1
|
Vietri Rudan M, Sipilä KH, Philippeos C, Ganier C, Bhosale PG, Negri VA, Watt FM. Neutral evolution of snoRNA Host Gene long non-coding RNA affects cell fate control. EMBO J 2024; 43:4049-4067. [PMID: 39054371 PMCID: PMC11405852 DOI: 10.1038/s44318-024-00172-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/15/2024] [Accepted: 07/01/2024] [Indexed: 07/27/2024] Open
Abstract
A fundamental challenge in molecular biology is to understand how evolving genomes can acquire new functions. Actively transcribed, non-coding parts of the genome provide a potential platform for the development of new functional sequences, but their biological and evolutionary roles remain largely unexplored. Here, we show that a set of neutrally evolving long non-coding RNAs (lncRNAs) whose introns encode small nucleolar RNAs (snoRNA Host Genes, SNHGs) are highly expressed in skin and dysregulated in inflammatory conditions. Using SNHG7 and human epidermal keratinocytes as a model, we describe a mechanism by which these lncRNAs can increase self-renewal and inhibit differentiation. The activity of SNHG7 lncRNA has been recently acquired in the primate lineage and depends on a short sequence required for microRNA binding. Taken together, our results highlight the importance of understanding the role of fast-evolving transcripts in normal and diseased epithelia, and show how poorly conserved, actively transcribed non-coding sequences can participate in the evolution of genomic functionality.
Collapse
Affiliation(s)
- Matteo Vietri Rudan
- Centre for Gene Therapy and Regenerative Medicine, King's College London, Floor 28, Tower Wing, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK
| | - Kalle H Sipilä
- Centre for Gene Therapy and Regenerative Medicine, King's College London, Floor 28, Tower Wing, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK
| | - Christina Philippeos
- Centre for Gene Therapy and Regenerative Medicine, King's College London, Floor 28, Tower Wing, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK
| | - Clarisse Ganier
- Centre for Gene Therapy and Regenerative Medicine, King's College London, Floor 28, Tower Wing, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK
| | - Priyanka G Bhosale
- Centre for Gene Therapy and Regenerative Medicine, King's College London, Floor 28, Tower Wing, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK
| | - Victor A Negri
- Centre for Gene Therapy and Regenerative Medicine, King's College London, Floor 28, Tower Wing, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK
| | - Fiona M Watt
- Centre for Gene Therapy and Regenerative Medicine, King's College London, Floor 28, Tower Wing, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK.
- Directors' Unit, EMBL, Meyerhofstr. 1, 69117, Heidelberg, Germany.
| |
Collapse
|
2
|
Patiabadi Z, Razmkabir M, EsmailizadehKoshkoiyeh A, Moradi MH, Rashidi A, Mahmoudi P. Whole-genome scan for selection signature associated with temperature adaptation in Iranian sheep breeds. PLoS One 2024; 19:e0309023. [PMID: 39150936 PMCID: PMC11329119 DOI: 10.1371/journal.pone.0309023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 07/31/2024] [Indexed: 08/18/2024] Open
Abstract
The present study aimed to identify the selection signature associated with temperature adaptation in Iranian sheep breeds raised in cold and hot environments. The Illumina HD ovine SNP600K BeadChip genomic arrays were utilized to analyze 114 animals from eight Iranian sheep breeds, namely Ghezel, Afshari, Shall, Sanjabi, Lori-Bakhtiari, Karakul, Kermani, and Balochi. All animals were classified into two groups: cold-weather breeds and hot-weather breeds, based on the environments to which they are adapted and the regions where they have been raised for many years. The unbiased FST (Theta) and hapFLK tests were used to identify the selection signatures. The results revealed five genomic regions on chromosomes 2, 10, 11, 13, and 14 using the FST test, and three genomic regions on chromosomes 10, 14, and 15 using the hapFLK test to be under selection in cold and hot groups. Further exploration of these genomic regions revealed that most of these regions overlapped with genes previously identified to affect cold and heat stress, nervous system function, cell division and gene expression, skin growth and development, embryo and skeletal development, adaptation to hypoxia conditions, and the immune system. These regions overlapped with QTLs that had previously been identified as being associated with various important economic traits, such as body weight, skin color, and horn characteristics. The gene ontology and gene network analyses revealed significant pathways and networks that distinguished Iranian cold and hot climates sheep breeds from each other. We identified positively selected genomic regions in Iranian sheep associated with pathways related to cell division, biological processes, cellular responses to calcium ions, metal ions and inorganic substances. This study represents the initial effort to identify selective sweeps linked to temperature adaptation in Iranian indigenous sheep breeds. It may provide valuable insights into the genomic regions involved in climate adaptation in sheep.
Collapse
Affiliation(s)
- Zahra Patiabadi
- Department of Animal Science, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
| | - Mohammad Razmkabir
- Department of Animal Science, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
| | | | | | - Amir Rashidi
- Department of Animal Science, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
| | - Peyman Mahmoudi
- Department of Animal Science, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
| |
Collapse
|
3
|
Yamada Y. Histogenetic and disease-relevant phenotypes in thymic epithelial tumors (TETs): The potential significance for future TET classification. Pathol Int 2023; 73:265-280. [PMID: 37278579 DOI: 10.1111/pin.13343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/18/2023] [Indexed: 06/07/2023]
Abstract
Thymic epithelial tumors (TETs) encompass morphologically various subtypes. Thus, it would be meaningful to explore the expression phenotypes that delineate each TET subtype or overarching multiple subtypes. If these profiles are related to thymic physiology, they will improve our biological understanding of TETs and may contribute to the establishment of a more rational TET classification. Against this background, pathologists have attempted to identify histogenetic features in TETs for a long time. As part of this work, our group has reported several TET expression profiles that are histotype-dependent and related to the nature of thymic epithelial cells (TECs). For example, we found that beta5t, a constituent of thymoproteasome unique to cortical TECs, is expressed mainly in type B thymomas, for which the nomenclature of cortical thymoma was once considered. Another example is the discovery that most thymic carcinomas, especially thymic squamous cell carcinomas, exhibit expression profiles similar to tuft cells, a recently discovered special type of medullary TEC. This review outlines the currently reported histogenetic phenotypes of TETs, including those related to thymoma-associated myasthenia gravis, summarizes their genetic signatures, and provides a perspective for the future direction of TET classification.
Collapse
Affiliation(s)
- Yosuke Yamada
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan
| |
Collapse
|
4
|
Wang J, Eming SA, Ding X. Role of mTOR Signaling Cascade in Epidermal Morphogenesis and Skin Barrier Formation. BIOLOGY 2022; 11:biology11060931. [PMID: 35741452 PMCID: PMC9220260 DOI: 10.3390/biology11060931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/13/2022] [Accepted: 06/17/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary The skin epidermis is a stratified multilayered epithelium that provides a life-sustaining protective and defensive barrier for our body. The barrier machinery is established and maintained through a tightly regulated keratinocyte differentiation program. Under normal conditions, the basal layer keratinocytes undergo active proliferation and migration upward, differentiating into the suprabasal layer cells. Perturbation of the epidermal differentiation program often results in skin barrier defects and inflammatory skin disorders. The protein kinase mechanistic target of rapamycin (mTOR) is the central hub of cell growth, metabolism and nutrient signaling. Over the past several years, we and others using transgenic mouse models have unraveled that mTOR signaling is critical for epidermal differentiation and barrier formation. On the other hand, there is increasing evidence that disturbed activation of mTOR signaling is significantly implicated in the development of various skin diseases. In this review, we focus on the formation of skin barrier and discuss the current understanding on how mTOR signaling networks, including upstream inputs, kinases and downstream effectors, regulate epidermal differentiation and skin barrier formation. We hope this review will help us better understand the metabolic signaling in the epidermis, which may open new vistas for epidermal barrier defect-associated disease therapy. Abstract The skin epidermis, with its capacity for lifelong self-renewal and rapid repairing response upon injury, must maintain an active status in metabolism. Mechanistic target of rapamycin (mTOR) signaling is a central controller of cellular growth and metabolism that coordinates diverse physiological and pathological processes in a variety of tissues and organs. Recent evidence with genetic mouse models highlights an essential role of the mTOR signaling network in epidermal morphogenesis and barrier formation. In this review, we focus on the recent advances in understanding how mTOR signaling networks, including upstream inputs, kinases and downstream effectors, regulate epidermal morphogenesis and skin barrier formation. Understanding the details of the metabolic signaling will be critical for the development of novel pharmacological approaches to promote skin barrier regeneration and to treat epidermal barrier defect-associated diseases.
Collapse
Affiliation(s)
- Juan Wang
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China;
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China
| | - Sabine A. Eming
- Department of Dermatology, University of Cologne, 50937 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50674 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
- Institute of Zoology, Developmental Biology Unit, University of Cologne, 50674 Cologne, Germany
- Correspondence: (S.A.E.); (X.D.); Tel.: +86-137-6457-1130 (X.D.)
| | - Xiaolei Ding
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China;
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China
- Department of Dermatology, University of Cologne, 50937 Cologne, Germany
- Correspondence: (S.A.E.); (X.D.); Tel.: +86-137-6457-1130 (X.D.)
| |
Collapse
|
5
|
Thermos G, Piperi E, Tosios KI, Nikitakis NG. Expression of BMP4 and FOXN1 in orthokeratinized odontogenic cyst compared to odontogenic keratocyst suggests an epidermal phenotype. Biotech Histochem 2022; 97:584-592. [PMID: 35527675 DOI: 10.1080/10520295.2022.2048073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Odontogenic keratocysts (OKC) and orthokeratinized odontogenic cysts (OOC) are odontogenic cysts that share histological and immunohistochemical similarity with epidermal appendages and cutaneous cystic lesions despite exhibiting contrasting biological behavior. In epidermal appendages, BMP4 induces expression of FOXN1, which participates in terminal differentiation of keratinocytes and control of proliferation. We compared BMP4 and FOXN1 expression in OOC and OKC to investigate their role in the epithelial differentiation of these cysts. BMP4 and FOXN1 expression was assessed using immunohistochemistry in 20 primary sporadic OKC and compared to 16 OOC. BMP4 epithelial expression was detected in 81.25% OOC compared to 35% in OKC, while its expression in connective tissue was observed in 65% OKC and 75% OOC. FOXN1 was detected in 75% OOC vs. 30% OKC. The "triple positive" phenotype, i.e., BMP4 epithelial and connective tissue positivity and FOXN1 epithelial positivity, was seen in 56.25% OOC compared to 10% OKC. The greater expression of BMP4 and FOXN1 in OOC suggests greater activation of this pathway in OOC, which suggests a role in its more mature epithelium; it also resembles an epidermal phenotype.
Collapse
Affiliation(s)
- Grigorios Thermos
- Department of Oral Medicine and Pathology and Hospital Dentistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Evangelia Piperi
- Department of Oral Medicine and Pathology and Hospital Dentistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos I Tosios
- Department of Oral Medicine and Pathology and Hospital Dentistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos G Nikitakis
- Department of Oral Medicine and Pathology and Hospital Dentistry, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
6
|
Vietri Rudan M, Watt FM. Mammalian Epidermis: A Compendium of Lipid Functionality. Front Physiol 2022; 12:804824. [PMID: 35095565 PMCID: PMC8791442 DOI: 10.3389/fphys.2021.804824] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/13/2021] [Indexed: 11/13/2022] Open
Abstract
Mammalian epidermis is a striking example of the role of lipids in tissue biology. In this stratified epithelium, highly specialized structures are formed that leverage the hydrophobic properties of lipids to form an impermeable barrier and protect the humid internal environment of the body from the dry outside. This is achieved through tightly regulated lipid synthesis that generates the molecular species unique to the tissue. Beyond their fundamental structural role, lipids are involved in the active protection of the body from external insults. Lipid species present on the surface of the body possess antimicrobial activity and directly contribute to shaping the commensal microbiota. Lipids belonging to a variety of classes are also involved in the signaling events that modulate the immune responses to environmental stress as well as differentiation of the epidermal keratinocytes themselves. Recently, high-resolution methods are beginning to provide evidence for the involvement of newly identified specific lipid molecules in the regulation of epidermal homeostasis. In this review we give an overview of the wide range of biological functions of mammalian epidermal lipids.
