1
|
Chai W, Li H, Xu H, Zhu Q, Li S, Yuan C, Ji W, Wang J, Sheng L. ZmDST44 Gene Is a Positive Regulator in Plant Drought Stress Tolerance. BIOLOGY 2024; 13:552. [PMID: 39194490 DOI: 10.3390/biology13080552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 08/29/2024]
Abstract
Improving drought tolerance in plants is essential for increasing crop yields under water-limited conditions. In this study, we investigated the functional role of the maize gene ZmDST44, which is targeted by the miRNA ZmmiR139. Our results indicate that ZmmiR139 regulates ZmDST44 by cleaving its mRNA, as confirmed by inverse expression patterns and 5'-RACE analysis. Overexpression of ZmDST44 in Arabidopsis, rice, and maize resulted in significant enhancements in drought tolerance. Transgenic plants exhibited reduced malondialdehyde (MDA) levels, increased proline accumulation, and upregulation of drought-responsive genes compared to wild-type plants. Transgenic Arabidopsis and rice showed improved drought resistance and higher post-drought recovery rates, and transgenic maize displayed lower sensitivity to drought stress. These findings suggest that ZmDST44 acts as a positive regulator of drought tolerance across different plant species and holds promise for developing drought-resistant crops through genetic engineering.
Collapse
Affiliation(s)
- Wenbo Chai
- Lianyungang Academy of Agricultural Sciences, Lianyungang 222006, China
| | - Hongtao Li
- Lianyungang Academy of Agricultural Sciences, Lianyungang 222006, China
| | - Hanyuan Xu
- Lianyungang Academy of Agricultural Sciences, Lianyungang 222006, China
| | - Qing Zhu
- Lianyungang Academy of Agricultural Sciences, Lianyungang 222006, China
| | - Shufen Li
- Lianyungang Academy of Agricultural Sciences, Lianyungang 222006, China
| | - Chao Yuan
- Lianyungang Academy of Agricultural Sciences, Lianyungang 222006, China
| | - Wei Ji
- Lianyungang Academy of Agricultural Sciences, Lianyungang 222006, China
| | - Jun Wang
- Lianyungang Academy of Agricultural Sciences, Lianyungang 222006, China
| | - Lei Sheng
- Anhui Academy of Agricultural Sciences, Hefei 230036, China
| |
Collapse
|
2
|
Daimi H, Lozano-Velasco E, Aranega A, Franco D. Genomic and Non-Genomic Regulatory Mechanisms of the Cardiac Sodium Channel in Cardiac Arrhythmias. Int J Mol Sci 2022; 23:1381. [PMID: 35163304 PMCID: PMC8835759 DOI: 10.3390/ijms23031381] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/30/2021] [Accepted: 01/06/2022] [Indexed: 12/19/2022] Open
Abstract
Nav1.5 is the predominant cardiac sodium channel subtype, encoded by the SCN5A gene, which is involved in the initiation and conduction of action potentials throughout the heart. Along its biosynthesis process, Nav1.5 undergoes strict genomic and non-genomic regulatory and quality control steps that allow only newly synthesized channels to reach their final membrane destination and carry out their electrophysiological role. These regulatory pathways are ensured by distinct interacting proteins that accompany the nascent Nav1.5 protein along with different subcellular organelles. Defects on a large number of these pathways have a tremendous impact on Nav1.5 functionality and are thus intimately linked to cardiac arrhythmias. In the present review, we provide current state-of-the-art information on the molecular events that regulate SCN5A/Nav1.5 and the cardiac channelopathies associated with defects in these pathways.
Collapse
Affiliation(s)
- Houria Daimi
- Biochemistry and Molecular Biology Laboratory, Faculty of Pharmacy, University of Monastir, Monastir 5000, Tunisia
| | - Estefanía Lozano-Velasco
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (A.A.); (D.F.)
- Medina Foundation, Technology Park of Health Sciences, Av. del Conocimiento, 34, 18016 Granada, Spain
| | - Amelia Aranega
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (A.A.); (D.F.)
