1
|
Duan M, Leng S, Mao P. Cisplatin in the era of PARP inhibitors and immunotherapy. Pharmacol Ther 2024; 258:108642. [PMID: 38614254 DOI: 10.1016/j.pharmthera.2024.108642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/21/2024] [Accepted: 03/29/2024] [Indexed: 04/15/2024]
Abstract
Platinum compounds such as cisplatin, carboplatin and oxaliplatin are widely used in chemotherapy. Cisplatin induces cytotoxic DNA damage that blocks DNA replication and gene transcription, leading to arrest of cell proliferation. Although platinum therapy alone is effective against many tumors, cancer cells can adapt to the treatment and gain resistance. The mechanisms for cisplatin resistance are complex, including low DNA damage formation, high DNA repair capacity, changes in apoptosis signaling pathways, rewired cell metabolisms, and others. Drug resistance compromises the clinical efficacy and calls for new strategies by combining cisplatin with other therapies. Exciting progress in cancer treatment, particularly development of poly (ADP-ribose) polymerase (PARP) inhibitors and immune checkpoint inhibitors, opened a new chapter to combine cisplatin with these new cancer therapies. In this Review, we discuss how platinum synergizes with PARP inhibitors and immunotherapy to bring new hope to cancer patients.
Collapse
Affiliation(s)
- Mingrui Duan
- Department of Internal Medicine, University of New Mexico, Albuquerque, NM 87131, USA; University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87131, USA
| | - Shuguang Leng
- Department of Internal Medicine, University of New Mexico, Albuquerque, NM 87131, USA; University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87131, USA.
| | - Peng Mao
- Department of Internal Medicine, University of New Mexico, Albuquerque, NM 87131, USA; University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87131, USA.
| |
Collapse
|
2
|
Blessing C, Apelt K, van den Heuvel D, Gonzalez-Leal C, Rother MB, van der Woude M, González-Prieto R, Yifrach A, Parnas A, Shah RG, Kuo TT, Boer DEC, Cai J, Kragten A, Kim HS, Schärer OD, Vertegaal ACO, Shah GM, Adar S, Lans H, van Attikum H, Ladurner AG, Luijsterburg MS. XPC-PARP complexes engage the chromatin remodeler ALC1 to catalyze global genome DNA damage repair. Nat Commun 2022; 13:4762. [PMID: 35963869 PMCID: PMC9376112 DOI: 10.1038/s41467-022-31820-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/29/2022] [Indexed: 11/24/2022] Open
Abstract
Cells employ global genome nucleotide excision repair (GGR) to eliminate a broad spectrum of DNA lesions, including those induced by UV light. The lesion-recognition factor XPC initiates repair of helix-destabilizing DNA lesions, but binds poorly to lesions such as CPDs that do not destabilize DNA. How difficult-to-repair lesions are detected in chromatin is unknown. Here, we identify the poly-(ADP-ribose) polymerases PARP1 and PARP2 as constitutive interactors of XPC. Their interaction results in the XPC-stimulated synthesis of poly-(ADP-ribose) (PAR) by PARP1 at UV lesions, which in turn enables the recruitment and activation of the PAR-regulated chromatin remodeler ALC1. PARP2, on the other hand, modulates the retention of ALC1 at DNA damage sites. Notably, ALC1 mediates chromatin expansion at UV-induced DNA lesions, leading to the timely clearing of CPD lesions. Thus, we reveal how chromatin containing difficult-to-repair DNA lesions is primed for repair, providing insight into mechanisms of chromatin plasticity during GGR. Cells employ global genome nucleotide excision repair to repair a broad spectrum of genomic DNA lesions. Here, the authors reveal how chromatin is primed for repair, providing insight into mechanisms of chromatin plasticity during DNA repair.
Collapse
Affiliation(s)
- Charlotte Blessing
- Biomedical Center (BMC), Physiological Chemistry, Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany.,International Max Planck Research School (IMPRS) for Molecular Life Sciences, Planegg-Martinsried, Germany
| | - Katja Apelt
- Department of Human Genetics, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Diana van den Heuvel
- Department of Human Genetics, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Claudia Gonzalez-Leal
- Biomedical Center (BMC), Physiological Chemistry, Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany.,International Max Planck Research School (IMPRS) for Molecular Life Sciences, Planegg-Martinsried, Germany
| | - Magdalena B Rother
- Department of Human Genetics, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Melanie van der Woude
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Román González-Prieto
- Department of Cell and Chemical Biology, Leiden University Medical Center (LUMC), Leiden, The Netherlands.,Genome Proteomics Laboratory, Andalusian Center For Molecular Biology and Regenerative Medicine (CABIMER), University of Seville, Seville, Spain.,Department of Cell Biology, University of Seville, Seville, Spain
| | - Adi Yifrach
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research Israel-Canada, The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Avital Parnas
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research Israel-Canada, The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Rashmi G Shah
- Laboratory for Skin Cancer Research, CHU-Q: Laval University Hospital Research Centre of Quebec (CHUL site), Quebec City, Canada
| | - Tia Tyrsett Kuo
- Biomedical Center (BMC), Physiological Chemistry, Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany.,International Max Planck Research School (IMPRS) for Molecular Life Sciences, Planegg-Martinsried, Germany
| | - Daphne E C Boer
- Department of Human Genetics, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Jin Cai
- Biomedical Center (BMC), Physiological Chemistry, Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany.,International Max Planck Research School (IMPRS) for Molecular Life Sciences, Planegg-Martinsried, Germany
| | - Angela Kragten
- Department of Human Genetics, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Hyun-Suk Kim
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Republic of Korea
| | - Orlando D Schärer
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Republic of Korea.,Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Alfred C O Vertegaal
- Department of Cell and Chemical Biology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Girish M Shah
- Laboratory for Skin Cancer Research, CHU-Q: Laval University Hospital Research Centre of Quebec (CHUL site), Quebec City, Canada
| | - Sheera Adar
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research Israel-Canada, The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Hannes Lans
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Haico van Attikum
- Department of Human Genetics, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Andreas G Ladurner
- Biomedical Center (BMC), Physiological Chemistry, Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany. .,International Max Planck Research School (IMPRS) for Molecular Life Sciences, Planegg-Martinsried, Germany. .,Eisbach Bio GmbH, Planegg-Martinsried, Germany.
