffold to bridge various proteins, leading to different functional outcomes. We have also studied how specific structural features, such as intrinsically disordered regions and embedded short linear motifs contribute to multifunctionality of TG2. Conformational diversity of intrinsically disordered regions enables them to interact with multiple partners, which can result in different biological outcomes. Indeed, ID regions in TG2 were identified in functionally relevant locations, indicating that they could facilitate conformational transitions towards the catalytically competent form. We reason that these structural features contribute to modulating the physiological and pathological functions of TG2 and could provide a new direction for detecting unique regulatory partners. Additionally, we have assembled all known anti-TG2 antibodies and have discussed their significance as a toolbox for identifying and confirming novel TG2 regulatory functions.
Collapse
Affiliation(s)
- Kajal Kanchan
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, 4010 Hungary
- Sainsbury Laboratory, University of Cambridge, Cambridge, UK
| | - Mónika Fuxreiter
- MTA-DE Momentum Laboratory of Protein Dynamics, University of Debrecen, Debrecen, Hungary
| | - László Fésüs
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, 4010 Hungary
- MTA-DE Apoptosis, Genomics and Stem Cell Research Group of the Hungarian Academy of Sciences, Debrecen, Hungary
| |
Collapse
|
14
|
Hemopexin-dependent heme uptake via endocytosis regulates the Bach1 transcription repressor and heme oxygenase gene activation. Biochim Biophys Acta Gen Subj 2014; 1840:2351-60. [DOI: 10.1016/j.bbagen.2014.02.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 02/24/2014] [Accepted: 02/27/2014] [Indexed: 12/30/2022]
|
15
|
Hsia HC, Nair MR, Corbett SA. The fate of internalized α5 integrin is regulated by matrix-capable fibronectin. J Surg Res 2014; 191:268-279. [PMID: 25062814 DOI: 10.1016/j.jss.2014.05.084] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Revised: 05/23/2014] [Accepted: 05/28/2014] [Indexed: 11/15/2022]
Abstract
BACKGROUND Assembly of fibronectin matrices is associated with integrin receptor turnover and is an important determinant of tissue remodeling. Although it is well established that fibronectin is the primary ligand for α5β1 receptor, the relationship between fibronectin matrix assembly and the fate of internalized α5 integrin remains poorly characterized. MATERIALS AND METHODS To evaluate the effect of fibronectin matrix on the fate of internalized α5 integrin, fibronectin-null Chinese hamster ovary and mouse embryo fibroblast cells were used to track the fate of α5 after exposure to exogenous fibronectin. RESULTS In the absence of matrix-capable fibronectin dimer, levels of internalized α5 decreased rapidly over time. This correlated with a decline in total cellular α5 and was associated with the ubiquitination of α5 integrin. In contrast, internalized and total cellular α5 protein levels were maintained when matrix-capable fibronectin was present in the extracellular space. Further, we show that ubiquitination and degradation of internalized α5 integrin in the absence of fibronectin require the presence of two specific lysine residues in the α5 cytoplasmic tail. CONCLUSIONS Our data demonstrate that α5 integrin turnover is dependent on fibronectin matrix assembly, where the absence of matrix-capable fibronectin in the extracellular space targets the internalized receptor for rapid degradation. These findings have important implications for understanding tissue-remodeling processes found in wound repair and tumor invasion.
Collapse
Affiliation(s)
- Henry C Hsia
- Department of Surgery, Robert Wood Johnson Medical School, New Brunswick, NJ 08903
| | - Mohan R Nair
- Department of Surgery, Robert Wood Johnson Medical School, New Brunswick, NJ 08903
| | - Siobhan A Corbett
- Department of Surgery, Robert Wood Johnson Medical School, New Brunswick, NJ 08903
| |
Collapse
|
16
|
Eckert RL, Kaartinen MT, Nurminskaya M, Belkin AM, Colak G, Johnson GVW, Mehta K. Transglutaminase regulation of cell function. Physiol Rev 2014; 94:383-417. [PMID: 24692352 DOI: 10.1152/physrev.00019.2013] [Citation(s) in RCA: 321] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Transglutaminases (TGs) are multifunctional proteins having enzymatic and scaffolding functions that participate in regulation of cell fate in a wide range of cellular systems and are implicated to have roles in development of disease. This review highlights the mechanism of action of these proteins with respect to their structure, impact on cell differentiation and survival, role in cancer development and progression, and function in signal transduction. We also discuss the mechanisms whereby TG level is controlled and how TGs control downstream targets. The studies described herein begin to clarify the physiological roles of TGs in both normal biology and disease states.
Collapse
|
17
|
Yang L, Friedland S, Corson N, Xu L. GPR56 inhibits melanoma growth by internalizing and degrading its ligand TG2. Cancer Res 2013; 74:1022-31. [PMID: 24356421 DOI: 10.1158/0008-5472.can-13-1268] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Excessive accumulation of extracellular matrix (ECM) is a hallmark of tumor microenvironment and plays active roles during tumor progression. How this process is regulated and whether it is reversible for cancer treatment are outstanding questions. The adhesion G protein-coupled receptor GPR56 inhibits melanoma growth and binds to tissue transglutaminase (TG2), a major crosslinking enzyme in ECM. To understand the function of TG2 in GPR56-mediated melanoma inhibition, we performed xenograft studies in immunodeficient Tg2(-/-) mice. Our results revealed an antagonistic relationship between GPR56 and TG2 in melanoma, although TG2 and its crosslinking activity promote melanoma growth, GPR56 antagonizes this effect by internalizing and degrading it. The negative regulation of TG2 by GPR56 associates with the decreased deposition of a major ECM protein, fibronectin, and impaired accumulation of focal adhesion kinase, indicating that the GPR56-TG2 interaction regulates ECM deposition and cell-ECM adhesion. Taken together, our findings establish the roles of TG2 in GPR56-mediated melanoma inhibition. The uncovered antagonistic relationship between GPR56 and TG2 proposes a mechanism by which ECM accumulation/crosslinking in tumors may be reversed, and thus could have therapeutic potential for cancer control and treatment.