Collapse
|
7
|
Muhammad K, Xavier D, Klein-Hessling S, Azeem M, Rauschenberger T, Murti K, Avots A, Goebeler M, Klein M, Bopp T, Sielaff M, Tenzer S, Möckel S, Aramburu J, López-Rodríguez C, Kerstan A, Serfling E. NFAT5 Controls the Integrity of Epidermis. Front Immunol 2021; 12:780727. [PMID: 34956208 PMCID: PMC8696207 DOI: 10.3389/fimmu.2021.780727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/15/2021] [Indexed: 11/13/2022] Open
Abstract
The skin protects the human body against dehydration and harmful challenges. Keratinocytes (KCs) are the most abundant epidermal cells, and it is anticipated that KC-mediated transport of Na+ ions creates a physiological barrier of high osmolality against the external environment. Here, we studied the role of NFAT5, a transcription factor whose activity is controlled by osmotic stress in KCs. Cultured KCs from adult mice were found to secrete more than 300 proteins, and upon NFAT5 ablation, the secretion of several matrix proteinases, including metalloproteinase-3 (Mmp3) and kallikrein-related peptidase 7 (Klk7), was markedly enhanced. An increase in Mmp3 and Klk7 RNA levels was also detected in transcriptomes of Nfat5-/- KCs, along with increases of numerous members of the 'Epidermal Differentiation Complex' (EDC), such as small proline-rich (Sprr) and S100 proteins. NFAT5 and Mmp3 as well as NFAT5 and Klk7 are co-expressed in the basal KCs of fetal and adult epidermis but not in basal KCs of newborn (NB) mice. The poor NFAT5 expression in NB KCs is correlated with a strong increase in Mmp3 and Klk7 expression in KCs of NB mice. These data suggests that, along with the fragile epidermis of adult Nfat5-/- mice, NFAT5 keeps in check the expression of matrix proteases in epidermis. The NFAT5-mediated control of matrix proteases in epidermis contributes to the manifold changes in skin development in embryos before and during birth, and to the integrity of epidermis in adults.
Collapse
Affiliation(s)
- Khalid Muhammad
- Department of Molecular Pathology, Institute of Pathology, University of Wuerzburg, Wuerzburg, Germany
| | - Delicia Xavier
- Department of Molecular Pathology, Institute of Pathology, University of Wuerzburg, Wuerzburg, Germany
| | - Stefan Klein-Hessling
- Department of Molecular Pathology, Institute of Pathology, University of Wuerzburg, Wuerzburg, Germany.,Comprehensive Cancer Centre Mainfranken, Wuerzburg, Germany
| | - Muhammad Azeem
- Department of Molecular Pathology, Institute of Pathology, University of Wuerzburg, Wuerzburg, Germany.,Department of Dermatology, Venereology and Allergology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Tabea Rauschenberger
- Department of Molecular Pathology, Institute of Pathology, University of Wuerzburg, Wuerzburg, Germany
| | - Krisna Murti
- Department of Molecular Pathology, Institute of Pathology, University of Wuerzburg, Wuerzburg, Germany
| | - Andris Avots
- Department of Molecular Pathology, Institute of Pathology, University of Wuerzburg, Wuerzburg, Germany.,Comprehensive Cancer Centre Mainfranken, Wuerzburg, Germany
| | - Matthias Goebeler
- Department of Dermatology, Venereology and Allergology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Matthias Klein
- Institute for Immunology, University Medical Center, University of Mainz, Mainz, Germany
| | - Tobias Bopp
- Institute for Immunology, University Medical Center, University of Mainz, Mainz, Germany.,Research Center for Immunotherapy, University Medical Center, University of Mainz, Mainz, Germany.,University Cancer Center Mainz, University Medical Center, University of Mainz, Mainz, Germany
| | - Malte Sielaff
- Institute for Immunology, University Medical Center, University of Mainz, Mainz, Germany
| | - Stefan Tenzer
- Institute for Immunology, University Medical Center, University of Mainz, Mainz, Germany
| | - Sigrid Möckel
- Institute of Pathology, University of Wuerzburg, Wuerzburg, Germany
| | - José Aramburu
- Immunology Unit, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Cristina López-Rodríguez
- Immunology Unit, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Andreas Kerstan
- Department of Dermatology, Venereology and Allergology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Edgar Serfling
- Department of Molecular Pathology, Institute of Pathology, University of Wuerzburg, Wuerzburg, Germany.,Comprehensive Cancer Centre Mainfranken, Wuerzburg, Germany
| |
Collapse
|
8
|
Molekularne mechanizmy działania czynnika transkrypcyjnego FOXN1 w skórze. POSTEP HIG MED DOSW 2021. [DOI: 10.2478/ahem-2021-0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Abstrakt
Artykuł jest przeglądem wyników badań dotyczących funkcji i mechanizmu działania czynnika transkrypcyjnego FOXN1. Lokalizacja FOXN1 u przedstawicieli wszystkich ssaków ogranicza się do nabłonka tylko dwóch organów: skóry i grasicy. W skórze FOXN1 stymuluje różnicowanie się keratynocytów, reguluje proces pigmentacji i bierze udział w rozwoju włosów. W skórze objętej urazem FOXN1 jest zaangażowany w bliznowy proces gojenia poprzez udział w reepitelializacji oraz w procesie przejścia epitelialno-mezenchymalnego (epithelial-mesenchymal transition; EMT). Pozbawione aktywnego czynnika transkrypcyjnego FOXN1 dorosłe myszy (Foxn1-/-) goją urazy skórne w unikalnym, charakterystycznym jedynie dla płodów ssaków, procesie bezbliznowej (scar-free) regeneracji. Analiza porównawcza transkryptomów skóry: dorosłych myszy Foxn1-/- oraz skóry płodów myszy (14. dzień rozwoju płodowego) wykazała istotne podobieństwa w ekspresji genów związanych przede wszystkim z przebudową tkanek, budową cytoszkieletu, gojeniem urazów, odpowiedzią immunologiczną oraz różnicowaniem. Wyniki te wskazują, iż FOXN1 może być głównym elementem szlaku sygnałowego na drodze tzw. punktu tranzycyjnego czyli przejścia z etapu gojenia bezbliznowego (płodowego) do bliznowego (dorosłego) w trakcie rozwoju płodowego.
Collapse
|
9
|
Bispo S, Farias TDJ, de Araujo-Souza PS, Cintra R, Dos Santos HG, Jorge NAN, Castro MAA, Wajnberg G, Scherer NDM, Genta MLND, Carvalho JP, Villa LL, Sichero L, Passetti F. Dysregulation of Transcription Factor Networks Unveils Different Pathways in Human Papillomavirus 16-Positive Squamous Cell Carcinoma and Adenocarcinoma of the Uterine Cervix. Front Oncol 2021; 11:626187. [PMID: 34094909 PMCID: PMC8170088 DOI: 10.3389/fonc.2021.626187] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 02/17/2021] [Indexed: 12/24/2022] Open
Abstract
Squamous cell carcinoma (SCC) and adenocarcinoma (ADC) are the most common histological types of cervical cancer (CC). The worse prognosis of ADC cases highlights the need for better molecular characterization regarding differences between these CC types. RNA-Seq analysis of seven SCC and three ADC human papillomavirus 16-positive samples and the comparison with public data from non-tumoral human papillomavirus-negative cervical tissue samples revealed pathways exclusive to each histological type, such as the epithelial maintenance in SCC and the maturity-onset diabetes of the young (MODY) pathway in ADC. The transcriptional regulatory network analysis of cervical SCC samples unveiled a set of six transcription factor (TF) genes with the potential to positively regulate long non-coding RNA genes DSG1-AS1, CALML3-AS1, IGFL2-AS1, and TINCR. Additional analysis revealed a set of MODY TFs regulated in the sequence predicted to be repressed by miR-96-5p or miR-28-3p in ADC. These microRNAs were previously described to target LINC02381, which was predicted to be positively regulated by two MODY TFs upregulated in cervical ADC. Therefore, we hypothesize LINC02381 might act by decreasing the levels of miR-96-5p and miR-28-3p, promoting the MODY activation in cervical ADC. The novel TF networks here described should be explored for the development of more efficient diagnostic tools.
Collapse
Affiliation(s)
- Saloe Bispo
- Instituto Carlos Chagas, FIOCRUZ, Curitiba, Brazil
| | | | - Patricia Savio de Araujo-Souza
- Department of Immunobiology, Biology Institute, Universidade Federal Fluminense (UFF), Niterói, Brazil.,Laboratory of Immunogenetics and Histocompatibility, Department of Genetics, Universidade Federal do Paraná, Curitiba, Brazil
| | - Ricardo Cintra
- Department of Biochemistry, Instituto de Quimica, Universidade de São Paulo, São Paulo, Brazil
| | | | - Natasha Andressa Nogueira Jorge
- Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil.,Bioinformatics Group, Department of Computer Science, Interdisciplinary Center for Bioinformatics, Leipzig University, Leipzig, Germany
| | | | - Gabriel Wajnberg
- Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil.,Atlantic Cancer Research Institute, Moncton, NB, Canada
| | - Nicole de Miranda Scherer
- Laboratory of Bioinformatics and Computational Biology, Division of Experimental and Translational Research, Brazilian National Cancer Institute (INCA), Rio de Janeiro, Brazil
| | - Maria Luiza Nogueira Dias Genta
- Discipline of Gynecology, Department of Obstetrics and Gynecology, Instituto do Cancer do Estado de São Paulo, Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Jesus Paula Carvalho
- Discipline of Gynecology, Department of Obstetrics and Gynecology, Instituto do Cancer do Estado de São Paulo, Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Luisa Lina Villa
- Department of Radiology and Oncology, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil.,Center for Translational Research in Oncology, Instituto do Cancer do Estado de São Paulo ICESP, Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo FMUSP HC, São Paulo, Brazil
| | - Laura Sichero
- Center for Translational Research in Oncology, Instituto do Cancer do Estado de São Paulo ICESP, Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo FMUSP HC, São Paulo, Brazil
| | - Fabio Passetti
- Instituto Carlos Chagas, FIOCRUZ, Curitiba, Brazil.,Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| |
Collapse
|
10
|
Bukowska J, Walendzik K, Kopcewicz M, Cierniak P, Gawronska-Kozak B. Wnt signaling and the transcription factor Foxn1 contribute to cutaneous wound repair in mice. Connect Tissue Res 2021; 62:238-248. [PMID: 31690137 DOI: 10.1080/03008207.2019.1688314] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Aim: The transcription factor Foxn1 is a regulator of scar-ended cutaneous wound healing in mice. However, the link between Foxn1 and Wnt signaling has not been explored in the context of cutaneous repair. Here, we investigate the effects of β-catenin-dependent and -independent Wnt signaling represented by Wnt10a and Wnt11, respectively, in healing of full-thickness cutaneous wounds in C57BL/6 mice. Material and Methods: Quantitative polymerase chain reaction, western blot, and immunostaining were performed to assess the spatial and temporal distribution of Wnt10a, Wnt11, and β-catenin in skin during wound healing. A co-culture system consisting of keratinocytes transfected with an adenoviral vector carrying Foxn1-GFP and dermal fibroblasts (DFs) was employed to determine the influence of epidermal signals on the capacity of DFs to produce extracellular matrix (ECM) proteins in vitro. The levels of types I and III collagen in conditioned media from DFs cultures were examined via enzyme-linked immunosorbent assay. Results: The expression of Wnt10a, Wnt11, and β-catenin increased at post-wounding days 14 and 21 when tissue remodeling occurred. Foxn1::Egfp transgenic mice experiments demonstrated that Wnts were abundant in the epidermis adjacent to the wound margin and to a lesser extent in the dermis. The Wnt10a signal colocalized with Foxn1-eGFP in the epithelial tongue and neo-epidermis during the initial stage of wound healing. Foxn1 overexpression in keratinocytes affected DFs function related to collagen synthesis. Conclusions: Wnt ligands contribute to cutaneous wound repair, predominantly by engagement in ECM maturation. The data indicates a possible relationship between Foxn1 and Wnts in post-traumatic skin tissue.