| | - Martijn S Luijsterburg
- Department of Human Genetics, Leiden University Medical Center (LUMC), Leiden, The Netherlands.
| |
Collapse
|
3
|
Demény MA, Virág L. The PARP Enzyme Family and the Hallmarks of Cancer Part 1. Cell Intrinsic Hallmarks. Cancers (Basel) 2021; 13:cancers13092042. [PMID: 33922595 PMCID: PMC8122967 DOI: 10.3390/cancers13092042] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/02/2021] [Accepted: 04/20/2021] [Indexed: 12/21/2022] Open
Abstract
The 17-member poly (ADP-ribose) polymerase enzyme family, also known as the ADP-ribosyl transferase diphtheria toxin-like (ARTD) enzyme family, contains DNA damage-responsive and nonresponsive members. Only PARP1, 2, 5a, and 5b are capable of modifying their targets with poly ADP-ribose (PAR) polymers; the other PARP family members function as mono-ADP-ribosyl transferases. In the last decade, PARP1 has taken center stage in oncology treatments. New PARP inhibitors (PARPi) have been introduced for the targeted treatment of breast cancer 1 or 2 (BRCA1/2)-deficient ovarian and breast cancers, and this novel therapy represents the prototype of the synthetic lethality paradigm. Much less attention has been paid to other PARPs and their potential roles in cancer biology. In this review, we summarize the roles played by all PARP enzyme family members in six intrinsic hallmarks of cancer: uncontrolled proliferation, evasion of growth suppressors, cell death resistance, genome instability, reprogrammed energy metabolism, and escape from replicative senescence. In a companion paper, we will discuss the roles of PARP enzymes in cancer hallmarks related to cancer-host interactions, including angiogenesis, invasion and metastasis, evasion of the anticancer immune response, and tumor-promoting inflammation. While PARP1 is clearly involved in all ten cancer hallmarks, an increasing body of evidence supports the role of other PARPs in modifying these cancer hallmarks (e.g., PARP5a and 5b in replicative immortality and PARP2 in cancer metabolism). We also highlight controversies, open questions, and discuss prospects of recent developments related to the wide range of roles played by PARPs in cancer biology. Some of the summarized findings may explain resistance to PARPi therapy or highlight novel biological roles of PARPs that can be therapeutically exploited in novel anticancer treatment paradigms.
Collapse
Affiliation(s)
- Máté A. Demény
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- MTA-DE Cell Biology and Signaling Research Group, University of Debrecen, 4032 Debrecen, Hungary
- Correspondence: (M.A.D.); (L.V.)
| | - László Virág
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- MTA-DE Cell Biology and Signaling Research Group, University of Debrecen, 4032 Debrecen, Hungary
- Correspondence: (M.A.D.); (L.V.)
| |
Collapse
|
4
|
Robu M, Shah RG, Shah GM. Methods to Study Intracellular Movement and Localization of the Nucleotide Excision Repair Proteins at the DNA Lesions in Mammalian Cells. Front Cell Dev Biol 2020; 8:590242. [PMID: 33282869 PMCID: PMC7705073 DOI: 10.3389/fcell.2020.590242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/27/2020] [Indexed: 11/13/2022] Open
Abstract
Nucleotide excision repair (NER) is the most versatile DNA repair pathway that removes a wide variety of DNA lesions caused by different types of physical and chemical agents, such as ultraviolet radiation (UV), environmental carcinogen benzo[a]pyrene and anti-cancer drug carboplatin. The mammalian NER utilizes more than 30 proteins, in a multi-step process that begins with the lesion recognition within seconds of DNA damage to completion of repair after few hours to several days. The core proteins and their biochemical reactions are known from in vitro DNA repair assays using purified proteins, but challenge was to understand the dynamics of their rapid recruitment and departure from the lesion site and their coordination with other proteins and post-translational modifications to execute the sequential steps of repair. Here, we provide a brief overview of various techniques developed by different groups over last 20 years to overcome these challenges. However, more work is needed for a comprehensive knowledge of all aspects of mammalian NER. With this aim, here we provide detailed protocols of three simple yet innovative methods developed by many teams that range from local UVC irradiation to in situ extraction and sub-cellular fractionation that will permit study of endogenous as well as exogenous NER proteins in any cellular model. These methods do not require unique reagents or specialized instruments, and will allow many more laboratories to explore this repair pathway in different models. These techniques would reveal intracellular movement of these proteins to the DNA lesion site, their interactions with other proteins during repair and the effect of post-translational modifications on their functions. We also describe how these methods led us to identify hitherto unexpected role of poly(ADP-ribose) polymerase-1 (PARP1) in NER. Collectively these three simple techniques can provide an initial assessment of the functions of known and unknown proteins in the core or auxiliary events associated with mammalian NER. The results from these techniques could serve as a solid foundation and a justification for more detailed studies in NER using specialized reagents and more sophisticated tools. They can also be suitably modified to study other cellular processes beyond DNA repair.