Collapse
Affiliation(s)
- Liquan Yang
- Authors' Affiliation: Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, New York
| | | | | | | |
Collapse
|
18
|
The plant extracellular transglutaminase: what mammal analogues tell. Amino Acids 2013; 46:777-92. [DOI: 10.1007/s00726-013-1605-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 10/09/2013] [Indexed: 12/17/2022]
|
19
|
Deasey S, Nurminsky D, Shanmugasundaram S, Lima F, Nurminskaya M. Transglutaminase 2 as a novel activator of LRP6/β-catenin signaling. Cell Signal 2013; 25:2646-51. [PMID: 23993960 DOI: 10.1016/j.cellsig.2013.08.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 08/24/2013] [Indexed: 11/15/2022]
Abstract
The β-catenin signaling axis is critical for normal embryonic development and tissue homeostasis in adults. We have previously shown that extracellular enzyme transglutaminase 2 (TG2) activates β-catenin signaling in vascular smooth muscle cells (VSMCs). In this study, we provide several lines of evidence that TG2 functions as an activating ligand of the LRP5/6 receptors. Specifically, we show that TG2 synergizes with LRP6 in the activation of β-catenin-dependent gene expression in Cos-7 cells. Interfering with the LRP5/6 receptors attenuates TG2-induced activation of β-catenin in Cos-7 cells. Further, we show that TG2 binds directly to the extracellular domain of LRP6, which is also able to act as a substrate for TG2-mediated protein cross-linking. Furthermore, inhibitors of TG2 protein cross-linking quench the observed TG2-induced β-catenin activation, implicating protein cross-linking as a novel regulatory mechanism for this pathway. Together, our findings identify and characterize a new activating ligand of the LRP5/6 receptors and uncover a novel activity of TG2 as an agonist of β-catenin signaling, contributing to the understanding of diverse developmental events and pathological conditions in which transglutaminase and β-catenin signaling are implicated.
Collapse
Affiliation(s)
- S Deasey
- Dept. of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | | | | | | | | |
Collapse
|
20
|
Del Duca S, Faleri C, Iorio RA, Cresti M, Serafini-Fracassini D, Cai G. Distribution of transglutaminase in pear pollen tubes in relation to cytoskeleton and membrane dynamics. PLANT PHYSIOLOGY 2013; 161:1706-21. [PMID: 23396835 PMCID: PMC3613450 DOI: 10.1104/pp.112.212225] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Transglutaminases (TGases) are ubiquitous enzymes that take part in a variety of cellular functions. In the pollen tube, cytoplasmic TGases are likely to be involved in the incorporation of primary amines at selected peptide-bound glutamine residues of cytosolic proteins (including actin and tubulin), while cell wall-associated TGases are believed to regulate pollen tube growth. Using immunological probes, we identified TGases associated with different subcellular compartments (cytosol, membranes, and cell walls). Binding of cytosolic TGase to actin filaments was shown to be Ca(2+) dependent. The membrane TGase is likely associated with both Golgi-derived structures and the plasma membrane, suggesting a Golgi-based exocytotic delivery of TGase. Association of TGase with the plasma membrane was also confirmed by immunogold transmission electron microscopy. Immunolocalization of TGase indicated that the enzyme was present in the growing region of pollen tubes and that the enzyme colocalizes with cell wall markers. Bidimensional electrophoresis indicated that different TGase isoforms were present in distinct subcellular compartments, suggesting either different roles or different regulatory mechanisms of enzyme activity. The application of specific inhibitors showed that the distribution of TGase in different subcellular compartments was regulated by both membrane dynamics and cytoskeleton integrity, suggesting that delivery of TGase to the cell wall requires the transport of membranes along cytoskeleton filaments. Taken together, these data indicate that a cytoplasmic TGase interacts with the cytoskeleton, while a different TGase isoform, probably delivered via a membrane/cytoskeleton-based transport system, is secreted in the cell wall of pear (Pyrus communis) pollen tubes, where it might play a role in the regulation of apical growth.
Collapse
|
21
|
Sun J, Tian X, Feng P, Gong S, Yuan Y. Preparation of low-allergen natural rubber latex by transglutaminase catalysis. J Appl Polym Sci 2013. [DOI: 10.1002/app.38963] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
22
|
Proulx DP, Rouleau P, Paré I, Vallières-Noël MM, Bazin R. Interaction between intravenous immunoglobulin (IVIg) and the low-density lipoprotein receptor-related protein 1: a role for transcytosis across the blood brain barrier? J Neuroimmunol 2012; 251:39-44. [PMID: 22796178 DOI: 10.1016/j.jneuroim.2012.06.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Revised: 06/19/2012] [Accepted: 06/25/2012] [Indexed: 01/28/2023]
Abstract
Intravenous immunoglobulin (IVIg) is a therapeutic preparation of plasma-derived human IgG and is increasingly used for the treatment of several neurological inflammatory disorders. However, it is not clear whether the IgG molecules contained in IVIg can actually cross the BBB in treated patients. We recently showed that LRP1, an endocytic receptor involved in transcytosis of several proteins across the BBB was able to interact with IVIg. In the present study, we show that LRP1 is involved in IVIg internalization inside living cells. Our data also suggest that following internalization, IVIg is recycled to the cell surface, raising the possibility that LRP1 can mediate IVIg transcytosis across the BBB. Finally, we show that IVIg-LRP1 interaction leads to LRP1 tyrosine phosphorylation.
Collapse
|
23
|
Abstract
The low-density lipoprotein receptor-related protein 1 (LRP-1) is a large endocytic receptor mediating the clearance of various molecules from the extracellular matrix. In the field of cancer, LRP-1-mediated endocytosis was first associated with antitumor properties. However, recent results suggested that LRP-1 may coordinate the adhesion-deadhesion balance in malignant cells to support tumor progression. Here, we observed that LRP-1 silencing or RAP (receptor-associated protein) treatment led to accumulation of CD44 at the tumor cell surface. Moreover, we evidenced a tight interaction between CD44 and LRP-1, not exclusively localized in lipid rafts. Overexpression of LRP-1-derived minireceptors indicated that the fourth ligand-binding cluster of LRP-1 is required to bind CD44. Labeling of CD44 with EEA1 and LAMP-1 showed that internalized CD44 is routed through early endosomes toward lysosomes in a LRP-1-dependent pathway. LRP-1-mediated internalization of CD44 was highly reduced under hyperosmotic conditions but poorly affected by membrane cholesterol depletion, revealing that it proceeds mostly via clathrin-coated pits. Finally, we demonstrated that CD44 silencing abolishes RAP-induced tumor cell attachment, revealing that cell surface accumulation of CD44 under LRP-1 blockade is mainly responsible for the stimulation of tumor cell adhesion. Altogether, our data shed light on the LRP-1-mediated internalization of CD44 that appeared critical to define the adhesive properties of tumor cells.