- Medina Foundation, Technology Park of Health Sciences, Av. del Conocimiento, 34, 18016 Granada, Spain
| | - Diego Franco
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (A.A.); (D.F.)
- Medina Foundation, Technology Park of Health Sciences, Av. del Conocimiento, 34, 18016 Granada, Spain
| |
Collapse
|
3
|
Vicente PC, Kim JY, Ha J, Song M, Lee H, Kim D, Choi J, Park K. Identification and characterization of site‐specific N‐glycosylation in the potassium channel Kv3.1b. J Cell Physiol 2017; 233:549-558. [DOI: 10.1002/jcp.25915] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 03/17/2017] [Indexed: 12/11/2022]
Affiliation(s)
| | - Jin Young Kim
- Biomedical Omics GroupKorea Basic Science InstituteCheongju‐si Chungcheongbuk‐doSouth Korea
| | - Jeong‐Ju Ha
- Department of Physiology, School of MedicineKyung Hee UniversitySeoulSouth Korea
| | - Min‐Young Song
- Department of Physiology, School of MedicineKyung Hee UniversitySeoulSouth Korea
- Biomedical Omics GroupKorea Basic Science InstituteCheongju‐si Chungcheongbuk‐doSouth Korea
| | - Hyun‐Kyung Lee
- Biomedical Omics GroupKorea Basic Science InstituteCheongju‐si Chungcheongbuk‐doSouth Korea
- Graduate School of Analytical Science and TechnologyChungnam National UniversityDaejeonSouth Korea
| | - Dong‐Hyun Kim
- College of PharmacyCatholic University of KoreaBucheonGyeonggi‐DoSouth Korea
| | - Jin‐Sung Choi
- College of PharmacyCatholic University of KoreaBucheonGyeonggi‐DoSouth Korea
| | - Kang‐Sik Park
- Department of Physiology, School of MedicineKyung Hee UniversitySeoulSouth Korea
| |
Collapse
|
4
|
The ubiquitin-proteasome system regulates the stability of neuronal nicotinic acetylcholine receptors. J Mol Neurosci 2009; 40:177-84. [PMID: 19693707 DOI: 10.1007/s12031-009-9272-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Accepted: 07/20/2009] [Indexed: 12/16/2022]
Abstract
Ubiquitination is a key event for protein degradation by the proteasome system, membrane protein internalization, and protein trafficking among cellular compartments. Few data are available on the role of the ubiquitin-proteasome system (UPS) in the trafficking of neuronal nicotinic acetylcholine receptors (nAChRs). Experiments conducted in neuron-like differentiated rat pheochromocytoma cells (PC12 cells) show that the alpha3, beta2, and beta4 nAChR subunits are ubiquitinated and that their ubiquitination is necessary for degradation. A 24-h treatment with the proteasome inhibitor PS-341 increased the total levels of alpha3 and the two beta subunits in both whole cell lysates and fractions enriched for the ER/Golgi compartment. nAChR subunit upregulation was also detected in plasma membrane-enriched fractions. Inhibition of the lysosomal degradation machinery by E-64 had a significantly smaller effect on nAChR turnover. The present data, together with previous results showing that the alpha7 nAChR subunit is a target of the UPS, point to a prominent role of the proteasome in nAChR trafficking.