Collapse
Affiliation(s)
- Mihaela Robu
- CHU de Québec Université Laval Research Centre (site CHUL), Laboratory for Skin Cancer Research and Axe Neuroscience, Québec, QC, Canada
| | - Rashmi G Shah
- CHU de Québec Université Laval Research Centre (site CHUL), Laboratory for Skin Cancer Research and Axe Neuroscience, Québec, QC, Canada
| | - Girish M Shah
- CHU de Québec Université Laval Research Centre (site CHUL), Laboratory for Skin Cancer Research and Axe Neuroscience, Québec, QC, Canada
| |
Collapse
|
5
|
Perini V, Schacke M, Liddle P, Vilchez-Larrea S, Keszenman DJ, Lafon-Hughes L. PARP Inhibitor Olaparib Causes No Potentiation of the Bleomycin Effect in VERO Cells, Even in the Presence of Pooled ATM, DNA-PK, and LigIV Inhibitors. Int J Mol Sci 2020; 21:E8288. [PMID: 33167404 PMCID: PMC7663819 DOI: 10.3390/ijms21218288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/14/2020] [Accepted: 10/19/2020] [Indexed: 11/25/2022] Open
Abstract
Poly(ADP-ribosyl)polymerase (PARP) synthesizes poly(ADP-ribose) (PAR), which is anchored to proteins. PAR facilitates multiprotein complexes' assembly. Nuclear PAR affects chromatin's structure and functions, including transcriptional regulation. In response to stress, particularly genotoxic stress, PARP activation facilitates DNA damage repair. The PARP inhibitor Olaparib (OLA) displays synthetic lethality with mutated homologous recombination proteins (BRCA-1/2), base excision repair proteins (XRCC1, Polβ), and canonical nonhomologous end joining (LigIV). However, the limits of synthetic lethality are not clear. On one hand, it is unknown whether any limiting factor of homologous recombination can be a synthetic PARP lethality partner. On the other hand, some BRCA-mutated patients are not responsive to OLA for still unknown reasons. In an effort to help delineate the boundaries of synthetic lethality, we have induced DNA damage in VERO cells with the radiomimetic chemotherapeutic agent bleomycin (BLEO). A VERO subpopulation was resistant to BLEO, BLEO + OLA, and BLEO + OLA + ATM inhibitor KU55933 + DNA-PK inhibitor KU-0060648 + LigIV inhibitor SCR7 pyrazine. Regarding the mechanism(s) behind the resistance and lack of synthetic lethality, some hypotheses have been discarded and alternative hypotheses are suggested.
Collapse
Affiliation(s)
- Valentina Perini
- Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Departamento de Genética, Montevideo 11.600, Uruguay; (V.P.); (M.S.); (P.L.)
| | - Michelle Schacke
- Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Departamento de Genética, Montevideo 11.600, Uruguay; (V.P.); (M.S.); (P.L.)
| | - Pablo Liddle
- Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Departamento de Genética, Montevideo 11.600, Uruguay; (V.P.); (M.S.); (P.L.)
| | - Salomé Vilchez-Larrea
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr. Héctor N. Torres”, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires 1428, Argentina;
| | - Deborah J. Keszenman
- Laboratorio de Radiobiología Médica y Ambiental, Grupo de Biofisicoquímica, Centro Universitario Regional Litoral Norte, Universidad de la República (UdelaR), Salto 50.000, Uruguay
| | - Laura Lafon-Hughes
- Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Departamento de Genética, Montevideo 11.600, Uruguay; (V.P.); (M.S.); (P.L.)
| |
Collapse
|
6
|
Gary AS, Rochette PJ. Apoptosis, the only cell death pathway that can be measured in human diploid dermal fibroblasts following lethal UVB irradiation. Sci Rep 2020; 10:18946. [PMID: 33144600 PMCID: PMC7609555 DOI: 10.1038/s41598-020-75873-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/06/2020] [Indexed: 12/14/2022] Open
Abstract
Ultraviolet radiation (UVR) is a major environmental genotoxic agent. In skin, it can lead to the formation of mutagenic DNA damage. Several mechanisms are in place to prevent the conversion of these DNA damage into skin cancer-driver mutations. An important mutation prevention mechanism is the programmed cell death, which can safely dispose of the damaged cells. Apoptosis is the most studied and best characterised programmed cell death, but an increasing amount of new cell death pathways are emerging. Using different pharmacological cell death inhibitors and antioxidants, we have evaluated the implication of apoptosis, necroptosis, ferroptosis and parthanatos in UVB-induced cell death in human diploid dermal fibroblasts. Our results show that apoptosis is the only known cell death mechanism induced by UVB irradiation in fibroblasts. We also showed that lethal UVB irradiation induces a PARP-dependent drastic loss of cellular metabolic activity caused by an overused of NAD+.