Collapse
Affiliation(s)
- Joanna Bukowska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences , Olsztyn, Poland
| | - Katarzyna Walendzik
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences , Olsztyn, Poland
| | - Marta Kopcewicz
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences , Olsztyn, Poland
| | - Patrycja Cierniak
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences , Olsztyn, Poland
| | - Barbara Gawronska-Kozak
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences , Olsztyn, Poland
| |
Collapse
|
11
|
Zhang X, Qin J, Xie Z, Liu C, Su Y, Chen Z, Zhou Q, Ma C, Liu G, Paus R, Guo J, Wu X. Y-27632 preserves epidermal integrity in a human skin organ-culture (hSOC) system by regulating AKT and ERK signaling pathways. J Dermatol Sci 2019; 96:99-109. [PMID: 31718896 DOI: 10.1016/j.jdermsci.2019.10.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 10/24/2019] [Accepted: 10/28/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND The human skin organ culture (hSOC) developed a century ago has been widely used to study various aspects of human skin development, differentiation, function, disease as well as skin appendages biology, however, maintaining the integrity of epidermal structure in long-term culture, has remained a challenge. OBJECTIVES Here we tried to establish a culture system using supplemented William's E medium in the presence of a ROCK inhibitor Y-27632 to maintain epidermal architecture in the long-term hSOC and to investigate the underlying mechanisms. METHODS Human breast skins, cut into 5 mm × 5 mm pieces, were cultured in supplemented William's E medium in the presence of 30μM Y-27632. The cultured skin tissues were collected at different time points for analysis of epidermal cell proliferation and differentiation by real time qRT-PCR and immunofluorescence (IF) staining. The keratinocyte suspension assay and in vivo treatment of Y-27632 on mouse were also carried out to study that the regulation of Y-27632 on keratinocyte proliferation and differentiation. RESULTS We found Y-27632 not only enhanced both basal cell proliferation and expression of suprabasal cell differentiation markers, but also maintained the balance of keratinocyte proliferation and differentiation through activation of AKT pathways on one hand and inhibition of ERK pathways on the other hand. The AKT inhibitor MK-2206 blocked the epidermal preservation effect of Y-27632, while the MEK/ERK inhibitor U0126 enhanced the preservation of epidermal structure in the hSOC. CONCLUSIONS Y-227632 can maintain skin epidermal integrity through regulation of AKT and ERK activity in the hSOC.
Collapse
Affiliation(s)
- Xuan Zhang
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China; Department of Stomatology, The Second Hospital of Shandong University, Jinan, China
| | - Jing Qin
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Zhiwei Xie
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China; Department of Stomatology, Shengli Oilfield Central Hospital, Dongying, Shandong, China
| | - Chang Liu
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Yiqun Su
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Zhihong Chen
- Department of Urinary Surgery, Qilu Children's Hospital of Shandong University, Jinan, Shandong, China
| | - Qian Zhou
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Chuan Ma
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Guanyi Liu
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Ralf Paus
- Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA; Centre for Dermatology Research, University of Manchester and NIHR Biomedical Research Centre, Manchester, UK
| | - Jing Guo
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China.
| | - Xunwei Wu
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China.
| |
Collapse
|
12
|
Jeong H, Lim KM, Goldenring JR, Nam KT. Rab25 Deficiency Perturbs Epidermal Differentiation and Skin Barrier Function in Mice. Biomol Ther (Seoul) 2019; 27:553-561. [PMID: 31564077 PMCID: PMC6824620 DOI: 10.4062/biomolther.2019.125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/06/2019] [Accepted: 08/12/2019] [Indexed: 11/05/2022] Open
Abstract
Rab25, a member of the Rab11 small GTPase family, is central to achieving cellular polarity in epithelial tissues. Rab25 is highly expressed in epithelial cells of various tissues including breast, vagina, cervix, the gastrointestinal tract, and skin. Rab25 plays key roles in tumorigenesis, mainly by regulating epithelial differentiation and proliferation. However, its role in skin physiology is relatively unknown. In this study, we demonstrated that Rab25 knock-out (KO) mice show a skin barrier dysfunction with high trans-epidermal water loss and low cutaneous hydration. To examine this observation, we investigated the histology and epidermal differentiation markers of the skin in Rab25 KO mice. Rab25 KO increased cell proliferation at the basal layer of epidermis, whereas the supra-basal layer remained unaffected. Ceramide, which is a critical lipid component for skin barrier function, was not altered by Rab25 KO in its distribution or amount, as determined by immunohistochemistry. Notably, levels of epidermal differentiation markers, including loricrin, involucrin, and keratins (5, 14, 1, and 10) increased prominently in Rab25 KO mice. In line with this, depletion of Rab25 with single hairpin RNA increased the expression of differentiation markers in a human keratinocyte cell line, HaCaT. Transcriptomic analysis of the skin revealed increased expression of genes associated with skin development, epidermal development, and keratinocyte differentiation in Rab25 KO mice. Collectively, these results suggested that Rab25 is involved in the regulation of epidermal differentiation and proliferation.
Collapse
Affiliation(s)
- Haengdueng Jeong
- Severance Biomedical Science Institute and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Kyung-Min Lim
- College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea
| | - James R Goldenring
- Epithelial Biology Center and Department of Surgery, Vanderbilt University School of Medicine and the Nashville VA Medical Center, Nashville, TN 37232, USA
| | - Ki Taek Nam
- Severance Biomedical Science Institute and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| |
Collapse
|
13
|
Rymer K, Shiang R, Hsiung A, Pandya A, Bigdeli T, Webb BT, Rhodes J. Expanding the phenotype for the recurrent p.Ala391Glu variant in FGFR3: Beyond crouzon syndrome and acanthosis nigricans. Mol Genet Genomic Med 2019; 7:e656. [PMID: 31016899 PMCID: PMC6565579 DOI: 10.1002/mgg3.656] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 02/28/2019] [Accepted: 03/01/2019] [Indexed: 01/22/2023] Open
Abstract
Background Craniosynostosis, or premature fusion of the skull sutures, is a group of disorders that can present in isolation (nonsyndromic) or be associated with other anomalies (syndromic). Delineation of syndromic craniosynostosis is confounded due to phenotypic overlap, variable expression as well as molecular heterogeneity. We report on an infant who presented at birth with multisuture synostosis, turribrachycephaly, midface hypoplasia, beaked nose, low set ears, a high palate and short squat appearing thumbs, and great toes without deviation. The additional MRI findings of choanal stenosis and a Chiari I malformation suggested a diagnosis of Pfeiffer syndrome. First tier molecular testing did not reveal a pathogenic variant. Methods Whole exome sequencing on DNA samples from the proband and her unaffected parents was utilized to delineate the variant causative for the Pfeiffer syndrome diagnosis. Results On whole exome sequencing, a de novo NM_000142.4:c.1428C>A missense variant causing a p.Ala391Glu amino acid change in FGFR3 has been identified. The p.Ala391Glu change has been predominantly identified in patients with Crouzon syndrome with acanthosis nigricans. Conclusions This finding illustrates the first reported case of a child with an overlap with Pfeiffer syndrome to have the p.Ala391Glu variant.
Collapse
Affiliation(s)
- Karen Rymer
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Rita Shiang
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Anting Hsiung
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Arti Pandya
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Tim Bigdeli
- Department of Psychiatry, SUNY Downstate Medical Center, Brooklyn, New York
| | - Bradley T Webb
- Department of Psychiatry, Virginia Commonwealth University School of Medicine, Richmond, Virginia.,Virginia Institute of Psychiatric and Behavioral Genetics, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Jennifer Rhodes
- Department of Surgery, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| |
Collapse
|
14
|
Doupé DP, Marshall OJ, Dayton H, Brand AH, Perrimon N. Drosophila intestinal stem and progenitor cells are major sources and regulators of homeostatic niche signals. Proc Natl Acad Sci U S A 2018; 115:12218-12223. [PMID: 30404917 PMCID: PMC6275525 DOI: 10.1073/pnas.1719169115] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Epithelial homeostasis requires the precise balance of epithelial stem/progenitor proliferation and differentiation. While many signaling pathways that regulate epithelial stem cells have been identified, it is probable that other regulators remain unidentified. Here, we use gene-expression profiling by targeted DamID to identify the stem/progenitor-specific transcription and signaling factors in the Drosophila midgut. Many signaling pathway components, including ligands of most major pathways, exhibit stem/progenitor-specific expression and have regulatory regions bound by both intrinsic and extrinsic transcription factors. In addition to previously identified stem/progenitor-derived ligands, we show that both the insulin-like factor Ilp6 and TNF ligand eiger are specifically expressed in the stem/progenitors and regulate normal tissue homeostasis. We propose that intestinal stem cells not only integrate multiple signals but also contribute to and regulate the homeostatic signaling microenvironmental niche through the expression of autocrine and paracrine factors.
Collapse
Affiliation(s)
- David P Doupé
- Department of Genetics, Harvard Medical School, Boston, MA 02115;
- Department of Biosciences, Durham University, DH1 3LE Durham, United Kingdom
| | - Owen J Marshall
- The Gurdon Institute, University of Cambridge, CB2 1QN Cambridge, United Kingdom
- Department of Physiology Development and Neuroscience, University of Cambridge, CB2 1QN Cambridge, United Kingdom
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS 7000, Australia
| | - Hannah Dayton
- Department of Genetics, Harvard Medical School, Boston, MA 02115
| | - Andrea H Brand
- The Gurdon Institute, University of Cambridge, CB2 1QN Cambridge, United Kingdom
- Department of Physiology Development and Neuroscience, University of Cambridge, CB2 1QN Cambridge, United Kingdom
| | - Norbert Perrimon
- Department of Genetics, Harvard Medical School, Boston, MA 02115;
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
15
|
β-1,3/1,4-Glucan Lichenan from Cetraria islandica (L.) ACH. induces cellular differentiation of human keratinocytes. Fitoterapia 2018; 129:226-236. [DOI: 10.1016/j.fitote.2018.07.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 07/17/2018] [Accepted: 07/18/2018] [Indexed: 01/08/2023]
|
16
|
Foxn1 in Skin Development, Homeostasis and Wound Healing. Int J Mol Sci 2018; 19:ijms19071956. [PMID: 29973508 PMCID: PMC6073674 DOI: 10.3390/ijms19071956] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 06/29/2018] [Accepted: 07/02/2018] [Indexed: 02/07/2023] Open
Abstract
Intensive research effort has focused on cellular and molecular mechanisms that regulate skin biology, including the phenomenon of scar-free skin healing during foetal life. Transcription factors are the key molecules that tune gene expression and either promote or suppress gene transcription. The epidermis is the source of transcription factors that regulate many functions of epidermal cells such as proliferation, differentiation, apoptosis, and migration. Furthermore, the activation of epidermal transcription factors also causes changes in the dermal compartment of the skin. This review focuses on the transcription factor Foxn1 and its role in skin biology. The regulatory function of Foxn1 in the skin relates to physiological (development and homeostasis) and pathological (skin wound healing) conditions. In particular, the pivotal role of Foxn1 in skin development and the acquisition of the adult skin phenotype, which coincides with losing the ability of scar-free healing, is discussed. Thus, genetic manipulations with Foxn1 expression, specifically those introducing conditional Foxn1 silencing in a Foxn1+/+ organism or its knock-in in a Foxn1−/− model, may provide future perspectives for regenerative medicine.
Collapse
|
17
|
Foxn1 expression in keratinocytes is stimulated by hypoxia: further evidence of its role in skin wound healing. Sci Rep 2018; 8:5425. [PMID: 29615703 PMCID: PMC5882803 DOI: 10.1038/s41598-018-23794-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 03/21/2018] [Indexed: 01/09/2023] Open
Abstract
Recent studies have shown that the transcription factor Foxn1, which is expressed in keratinocytes, is involved in the skin wound healing process, yet how Foxn1 functions remains largely unknown. Our latest data indicate that Foxn1 drives skin healing via engagement in re-epithelization and the epithelial-mesenchymal transition (EMT) process. In the present study, 2D-DIGE proteomic profiling analysis of in vitro cultured keratinocytes transfected with adenoviral vector carrying Foxn1-GFP or GFP alone (control) revealed forty proteins with differential abundance between the compared groups. Among the proteins with Foxn1-dependent expression, several enable adaptation to hypoxia. Subsequent experiments revealed that hypoxic conditions (1% O2) stimulate endogenous and exogenous (transfected Ad-Foxn1) Foxn1 expression in cultured keratinocytes. A proteomics analysis also identified proteins that can act as a factors controlling the balance between cell proliferation, differentiation and apoptosis in response to Foxn1. We also showed that in C57BL/6 keratinocytes, the stimulation of Foxn1 by hypoxia is accompanied by increases in Mmp-9 expression. These data corroborate the detected co-localization of Foxn1 and Mmp-9 expression in vivo in post-wounding skin samples of Foxn1::Egfp transgenic mice. Together, our data indicate that Foxn1 orchestrates cellular changes in keratinocytes in both physiological (self-renewal) and pathological (skin wound healing) contexts.
Collapse
|
18
|
Gallo V, Cirillo E, Giardino G, Pignata C. FOXN1 Deficiency: from the Discovery to Novel Therapeutic Approaches. J Clin Immunol 2017; 37:751-758. [DOI: 10.1007/s10875-017-0445-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 09/11/2017] [Indexed: 01/10/2023]
|
19
|
Abstract
FOXN1 is a prodifferentiation transcription factor in the skin epithelium. Recently, it has also emerged as an important player in controlling the skin wound healing process, as it actively participates in reepithelialization and is thought to be responsible for scar formation. FOXN1 positivity is also a feature of pigmented keratinocytes, including nevi, and FOXN1 is an attribute of benign epithelial tumors. The lack of FOXN1 favors the skin regeneration process displayed by nude mice, pointing to FOXN1 as a switch between regeneration and reparative processes. The stem cell niche provides a functional source of cells after the loss of tissue following wounding. The involvement of prodifferentiation factors in the regulation of this pool of stem cells is suggested. However, the exact mechanism is still under question, and we speculate that the FOXN1 transcription factor is involved in this process. This review analyzes the pleiotropic effects of FOXN1 in the skin, its function in the tumorigenesis process, and its potential role in depletion of the stem cell niche after injury, as well as its suggested mechanistic role, acting in a cell-autonomous and a non-cell-autonomous manner during skin self-renewal.