Collapse
|
5
|
Schwappach B. An overview of trafficking and assembly of neurotransmitter receptors and ion channels (Review). Mol Membr Biol 2008; 25:270-8. [PMID: 18446613 DOI: 10.1080/09687680801960998] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Ionotropic neurotransmitter receptors and voltage-gated ion channels assemble from several homologous and non-homologous subunits. Assembly of these multimeric membrane proteins is a tightly controlled process subject to primary and secondary quality control mechanisms. An assembly pathway involving a dimerization of dimers has been demonstrated for a voltage-gated potassium channel and for different types of glutamate receptors. While many novel C-terminal assembly domains have been identified in various members of the voltage-gated cation channel superfamily, the assembly pathways followed by these proteins remain largely elusive. Recent progress on the recognition of polar residues in the transmembrane segments of membrane proteins by the retrieval factor Rer1 is likely to be relevant for the further investigation of trafficking defects in channelopathies. This mechanism might also contribute to controlling the assembly of ion channels by retrieving unassembled subunits to the endoplasmic reticulum. The endoplasmic reticulum is a metabolic compartment studded with small molecule transporters. This environment provides ligands that have recently been shown to act as pharmacological chaperones in the biogenesis of ligand-gated ion channels. Future progress depends on the improvement of tools, in particular the antibodies used by the field, and the continued exploitation of genetically tractable model organisms in screens and physiological experiments.
Collapse
|
6
|
Kang YJ, Mbonye UR, DeLong CJ, Wada M, Smith WL. Regulation of intracellular cyclooxygenase levels by gene transcription and protein degradation. Prog Lipid Res 2007; 46:108-25. [PMID: 17316818 PMCID: PMC3253738 DOI: 10.1016/j.plipres.2007.01.001] [Citation(s) in RCA: 229] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cyclooxygenases-1 and -2 (COX-1 and -2) catalyze the committed step in prostaglandin formation. Each isozyme subserves different biological functions. This is, at least in part, a consequence of differences in patterns of COX-1 and COX-2 expression. COX-1 is induced during development, and COX-1 mRNA and COX-1 protein are very stable. These latter properties can explain why COX-1 protein levels usually remain constant in those cells that express this isozyme. COX-2 is usually expressed inducibly in association with cell replication or differentiation. Both COX-2 mRNA and COX-2 protein have short half-lives relative to those of COX-1. Therefore, COX-2 protein is typically present for only a few hours after its synthesis. Here we review and develop the concepts that (a) COX-2 gene transcription can involve at least six different cis-acting promoter elements interacting with trans-acting factors generated by multiple, different signaling pathways, (b) the relative contribution of each cis-acting COX-2 promoter element depends on the cell type, the stimulus and the time following the stimulus and (c) a unique 27 amino acid instability element located just upstream of the C-terminus of COX-2 targets this isoform to the ER-associated degradation system and proteolysis by the cytosolic 26S proteasome.
Collapse
Affiliation(s)
- Yeon-Joo Kang
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Uri R. Mbonye
- Department of Biochemistry and Molecular Biology, Michigan State University, MI 48824
| | - Cynthia J. DeLong
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Masayuki Wada
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - William L. Smith
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109
- To whom correspondence should be addressed: William L. Smith, 1150 W. Medical Center Drive, 5301 Medical Science Research Building III, Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109; Tel: 734-647-6180; Fax:734-764-3509;
| |
Collapse
|
7
|
Chandrasekhar KD, Bas T, Kobertz WR. KCNE1 subunits require co-assembly with K+ channels for efficient trafficking and cell surface expression. J Biol Chem 2006; 281:40015-23. [PMID: 17065152 DOI: 10.1074/jbc.m604398200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
KCNE peptides are a class of type I transmembrane beta subunits that assemble with and modulate the gating and ion conducting properties of a variety of voltage-gated K(+) channels. Accordingly, mutations that disrupt the assembly and trafficking of KCNE-K(+) channel complexes give rise to disease. The cellular mechanisms responsible for ensuring that KCNE peptides assemble with voltage-gated K(+) channels have yet to be elucidated. Using enzymatic deglycosylation, immunofluorescence, and quantitative cell surface labeling experiments, we show that KCNE1 peptides are retained in the early stages of the secretory pathway until they co-assemble with specific K(+) channel subunits; co-assembly mediates KCNE1 progression through the secretory pathway and results in cell surface expression. We also address an apparent discrepancy between our results and a previous study in human embryonic kidney cells, which showed wild type KCNE1 peptides can reach the plasma membrane without exogenously expressed K(+) channel subunits. By comparing KCNE1 trafficking in three cell lines, our data suggest that the errant KCNE1 trafficking observed in human embryonic kidney cells may be due, in part, to the presence of endogenous voltage-gated K(+) channels in these cells.