Collapse
Affiliation(s)
- Anne-Sophie Gary
- Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Hôpital du Saint-Sacrement, Quebec, QC, Canada.,Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Université Laval, Quebec, QC, Canada
| | - Patrick J Rochette
- Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Hôpital du Saint-Sacrement, Quebec, QC, Canada. .,Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Université Laval, Quebec, QC, Canada. .,Département d'Ophtalmologie et ORL-Chirurgie Cervico-Faciale, Université Laval, Quebec, QC, Canada.
| |
Collapse
|
7
|
Protection from Ultraviolet Damage and Photocarcinogenesis by Vitamin D Compounds. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1268:227-253. [PMID: 32918222 DOI: 10.1007/978-3-030-46227-7_12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Exposure of skin cells to UV radiation results in DNA damage, which if inadequately repaired, may cause mutations. UV-induced DNA damage and reactive oxygen and nitrogen species also cause local and systemic suppression of the adaptive immune system. Together, these changes underpin the development of skin tumours. The hormone derived from vitamin D, calcitriol (1,25-dihydroxyvitamin D3) and other related compounds, working via the vitamin D receptor and at least in part through endoplasmic reticulum protein 57 (ERp57), reduce cyclobutane pyrimidine dimers and oxidative DNA damage in keratinocytes and other skin cell types after UV. Calcitriol and related compounds enhance DNA repair in keratinocytes, in part through decreased reactive oxygen species, increased p53 expression and/or activation, increased repair proteins and increased energy availability in the cell when calcitriol is present after UV exposure. There is mitochondrial damage in keratinocytes after UV. In the presence of calcitriol, but not vehicle, glycolysis is increased after UV, along with increased energy-conserving autophagy and changes consistent with enhanced mitophagy. Reduced DNA damage and reduced ROS/RNS should help reduce UV-induced immune suppression. Reduced UV immune suppression is observed after topical treatment with calcitriol and related compounds in hairless mice. These protective effects of calcitriol and related compounds presumably contribute to the observed reduction in skin tumour formation in mice after chronic exposure to UV followed by topical post-irradiation treatment with calcitriol and some, though not all, related compounds.
Collapse
|
8
|
Role of Nicotinamide in Genomic Stability and Skin Cancer Chemoprevention. Int J Mol Sci 2019; 20:ijms20235946. [PMID: 31779194 PMCID: PMC6929077 DOI: 10.3390/ijms20235946] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 11/16/2019] [Accepted: 11/23/2019] [Indexed: 12/16/2022] Open
Abstract
Nicotinamide (NAM) is an amide form of vitamin B3 and the precursor of nicotinamide adenine dinucleotide (NAD+), an essential co-enzyme of redox reactions for adenosine triphosphate (ATP) production and for other metabolic processes. As NAD+ status is critical in maintaining cellular energy, vitamin B3 deficiency mainly affects tissues that need high cellular energy causing pellagra and skin sun sensitivity. In animal models, NAD+ deficiency leads to UV sensitivity of the skin, impairs DNA damage response, and increases genomic instability and cancer incidence. Furthermore, NAD+ depletion is associated with human skin aging and cancer. NAM prevents the UV-induced ATP depletion boosting cellular energy and enhances DNA repair activity in vitro and in vivo. Moreover, NAM reduces skin cancer incidence and prevents the immune-suppressive effects of UV in mice. Thus, NAM is involved in the maintenance of genomic stability and may have beneficial effects against skin aging changes and tumor development. Clinical studies showed that topical use of NAM reduces cutaneous aging. Furthermore, oral NAM administration reduces the level of UV-mediated immunosuppression and lowers the rate of non-melanoma skin cancers in high-risk patients. Therefore, NAM replenishment strategy may be a promising approach for skin cancer chemoprevention.
Collapse
|
9
|
Rechkunova NI, Maltseva EA, Lavrik OI. Post-translational Modifications of Nucleotide Excision Repair Proteins and Their Role in the DNA Repair. BIOCHEMISTRY (MOSCOW) 2019; 84:1008-1020. [PMID: 31693460 DOI: 10.1134/s0006297919090037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Nucleotide excision repair (NER) is one of the major DNA repair pathways aimed at maintaining genome stability. Correction of DNA damage by the NER system is a multistage process that proceeds with the formation of multiple DNA-protein and protein-protein intermediate complexes and requires precise coordination and regulation. NER proteins undergo post-translational modifications, such as ubiquitination, sumoylation, phosphorylation, acetylation, and poly(ADP-ribosyl)ation. These modifications affect the interaction of NER factors with DNA and other proteins and thus regulate either their recruitment into the complexes or dissociation from these complexes at certain stages of DNA repair, as well as modulate the functional activity of NER proteins and control the process of DNA repair in general. Here, we review the data on the post-translational modifications of NER factors and their effects on DNA repair. Protein poly(ADP-ribosyl)ation catalyzed by poly(ADP-ribose) polymerase 1 and its impact on NER are discussed in detail, since such analysis has not been done before.