Collapse
|
20
|
Naeem AS, Tommasi C, Cole C, Brown SJ, Zhu Y, Way B, Willis Owen SAG, Moffatt M, Cookson WO, Harper JI, Di WL, Brown SJ, Reinheckel T, O'Shaughnessy RFL. A mechanistic target of rapamycin complex 1/2 (mTORC1)/V-Akt murine thymoma viral oncogene homolog 1 (AKT1)/cathepsin H axis controls filaggrin expression and processing in skin, a novel mechanism for skin barrier disruption in patients with atopic dermatitis. J Allergy Clin Immunol 2017; 139:1228-1241. [PMID: 27913303 PMCID: PMC5380661 DOI: 10.1016/j.jaci.2016.09.052] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 09/05/2016] [Accepted: 09/23/2016] [Indexed: 11/18/2022]
Abstract
BACKGROUND Filaggrin, which is encoded by the filaggrin gene (FLG), is an important component of the skin's barrier to the external environment, and genetic defects in FLG strongly associate with atopic dermatitis (AD). However, not all patients with AD have FLG mutations. OBJECTIVE We hypothesized that these patients might possess other defects in filaggrin expression and processing contributing to barrier disruption and AD, and therefore we present novel therapeutic targets for this disease. RESULTS We describe the relationship between the mechanistic target of rapamycin complex 1/2 protein subunit regulatory associated protein of the MTOR complex 1 (RAPTOR), the serine/threonine kinase V-Akt murine thymoma viral oncogene homolog 1 (AKT1), and the protease cathepsin H (CTSH), for which we establish a role in filaggrin expression and processing. Increased RAPTOR levels correlated with decreased filaggrin expression in patients with AD. In keratinocyte cell cultures RAPTOR upregulation or AKT1 short hairpin RNA knockdown reduced expression of the protease CTSH. Skin of CTSH-deficient mice and CTSH short hairpin RNA knockdown keratinocytes showed reduced filaggrin processing, and the mouse had both impaired skin barrier function and a mild proinflammatory phenotype. CONCLUSION Our findings highlight a novel and potentially treatable signaling axis controlling filaggrin expression and processing that is defective in patients with AD.
Collapse
Affiliation(s)
- Aishath S Naeem
- Immunobiology and Dermatology, UCL Institute of Child Health, London, United Kingdom; Livingstone Skin Research Centre, UCL Institute of Child Health, London, United Kingdom
| | - Cristina Tommasi
- Immunobiology and Dermatology, UCL Institute of Child Health, London, United Kingdom; Livingstone Skin Research Centre, UCL Institute of Child Health, London, United Kingdom
| | - Christian Cole
- Computational Biology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Stuart J Brown
- Immunobiology and Dermatology, UCL Institute of Child Health, London, United Kingdom; Livingstone Skin Research Centre, UCL Institute of Child Health, London, United Kingdom
| | - Yanan Zhu
- Immunobiology and Dermatology, UCL Institute of Child Health, London, United Kingdom; Livingstone Skin Research Centre, UCL Institute of Child Health, London, United Kingdom
| | - Benjamin Way
- Immunobiology and Dermatology, UCL Institute of Child Health, London, United Kingdom; Livingstone Skin Research Centre, UCL Institute of Child Health, London, United Kingdom
| | | | - Miriam Moffatt
- National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - William O Cookson
- National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - John I Harper
- Immunobiology and Dermatology, UCL Institute of Child Health, London, United Kingdom; Livingstone Skin Research Centre, UCL Institute of Child Health, London, United Kingdom
| | - Wei-Li Di
- Immunobiology and Dermatology, UCL Institute of Child Health, London, United Kingdom; Livingstone Skin Research Centre, UCL Institute of Child Health, London, United Kingdom
| | - Sara J Brown
- Centre for Dermatology and Genetic Medicine, Medical Research Institute, University of Dundee, Dundee, United Kingdom
| | - Thomas Reinheckel
- Institute of Molecular Medicine and Cell Research, BIOSS Centre of Biological Signalling Studies, Albert-Ludwigs-University, Freiburg, Germany
| | - Ryan F L O'Shaughnessy
- Immunobiology and Dermatology, UCL Institute of Child Health, London, United Kingdom; Livingstone Skin Research Centre, UCL Institute of Child Health, London, United Kingdom.
| |
Collapse
|
21
|
Rota IA, Dhalla F. FOXN1 deficient nude severe combined immunodeficiency. Orphanet J Rare Dis 2017; 12:6. [PMID: 28077132 PMCID: PMC5225657 DOI: 10.1186/s13023-016-0557-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 12/15/2016] [Indexed: 12/13/2022] Open
Abstract
Nude severe combined immunodeficiency is a rare inherited disease caused by autosomal recessive loss-of-function mutations in FOXN1. This gene encodes a transcription factor essential for the development of the thymus, the primary lymphoid organ that supports T-cell development and selection. To date nine cases have been reported presenting with the clinical triad of absent thymus resulting in severe T-cell immunodeficiency, congenital alopecia universalis and nail dystrophy. Diagnosis relies on testing for FOXN1 mutations, which allows genetic counselling and guides therapeutic management. Options for treating the underlying immune deficiency include HLA-matched genoidentical haematopoietic cell transplantation containing mature donor T-cells or thymus tissue transplantation. Experience from other severe combined immune deficiency syndromes suggests that early diagnosis, supportive care and definitive management result in better patient outcomes. Without these the prognosis is poor due to early-onset life threatening infections.
Collapse
Affiliation(s)
- Ioanna A Rota
- Developmental Immunology Group, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Fatima Dhalla
- Developmental Immunology Group, Department of Paediatrics, University of Oxford, Oxford, UK. .,Department of Clinical Immunology, Oxford University Hospitals, Oxford, UK.
| |
Collapse
|
22
|
Kur-Piotrowska A, Kopcewicz M, Kozak LP, Sachadyn P, Grabowska A, Gawronska-Kozak B. Neotenic phenomenon in gene expression in the skin of Foxn1- deficient (nude) mice - a projection for regenerative skin wound healing. BMC Genomics 2017; 18:56. [PMID: 28068897 PMCID: PMC5223329 DOI: 10.1186/s12864-016-3401-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 12/09/2016] [Indexed: 12/30/2022] Open
Abstract
Background Mouse fetuses up to 16 day of embryonic development and nude (Foxn1- deficient) mice are examples of animals that undergo regenerative (scar-free) skin healing. The expression of transcription factor Foxn1 in the epidermis of mouse fetuses begins at embryonic day 16.5 which coincides with the transition point from scar-free to scar-forming skin wound healing. In the present study, we tested the hypothesis that Foxn1 expression in the skin is an essential condition to establish the adult skin phenotype and that Foxn1 inactivity in nude mice keeps skin in the immature stage resembling the phenomena of neoteny. Results Uninjured skin of adult C57BL/6J (B6) mice, mouse fetuses at days 14 (E14) and 18 (E18) of embryonic development and B6.Cg-Foxn1 nu (nude) mice were characterized for their gene expression profiles by RNA sequencing that was validated through qRT-PCR, Western Blot and immunohistochemistry. Differentially regulated genes indicated that nude mice were more similar to E14 (model of regenerative healing) and B6 were more similar to E18 (model of reparative healing). The up-regulated genes in nude and E14 mice were associated with tissue remodeling, cytoskeletal rearrangement, wound healing and immune response, whereas the down-regulated genes were associated with differentiation. E14 and nude mice exhibit prominent up-regulation of keratin (Krt23, -73, -82, -16, -17), involucrin (Ivl) and filaggrin (Flg2) genes. The transcription factors associated with the Hox genes known to specify cell fate during embryonic development and promote embryonic stem cells differentiation were down-regulated in both nude and E14. Among the genes enriched in the nude skin but not shared with E14 fetuses were members of the Wnt and matrix metalloproteinases (Mmps) families whereas Bmp and Notch related genes were down-regulated. Conclusions In summary, Foxn1 appears to be a pivotal control element of the developmental program and skin maturation. Nude mice may be considered as a model of neoteny among mammals. The resemblance of gene expression profiles in the skin of both nude and E14 mice are direct or indirect consequences of the Foxn1 deficiency. Foxn1 appears to regulate the balance between cell proliferation and differentiation and its inactivity creates a pro-regenerative environment. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3401-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anna Kur-Piotrowska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, ul. Tuwima 10, 10-748, Olsztyn, Poland
| | - Marta Kopcewicz
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, ul. Tuwima 10, 10-748, Olsztyn, Poland
| | - Leslie P Kozak
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, ul. Tuwima 10, 10-748, Olsztyn, Poland
| | - Pawel Sachadyn
- Department of Molecular Biotechnology and Microbiology, Gdansk University of Technology, ul. G. Narutowicza 11/12, 80-233, Gdansk, Poland
| | - Anna Grabowska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, ul. Tuwima 10, 10-748, Olsztyn, Poland
| | - Barbara Gawronska-Kozak
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, ul. Tuwima 10, 10-748, Olsztyn, Poland.
| |
Collapse
|
23
|
Lanzini J, Dargère D, Regazzetti A, Tebani A, Laprévote O, Auzeil N. Changing in lipid profile induced by the mutation of Foxn1 gene: A lipidomic analysis of Nude mice skin. Biochimie 2015; 118:234-43. [PMID: 26427556 DOI: 10.1016/j.biochi.2015.09.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 09/23/2015] [Indexed: 10/23/2022]
Abstract
Nude mice carry a spontaneous mutation affecting the gene Foxn1 mainly expressed in the epidermis. This gene is involved in several skin functions, especially in the proliferation and the differentiation of keratinocytes which are key cells of epithelial barrier. The skin, a protective barrier for the body, is essentially composed of lipids. Taking into account these factors, we conducted a lipidomic study to search for any changes in lipid composition of skin possibly related to Foxn1 mutation. Lipids were extracted from skin biopsies of Nude and BALB/c mice to be analyzed by liquid chromatography coupled to a high resolution mass spectrometer (HRMS). Multivariate and univariate data analyses were carried out to compare lipid extracts. Identification was performed using HRMS data, retention time and mass spectrometry fragmentation study. These results indicate that mutation of Foxn1 leads to significant modifications in the lipidome in Nude mice skin. An increase in cholesterol sulfate, phospholipids, sphingolipids and fatty acids associated with a decrease in glycerolipids suggest that the lipidome in mice skin is regulated by the Foxn1 gene.
Collapse
Affiliation(s)
- Justine Lanzini
- UMR CNRS 8638, Faculté de Pharmacie, Université Paris Descartes, 4 Avenue de L'Observatoire, 75006 Paris, France
| | - Delphine Dargère
- UMR CNRS 8638, Faculté de Pharmacie, Université Paris Descartes, 4 Avenue de L'Observatoire, 75006 Paris, France
| | - Anne Regazzetti
- UMR CNRS 8638, Faculté de Pharmacie, Université Paris Descartes, 4 Avenue de L'Observatoire, 75006 Paris, France
| | - Abdellah Tebani
- UMR CNRS 8638, Faculté de Pharmacie, Université Paris Descartes, 4 Avenue de L'Observatoire, 75006 Paris, France
| | - Olivier Laprévote
- UMR CNRS 8638, Faculté de Pharmacie, Université Paris Descartes, 4 Avenue de L'Observatoire, 75006 Paris, France; AP-HP, Service de Toxicologie Biologique, Hôpital Lariboisière, 4 Rue Ambroise Paré, 75475 Paris Cedex 10, France
| | - Nicolas Auzeil
- UMR CNRS 8638, Faculté de Pharmacie, Université Paris Descartes, 4 Avenue de L'Observatoire, 75006 Paris, France.
| |
Collapse
|
24
|
Ethiraj P, Veerappan K, Samuel S, Sivapatham S. Inhibitory effects of interferon-β on hepatocellular carcinoma HepG2 via Akt/STAT phosphorylation. Fundam Clin Pharmacol 2015; 29:278-285. [DOI: 10.1111/fcp.12115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Affiliation(s)
- Purushoth Ethiraj
- Department of Medical Research; SRM Medical College Hospital and Research Centre; SRM University; Kattankulathur 603203 Tamilnadu India
| | - Karpagam Veerappan
- Department of Biochemistry; VRR Institute of Biomedical Science; Chennai 600056 Tamilnadu India
| | - Shila Samuel
- Department of Biochemistry; VRR Institute of Biomedical Science; Chennai 600056 Tamilnadu India
| | - Sundaresan Sivapatham
- Department of Medical Research; SRM Medical College Hospital and Research Centre; SRM University; Kattankulathur 603203 Tamilnadu India
| |
Collapse
|
25
|
Tadeu AMB, Lin S, Hou L, Chung L, Zhong M, Zhao H, Horsley V. Transcriptional profiling of ectoderm specification to keratinocyte fate in human embryonic stem cells. PLoS One 2015; 10:e0122493. [PMID: 25849374 PMCID: PMC4388500 DOI: 10.1371/journal.pone.0122493] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 02/22/2015] [Indexed: 11/18/2022] Open
Abstract
In recent years, several studies have shed light into the processes that regulate epidermal specification and homeostasis. We previously showed that a broad-spectrum γ-secretase inhibitor DAPT promoted early keratinocyte specification in human embryonic stem cells triggered to undergo ectoderm specification. Here, we show that DAPT accelerates human embryonic stem cell differentiation and induces expression of the ectoderm protein AP2. Furthermore, we utilize RNA sequencing to identify several candidate regulators of ectoderm specification including those involved in epithelial and epidermal development in human embryonic stem cells. Genes associated with transcriptional regulation and growth factor activity are significantly enriched upon DAPT treatment during specification of human embryonic stem cells to the ectoderm lineage. The human ectoderm cell signature identified in this study contains several genes expressed in ectodermal and epithelial tissues. Importantly, these genes are also associated with skin disorders and ectodermal defects, providing a platform for understanding the biology of human epidermal keratinocyte development under diseased and homeostatic conditions.