Collapse
|
24
|
Pavlyukov MS, Antipova NV, Balashova MV, Shakhparonov MI. Detection of Transglutaminase 2 conformational changes in living cell. Biochem Biophys Res Commun 2012; 421:773-9. [PMID: 22548802 DOI: 10.1016/j.bbrc.2012.04.082] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 04/16/2012] [Indexed: 11/25/2022]
Abstract
Transglutaminase 2 (TG2) is a ubiquitous Ca(2+)-dependent protein cross-linking enzyme that is implicated in a variety of biological disorders. In in vitro experiments when Ca(2+) concentration was increased TG2 changed its conformation and was able to cross-link other proteins via formation of an isopeptide bond. However the mechanisms that regulate TG2 transamidation activity in cells are still unknown. In this study we have developed FRET-based method for monitoring TG2 conformation changes and, probably, cross-linking activity in living cells. Using this approach we have showed that a significant amount of TG2 within the cell is accumulated in perinuclear endosomes and has a cross-linking inactive conformation, while TG2 that is located beneath the cell membrane has a transamidation active conformation. After the induction of apoptosis cytoplasmic TG2 changed its conformation and activates while, TG2 in endosomes retained transamidation inactive conformation even at late stages of apoptosis.
Collapse
Affiliation(s)
- Marat S Pavlyukov
- Shemiakin-Ovchinnikov Institute of Bioorganic Chemistry of Russian Academy of Sciences, Moscow 117997, Russian Federation
| | | | | | | |
Collapse
|
25
|
Zemskov EA, Mikhailenko I, Smith EP, Belkin AM. Tissue transglutaminase promotes PDGF/PDGFR-mediated signaling and responses in vascular smooth muscle cells. J Cell Physiol 2012; 227:2089-96. [PMID: 21769866 DOI: 10.1002/jcp.22938] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Although the pivotal role of platelet derived growth factor (PDGF)-mediated signaling in vascular diseases was demonstrated, the pathophysiological mechanisms driving its over-activation remain incompletely understood. Tissue transglutaminase (tTG) is a multifunctional protein expressed in the vasculature, including smooth muscle cells (SMCs), and implicated in several vascular pathologies. The goal of this study is to define the regulation of PDGF-BB/PDGFRβ-induced signaling pathways and cell responses by tTG in vascular SMCs. We find that in human aortic SMCs, shRNA-mediated depletion and over-expression of tTG reveals its ability to down-regulate PDGFRβ levels and induce receptor clustering. In these cells, tTG specifically amplifies the activation of PDGFRβ and its multiple downstream signaling targets in response to PDGF-BB. Furthermore, tTG promotes dedifferentiation and increases survival, proliferation, and migration of human aortic SMCs mediated by this growth factor. Finally, PDGF-BB stimulates tTG expression in human aortic SMCs in culture and in the blood vessels in response to injury. Together, our results show that tTG in vascular SMCs acts as a principal enhancer within the PDGF-BB/PDGFRβ signaling axis involved in phenotypic modulation of these cells, thereby suggesting a novel role for this protein in the progression of vascular diseases.
Collapse
Affiliation(s)
- Evgeny A Zemskov
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | | | | | |
Collapse
|
26
|
Nurminskaya MV, Belkin AM. Cellular functions of tissue transglutaminase. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 294:1-97. [PMID: 22364871 PMCID: PMC3746560 DOI: 10.1016/b978-0-12-394305-7.00001-x] [Citation(s) in RCA: 190] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Transglutaminase 2 (TG2 or tissue transglutaminase) is a highly complex multifunctional protein that acts as transglutaminase, GTPase/ATPase, protein disulfide isomerase, and protein kinase. Moreover, TG2 has many well-documented nonenzymatic functions that are based on its noncovalent interactions with multiple cellular proteins. A vast array of biochemical activities of TG2 accounts for its involvement in a variety of cellular processes, including adhesion, migration, growth, survival, apoptosis, differentiation, and extracellular matrix organization. In turn, the impact of TG2 on these processes implicates this protein in various physiological responses and pathological states, contributing to wound healing, inflammation, autoimmunity, neurodegeneration, vascular remodeling, tumor growth and metastasis, and tissue fibrosis. TG2 is ubiquitously expressed and is particularly abundant in endothelial cells, fibroblasts, osteoblasts, monocytes/macrophages, and smooth muscle cells. The protein is localized in multiple cellular compartments, including the nucleus, cytosol, mitochondria, endolysosomes, plasma membrane, and cell surface and extracellular matrix, where Ca(2+), nucleotides, nitric oxide, reactive oxygen species, membrane lipids, and distinct protein-protein interactions in the local microenvironment jointly regulate its activities. In this review, we discuss the complex biochemical activities and molecular interactions of TG2 in the context of diverse subcellular compartments and evaluate its wide ranging and cell type-specific biological functions and their regulation.
Collapse
Affiliation(s)
- Maria V Nurminskaya
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | |
Collapse
|
27
|
Abstract
Tissue transglutaminase (TG2) is a ubiquitously expressed member of the transglutaminase family of Ca(2+)-dependent crosslinking enzymes. Unlike other family members, TG2 is a multifunctional protein, which has several other well documented enzymatic and non-enzymatic functions. A significant body of evidence accumulated over the last decade reveals multiple and complex activities of this protein on the cell surface and in the extracellular matrix (ECM), including its role in the regulation of cell-ECM interactions and outside-in signaling by several types of transmembrane receptors. Moreover, recent findings indicate a dynamic regulation of the levels and functions of extracellular TG2 by several complementary mechanisms. This review summarizes and assesses recent research into the emerging functions and regulation of extracellular TG2.