Collapse
Affiliation(s)
- N I Rechkunova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia. .,Novosibirsk State University, Novosibirsk, 630090, Russia
| | - E A Maltseva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - O I Lavrik
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia.,Novosibirsk State University, Novosibirsk, 630090, Russia
| |
Collapse
|
10
|
Gu Z, Pan W, Chen W, Lian Q, Wu Q, Lv Z, Cheng X, Ge X. New perspectives on the plant PARP family: Arabidopsis PARP3 is inactive, and PARP1 exhibits predominant poly (ADP-ribose) polymerase activity in response to DNA damage. BMC PLANT BIOLOGY 2019; 19:364. [PMID: 31426748 PMCID: PMC6701155 DOI: 10.1186/s12870-019-1958-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 07/31/2019] [Indexed: 05/17/2023]
Abstract
BACKGROUND Poly (ADP-ribosyl) ation (PARylation) is an important posttranslational modification that regulates DNA repair, gene transcription, stress responses and developmental processes in multicellular organisms. Poly (ADP-ribose) polymerase (PARP) catalyzes PARylation by consecutively adding ADP-ribose moieties from NAD+ to the amino acid receptor residues on target proteins. Arabidopsis has three canonical PARP members, and two of these members, AtPARP1 and AtPARP2, have been demonstrated to be bona fide poly (ADP-ribose) polymerases and to regulate DNA repair and stress response processes. However, it remains unknown whether AtPARP3, a member that is highly expressed in seeds, has similar biochemical activity to that of AtPARP1 and AtPARP2. Additionally, although both the phylogenetic relationships and structural similarities indicate that AtPARP1 and AtPARP2 correspond to animal PARP1 and PARP2, respectively, two previous studies have indicated that AtPARP2, and not AtPARP1, accounts for most of the PARP activity in Arabidopsis, which is contrary to the knowledge that PARP1 is the predominant PARP in animals. RESULTS In this study, we obtained both in vitro and in vivo evidence demonstrating that AtPARP3 does not act as a typical PARP in Arabidopsis. Domain swapping and point mutation assays indicated that AtPARP3 has lost NAD+-binding capability and is inactive. In addition, our results showed that AtPARP1 was responsible for most of the PARP enzymatic activity in response to the DNA damage-inducing agents zeocin and methyl methanesulfonate (MMS) and was more rapidly activated than AtPARP2, which supports that AtPARP1 remains the predominant PARP member in Arabidopsis. AtPARP1 might first become activated by binding to damaged sites, and AtPARP2 is then poly (ADP-ribosyl) ated by AtPARP1 in vivo. CONCLUSIONS Collectively, our biochemical and genetic analysis results strongly support the notion that AtPARP3 has lost poly (ADP-ribose) polymerase activity in plants and performs different functions from those of AtPARP1 and AtPARP2. AtPARP1, instead of AtPARP2, plays the predominant role in PAR synthesis in both seeds and seedlings. These data bring new insights into our understanding of the physiological functions of plant PARP family members.
Collapse
Affiliation(s)
- Zongying Gu
- State Key Laboratory of Genetic Engineering, Department of Biochemistry and Molecular Biology, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Weiyang Pan
- State Key Laboratory of Genetic Engineering, Department of Biochemistry and Molecular Biology, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Wei Chen
- State Key Laboratory of Genetic Engineering, Department of Biochemistry and Molecular Biology, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Qichao Lian
- State Key Laboratory of Genetic Engineering, Department of Biochemistry and Molecular Biology, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Qiao Wu
- State Key Laboratory of Genetic Engineering, Department of Biochemistry and Molecular Biology, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Zeyu Lv
- State Key Laboratory of Genetic Engineering, Department of Biochemistry and Molecular Biology, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Xuan Cheng
- State Key Laboratory of Genetic Engineering, Department of Biochemistry and Molecular Biology, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Xiaochun Ge
- State Key Laboratory of Genetic Engineering, Department of Biochemistry and Molecular Biology, School of Life Sciences, Fudan University, Shanghai, 200438 China
| |
Collapse
|
11
|
Svoboda P, Krizova E, Sestakova S, Vapenkova K, Knejzlik Z, Rimpelova S, Rayova D, Volfova N, Krizova I, Rumlova M, Sykora D, Kizek R, Haluzik M, Zidek V, Zidkova J, Skop V. Nuclear transport of nicotinamide phosphoribosyltransferase is cell cycle-dependent in mammalian cells, and its inhibition slows cell growth. J Biol Chem 2019; 294:8676-8689. [PMID: 30975903 DOI: 10.1074/jbc.ra118.003505] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 04/04/2019] [Indexed: 01/26/2023] Open
Abstract
Nicotinamide phosphoribosyltransferase (NAMPT) is located in both the nucleus and cytoplasm and has multiple biological functions including catalyzing the rate-limiting step in NAD synthesis. Moreover, up-regulated NAMPT expression has been observed in many cancers. However, the determinants and regulation of NAMPT's nuclear transport are not known. Here, we constructed a GFP-NAMPT fusion protein to study NAMPT's subcellular trafficking. We observed that in unsynchronized 3T3-L1 preadipocytes, 25% of cells had higher GFP-NAMPT fluorescence in the cytoplasm, and 62% had higher GFP-NAMPT fluorescence in the nucleus. In HepG2 hepatocytes, 6% of cells had higher GFP-NAMPT fluorescence in the cytoplasm, and 84% had higher GFP-NAMPT fluorescence in the nucleus. In both 3T3-L1 and HepG2 cells, GFP-NAMPT was excluded from the nucleus immediately after mitosis and migrated back into it as the cell cycle progressed. In HepG2 cells, endogenous, untagged NAMPT displayed similar changes with the cell cycle, and in nonmitotic cells, GFP-NAMPT accumulated in the nucleus. Similarly, genotoxic, oxidative, or dicarbonyl stress also caused nuclear NAMPT localization. These interventions also increased poly(ADP-ribosyl) polymerase and sirtuin activity, suggesting an increased cellular demand for NAD. We identified a nuclear localization signal in NAMPT and amino acid substitution in this sequence (424RSKK to ASGA), which did not affect its enzymatic activity, blocked nuclear NAMPT transport, slowed cell growth, and increased histone H3 acetylation. These results suggest that NAMPT is transported into the nucleus where it presumably increases NAD synthesis required for cell proliferation. We conclude that specific inhibition of NAMPT transport into the nucleus might be a potential avenue for managing cancer.