Collapse
Affiliation(s)
- Ana Mafalda Baptista Tadeu
- Yale University, Department of Molecular, Cell and Developmental Biology, New Haven, CT, 06511, United States of America
| | - Samantha Lin
- Yale University, Department of Molecular, Cell and Developmental Biology, New Haven, CT, 06511, United States of America
| | - Lin Hou
- Yale University, Department of Biostatistics, Yale School of Public Health, New Haven, CT, 06520, United States of America
| | - Lisa Chung
- Yale University, Department of Biostatistics, Yale School of Public Health, New Haven, CT, 06520, United States of America
| | - Mei Zhong
- Yale University, Yale Stem Cell Center, Genomics Facility, New Haven, CT, 06520, United States of America
| | - Hongyu Zhao
- Yale University, Department of Biostatistics, Yale School of Public Health, New Haven, CT, 06520, United States of America
| | - Valerie Horsley
- Yale University, Department of Molecular, Cell and Developmental Biology, New Haven, CT, 06511, United States of America
- * E-mail:
| |
Collapse
|
26
|
Antonini D, Sirico A, Aberdam E, Ambrosio R, Campanile C, Fagoonee S, Altruda F, Aberdam D, Brissette JL, Missero C. A composite enhancer regulates p63 gene expression in epidermal morphogenesis and in keratinocyte differentiation by multiple mechanisms. Nucleic Acids Res 2015; 43:862-74. [PMID: 25567987 PMCID: PMC4333422 DOI: 10.1093/nar/gku1396] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
p63 is a crucial regulator of epidermal development, but its transcriptional control has remained elusive. Here, we report the identification of a long-range enhancer (p63LRE) that is composed of two evolutionary conserved modules (C38 and C40), acting in concert to control tissue- and layer-specific expression of the p63 gene. Both modules are in an open and active chromatin state in human and mouse keratinocytes and in embryonic epidermis, and are strongly bound by p63. p63LRE activity is dependent on p63 expression in embryonic skin, and also in the commitment of human induced pluripotent stem cells toward an epithelial cell fate. A search for other transcription factors involved in p63LRE regulation revealed that the CAAT enhancer binding proteins Cebpa and Cebpb and the POU domain-containing protein Pou3f1 repress p63 expression during keratinocyte differentiation by binding the p63LRE enhancer. Collectively, our data indicate that p63LRE is composed of additive and partly redundant enhancer modules that act to direct robust p63 expression selectively in the basal layer of the epidermis.
Collapse
Affiliation(s)
| | - Anna Sirico
- CEINGE Biotecnologie Avanzate, Napoli, Italy
| | - Edith Aberdam
- INSERM UMR-S 976, Paris, France Université Paris-Diderot, Hopital St-Louis, Paris, France
| | | | | | - Sharmila Fagoonee
- Institute for Biostructures and Bioimages (CNR), c/o Molecular Biotechnology Center, University of Turin, Torino, Italy
| | - Fiorella Altruda
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, Italy
| | - Daniel Aberdam
- INSERM UMR-S 976, Paris, France Université Paris-Diderot, Hopital St-Louis, Paris, France
| | - Janice L Brissette
- Department of Cell Biology, State University of New York Downstate Medical Center, NY, USA
| | - Caterina Missero
- CEINGE Biotecnologie Avanzate, Napoli, Italy Department of Biology, University of Naples Federico II, Napoli, Italy
| |
Collapse
|
27
|
Ethiraj P, Veerappan K, Doraisami B, Sivapatham S. Synergistic anti-carcinogenic effect of interferon-β with cisplatin on human breast adenocarcinoma MDA MB231 cells. Int Immunopharmacol 2014; 23:222-8. [PMID: 25158919 DOI: 10.1016/j.intimp.2014.08.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Revised: 08/06/2014] [Accepted: 08/12/2014] [Indexed: 11/30/2022]
Abstract
Cisplatin is one of the most commonly used chemotherapeutic agents for breast cancer treatment. However, its efficacy is greatly limited by its toxic side effects. The present study investigated the synergistic effect of interferon β with cisplatin on MDA MB231 cells. The antiproliferative effect was measured by the 3-(4,5 dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The combination index (CI) was calculated using the method of Chou and Talalay. Cytotoxicity was determined by trypan blue and clonogenic assay. Genotoxic and cytostatic effects were studied using micronucleus assay and nuclear division index (NDI). Protein expression was analyzed using immunoblotting. Interferon β (100-2500 IU/mL) and Cisplatin (0.01-100 μM) had an inhibitory effect on the proliferation of cancer cells in a dose-dependent manner, with the IC50 values at 1500 IU/mL and 20 μM for interferon β and cisplatin, respectively. Western blot analysis revealed expression of interferon β binding receptor in MDA MB231 cells. More interestingly, synergistic, cytotoxic and genotoxic effects were observed after treatment with a combination of interferon β with reduced dosage of cisplatin. Decreased expression of Bcl-2 and increased expression of Bax stimulated the cytochrome c release, which triggers caspase-9 and -3 activation significantly increased in the combinational group. In conclusion the combination of interferon β with reduced dose of cisplatin results synergistically improved growth-inhibition and apoptosis-inducing effect on MDA MB231 cells.
Collapse
Affiliation(s)
- Purushoth Ethiraj
- Department of Medical Research, SRM Medical College Hospital and Research Centre, SRM University, Kattankulathur, Tamil Nadu, India
| | - Karpagam Veerappan
- Department of Biochemistry, VRR Institute of Biomedical Science, Chennai-56, Tamil Nadu, India
| | - Balakrishnan Doraisami
- Department of Medical Research, SRM Medical College Hospital and Research Centre, SRM University, Kattankulathur, Tamil Nadu, India
| | - Sundaresan Sivapatham
- Department of Medical Research, SRM Medical College Hospital and Research Centre, SRM University, Kattankulathur, Tamil Nadu, India.
| |
Collapse
|
28
|
Zhu Y, Wang S, Lin F, Li Q, Xu A. The therapeutic effects of EGCG on vitiligo. Fitoterapia 2014; 99:243-51. [PMID: 25128425 DOI: 10.1016/j.fitote.2014.08.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 08/03/2014] [Accepted: 08/05/2014] [Indexed: 02/06/2023]
Abstract
Epigallocatechin-3-gallate (EGCG) is one of the main chemical constituents of green tea, which has been used as an important traditional Chinese medicine. Green tea has anti-inflammatory, anti-oxidant, and immunomodulatory properties. However, the effects of EGCG on vitiligo are not known. We assessed the role of EGCG in vitiligo induced by monobenzone in mice. We demonstrated that EGCG: delayed the time of depigmentation; reduced the prevalence of depigmentation; and decreased the area of depigmentation. Examination of depigmented skin treated with EGCG by reflectance confocal microscopy suggested increased numbers of epidermal melanocytes and histologic examination showed decreased perilesional accumulation of CD8(+) T cells. To further investigate the mechanism of the anti-inflammatory effects of EGCG, levels of inflammatory mediator tumor necrosis factor (TNF)-α, interferon (IFN)-γ and interleukin (IL)-6 were tested by enzyme-linked immunosorbent assay. Serum cytokine levels were significantly decreased after administration of EGCG compared with the model group. These results suggested that EGCG may have protective effects against vitiligo, and that it could contribute to suppression of activation of CD8(+) T cells and inflammatory mediators. Based on these results, 5% EGCG was considered to be the most suitable concentration for treating vitiligo, and was used for further study. In addition, we investigated the gene-expression profile of this model in relation to EGCG. Using a 4×44K whole genome oligo microarray assay, 1264 down-regulated genes and 1332 up-regulated genes were recorded in the 5% EGCG group compared with the model group, and selected genes were validated by real-time polymerase chain reaction. Our study demonstrated that EGCG administration was significantly associated with a decreased risk of vitiligo. EGCG could be a new preventive agent against vitiligo in the clinical setting.
Collapse
Affiliation(s)
- Yiping Zhu
- Department of Dermatology, The Third People's Hospital of Hangzhou, Hangzhou 310009, PR. China
| | - Suiquan Wang
- Department of Dermatology, The Third People's Hospital of Hangzhou, Hangzhou 310009, PR. China
| | - Fuquan Lin
- Department of Dermatology, The Third People's Hospital of Hangzhou, Hangzhou 310009, PR. China
| | - Qing Li
- Zhejiang University of Traditional Chinese Medicine, Hangzhou 310053, PR China
| | - Aie Xu
- Department of Dermatology, The Third People's Hospital of Hangzhou, Hangzhou 310009, PR. China.
| |
Collapse
|
29
|
Bredenkamp N, Nowell CS, Blackburn CC. Regeneration of the aged thymus by a single transcription factor. Development 2014; 141:1627-37. [PMID: 24715454 PMCID: PMC3978836 DOI: 10.1242/dev.103614] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Thymic involution is central to the decline in immune system function that occurs with age. By regenerating the thymus, it may therefore be possible to improve the ability of the aged immune system to respond to novel antigens. Recently, diminished expression of the thymic epithelial cell (TEC)-specific transcription factor Forkhead box N1 (FOXN1) has been implicated as a component of the mechanism regulating age-related involution. The effects of upregulating FOXN1 function in the aged thymus are, however, unknown. Here, we show that forced, TEC-specific upregulation of FOXN1 in the fully involuted thymus of aged mice results in robust thymus regeneration characterized by increased thymopoiesis and increased naive T cell output. We demonstrate that the regenerated organ closely resembles the juvenile thymus in terms of architecture and gene expression profile, and further show that this FOXN1-mediated regeneration stems from an enlarged TEC compartment, rebuilt from progenitor TECs. Collectively, our data establish that upregulation of a single transcription factor can substantially reverse age-related thymic involution, identifying FOXN1 as a specific target for improving thymus function and, thus, immune competence in patients. More widely, they demonstrate that organ regeneration in an aged mammal can be directed by manipulation of a single transcription factor, providing a provocative paradigm that may be of broad impact for regenerative biology.
Collapse
Affiliation(s)
- Nicholas Bredenkamp
- Medical Research Council Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, SCRM Building, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | | | | |
Collapse
|
30
|
Kushwaha R, Thodima V, Tomishima MJ, Bosl GJ, Chaganti RSK. miR-18b and miR-518b Target FOXN1 during epithelial lineage differentiation in pluripotent cells. Stem Cells Dev 2014; 23:1149-56. [PMID: 24383669 DOI: 10.1089/scd.2013.0262] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
MicroRNAs (miRNAs) regulate myriad biological processes; however, their role in cell fate choice is relatively unexplored. Pluripotent NT2/D1 embryonal carcinoma cells differentiate into an epithelial/smooth muscle phenotype when treated with bone morphogenetic protein-2 (BMP-2). To identify miRNAs involved in epithelial cell development, we performed miRNA profiling of NT2/D1 cells treated with BMP-2 at 6, 12, and 24 h, and on days 6 and 10. Integration of the miRNA profiling data with previously obtained gene expression profiling (GEP) data of NT2/D1 cells treated with BMP-2 at the same time points identified miR-18b and miR-518b as the top two miRNAs with the highest number of up-regulated predicted targets with known functions in epithelial lineage development. Silencing of miR-18b and miR-518b in NT2/D1 cells revealed several up-regulated TFs with functions in epithelial lineage development; among these, target prediction programs identified FOXN1 as the only direct target of both miRNAs. FOXN1 has previously been shown to play an important role in keratinocyte differentiation and epithelial cell proliferation. NT2/D1 and H9 human embryonic stem cells with silenced miR-18b and miR-518b showed up-regulation of FOXN1 and the epithelial markers CDH1, EPCAM, KRT19, and KRT7. A 3'UTR luciferase assay confirmed FOXN1 to be a target of the two miRNAs, and up-regulation of FOXN1 in NT2/D1 cells led to the expression of epithelial markers. Overexpression of the two miRNAs in BMP-2-treated NT2/D1 cells led to down-regulation of FOXN1 and epithelial lineage markers. These results show that miR-18b and miR-518b are upstream controllers of FOXN1-directed epithelial lineage development.