Collapse
Affiliation(s)
- Alexey M Belkin
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
28
|
Verhaar R, Drukarch B, Bol JGJM, Jongenelen CAM, Musters RJP, Wilhelmus MMM. Increase in endoplasmic reticulum-associated tissue transglutaminase and enzymatic activation in a cellular model of Parkinson's disease. Neurobiol Dis 2011; 45:839-50. [PMID: 22051113 DOI: 10.1016/j.nbd.2011.10.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Revised: 10/12/2011] [Accepted: 10/16/2011] [Indexed: 12/15/2022] Open
Abstract
Parkinson's disease (PD) is characterized by accumulation of α-synuclein aggregates and degeneration of melanized, catecholaminergic neurons. The tissue transglutaminase (tTG) enzyme catalyzes molecular protein cross-linking. In PD, tTG levels are increased and cross-linking has been identified as an important factor in α-synuclein aggregation. In our quest to link tTGs distribution in the human brain to the hallmarks of PD pathology, we recently reported that catecholaminergic neurons in PD disease-affected brain areas display typical endoplasmic reticulum (ER) granules showing tTG immunoreactivity. In the present study, we set out to elucidate the nature of the interaction between tTG and the ER in PD pathogenesis, using retinoic-acid differentiated SH-SY5Y cells exposed to the PD-mimetic 1-methyl-4-phenylpyridinium (MPP(+)). Alike our observations in PD brain, MPP(+)-treated cells displayed typical TG-positive granules, that were also induced by other PD mimetics and by ER-stress inducing toxins. Additional immunocytochemical and biochemical investigation revealed that tTG is indeed associated to the ER, in particular at the cytoplasmic face of the ER. Upon MPP(+) exposure, additional recruitment of tTG toward the ER was found. In addition, we observed that MPP(+)-induced tTG activity results in transamidation of ER membrane proteins, like calnexin. Our data provide strong evidence for a, so far unrecognized, localization of tTG at the ER, at least in catecholaminergic neurons, and suggests that in PD activation of tTG may have a direct impact on ER function, in particular via post-translational modification of ER membrane proteins.
Collapse
Affiliation(s)
- Robin Verhaar
- Department of Anatomy and Neurosciences, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
29
|
Szondy Z, Korponay-Szabó I, Király R, Fésüs L. Transglutaminase 2 Dysfunctions in the Development of Autoimmune Disorders: Celiac Disease and TG2 −/−Mouse. ADVANCES IN ENZYMOLOGY - AND RELATED AREAS OF MOLECULAR BIOLOGY 2011; 78:295-345. [DOI: 10.1002/9781118105771.ch7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
30
|
Zemskov EA, Mikhailenko I, Hsia RC, Zaritskaya L, Belkin AM. Unconventional secretion of tissue transglutaminase involves phospholipid-dependent delivery into recycling endosomes. PLoS One 2011; 6:e19414. [PMID: 21556374 PMCID: PMC3083433 DOI: 10.1371/journal.pone.0019414] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Accepted: 04/04/2011] [Indexed: 12/20/2022] Open
Abstract
Although endosomal compartments have been suggested to play a role in unconventional protein secretion, there is scarce experimental evidence for such involvement. Here we report that recycling endosomes are essential for externalization of cytoplasmic secretory protein tissue transglutaminase (tTG). The de novo synthesized cytoplasmic tTG does not follow the classical ER/Golgi-dependent secretion pathway, but is targeted to perinuclear recycling endosomes, and is delivered inside these vesicles prior to externalization. On its route to the cell surface tTG interacts with internalized β1 integrins inside the recycling endosomes and is secreted as a complex with recycled β1 integrins. Inactivation of recycling endosomes, blocking endosome fusion with the plasma membrane, or downregulation of Rab11 GTPase that controls outbound trafficking of perinuclear recycling endosomes, all abrogate tTG secretion. The initial recruitment of cytoplasmic tTG to recycling endosomes and subsequent externalization depend on its binding to phosphoinositides on endosomal membranes. These findings begin to unravel the unconventional mechanism of tTG secretion which utilizes the long loop of endosomal recycling pathway and indicate involvement of endosomal trafficking in non-classical protein secretion.
Collapse
Affiliation(s)
- Evgeny A. Zemskov
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Irina Mikhailenko
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Ru-Ching Hsia
- Core Imaging Facility, University of Maryland Dental School, Baltimore, Maryland, United States of America
| | - Liubov Zaritskaya
- Applied and Developmental Research Support Program, Science Applications International Corporation, Frederick, Maryland, United States of America
| | - Alexey M. Belkin
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Center for Stem Cell Biology and Regenerative Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
31
|
Png E, Lan W, Lazaroo M, Chen S, Zhou L, Tong L. A new method of high-speed cellular protein separation and insight into subcellular compartmentalization of proteins. Anal Bioanal Chem 2011; 400:767-75. [DOI: 10.1007/s00216-011-4810-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Revised: 02/14/2011] [Accepted: 02/14/2011] [Indexed: 01/07/2023]
|
32
|
Wilhelmus MMM, Verhaar R, Andringa G, Bol JGJM, Cras P, Shan L, Hoozemans JJM, Drukarch B. Presence of tissue transglutaminase in granular endoplasmic reticulum is characteristic of melanized neurons in Parkinson's disease brain. Brain Pathol 2011; 21:130-9. [PMID: 20731657 PMCID: PMC8094245 DOI: 10.1111/j.1750-3639.2010.00429.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Accepted: 07/09/2010] [Indexed: 01/18/2023] Open
Abstract
Parkinson's disease (PD) is characterized by the accumulation of α-synuclein aggregates and degeneration of melanized neurons. The tissue transglutaminase (tTG) enzyme catalyzes molecular protein cross-linking. In PD brain, tTG-induced cross-links have been identified in α-synuclein monomers, oligomers and α-synuclein aggregates. However, whether tTG and α-synuclein occur together in PD affected neurons remains to be established. Interestingly, using immunohistochemistry, we observed a granular distribution pattern of tTG, characteristic of melanized neurons in PD brain. Apart from tTG, these granules were also positive for typical endoplasmic reticulum (ER)-resident chaperones, that is, protein disulphide isomerase, ERp57 and calreticulin, suggesting a direct link to the ER. Additionally, we observed the presence of phosphorylated pancreatic ER kinase (pPERK), a classical ER stress marker, in tTG granule positive neurons in PD brain, although no subcellular colocalization of tTG and pPERK was found. Our data therefore suggest that tTG localization to granular ER compartments is specific for stressed melanized neurons in PD brain. Moreover, as also α-synuclein aggregates were observed in tTG granule positive neurons, these results provide a clue to the cellular site of interaction between α-synuclein and tTG.