Collapse
Affiliation(s)
- Petr Svoboda
- From the Departments of Biochemistry and Microbiology.,the Institute of Physiology, Czech Academy of Sciences, Prague 4, 142 20, Czech Republic
| | - Edita Krizova
- From the Departments of Biochemistry and Microbiology
| | | | | | | | | | - Diana Rayova
- From the Departments of Biochemistry and Microbiology
| | - Nikol Volfova
- From the Departments of Biochemistry and Microbiology
| | | | | | - David Sykora
- Analytical Chemistry, University of Chemistry and Technology Prague, Prague 6, 166 28, Czech Republic
| | - Rene Kizek
- the Department of Human Pharmacology and Toxicology, University of Veterinary and Pharmaceutical Sciences Brno, Brno, 612 42, Czech Republic
| | - Martin Haluzik
- the Centre for Experimental Medicine and.,Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague 4, 140 21, Czech Republic, and.,the Institute of Medical Biochemistry and Laboratory Diagnostics, Charles University and General University Hospital in Prague, Prague 2, 128 08, Czech Republic
| | - Vaclav Zidek
- the Institute of Physiology, Czech Academy of Sciences, Prague 4, 142 20, Czech Republic
| | | | - Vojtech Skop
- From the Departments of Biochemistry and Microbiology, .,the Centre for Experimental Medicine and
| |
Collapse
|
12
|
Schacke M, Kumar J, Colwell N, Hermanson K, Folle GA, Nechaev S, Dhasarathy A, Lafon-Hughes L. PARP-1/2 Inhibitor Olaparib Prevents or Partially Reverts EMT Induced by TGF-β in NMuMG Cells. Int J Mol Sci 2019; 20:ijms20030518. [PMID: 30691122 PMCID: PMC6387051 DOI: 10.3390/ijms20030518] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 01/16/2019] [Accepted: 01/21/2019] [Indexed: 02/03/2023] Open
Abstract
Poly- adenosine diphosphate (ADP)-ribose (PAR) is a polymer synthesized as a posttranslational modification by some poly (ADP-ribose) polymerases (PARPs), namely PARP-1, PARP-2, tankyrase-1, and tankyrase-2 (TNKS-1/2). PARP-1 is nuclear and has also been detected in extracellular vesicles. PARP-2 and TNKS-1/2 are distributed in nuclei and cytoplasm. PARP or PAR alterations have been described in tumors, and in particular by influencing the Epithelial- Mesenchymal Transition (EMT), which influences cell migration and drug resistance in cancer cells. Pro-EMT and anti-EMT effects of PARP-1 have been reported while whether PAR changes occur specifically during EMT is currently unknown. The PARP-1/2 inhibitor Olaparib (OLA) is approved by FDA to treat certain patients harboring cancers with impaired homologous recombination. Here, we studied PAR changes and OLA effects on EMT. Total and nuclear PAR increased in EMT while PAR belts were disassembled. OLA prevented EMT, according to: (i) molecular markers evaluated by immuno-cytofluorescence/image quantification, Western blots, and RNA quantitation, (ii) morphological changes expressed as anisotropy, and (iii) migration capacity in the scratch assay. OLA also partially reversed EMT. OLA might work through unconventional mechanisms of action (different from synthetic lethality), even in non-BRCA (breast cancer 1 gene) mutated cancers.
Collapse
Affiliation(s)
- Michelle Schacke
- Instituto de Investigaciones Biológicas Clemente Estable, Montevideo 11600, Uruguay.
| | - Janani Kumar
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202-9061, USA.
| | - Nicholas Colwell
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202-9061, USA.
| | - Kole Hermanson
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202-9061, USA.
| | - Gustavo A Folle
- Instituto de Investigaciones Biológicas Clemente Estable, Montevideo 11600, Uruguay.
| | - Sergei Nechaev
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202-9061, USA.
| | - Archana Dhasarathy
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202-9061, USA.
| | - Laura Lafon-Hughes
- Instituto de Investigaciones Biológicas Clemente Estable, Montevideo 11600, Uruguay.
| |
Collapse
|
13
|
PARP1 protects from benzo[a]pyrene diol epoxide-induced replication stress and mutagenicity. Arch Toxicol 2017; 92:1323-1340. [PMID: 29196784 PMCID: PMC5866831 DOI: 10.1007/s00204-017-2115-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Accepted: 11/08/2017] [Indexed: 02/06/2023]
Abstract
Poly(ADP-ribosyl)ation (PARylation) is a complex and reversible posttranslational modification catalyzed by poly(ADP-ribose)polymerases (PARPs), which orchestrates protein function and subcellular localization. The function of PARP1 in genotoxic stress response upon induction of oxidative DNA lesions and strand breaks is firmly established, but its role in the response to chemical-induced, bulky DNA adducts is understood incompletely. To address the role of PARP1 in the response to bulky DNA adducts, we treated human cancer cells with benzo[a]pyrene 7,8-dihydrodiol-9,10-epoxide (BPDE), which represents the active metabolite of the environmental carcinogen benzo[a]pyrene [B(a)P], in nanomolar to low micromolar concentrations. Using a highly sensitive LC-MS/MS method, we revealed that BPDE induces cellular PAR formation in a time- and dose-dependent manner. Consistently, PARP1 activity significantly contributed to BPDE-induced genotoxic stress response. On one hand, PARP1 ablation rescued BPDE-induced NAD+ depletion and protected cells from BPDE-induced short-term toxicity. On the other hand, strong sensitization effects of PARP inhibition and PARP1 ablation were observed in long-term clonogenic survival assays. Furthermore, PARP1 ablation significantly affected BPDE-induced S- and G2-phase transitions. Together, these results point towards unresolved BPDE-DNA lesions triggering replicative stress. In line with this, BPDE exposure resulted in enhanced formation and persistence of DNA double-strand breaks in PARP1-deficient cells as evaluated by microscopic co-localization studies of 53BP1 and γH2A.X foci. Consistently, an HPRT mutation assay revealed that PARP inhibition potentiated the mutagenicity of BPDE. In conclusion, this study demonstrates a profound role of PARylation in BPDE-induced genotoxic stress response with significant functional consequences and potential relevance with regard to B[a]P-induced cancer risks.