Collapse
Affiliation(s)
- Kshama D Chandrasekhar
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | | | |
Collapse
|
8
|
Gong Q, Jones MA, Zhou Z. Mechanisms of pharmacological rescue of trafficking-defective hERG mutant channels in human long QT syndrome. J Biol Chem 2005; 281:4069-74. [PMID: 16361248 PMCID: PMC1624912 DOI: 10.1074/jbc.m511765200] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Long QT syndrome type 2 is caused by mutations in the human ether-a-go-go-related gene (hERG). We previously reported that the N470D mutation is retained in the endoplasmic reticulum (ER) but can be rescued to the plasma membrane by hERG channel blocker E-4031. The mechanisms of ER retention and how E-4031 rescues the N470D mutant are poorly understood. In this study, we investigated the interaction of hERG channels with the ER chaperone protein calnexin. Using coimmunoprecipitation, we showed that the immature forms of both wild type hERG and N470D associated with calnexin. The association required N-linked glycosylation of hERG channels. Pulse-chase analysis revealed that N470D had a prolonged association with calnexin compared with wild type hERG and E-4031 shortened the time course of calnexin association with N470D. To test whether the prolonged association of N470D with calnexin is due to defective folding of mutant channels, we studied hERG channel folding using the trypsin digestion method. We found that N470D and the immature form of wild type hERG were more sensitive to trypsin digestion than the mature form of wild type hERG. In the presence of E-4031, N470D became more resistant to trypsin even when its ER-to-Golgi transport was blocked by brefeldin A. These results suggest that defective folding of N470D contributes to its prolonged association with calnexin and ER retention and that E-4031 may restore proper folding of the N470D channel leading to its cell surface expression.
Collapse
Affiliation(s)
- Qiuming Gong
- Division of Cardiovascular Medicine, Department of Medicine, Oregon Health & Science University, Portland, 97239, USA
| | | | | |
Collapse
|
9
|
Heusser K, Schwappach B. Trafficking of potassium channels. Curr Opin Neurobiol 2005; 15:364-9. [PMID: 15961040 DOI: 10.1016/j.conb.2005.04.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2005] [Accepted: 04/08/2005] [Indexed: 11/22/2022]
Abstract
Recent progress in our understanding of the trafficking of potassium channels can be seen in particular when considering the Kv-type channels. To date, we have discovered that folding of the Kv1.3 T1 domain begins in the ribosomal exit tunnel, and that the cell surface expression of Kv4 channels is enhanced by the presence of two recently identified accessory subunits. Current advances are beginning to enable us to understand the Kv supermolecular complex containing these subunits in crystallographic detail. In addition, determinants that govern the dendritic or axonal targeting of Kv channels have also been identified. In terms of the bigger picture, the careful analysis of gene expression patterns in the brain paves the way for studying trafficking in a physiological context. Indeed, neuronal activity has recently been shown to fine-tune the localization of Kv2.1 channels in microdomains of the neuronal plasma membrane.