Collapse
Affiliation(s)
- Micha M M Wilhelmus
- Department of Anatomy and Neurosciences, Neuroscience Campus Amsterdam, VU University Medical Center, the Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Al-Jallad HF, Myneni VD, Piercy-Kotb SA, Chabot N, Mulani A, Keillor JW, Kaartinen MT. Plasma membrane factor XIIIA transglutaminase activity regulates osteoblast matrix secretion and deposition by affecting microtubule dynamics. PLoS One 2011; 6:e15893. [PMID: 21283799 PMCID: PMC3024320 DOI: 10.1371/journal.pone.0015893] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Accepted: 11/30/2010] [Indexed: 11/19/2022] Open
Abstract
Transglutaminase activity, arising potentially from transglutaminase 2 (TG2) and
Factor XIIIA (FXIIIA), has been linked to osteoblast differentiation where it is
required for type I collagen and fibronectin matrix deposition. In this study we
have used an irreversible TG-inhibitor to ‘block –and-track’
enzyme(s) targeted during osteoblast differentiation. We show that the
irreversible TG-inhibitor is highly potent in inhibiting osteoblast
differentiation and mineralization and reduces secretion of both fibronectin and
type I collagen and their release from the cell surface. Tracking of the dansyl
probe by Western blotting and immunofluorescence microscopy demonstrated that
the inhibitor targets plasma membrane-associated FXIIIA. TG2 appears not to
contribute to crosslinking activity on the osteoblast surface. Inhibition of
FXIIIA with NC9 resulted in defective secretory vesicle delivery to the plasma
membrane which was attributable to a disorganized microtubule network and
decreased microtubule association with the plasma membrane. NC9 inhibition of
FXIIIA resulted in destabilization of microtubules as assessed by cellular
Glu-tubulin levels. Furthermore, NC9 blocked modification of Glu-tubulin into
150 kDa high-molecular weight Glu-tubulin form which was specifically localized
to the plasma membrane. FXIIIA enzyme and its crosslinking activity were
colocalized with plasma membrane-associated tubulin, and thus, it appears that
FXIIIA crosslinking activity is directed towards stabilizing the interaction of
microtubules with the plasma membrane. Our work provides the first mechanistic
cues as to how transglutaminase activity could affect protein secretion and
matrix deposition in osteoblasts and suggests a novel function for plasma
membrane FXIIIA in microtubule dynamics.
Collapse
Affiliation(s)
- Hadil F. Al-Jallad
- Division of Biomedical Sciences, Faculty of Dentistry, McGill University,
Montreal, Quebec, Canada
| | - Vamsee D. Myneni
- Division of Biomedical Sciences, Faculty of Dentistry, McGill University,
Montreal, Quebec, Canada
| | - Sarah A. Piercy-Kotb
- Division of Biomedical Sciences, Faculty of Dentistry, McGill University,
Montreal, Quebec, Canada
- Division of Experimental Medicine, Department of Medicine, Faculty of
Medicine, McGill University, Montreal, Quebec, Canada
| | - Nicolas Chabot
- Department of Chemistry, Faculty of Arts and Science, Université
de Montréal, Montreal, Quebec, Canada
| | - Amina Mulani
- Department of Chemistry, Faculty of Arts and Science, Université
de Montréal, Montreal, Quebec, Canada
| | - Jeffrey W. Keillor
- Department of Chemistry, Faculty of Arts and Science, Université
de Montréal, Montreal, Quebec, Canada
| | - Mari T. Kaartinen
- Division of Biomedical Sciences, Faculty of Dentistry, McGill University,
Montreal, Quebec, Canada
- Division of Experimental Medicine, Department of Medicine, Faculty of
Medicine, McGill University, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
34
|
Rivero MR, Miras SL, Quiroga R, Rópolo AS, Touz MC. Giardia lamblia low-density lipoprotein receptor-related protein is involved in selective lipoprotein endocytosis and parasite replication. Mol Microbiol 2011; 79:1204-19. [PMID: 21205007 DOI: 10.1111/j.1365-2958.2010.07512.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
As Giardia lamblia is unable to synthesize cholesterol de novo, this steroid might be obtained from the host's intestinal milieu by endocytosis of lipoproteins. In this work, we identified a putative Giardia lamblia low-density lipoprotein receptor-related proteins (GlLRP), a type I membrane protein, which shares the substrate N-terminal binding domain and a FXNPXY-type endocytic motif with human LRPs. Expression of tagged GlLRP showed that it was localized predominantly in the endoplasmic reticulum, lysosomal-like peripheral vacuoles and plasma membrane. However, the FXNPXY-deleted GlLRP was retained at the plasma membrane suggesting that it is abnormally transported and processed. The low-density lipoprotein and chylomicrons interacted with GlLRP, with this interaction being necessary for lipoprotein internalization and cell proliferation. Finally, we show that GlLRP binds directly to the medium subunit of Giardia adaptor protein 2, indicating that receptor-mediated internalization occurs through an adaptin mechanism.
Collapse
Affiliation(s)
- Maria R Rivero
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC - CONICET, Friuli 2434, Córdoba, Argentina
| | | | | | | | | |
Collapse
|
35
|
Langlois B, Perrot G, Schneider C, Henriet P, Emonard H, Martiny L, Dedieu S. LRP-1 promotes cancer cell invasion by supporting ERK and inhibiting JNK signaling pathways. PLoS One 2010; 5:e11584. [PMID: 20644732 PMCID: PMC2904376 DOI: 10.1371/journal.pone.0011584] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Accepted: 06/20/2010] [Indexed: 01/16/2023] Open
Abstract
Background The low-density lipoprotein receptor-related protein-1 (LRP-1) is an endocytic receptor mediating the clearance of various extracellular molecules involved in the dissemination of cancer cells. LRP-1 thus appeared as an attractive receptor for targeting the invasive behavior of malignant cells. However, recent results suggest that LRP-1 may facilitate the development and growth of cancer metastases in vivo, but the precise contribution of the receptor during cancer progression remains to be elucidated. The lack of mechanistic insights into the intracellular signaling networks downstream of LRP-1 has prevented the understanding of its contribution towards cancer. Methodology/Principal Findings Through a short-hairpin RNA-mediated silencing approach, we identified LRP-1 as a main regulator of ERK and JNK signaling in a tumor cell context. Co-immunoprecipitation experiments revealed that LRP-1 constitutes an intracellular docking site for MAPK containing complexes. By using pharmacological agents, constitutively active and dominant-negative kinases, we demonstrated that LRP-1 maintains malignant cells in an adhesive state that is favorable for invasion by activating ERK and inhibiting JNK. We further demonstrated that the LRP-1-dependent regulation of MAPK signaling organizes the cytoskeletal architecture and mediates adhesive complex turnover in cancer cells. Moreover, we found that LRP-1 is tethered to the actin network and to focal adhesion sites and controls ERK and JNK targeting to talin-rich structures. Conclusions We identified ERK and JNK as the main molecular relays by which LRP-1 regulates focal adhesion disassembly of malignant cells to support invasion.