Collapse
|
14
|
Cencer CS, Chintala SK, Townsend TJ, Feldmann DP, Awrow MA, Putris NA, Geno ME, Donovan MG, Giblin FJ. PARP-1/PAR Activity in Cultured Human Lens Epithelial Cells Exposed to Two Levels of UVB Light. Photochem Photobiol 2017; 94:126-138. [PMID: 28756616 DOI: 10.1111/php.12814] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 07/10/2017] [Indexed: 12/14/2022]
Abstract
This study investigated poly(ADP-ribose) polymerase-1 (PARP-1) activation in cultured human lens epithelial cells exposed to two levels of UVB light (312 nm peak wavelength), 0.014 and 0.14 J cm-2 ("low" and "high" dose, respectively). At the low dose, PARP-1 and poly(ADP-ribose) (PAR) polymers acted to repair DNA strand breaks rapidly with no subsequent major effects on either cell morphology or viability. However, following the high UVB dose, there was a dramatic second phase of PARP-1 activation, 90 min later, which included a sudden reappearance of DNA strand breaks, bursts of reactive oxygen species (ROS) formation within both the mitochondria and nucleus, a translocation of PAR from the nucleus to the mitochondria and an ultimate 70% loss of cell viability occurring after 24 h. The results provide evidence for an important role for PARP-1 in protecting the human lens epithelium against low levels of UVB light, and possibly participating in the triggering of cell death following exposure to toxic levels of radiation.
Collapse
Affiliation(s)
| | | | | | | | - Mirna A Awrow
- Eye Research Institute, Oakland University, Rochester, MI
| | | | - Mason E Geno
- Eye Research Institute, Oakland University, Rochester, MI
| | | | - Frank J Giblin
- Eye Research Institute, Oakland University, Rochester, MI
| |
Collapse
|
15
|
Poly(ADP-ribose) polymerase 1 escorts XPC to UV-induced DNA lesions during nucleotide excision repair. Proc Natl Acad Sci U S A 2017; 114:E6847-E6856. [PMID: 28760956 DOI: 10.1073/pnas.1706981114] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Xeroderma pigmentosum C (XPC) protein initiates the global genomic subpathway of nucleotide excision repair (GG-NER) for removal of UV-induced direct photolesions from genomic DNA. The XPC has an inherent capacity to identify and stabilize at the DNA lesion sites, and this function is facilitated in the genomic context by UV-damaged DNA-binding protein 2 (DDB2), which is part of a multiprotein UV-DDB ubiquitin ligase complex. The nuclear enzyme poly(ADP-ribose) polymerase 1 (PARP1) has been shown to facilitate the lesion recognition step of GG-NER via its interaction with DDB2 at the lesion site. Here, we show that PARP1 plays an additional DDB2-independent direct role in recruitment and stabilization of XPC at the UV-induced DNA lesions to promote GG-NER. It forms a stable complex with XPC in the nucleoplasm under steady-state conditions before irradiation and rapidly escorts it to the damaged DNA after UV irradiation in a DDB2-independent manner. The catalytic activity of PARP1 is not required for the initial complex formation with XPC in the nucleoplasm but it enhances the recruitment of XPC to the DNA lesion site after irradiation. Using purified proteins, we also show that the PARP1-XPC complex facilitates the handover of XPC to the UV-lesion site in the presence of the UV-DDB ligase complex. Thus, the lesion search function of XPC in the genomic context is controlled by XPC itself, DDB2, and PARP1. Our results reveal a paradigm that the known interaction of many proteins with PARP1 under steady-state conditions could have functional significance for these proteins.
Collapse
|
16
|
Bazin M, Purohit NK, Shah GM. Comprehensive measurement of UVB-induced non-melanoma skin cancer burden in mice using photographic images as a substitute for the caliper method. PLoS One 2017; 12:e0171875. [PMID: 28187193 PMCID: PMC5302799 DOI: 10.1371/journal.pone.0171875] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 01/26/2017] [Indexed: 11/23/2022] Open
Abstract
The vernier caliper has been used as a gold standard to measure the length, width and height of skin tumors to calculate their total area and volume. It is a simple method for collecting data on a few tumors at a time, but becomes tedious, time-consuming and stressful for the animals and the operator when used for measuring multiple tumors in a large number of animals in protocols such as UVB-induced non-melanoma skin cancer (NMSC) in SKH-1 mice. Here, we show that photographic images of these mice taken within a few minutes under optimized conditions can be subjected to computerized analyses to determine tumor volume and area as accurately and precisely as the caliper method. Unlike the caliper method, the photographic method also records the incidence and multiplicity of tumors, thus permitting comprehensive measurement of tumor burden in the animal. The simplicity and ease of this method will permit more frequent monitoring of tumor burden in long protocols, resulting in the creation of additional data about dynamic changes in progression of cancer or the efficacy of therapeutic intervention. The photographic method can broadly substitute the caliper method for quantifying other skin pathologies.