Collapse
Affiliation(s)
- Ritu Kushwaha
- 1 Cell Biology Program, Memorial Sloan-Kettering Cancer Center , New York, New York
| | | | | | | | | |
Collapse
|
31
|
Thymic epithelial cell development and its dysfunction in human diseases. BIOMED RESEARCH INTERNATIONAL 2014; 2014:206929. [PMID: 24672784 PMCID: PMC3929497 DOI: 10.1155/2014/206929] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 11/28/2013] [Indexed: 12/01/2022]
Abstract
Thymic epithelial cells (TECs) are the key components in thymic microenvironment for T cells development. TECs, composed of cortical and medullary TECs, are derived from a common bipotent progenitor and undergo a stepwise development controlled by multiple levels of signals to be functionally mature for supporting thymocyte development. Tumor necrosis factor receptor (TNFR) family members including the receptor activator for NFκB (RANK), CD40, and lymphotoxin β receptor (LTβR) cooperatively control the thymic medullary microenvironment and self-tolerance establishment. In addition, fibroblast growth factors (FGFs), Wnt, and Notch signals are essential for establishment of functional thymic microenvironment. Transcription factors Foxn1 and autoimmune regulator (Aire) are powerful modulators of TEC development, differentiation, and self-tolerance. Dysfunction in thymic microenvironment including defects of TEC and thymocyte development would cause physiological disorders such as tumor, infectious diseases, and autoimmune diseases. In the present review, we will summarize our current understanding on TEC development and the underlying molecular signals pathways and the involvement of thymus dysfunction in human diseases.
Collapse
|
32
|
Palamaro L, Romano R, Fusco A, Giardino G, Gallo V, Pignata C. FOXN1 in Organ Development and Human Diseases. Int Rev Immunol 2014; 33:83-93. [DOI: 10.3109/08830185.2013.870171] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
33
|
Identifying a hyperkeratosis signature in autosomal recessive congenital ichthyosis: Mdm2 inhibition prevents hyperkeratosis in a rat ARCI model. J Invest Dermatol 2013; 134:858-861. [PMID: 24005053 DOI: 10.1038/jid.2013.374] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
34
|
The retinoid-related orphan receptor RORα promotes keratinocyte differentiation via FOXN1. PLoS One 2013; 8:e70392. [PMID: 23922987 PMCID: PMC3726659 DOI: 10.1371/journal.pone.0070392] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 06/21/2013] [Indexed: 01/16/2023] Open
Abstract
RORα is a retinoid-related orphan nuclear receptor that regulates inflammation, lipid metabolism, and cellular differentiation of several non-epithelial tissues. In spite of its high expression in skin epithelium, its functions in this tissue remain unclear. Using gain- and loss-of-function approaches to alter RORα gene expression in human keratinocytes (HKCs), we have found that this transcription factor functions as a regulator of epidermal differentiation. Among the 4 RORα isoforms, RORα4 is prominently expressed by keratinocytes in a manner that increases with differentiation. In contrast, RORα levels are significantly lower in skin squamous cell carcinoma tumors (SCCs) and cell lines. Increasing the levels of RORα4 in HKCs enhanced the expression of structural proteins associated with early and late differentiation, as well as genes involved in lipid barrier formation. Gene silencing of RORα impaired the ability of keratinocytes to differentiate in an in vivo epidermal cyst model. The pro-differentiation function of RORα is mediated at least in part by FOXN1, a well-known pro-differentiation transcription factor that we establish as a novel direct target of RORα in keratinocytes. Our results point to RORα as a novel node in the keratinocyte differentiation network and further suggest that the identification of RORα ligands may prove useful for treating skin disorders that are associated with abnormal keratinocyte differentiation, including cancer.
Collapse
|
35
|
Bohr S, Patel SJ, Vasko R, Shen K, Huang G, Yarmush ML, Berthiaume F. Highly upregulated Lhx2 in the Foxn1-/- nude mouse phenotype reflects a dysregulated and expanded epidermal stem cell niche. PLoS One 2013; 8:e64223. [PMID: 23696871 PMCID: PMC3656088 DOI: 10.1371/journal.pone.0064223] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 04/12/2013] [Indexed: 12/17/2022] Open
Abstract
Hair cycling is a prime example of stem cell dependent tissue regeneration and replenishment, and its regulatory mechanisms remain poorly understood. In the present study, we evaluated the effect of a blockage in terminal keratinocytic lineage differentiation in the Foxn1(-/-) nude phenotype on the epithelial progeny. Most notably we found a constitutive upregulation of LIM homeobox protein 2 (Lhx2), a marker gene of epithelial stem cellness indispensible for hair cycle progression. However, histological evidence along with an erratic, acyclic rise of otherwise suppressed CyclinD1 levels along with several key markers of keratinocyte lineage differentiation indicate a frustrated expansion of epithelial stem cell niches in skin. In addition, CD49f/CD34/CD200-based profiling demonstrated highly significant shifts in subpopulations of epithelial progeny. Intriguingly this appeared to include the expansion of Oct4+ stem cells in dermal fractions of skin isolates in the Foxn1 knock-out opposed to wild type. Overall our findings indicate that the Foxn1(-/-) phenotype has a strong impact on epithelial progeny and thus offers a promising model to study maintenance and regulation of stem cell niches within skin not feasible in other in vitro or in vivo models.
Collapse
Affiliation(s)
- Stefan Bohr
- Center for Engineering in Medicine, Shriners Hospitals for Children and Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America.
| | | | | | | | | | | | | |
Collapse
|
36
|
Tan DWM, Jensen KB, Trotter MWB, Connelly JT, Broad S, Watt FM. Single-cell gene expression profiling reveals functional heterogeneity of undifferentiated human epidermal cells. Development 2013; 140:1433-44. [PMID: 23482486 PMCID: PMC3596987 DOI: 10.1242/dev.087551] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Human epidermal stem cells express high levels of β1 integrins, delta-like 1 (DLL1) and the EGFR antagonist LRIG1. However, there is cell-to-cell variation in the relative abundance of DLL1 and LRIG1 mRNA transcripts. Single-cell global gene expression profiling showed that undifferentiated cells fell into two clusters delineated by expression of DLL1 and its binding partner syntenin. The DLL1+ cluster had elevated expression of genes associated with endocytosis, integrin-mediated adhesion and receptor tyrosine kinase signalling. Differentially expressed genes were not independently regulated, as overexpression of DLL1 alone or together with LRIG1 led to the upregulation of other genes in the DLL1+ cluster. Overexpression of DLL1 and LRIG1 resulted in enhanced extracellular matrix adhesion and increased caveolin-dependent EGFR endocytosis. Further characterisation of CD46, one of the genes upregulated in the DLL1+ cluster, revealed it to be a novel cell surface marker of human epidermal stem cells. Cells with high endogenous levels of CD46 expressed high levels of β1 integrin and DLL1 and were highly adhesive and clonogenic. Knockdown of CD46 decreased proliferative potential and β1 integrin-mediated adhesion. Thus, the previously unknown heterogeneity revealed by our studies results in differences in the interaction of undifferentiated basal keratinocytes with their environment.
Collapse
Affiliation(s)
- David W M Tan
- Epidermal Stem Cell Biology Laboratory, Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute, Tennis Court Road, Cambridge, CB2 1QR, UK
| | | | | | | | | | | |
Collapse
|
37
|
Sun L, Luo H, Li H, Zhao Y. Thymic epithelial cell development and differentiation: cellular and molecular regulation. Protein Cell 2013; 4:342-55. [PMID: 23589020 DOI: 10.1007/s13238-013-3014-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 03/11/2013] [Indexed: 11/26/2022] Open
Abstract
Thymic epithelial cells (TECs) are one of the most important components in thymic microenvironment supporting thymocyte development and maturation. TECs, composed of cortical and medullary TECs, are derived from a common bipotent progenitor, mediating thymocyte positive and negative selections. Multiple levels of signals including intracellular signaling networks and cell-cell interaction are required for TEC development and differentiation. Transcription factors Foxn1 and autoimmune regulator (Aire) are powerful regulators promoting TEC development and differentiation. Crosstalks with thymocytes and other stromal cells for extrinsic signals like RANKL, CD40L, lymphotoxin, fibroblast growth factor (FGF) and Wnt are also definitely required to establish a functional thymic microenvironment. In this review, we will summarize our current understanding about TEC development and differentiation, and its underlying multiple signal pathways.
Collapse
Affiliation(s)
- Lina Sun
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | |
Collapse
|
38
|
Phillips MA, Qin Q, Hu Q, Zhao B, Rice RH. Arsenite suppression of BMP signaling in human keratinocytes. Toxicol Appl Pharmacol 2013; 269:290-6. [PMID: 23566955 DOI: 10.1016/j.taap.2013.02.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2013] [Revised: 02/25/2013] [Accepted: 02/26/2013] [Indexed: 12/12/2022]
Abstract
Arsenic, a human skin carcinogen, suppresses differentiation of cultured keratinocytes. Exploring the mechanism of this suppression revealed that BMP-6 greatly increased levels of mRNA for keratins 1 and 10, two of the earliest differentiation markers expressed, a process prevented by co-treatment with arsenite. BMP also stimulated, and arsenite suppressed, mRNA for FOXN1, an important transcription factor driving early keratinocyte differentiation. Keratin mRNAs increased slowly after BMP-6 addition, suggesting they are indirect transcriptional targets. Inhibition of Notch1 activation blocked BMP induction of keratins 1 and 10, while FOXN1 induction was largely unaffected. Supporting a requirement for Notch1 signaling in keratin induction, BMP increased levels of activated Notch1, which was blocked by arsenite. BMP also greatly decreased active ERK, while co-treatment with arsenite maintained active ERK. Inhibition of ERK signaling mimicked BMP by inducing keratin and FOXN1 mRNAs and by increasing active Notch1, effects blocked by arsenite. Of 6 dual-specificity phosphatases (DUSPs) targeting ERK, two were induced by BMP unless prevented by simultaneous exposure to arsenite and EGF. Knockdown of DUSP2 or DUSP14 using shRNAs greatly reduced FOXN1 and keratins 1 and 10 mRNA levels and their induction by BMP. Knockdown also decreased activated Notch1, keratin 1 and keratin 10 protein levels, both in the presence and absence of BMP. Thus, one of the earliest effects of BMP is induction of DUSPs, which increases FOXN1 transcription factor and activates Notch1, both required for keratin gene expression. Arsenite prevents this cascade by maintaining ERK signaling, at least in part by suppressing DUSP expression.
Collapse
Affiliation(s)
- Marjorie A Phillips
- Department of Environmental Toxicology, University of California, Davis, CA 95616-8588, USA
| | | | | | | | | |
Collapse
|
39
|
Lu L, Teixeira VH, Yuan Z, Graham TA, Endesfelder D, Kolluri K, Al-Juffali N, Hamilton N, Nicholson AG, Falzon M, Kschischo M, Swanton C, Wright NA, Carroll B, Watt FM, George JP, Jensen KB, Giangreco A, Janes SM. LRIG1 regulates cadherin-dependent contact inhibition directing epithelial homeostasis and pre-invasive squamous cell carcinoma development. J Pathol 2013; 229:608-20. [PMID: 23208928 PMCID: PMC3806036 DOI: 10.1002/path.4148] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 10/18/2012] [Accepted: 11/08/2012] [Indexed: 11/25/2022]
Abstract
Epidermal growth factor receptor (EGFR) pathway activation is a frequent event in human carcinomas. Mutations in EGFR itself are, however, rare, and the mechanisms regulating EGFR activation remain elusive. Leucine-rich immunoglobulin repeats-1 (LRIG1), an inhibitor of EGFR activity, is one of four genes identified that predict patient survival across solid tumour types including breast, lung, melanoma, glioma, and bladder. We show that deletion of Lrig1 is sufficient to promote murine airway hyperplasia through loss of contact inhibition and that re-expression of LRIG1 in human lung cancer cells inhibits tumourigenesis. LRIG1 regulation of contact inhibition occurs via ternary complex formation with EGFR and E-cadherin with downstream modulation of EGFR activity. We find that LRIG1 LOH is frequent across cancers and its loss is an early event in the development of human squamous carcinomas. Our findings imply that the early stages of squamous carcinoma development are driven by a change in amplitude of EGFR signalling governed by the loss of contact inhibition.