Collapse
Affiliation(s)
- Benoit Langlois
- Université de Reims Champagne-Ardenne, CNRS UMR 6237 MEDyC, Laboratoire SiRMa, Campus Moulin de la Housse, Reims, France
| | - Gwenn Perrot
- Université de Reims Champagne-Ardenne, CNRS UMR 6237 MEDyC, Laboratoire SiRMa, Campus Moulin de la Housse, Reims, France
| | - Christophe Schneider
- Université de Reims Champagne-Ardenne, CNRS UMR 6237 MEDyC, Laboratoire SiRMa, Campus Moulin de la Housse, Reims, France
| | - Patrick Henriet
- Cell Biology Unit, de Duve Institute and Université Catholique de Louvain, Brussels, Belgium
| | - Hervé Emonard
- Université de Reims Champagne-Ardenne, CNRS UMR 6237 MEDyC, Laboratoire SiRMa, Campus Moulin de la Housse, Reims, France
| | - Laurent Martiny
- Université de Reims Champagne-Ardenne, CNRS UMR 6237 MEDyC, Laboratoire SiRMa, Campus Moulin de la Housse, Reims, France
| | - Stéphane Dedieu
- Université de Reims Champagne-Ardenne, CNRS UMR 6237 MEDyC, Laboratoire SiRMa, Campus Moulin de la Housse, Reims, France
- * E-mail:
| |
Collapse
|
36
|
Celiac anti-tissue transglutaminase antibodies interfere with the uptake of alpha gliadin peptide 31-43 but not of peptide 57-68 by epithelial cells. Biochim Biophys Acta Mol Basis Dis 2010; 1802:717-27. [PMID: 20553859 DOI: 10.1016/j.bbadis.2010.05.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Revised: 05/10/2010] [Accepted: 05/20/2010] [Indexed: 02/06/2023]
Abstract
Celiac disease is characterized by the secretion of IgA-class autoantibodies that target tissue transglutaminase (tTG). It is now recognized that anti-tTG antibodies are functional and not mere bystanders in the pathogenesis of celiac disease. Here we report that interaction between anti-tTG antibodies and extracellular membrane-bound tTG inhibits peptide 31-43 (but not peptide 57-68) uptake by cells, thereby impairing the ability of p31-43 to drive Caco-2 cells into S-phase. This effect did not involve tTG catalytic activity. Because anti-tTG antibodies interfered with epidermal growth factor endocytosis, we assume that they exert their effect by reducing peptide 31-43 endocytosis. Our results suggest that cell-surface tTG plays a hitherto unknown role in the regulation of gliadin peptide uptake and endocytosis.
Collapse
|
37
|
Park D, Choi SS, Ha KS. Transglutaminase 2: a multi-functional protein in multiple subcellular compartments. Amino Acids 2010; 39:619-31. [PMID: 20148342 DOI: 10.1007/s00726-010-0500-z] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Accepted: 01/23/2010] [Indexed: 12/16/2022]
Abstract
Transglutaminase 2 (TG2) is a multifunctional protein that can function as a transglutaminase, G protein, kinase, protein disulfide isomerase, and as an adaptor protein. These multiple biochemical activities of TG2 account for, at least in part, its involvement in a wide variety of cellular processes encompassing differentiation, cell death, inflammation, cell migration, and wound healing. The individual biochemical activities of TG2 are regulated by several cellular factors, including calcium, nucleotides, and redox potential, which vary depending on its subcellular location. Thus, the microenvironments of the subcellular compartments to which TG2 localizes, such as the cytosol, plasma membrane, nucleus, mitochondria, or extracellular space, are important determinants to switch on or off various TG2 biochemical activities. Furthermore, TG2 interacts with a distinct subset of proteins and/or substrates depending on its subcellular location. In this review, the biological functions and molecular interactions of TG2 will be discussed in the context of the unique environments of the subcellular compartments to which TG2 localizes.
Collapse
Affiliation(s)
- Donghyun Park
- Department of Molecular and Cellular Biochemistry, Vascular System Research Center, Kangwon National University School of Medicine, Chuncheon, Kangwon-do, 200-701, Republic of Korea
| | | | | |
Collapse
|
38
|
Hodrea J, Demény MA, Majai G, Sarang Z, Korponay-Szabó IR, Fésüs L. Transglutaminase 2 is expressed and active on the surface of human monocyte-derived dendritic cells and macrophages. Immunol Lett 2010; 130:74-81. [PMID: 20005901 DOI: 10.1016/j.imlet.2009.12.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Revised: 11/27/2009] [Accepted: 12/02/2009] [Indexed: 11/25/2022]
Abstract
The multifunctional enzyme, transglutaminase 2 (TG2), can be found intracellularly, in the extracellular matrix and on the cell surface. Cell surface TG2 (csTG2) could not be detected by TG2-specific antibodies or autoantibodies on immunocompetent cells. A supposedly csTG2-specific antibody, 6B9, was recently shown to actually react with CD44. Though the importance of TG2-mediated deamidation of gluten in the pathogenesis of celiac disease has been well recognized, it is not known in which intestinal cells or cell compartment the deamidation occurs. Duodenal dendritic cells (DCs) can be directly involved in gluten-reactive T-cell activation. Here we use blood monocyte-derived dendritic cells (iDC) and macrophages (MPhi) as a model for intestinal antigen-presenting cells (APCs) and show that they contain large amounts of TG2. We found that TG100, a commercial TG2-specific monoclonal antibody can recognize TG2 on the surface of these cells, that is monocyte-derived APCs express surface-associated TG2. TG2 expression was found on the surface of individual tunica propria cells in frozen small bowel tissue sections from both normal and celiac subjects. We also demonstrate that the pool of TG2 on the surface of iDCs can be catalytically active, hence it might directly be involved in the deamidation of gliadin peptides. Bacterial lipopolysaccharide (LPS) increased the level of TG2 on the surface of maturing DCs, supporting the hypothesis that an unspecific inflammatory process in the gut may expose more transglutaminase activity.