Collapse
Affiliation(s)
- Katja Heusser
- Zentrum für Molekulare Biologie der Universität Heidelberg, Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany
| | | |
Collapse
|
10
|
Sandoval A, Oviedo N, Andrade A, Felix R. Glycosylation of asparagines 136 and 184 is necessary for the α2δ subunit-mediated regulation of voltage-gated Ca2+channels. FEBS Lett 2004; 576:21-6. [PMID: 15474003 DOI: 10.1016/j.febslet.2004.08.054] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2004] [Revised: 08/23/2004] [Accepted: 08/23/2004] [Indexed: 11/29/2022]
Abstract
The CaValpha2delta auxiliary subunit is a glycosylated protein that regulates the trafficking and function of voltage-gated Ca2+ channels. One of the most prominent roles of CaValpha2delta is to increase whole-cell Ca2+ current amplitude. Using N-glycosidase F and truncated forms of CaValpha2delta, earlier studies suggested an important role for N-linked glycosylation in current stimulation. Here, we used site-directed mutagenesis and heterologous expression in HEK-293 cells to examine the impact of individual glycosylation sites within the CaValpha2delta subunit on the regulation of Ba2+ currents through recombinant Ca2+ channels. We found two N-glycosylation consensus sites (NX(S/T)) in the extracellular alpha2 domain of the protein that are functional. Substitution of asparagines for glutamines at amino acid positions 136 and 184 rendered these sites non-functional as shown by patch-clamp experiments. These results corroborate that N-glycosylation is required for the CaValpha2delta subunit-induced current stimulation and suggest that sites N136 and N184 are directly involved in this action. Likewise, N136Q and N184Q mutations prevented whole-cell current stimulation without altering its kinetic properties, suggesting a regulation on the number of functional channels at the plasma membrane.
Collapse
Affiliation(s)
- Alejandro Sandoval
- Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav-IPN), Avenida IPN #2508, Colonia Zacatenco, Mexico City CP 07300, Mexico
| | | | | | | |
Collapse
|
11
|
Manganas LN, Trimmer JS. Calnexin regulates mammalian Kv1 channel trafficking. Biochem Biophys Res Commun 2004; 322:577-84. [PMID: 15325269 DOI: 10.1016/j.bbrc.2004.06.182] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2004] [Indexed: 10/26/2022]
Abstract
Voltage-gated Kv1 channels are key factors regulating excitability in the mammalian central nervous system. Diverse posttranslational regulatory mechanisms operate to determine the density, subunit composition, and localization of Kv1 channel complexes in the neuronal plasma membrane. In this study, we investigated the role of the endoplasmic reticulum chaperone calnexin in the intracellular trafficking of Kv1 channels. We found that coexpressing calnexin with the Kv1.2alpha subunit in transfected mammalian COS-1 cells produced a dramatic dose-dependent increase in cell surface Kv1.2 channel complexes. In calnexin-transfected COS-1 cells, the proportion of Kv1.2 channels with mature N-linked oligosaccharide chains was comparable to that observed in neurons. In contrast, calnexin coexpression exerted no effects on trafficking of the intracellularly retained Kv1.1 or Kv1.6alpha subunits. We also found that calnexin and auxiliary Kvbeta2 subunit coexpression was epistatic, suggesting that they share a common pathway for promoting Kv1.2 channel surface expression. These results provide yet another component in the elaborate repertoire of determinants regulating the density of Kv1 channels in the plasma membrane.
Collapse
Affiliation(s)
- Louis N Manganas
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, NY 11794, USA
| | | |
Collapse
|
12
|
Monitor – biology. Drug Discov Today 2004. [DOI: 10.1016/s1359-6446(04)03156-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
13
|
Myers MP, Khanna R, Lee EJ, Papazian DM. Voltage sensor mutations differentially target misfolded K+ channel subunits to proteasomal and non-proteasomal disposal pathways. FEBS Lett 2004; 568:110-6. [PMID: 15196930 PMCID: PMC3101709 DOI: 10.1016/j.febslet.2004.05.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2004] [Revised: 05/07/2004] [Accepted: 05/07/2004] [Indexed: 01/30/2023]
Abstract
In Shaker K(+) channels, formation of an electrostatic interaction between two charged residues, D316 and K374 in transmembrane segments S3 and S4, respectively, is a key step in voltage sensor biogenesis. Mutations D316K and K374E disrupt formation of the voltage sensor and lead to endoplasmic reticulum retention. We have now investigated the fates of these misfolded proteins. Both are significantly less stable than the wild-type protein. D316K is degraded by cytoplasmic proteasomes, whereas K374E is degraded by a lactacystin-insensitive, non-proteasomal pathway. Our results suggest that the D316K and K374E proteins are misfolded in recognizably different ways, an observation with implications for voltage sensor biogenesis.
Collapse
|