Collapse
MESH Headings
- Animals
- Cadherins/genetics
- Cadherins/metabolism
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/pathology
- Cell Line, Tumor
- Cell Proliferation
- Cell Transformation, Neoplastic
- Contact Inhibition
- ErbB Receptors/antagonists & inhibitors
- ErbB Receptors/genetics
- ErbB Receptors/metabolism
- Gene Expression Regulation, Neoplastic
- Homeostasis
- Humans
- Loss of Heterozygosity
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Male
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Inbred NOD
- Mice, Knockout
- Mice, SCID
- Multiprotein Complexes
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Precancerous Conditions/genetics
- Precancerous Conditions/metabolism
- Precancerous Conditions/pathology
- Sequence Deletion
- Signal Transduction
Collapse
Affiliation(s)
- Liwen Lu
- Lungs for Living Research Centre, UCL Respiratory, University College London5 University Street, London, WC1E 6JF, UK
- MICU, The People’s Hospital of Guangxi530021, China
| | - Vitor H Teixeira
- Lungs for Living Research Centre, UCL Respiratory, University College London5 University Street, London, WC1E 6JF, UK
| | - ZhengQiang Yuan
- Lungs for Living Research Centre, UCL Respiratory, University College London5 University Street, London, WC1E 6JF, UK
| | - Trevor A Graham
- Histopathology Laboratory, Cancer Research UK London Research Institute44 Lincoln’s Inn Fields, London, WC2A 3PX, UK
- Centre for Evolution and Cancer, UCSF Helen Diller Family Comprehensive Cancer CenterSan Francisco, CA, 94143-0875, USA
| | - David Endesfelder
- University of Applied SciencesSüdallee 2, 53424, Remagen, Germany
- Cancer Research UK London Research InstituteLondon, WC2A 3LY, UK
| | - Krishna Kolluri
- Lungs for Living Research Centre, UCL Respiratory, University College London5 University Street, London, WC1E 6JF, UK
| | - Noura Al-Juffali
- Lungs for Living Research Centre, UCL Respiratory, University College London5 University Street, London, WC1E 6JF, UK
| | - Nicholas Hamilton
- Lungs for Living Research Centre, UCL Respiratory, University College London5 University Street, London, WC1E 6JF, UK
| | - Andrew G Nicholson
- Department of Histopathology, Royal Brompton and Harefield NHS Foundation Trust, and National Heart and Lung Institute, Imperial CollegeLondon, UK
| | - Mary Falzon
- Department of Histopathology, University College Hospital LondonLondon, UK
| | - Maik Kschischo
- University of Applied SciencesSüdallee 2, 53424, Remagen, Germany
| | - Charles Swanton
- Cancer Research UK London Research InstituteLondon, WC2A 3LY, UK
| | - Nicholas A Wright
- Histopathology Laboratory, Cancer Research UK London Research Institute44 Lincoln’s Inn Fields, London, WC2A 3PX, UK
- Centre for Digestive Diseases, Barts and the London School of Medicine and Dentistry, Queen Mary University of LondonLondon, E1 2AD, UK
| | - Bernadette Carroll
- Lungs for Living Research Centre, UCL Respiratory, University College London5 University Street, London, WC1E 6JF, UK
| | - Fiona M Watt
- Epithelial Cell Biology Laboratory, Cancer Research UK Cambridge Research InstituteRobinson Way, Cambridge, UK
| | - Jeremy P George
- Lungs for Living Research Centre, UCL Respiratory, University College London5 University Street, London, WC1E 6JF, UK
| | - Kim B Jensen
- Wellcome Trust – Medical Research Council Stem Cell Institute, Department of Oncology, University of CambridgeTennis Court Road, CB2 LQR, Cambridge, UK
| | - Adam Giangreco
- Lungs for Living Research Centre, UCL Respiratory, University College London5 University Street, London, WC1E 6JF, UK
| | - Sam M Janes
- Lungs for Living Research Centre, UCL Respiratory, University College London5 University Street, London, WC1E 6JF, UK
| |
Collapse
|
40
|
Shiraishi H, Masuoka M, Ohta S, Suzuki S, Arima K, Taniguchi K, Aoki S, Toda S, Yoshimoto T, Inagaki N, Conway SJ, Narisawa Y, Izuhara K. Periostin contributes to the pathogenesis of atopic dermatitis by inducing TSLP production from keratinocytes. Allergol Int 2012; 61:563-72. [PMID: 22918211 DOI: 10.2332/allergolint.10-oa-0297] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Accepted: 05/10/2012] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Atopic dermatitis (AD) is a chronic inflammatory skin disease where Th2-type immune responses are dominant. Keratinocytes persistently secrete proinflammatory cytokines and chemokines, amplifying Th2-type responses in AD. We have recently reported that periostin, an extracellular matrix protein induced by Th2 cytokines, plays a critical role in AD. In the present study, we have further investigated the characteristics of our allergen-induced AD model mice and the role of periostin in the pathogenesis of AD. METHODS The ears of C57BL/6 mice, BALB/c mice, and Rag-2-/- γ(c)-/- mice (BALB/c background) were epicutaneously sensitized repeatedly with HDM. Mice were analyzed after the final sensitization. To examine the direct role of periostin, we reconstituted skin in vitro by coculture of keratinocytes with wild-type or periostin-deficient fibroblasts. RESULTS Epicutaneous sensitization with HDM induced AD-like phenotypes and accumulation of periostin in dermis in C57BL/6 mice but not in Rag-2-/- γ(c)-/- mice. In vitro organotypic coculture systems revealed that periostin promoted survival and proliferation of keratinocytes and directly induced production of thymic stromal lymphopoietin (TSLP). CONCLUSIONS Our results suggest that periostin exacerbates the pathogenesis of AD through TSLP production from keratinocytes.
Collapse
Affiliation(s)
- Hiroshi Shiraishi
- Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
The mTOR inhibitor rapamycin opposes carcinogenic changes to epidermal Akt1/PKBα isoform signaling. Oncogene 2012; 32:3254-62. [PMID: 22890326 DOI: 10.1038/onc.2012.338] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 05/17/2012] [Accepted: 06/24/2012] [Indexed: 01/09/2023]
Abstract
Epidermal squamous cell carcinoma (SCC) is the most aggressive non-melanoma skin cancer and is dramatically increased in patients undergoing immunosuppression following solid organ transplantation, contributing substantially to morbidity and mortality. Recent clinical studies show that use of the mammalian target of rapamycin (mTOR) inhibitor rapamycin as a post-transplantation immunosuppressive significantly reduces SCC occurrence compared with other immunosuppressives, though the mechanism is not fully understood. We show that rapamycin selectively upregulates epidermal Akt1, while failing to upregulate epidermal Akt2. Rapamycin increases epidermal Akt1 phosphorylation via inhibition of the mTOR complex 1-dependent regulation of insulin receptor substrate-1. Epidermal Akt1 is commonly downregulated in SCC while Akt2 is upregulated. We now demonstrate similar Akt1 downregulation and Akt2 upregulation by ultraviolet (UV) radiation, the most important skin carcinogen. Hence, rapamycin's upregulation of Akt1 signaling could potentially oppose the effects of UV radiation and/or tumor-associated changes on Akt1 signaling. We show in skin culture that rapamycin does enhance restoration of Akt1 phosphorylation in skin recovering from UV radiation, suggesting a mechanism for rapamycin's antitumor activity in epidermis in spite of its efficient immunosuppressive properties.
Collapse
|
42
|
Kaczkowski B, Rossing M, Andersen DK, Dreher A, Morevati M, Visser MA, Winther O, Nielsen FC, Norrild B. Integrative analyses reveal novel strategies in HPV11,-16 and -45 early infection. Sci Rep 2012; 2:515. [PMID: 22808421 PMCID: PMC3398386 DOI: 10.1038/srep00515] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 07/02/2012] [Indexed: 01/24/2023] Open
Abstract
The interaction between human papillomavirus (HPV) and host cells is not well understood. We investigate the early stage of HPV infections by global expression profiling in a cell model, in which HaCaT cells were transfected with HPV11, HPV16 or HPV45 genomes. We report the differential expression of genes not previously implicated in HPV biology, such as the PSG family and ANKRD1, and of genes implicated in the biology of other viruses, e.g. MX1, IFI44 and DDX60. Carcinogenesis-related genes, e.g. ABL2, MGLL and CYR61, were upregulated by high-risk HPV16 and -45. The integrative analysis revealed the suppression of DNA repair by HPV11 and -16, and downregulation of cytoskeleton genes by all HPV types. Various signalling pathways were affected by the HPVs: IL-2 by HPV11; JAK-STAT by HPV16; and TGF-β, NOTCH and tyrosine kinase signalling by HPV45. This study uncovered novel strategies employed by HPV to establish infection and promote uncontrolled growth.
Collapse
Affiliation(s)
- Bogumil Kaczkowski
- The Bioinformatics Centre, Department of Biology and Biomedical Research and Innovation Centre, Copenhagen University, Ole Maaloes Vej 5, 2200 Copenhagen, Denmark
| | - Maria Rossing
- Department of Clinical Biochemistry, Copenhagen University Hospital, Blegdamsvej 5, 2100 Copenhagen, Denmark
| | - Ditte K. Andersen
- Institute of Cellular and Molecular Medicine, DNA Tumor Virus Laboratory, University of Copenhagen, Panum Institute, Blegdamsvej 3, 2200 Copenhagen, Denmark
| | - Anita Dreher
- Institute of Cellular and Molecular Medicine, DNA Tumor Virus Laboratory, University of Copenhagen, Panum Institute, Blegdamsvej 3, 2200 Copenhagen, Denmark
| | - Marya Morevati
- Institute of Cellular and Molecular Medicine, DNA Tumor Virus Laboratory, University of Copenhagen, Panum Institute, Blegdamsvej 3, 2200 Copenhagen, Denmark
| | - Melissa A. Visser
- Institute of Cellular and Molecular Medicine, DNA Tumor Virus Laboratory, University of Copenhagen, Panum Institute, Blegdamsvej 3, 2200 Copenhagen, Denmark
| | - Ole Winther
- The Bioinformatics Centre, Department of Biology and Biomedical Research and Innovation Centre, Copenhagen University, Ole Maaloes Vej 5, 2200 Copenhagen, Denmark
- DTU Informatics, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Finn Cilius Nielsen
- Department of Clinical Biochemistry, Copenhagen University Hospital, Blegdamsvej 5, 2100 Copenhagen, Denmark
| | - Bodil Norrild
- Institute of Cellular and Molecular Medicine, DNA Tumor Virus Laboratory, University of Copenhagen, Panum Institute, Blegdamsvej 3, 2200 Copenhagen, Denmark
| |
Collapse
|
43
|
Abstract
Vitiligo is an acquired depigmentary disorder of the skin that results from the loss of functioning epidermal melanocytes. Most studies on vitiligo have concentrated on the abnormality of melanocytes rather than the abnormality of keratinocytes; however, epidermal melanocytes form a functional and structural unit with neighboring keratinocytes. In fact, direct cell-to cell contact stimulates in vitro proliferation of melanocytes, and growth factors produced by adjacent keratinocytes regulate the proliferation and differentiation of melanocytes. The potential role of keratinocyte-derived cytokines has also been presented. We focused on the structural changes in vitiliginous keratinocytes, which may result in loss of melanocytes, to examine the pathomechanism of vitiligo. The results of a comparison between depigmented and normally pigmented epidermis in patients with vitiligo showed that the keratinocytes in the depigmented epidermis were more vulnerable to apoptosis. Impaired Phosphatidylinositol 3-kinase (PI3K)/serine/threonine protein kinase (Akt) activation followed by reduced nuclear factor-κB activation under increased tumor necrosis factor-α levels was demonstrated as a mechanism for keratinocyte apoptosis. The role of aquaporin 3 in keratinocyte apoptosis was addressed based on the relationship between the PI3K/AKT pathway and the E-cadherin-catenin complex. Apoptotic keratinocytes induced a lower expression of keratinocyte-derived factors, including stem cell factor, in depigmented epidermis, resulting in passive melanocyte death.