Collapse
Affiliation(s)
- Judit Hodrea
- Department of Biochemistry and Molecular Biology, Hungarian Academy of Sciences, University of Debrecen, Debrecen, Hungary
| | | | | | | | | | | |
Collapse
|
39
|
Platelet factor 4 regulates megakaryopoiesis through low-density lipoprotein receptor-related protein 1 (LRP1) on megakaryocytes. Blood 2009; 114:2290-8. [PMID: 19605848 DOI: 10.1182/blood-2009-04-216473] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Platelet factor 4 (PF4) is a negative regulator of megakaryopoiesis, but its mechanism of action had not been addressed. Low-density lipoprotein (LDL) receptor-related protein-1 (LRP1) has been shown to mediate endothelial cell responses to PF4 and so we tested this receptor's importance in PF4's role in megakaryopoiesis. We found that LRP1 is absent from megakaryocyte-erythrocyte progenitor cells, is maximally present on large, polyploidy megakaryocytes, and near absent on platelets. Blocking LRP1 with either receptor-associated protein (RAP), an antagonist of LDL family member receptors, or specific anti-LRP1 antibodies reversed the inhibition of megakaryocyte colony growth by PF4. In addition, using shRNA to reduce LRP1 expression was able to restore megakaryocyte colony formation in bone marrow isolated from human PF4-overexpressing mice (hPF4(High)). Further, shRNA knockdown of LRP1 expression was able to limit the effects of PF4 on megakaryopoiesis. Finally, infusion of RAP into hPF4(High) mice was able to increase baseline platelet counts without affecting other lineages, suggesting that this mechanism is important in vivo. These studies extend our understanding of PF4's negative paracrine effect in megakaryopoiesis and its potential clinical implications as well as provide insights into the biology of LRP1, which is transiently expressed during megakaryopoiesis.
Collapse
|
40
|
Scarpellini A, Germack R, Lortat-Jacob H, Muramatsu T, Billett E, Johnson T, Verderio EAM. Heparan sulfate proteoglycans are receptors for the cell-surface trafficking and biological activity of transglutaminase-2. J Biol Chem 2009; 284:18411-23. [PMID: 19398782 DOI: 10.1074/jbc.m109.012948] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Transglutaminase type 2 (TG2) is both a protein cross-linking enzyme and a cell adhesion molecule with an elusive unconventional secretion pathway. In normal conditions, TG2-mediated modification of the extracellular matrix modulates cell motility, proliferation and tissue repair, but under continuous cell insult, higher expression and elevated extracellular trafficking of TG2 contribute to the pathogenesis of tissue scarring. In search of TG2 ligands that could contribute to its regulation, we characterized the affinity of TG2 for heparan sulfate (HS) and heparin, an analogue of the chains of HS proteoglycans (HSPGs). By using heparin/HS solid-binding assays and surface plasmon resonance we showed that purified TG2 has high affinity for heparin/HS, comparable to that for fibronectin, and that cell-surface TG2 interacts with heparin/HS. We demonstrated that cell-surface TG2 directly associates with the HS chains of syndecan-4 without the mediation of fibronectin, which has affinity for both syndecan-4 and TG2. Functional inhibition of the cell-surface HS chains of wild-type and syndecan-4-null fibroblasts revealed that the extracellular cross-linking activity of TG2 depends on the HS of HSPG and that syndecan-4 plays a major but not exclusive role. We found that heparin binding did not alter TG2 activity per se. Conversely, fibroblasts deprived of syndecan-4 were unable to effectively externalize TG2, resulting in its cytosolic accumulation. We propose that the membrane trafficking of TG2, and hence its extracellular activity, is linked to TG2 binding to cell-surface HSPG.
Collapse
Affiliation(s)
- Alessandra Scarpellini
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
41
|
Zemskov EA, Loukinova E, Mikhailenko I, Coleman RA, Strickland DK, Belkin AM. Regulation of platelet-derived growth factor receptor function by integrin-associated cell surface transglutaminase. J Biol Chem 2009; 284:16693-16703. [PMID: 19386600 DOI: 10.1074/jbc.m109.010769] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
A functional collaboration between growth factor receptors such as platelet derived growth factor receptor (PDGFR) and integrins is required for effective signal transduction in response to soluble growth factors. However, the mechanisms of synergistic PDGFR/integrin signaling remain poorly understood. Our previous work showed that cell surface tissue transglutaminase (tTG) induces clustering of integrins and amplifies integrin signaling by acting as an integrin binding adhesion co-receptor for fibronectin. Here we report that in fibroblasts tTG enhances PDGFR-integrin association by interacting with PDGFR and bridging the two receptors on the cell surface. The interaction between tTG and PDGFR reduces cellular levels of the receptor by accelerating its turnover. Moreover, the association of PDGFR with tTG causes receptor clustering, increases PDGF binding, promotes adhesion-mediated and growth factor-induced PDGFR activation, and up-regulates downstream signaling. Importantly, tTG is required for efficient PDGF-dependent proliferation and migration of fibroblasts. These results reveal a previously unrecognized role for cell surface tTG in the regulation of the joint PDGFR/integrin signaling and PDGFR-dependent cell responses.
Collapse
Affiliation(s)
- Evgeny A Zemskov
- From the Department of Biochemistry and Molecular Biology, Baltimore, Maryland 21201; Center for Vascular and Inflammatory Diseases, Baltimore, Maryland 21201
| | - Elena Loukinova
- Center for Vascular and Inflammatory Diseases, Baltimore, Maryland 21201; Departments of Physiology, Baltimore, Maryland 21201
| | - Irina Mikhailenko
- Center for Vascular and Inflammatory Diseases, Baltimore, Maryland 21201; Departments of Physiology, Baltimore, Maryland 21201
| | | | - Dudley K Strickland
- Center for Vascular and Inflammatory Diseases, Baltimore, Maryland 21201; Surgery, Baltimore, Maryland 21201
| | - Alexey M Belkin
- From the Department of Biochemistry and Molecular Biology, Baltimore, Maryland 21201; Center for Vascular and Inflammatory Diseases, Baltimore, Maryland 21201; Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland 21201.