Collapse
Affiliation(s)
- Ai-Young Lee
- Department of Dermatology, Dongguk University Ilsan Hospital, Dongguk University Graduate School of Medicine, Goyang, Korea.
| |
Collapse
|
44
|
Nowell CS, Bredenkamp N, Tetélin S, Jin X, Tischner C, Vaidya H, Sheridan JM, Stenhouse FH, Heussen R, Smith AJH, Blackburn CC. Foxn1 regulates lineage progression in cortical and medullary thymic epithelial cells but is dispensable for medullary sublineage divergence. PLoS Genet 2011; 7:e1002348. [PMID: 22072979 PMCID: PMC3207875 DOI: 10.1371/journal.pgen.1002348] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Accepted: 08/30/2011] [Indexed: 01/12/2023] Open
Abstract
The forkhead transcription factor Foxn1 is indispensable for thymus development, but the mechanisms by which it mediates thymic epithelial cell (TEC) development are poorly understood. To examine the cellular and molecular basis of Foxn1 function, we generated a novel and revertible hypomorphic allele of Foxn1. By varying levels of its expression, we identified a number of features of the Foxn1 system. Here we show that Foxn1 is a powerful regulator of TEC differentiation that is required at multiple intermediate stages of TE lineage development in the fetal and adult thymus. We find no evidence for a role for Foxn1 in TEC fate-choice. Rather, we show it is required for stable entry into both the cortical and medullary TEC differentiation programmes and subsequently is needed at increasing dosage for progression through successive differentiation states in both cortical and medullary TEC. We further demonstrate regulation by Foxn1 of a suite of genes with diverse roles in thymus development and/or function, suggesting it acts as a master regulator of the core thymic epithelial programme rather than regulating a particular aspect of TEC biology. Overall, our data establish a genetics-based model of cellular hierarchies in the TE lineage and provide mechanistic insight relating titration of a single transcription factor to control of lineage progression. Our novel revertible hypomorph system may be similarly applied to analyzing other regulators of development. The thymus is the specialized organ responsible for generating T cells, which are required to regulate and effect immune responses. The unique functions of the thymus are mediated by a diverse array of specialized epithelial cells found only within this organ. These specialized, functionally mature thymic epithelial cells are generated from immature epithelial progenitor cells present in the fetal and adult thymus through a highly regulated process, termed differentiation, that is tightly controlled by specific genes. Foxn1, a protein that is expressed in thymic epithelial cells, is a transcription factor—a protein that regulates how other genes are expressed. Here, we have investigated the role of Foxn1 in generating mature thymic epithelial cells from immature progenitors. We find that Foxn1 is required throughout this process, from the onset of differentiation in progenitor thymic epithelial cells in the developing fetus to the final differentiation steps through which thymic epithelial cells mature to acquire their full functionality. We further find that Foxn1 controls the expression of a variety of genes with different functions in thymic epithelial cells. Overall, our study defines the role of Foxn1 in thymus development at the cellular level and provides insight into how it mediates these functions.
Collapse
Affiliation(s)
- Craig S. Nowell
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Nicholas Bredenkamp
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Stéphanie Tetélin
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Xin Jin
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Christin Tischner
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Harsh Vaidya
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Julie M. Sheridan
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Frances Hogg Stenhouse
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Raphaela Heussen
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Andrew J. H. Smith
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - C. Clare Blackburn
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
- * E-mail:
| |
Collapse
|
45
|
Abstract
BACKGROUND Tumours contain stem-like, side population (SP) cells, which have increased tumorigenic potential, resistance to traditional therapies and may be responsible for treatment failures and relapse in patients. METHODS Mesenchymal stem cells (MSCs) were engineered to express the apoptotic ligand, TNF-related apoptosis-inducing ligand (TRAIL). Squamous (H357) and lung (A549) cancer cell lines were sorted into side and non-side populations (non-SP) by Hoechst flow cytometry. The survival and growth of both SP and non-SP cancer populations, in conjunction with TRAIL-expressing MSCs and mitoxantrone chemotherapy, were assessed by flow cytometry and colony forming ability. RESULTS Mesenchymal stem cells expressing TRAIL migrate to tumours and reduce the growth of primary cancers and metastases. This report demonstrates that these cells cause apoptosis, death and reduced colony formation of the SP of squamous and adenocarcinoma lung cancer cells and are synergistic when combined with traditional chemotherapy in apoptosis induction. CONCLUSIONS The sensitivity of putative cancer stem cells to TRAIL-expressing MSCs, suggests their possible role in the prevention of cancer relapse.
Collapse
|
46
|
Hu B, Lefort K, Qiu W, Nguyen BC, Rajaram RD, Castillo E, He F, Chen Y, Angel P, Brisken C, Dotto GP. Control of hair follicle cell fate by underlying mesenchyme through a CSL-Wnt5a-FoxN1 regulatory axis. Genes Dev 2010; 24:1519-32. [PMID: 20634318 DOI: 10.1101/gad.1886910] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Epithelial-mesenchymal interactions are key to skin morphogenesis and homeostasis. We report that maintenance of the hair follicle keratinocyte cell fate is defective in mice with mesenchymal deletion of the CSL/RBP-Jkappa gene, the effector of "canonical" Notch signaling. Hair follicle reconstitution assays demonstrate that this can be attributed to an intrinsic defect of dermal papilla cells. Similar consequences on hair follicle differentiation result from deletion of Wnt5a, a specific dermal papilla signature gene that we found to be under direct Notch/CSL control in these cells. Functional rescue experiments establish Wnt5a as an essential downstream mediator of Notch-CSL signaling, impinging on expression in the keratinocyte compartment of FoxN1, a gene with a key hair follicle regulatory function. Thus, Notch/CSL signaling plays a unique function in control of hair follicle differentiation by the underlying mesenchyme, with Wnt5a signaling and FoxN1 as mediators.
Collapse
Affiliation(s)
- Bing Hu
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Kim NH, Lee AY. Reduced aquaporin3 expression and survival of keratinocytes in the depigmented epidermis of vitiligo. J Invest Dermatol 2010; 130:2231-9. [PMID: 20428189 DOI: 10.1038/jid.2010.99] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Activation of the phosphatidylinositol 3-kinase (PI3K)/AKT pathway is critical for the survival of differentiating cells and depends on the E-cadherin-catenin complex. In an earlier study we showed impaired PI3K/AKT activation in vitiliginous keratinocytes (KCs). Recently, aquaporin3 (AQP3) has been reported to co-accumulate with E-cadherin in forming cell-to-cell contacts. Therefore, we examined the expression of AQP3 in vitiliginous KCs and the role of AQP3 in KC survival and differentiation by comparing downstream signaling molecules. AQP3 protein expression was significantly decreased in the depigmented epidermis compared with the normally pigmented epidermis of patients with vitiligo. Transfection of cultured normal human KCs with AQP3 small interfering RNA (siRNA) reduced the expression levels of phosphorylated PI3K, E-cadherin, beta-catenin, and gamma-catenin, regardless of the calcium concentration. These downstream signaling molecules were also decreased in the depigmented epidermis. The results of immunoprecipitation and double staining confirmed colocalization of AQP3 with E-cadherin, as well as an active role of AQP3 in E-cadherin expression of cell-to-cell contacts. Moreover, AQP3 knockdown induced no increase in differentiating markers at high calcium concentrations and reduced survival of KCs, suggesting that reduced AQP3 in vitiliginous KCs might be responsible for their reduced survival.
Collapse
Affiliation(s)
- Nan-Hyung Kim
- Department of Dermatology, Dongguk University, Ilsan Hospital, Gyenggi-do, South Korea
| | | |
Collapse
|
48
|
van Dijk M, van Bezu J, van Abel D, Dunk C, Blankenstein MA, Oudejans CBM, Lye SJ. The STOX1 genotype associated with pre-eclampsia leads to a reduction of trophoblast invasion by alpha-T-catenin upregulation. Hum Mol Genet 2010; 19:2658-67. [PMID: 20400461 DOI: 10.1093/hmg/ddq152] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
By using complementary in vitro and ex vivo approaches, we show that the risk allele (Y153H) of the pre-eclampsia susceptibility gene STOX1 negatively regulates trophoblast invasion by upregulation of the cell-cell adhesion protein alpha-T-catenin (CTNNA3). This is effectuated at the crucial epithelial-mesenchymal transition of proliferative into invasive extravillous trophoblast. This STOX1-CTNNA3 interaction is direct and includes Akt-mediated phosphorylated control of nucleo-cytoplasmic shuttling and ubiquitin-mediated degradation as shared with the FOX multigene family. This, to our knowledge, is the first time a genotype associated with pre-eclampsia has been shown to directly limit first trimester extravillous trophoblast invasion, the earliest hallmark of pre-eclampsia.
Collapse
Affiliation(s)
- Marie van Dijk
- Department of Clinical Chemistry, VU University Medical Center, Amsterdam the Netherlands.
| | | | | | | | | | | | | |
Collapse
|
49
|
Mandinova A, Kolev V, Neel V, Hu B, Stonely W, Lieb J, Wu X, Colli C, Han R, Pazin MJ, Pazin M, Ostano P, Dummer R, Brissette JL, Dotto GP. A positive FGFR3/FOXN1 feedback loop underlies benign skin keratosis versus squamous cell carcinoma formation in humans. J Clin Invest 2010; 119:3127-37. [PMID: 19729838 DOI: 10.1172/jci38543] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Accepted: 07/01/2009] [Indexed: 01/01/2023] Open
Abstract
Seborrheic keratoses (SKs) are common, benign epithelial tumors of the skin that do not, or very rarely, progress into malignancy, for reasons that are not understood. We investigated this by gene expression profiling of human SKs and cutaneous squamous cell carcinomas (SCCs) and found that several genes previously connected with keratinocyte tumor development were similarly modulated in SKs and SCCs, whereas the expression of others differed by only a few fold. In contrast, the tyrosine kinase receptor FGF receptor-3 (FGFR3) and the transcription factor forkhead box N1 (FOXN1) were highly expressed in SKs, and close to undetectable in SCCs. We also showed that increased FGFR3 activity was sufficient to induce FOXN1 expression, counteract the inhibitory effect of EGFR signaling on FOXN1 expression and differentiation, and induce differentiation in a FOXN1-dependent manner. Knockdown of FOXN1 expression in primary human keratinocytes cooperated with oncogenic RAS in the induction of SCC-like tumors, whereas increased FOXN1 expression triggered the SCC cells to shift to a benign SK-like tumor phenotype, which included increased FGFR3 expression. Thus,we have uncovered a positive regulatory loop between FGFR3 and FOXN1 that underlies a benign versus malignant skin tumor phenotype.
Collapse
Affiliation(s)
- Anna Mandinova
- Cutaneous Biology Research Center, Massachusetts General Hospital (MGH), Charlestown, Massachusetts, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Zhang R, Niu Y, Zhou Y. Increase the cisplatin cytotoxicity and cisplatin-induced DNA damage in HepG2 cells by XRCC1 abrogation related mechanisms. Toxicol Lett 2009; 192:108-14. [PMID: 19853026 DOI: 10.1016/j.toxlet.2009.10.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Revised: 10/10/2009] [Accepted: 10/12/2009] [Indexed: 01/02/2023]
Abstract
Cisplatin is one of the most potent chemotherapeutic anticancer drugs for the treatment of various cancers. The cytotoxic action of the drug is often thought to be associated with its ability to bind DNA to form cisplatin-DNA adducts. Impaired DNA repair processes including base excision repair (BER) play important roles on its cytotoxicity. XRCC1 is a key protein known to play a central role at an early stage in the BER pathway. However, whether XRCC1 contributes to decrease the cisplatin cytotoxicity and cisplatin-induced DNA damage in HepG2 still remains unknown. Hence, the purpose of this study was to explore whether abrogation of XRCC1 gene expression by short hairpin RNAs (shRNA) could reduce DNA repair and thus sensitize liver cancer cells to cisplatin. We abrogated the XRCC1 gene in HepG2 cell using shRNA transfection. Cell viability was measured by MTT assay and clonogenicity assay. Comet assay was used to detect the DNA damage induced by cisplatin. The host cell reactivation was employed to assess the DNA repair capacity of cisplatin-damaged luciferase reporter plasmid. Flow cytometry analysis was used to determine cisplatin-induced apoptosis, cell cycle and reactive oxygen species (ROS). The results showed that abrogation of XRCC1 could sensitize HepG2 cells to cisplatin. This enhanced cytotoxicity could be attributed to the increased DNA damage and reduced DNA repair capacity. Increasing cell cycle arrest and intracellular ROS production lead to more tumor cell apoptosis and then enhanced the cisplatin cytotoxicity. Our results suggested that the cisplatin cytotoxicity may increase by targeting inhibition of XRCC1.
Collapse
Affiliation(s)
- Rong Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China.
| | | | | |
Collapse
|