| |
Collapse
|
42
|
Langlois B, Emonard H, Martiny L, Dedieu S. [Multiple involvements of LRP-1 receptor in tumor progression]. ACTA ACUST UNITED AC 2009; 57:548-54. [PMID: 19233571 DOI: 10.1016/j.patbio.2008.07.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Accepted: 07/03/2008] [Indexed: 11/25/2022]
Abstract
Extensive proteolytic remodeling processes constitute a critical step during tumor progression. The endocytic receptor low-density lipoprotein receptor-related protein-1 (LRP-1), by its function in the clearance of multiple extracellular proteases involved in metastatic spreading, has long been considered as a putative tumor suppressor. Moreover, the receptor is likely to control the peritumoral microenvironment by internalization of growth factors and matricial proteins and could therefore participate to the control of signaling events involved in survival and proliferation of cancer cells. Nevertheless, recent data lead to reconsider the initially attributed antitumor properties of LRP-1. A more complex model seems to emerge in which LRP-1 could constitute a sensor of pericellular environment and regulate the membrane proteome dynamics. By its control of focal adhesions composition and turn-over, regulation of the cytoskeleton organization and integrin endocytic recycling, LRP-1 appears as a crucial actor of the epithelial-mesenchymal transition, thereby reinforcing the aggressive phenotype of malignant cells. LRP-1 partitioning into rafts and association with tissue-type and tumor grade specific intracellular scaffold proteins appear crucial to determine its function in tumor progression. Those emerging aspects present numerous promising perspectives in oncology and allow envisaging the development of innovative strategies of control of tumor progression through the targeting of LRP-1.
Collapse
Affiliation(s)
- B Langlois
- Laboratoire Signalisation des récepteurs matriciels, CNRS UMR MEDyC 6237, université de Reims-Champagne-Ardenne, campus Moulin-de-la-Housse, BP 1039, 51687, Reims cedex 2, France
| | | | | | | |
Collapse
|
43
|
Tóth B, Garabuczi É, Sarang Z, Vereb G, Vámosi G, Aeschlimann D, Blaskó B, Bécsi B, Erdõdi F, Lacy-Hulbert A, Zhang A, Falasca L, Birge RB, Balajthy Z, Melino G, Fésüs L, Szondy Z. Transglutaminase 2 Is Needed for the Formation of an Efficient Phagocyte Portal in Macrophages Engulfing Apoptotic Cells. THE JOURNAL OF IMMUNOLOGY 2009; 182:2084-92. [DOI: 10.4049/jimmunol.0803444] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
44
|
Transglutaminase 2 cross-linking of matrix proteins: biological significance and medical applications. Amino Acids 2008; 36:659-70. [PMID: 18982407 DOI: 10.1007/s00726-008-0190-y] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Accepted: 10/07/2008] [Indexed: 12/22/2022]
Abstract
This review summarises the functions of the enzyme tissue transglutaminase (TG2) in the extracellular matrix (ECM) both as a matrix stabiliser through its protein cross-linking activity and as an important cell adhesion protein involved in cell survival. The contribution of extracellular TG2 to the pathology of important diseases such as cancer and fibrosis are discussed with a view to the potential importance of TG2 as a therapeutic target. The medical applications of TG2 are further expanded by detailing the use of transglutaminase cross-linking in the development of novel biocompatible biomaterials for use in soft and hard tissue repair.
Collapse
|
45
|
Stamnaes J, Fleckenstein B, Lund-Johansen F, Sollid LM. The monoclonal antibody 6B9 recognizes CD44 and not cell surface transglutaminase 2. Scand J Immunol 2008; 68:534-42. [PMID: 18803608 DOI: 10.1111/j.1365-3083.2008.02173.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The multifunctional enzyme transglutaminase 2 (TG2) can be located intracellularly, in the extracellular matrix (ECM) and on the cell surface. Cell surface TG2 (csTG2) is poorly recognized both by most TG2-specific commercial antibodies and celiac disease-associated anti-TG2 autoantibodies. The recent characterization of a csTG2-specific monoclonal antibody (mAb), which did not recognize ECM-associated TG2, suggested major conformational differences between csTG2 and TG2 found in the ECM. Subsequent findings based on this antibody indicated ubiquitous abundance and novel roles of csTG2 in innate immune responses. We wished to identify the epitope of 6B9 so as to shed light on the disparate antibody binding properties of csTG2- and ECM-associated TG2. Surprisingly, and despite thorough effort, we were unable to isolate TG2 as the antigen of 6B9. We found that 6B9 does not react with recombinant human TG2. In immunoprecipitation experiments, 6B9 pulled down an 85 kDa protein which was identified as CD44 by mass spectrometry. Several flow cytometry experiments including the testing of CD44s transfectants indicated that CD44, and not csTG2, is the antigen of 6B9. We conclude that 6B9 does not recognize csTG2 but rather the cell surface glycoprotein CD44. Thus, recent knowledge of csTG2 gained through the use of 6B9 should be reevaluated.
Collapse
Affiliation(s)
- J Stamnaes
- Centre for Immune Regulation, Institute of Immunology, University of Oslo and Rikshospitalet University Hospital, Oslo, Norway.
| | | | | | | |
Collapse
|
46
|
Tissue transglutaminase in celiac disease: role of autoantibodies. Amino Acids 2008; 36:693-9. [PMID: 18600381 DOI: 10.1007/s00726-008-0120-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2008] [Accepted: 05/25/2008] [Indexed: 12/13/2022]
Abstract
In celiac disease (CD), gluten, the disease-inducing toxic component in wheat, induces the secretion of IgA-class autoantibodies which target tissue transglutaminase (tTG). These autoantibodies are produced in the small-intestinal mucosa, and, during gluten consumption, they can also be detected in patients' serum but disappear slowly from the circulation on a gluten-free diet. Interestingly, after adoption of a gluten-free diet the serum autoantibodies disappear from the circulation more rapidly than the small-intestinal mucosal autoantibody deposits. The finding of IgA deposits on extracellular tTG in the liver, kidney, lymph nodes and muscles of patients with CD indicates that tTG is accessible to the gut-derived autoantibodies. Although the specific autoantibody response directed against tTG is very characteristic in celiac patients, their role in the immunopathology of the celiac mucosal lesion is a matter of debate. Here we report a brief summary of anti-tTG antibody effects demonstrating that these antibodies are functional and not mere bystanders in the disease pathogenesis. In fact, they inhibit intestinal epithelial cell differentiation, induce intestinal epithelial cell proliferation, increase epithelial permeability and activate monocytes and disturb angiogenesis.
Collapse
|