Collapse
Affiliation(s)
- Marc Bazin
- Laboratory for Skin Cancer Research, CHU-Q (CHUL) Quebec University Hospital Research Centre, Laval University, Québec City, Québec, Canada
| | - Nupur K. Purohit
- Laboratory for Skin Cancer Research, CHU-Q (CHUL) Quebec University Hospital Research Centre, Laval University, Québec City, Québec, Canada
| | - Girish M. Shah
- Laboratory for Skin Cancer Research, CHU-Q (CHUL) Quebec University Hospital Research Centre, Laval University, Québec City, Québec, Canada
- * E-mail:
| |
Collapse
|
17
|
Expanding functions of ADP-ribosylation in the maintenance of genome integrity. Semin Cell Dev Biol 2016; 63:92-101. [PMID: 27670719 DOI: 10.1016/j.semcdb.2016.09.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 08/19/2016] [Accepted: 09/16/2016] [Indexed: 12/21/2022]
Abstract
Cell response to genotoxic stress requires a complex network of sensors and effectors from numerous signaling and repair pathways, among them the nuclear poly(ADP-ribose) polymerase 1 (PARP1) plays a central role. PARP1 is catalytically activated in the setting of DNA breaks. It uses NAD+ as a donor and catalyses the synthesis and subsequent covalent attachment of branched ADP-ribose polymers onto itself and various acceptor proteins to promote repair. Its inhibition is now considered as an efficient therapeutic strategy to potentiate the cytotoxic effect of chemotherapy and radiation or to exploit synthetic lethality in tumours with defective homologous recombination mediated repair. Still, efforts made on understanding the role of PARylation in DNA repair continues to yield novel discoveries. Over the last years, our knowledge in this field has been particularly advanced by the discovery of novel biochemical and functional properties featuring PARP1, by the characterization of the other PARP family members and by the identification of a panel of enzymes capable of erasing poly(ADP-ribose). The aim of this review is to provide an overview of these newest findings and their relevance in genome surveillance.
Collapse
|
18
|
|
19
|
Sugitani N, Sivley RM, Perry KE, Capra JA, Chazin WJ. XPA: A key scaffold for human nucleotide excision repair. DNA Repair (Amst) 2016; 44:123-135. [PMID: 27247238 DOI: 10.1016/j.dnarep.2016.05.018] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nucleotide excision repair (NER) is essential for removing many types of DNA lesions from the genome, yet the mechanisms of NER in humans remain poorly understood. This review summarizes our current understanding of the structure, biochemistry, interaction partners, mechanisms, and disease-associated mutations of one of the critical NER proteins, XPA.
Collapse
Affiliation(s)
- Norie Sugitani
- Departments of Biochemistry, Biological Sciences, Biomedical Informatics, Chemistry, and Computer Science, and Vanderbilt Genetics Institute and Center for Structural Biology, Vanderbilt University, Nashville, TN 37232-7917, United States
| | - Robert M Sivley
- Departments of Biochemistry, Biological Sciences, Biomedical Informatics, Chemistry, and Computer Science, and Vanderbilt Genetics Institute and Center for Structural Biology, Vanderbilt University, Nashville, TN 37232-7917, United States
| | - Kelly E Perry
- Departments of Biochemistry, Biological Sciences, Biomedical Informatics, Chemistry, and Computer Science, and Vanderbilt Genetics Institute and Center for Structural Biology, Vanderbilt University, Nashville, TN 37232-7917, United States
| | - John A Capra
- Departments of Biochemistry, Biological Sciences, Biomedical Informatics, Chemistry, and Computer Science, and Vanderbilt Genetics Institute and Center for Structural Biology, Vanderbilt University, Nashville, TN 37232-7917, United States
| | - Walter J Chazin
- Departments of Biochemistry, Biological Sciences, Biomedical Informatics, Chemistry, and Computer Science, and Vanderbilt Genetics Institute and Center for Structural Biology, Vanderbilt University, Nashville, TN 37232-7917, United States.
| |
Collapse
|
20
|
Purohit NK, Robu M, Shah RG, Geacintov NE, Shah GM. Characterization of the interactions of PARP-1 with UV-damaged DNA in vivo and in vitro. Sci Rep 2016; 6:19020. [PMID: 26753915 PMCID: PMC4709520 DOI: 10.1038/srep19020] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 12/02/2015] [Indexed: 11/18/2022] Open
Abstract
The existing methodologies for studying robust responses of poly (ADP-ribose) polymerase-1 (PARP-1) to DNA damage with strand breaks are often not suitable for examining its subtle responses to altered DNA without strand breaks, such as UV-damaged DNA. Here we describe two novel assays with which we characterized the interaction of PARP-1 with UV-damaged DNA in vivo and in vitro. Using an in situ fractionation technique to selectively remove free PARP-1 while retaining the DNA-bound PARP-1, we demonstrate a direct recruitment of the endogenous or exogenous PARP-1 to the UV-lesion site in vivo after local irradiation. In addition, using the model oligonucleotides with single UV lesion surrounded by multiple restriction enzyme sites, we demonstrate in vitro that DDB2 and PARP-1 can simultaneously bind to UV-damaged DNA and that PARP-1 casts a bilateral asymmetric footprint from −12 to +9 nucleotides on either side of the UV-lesion. These techniques will permit characterization of different roles of PARP-1 in the repair of UV-damaged DNA and also allow the study of normal housekeeping roles of PARP-1 with undamaged DNA.
Collapse
Affiliation(s)
- Nupur K Purohit
- Laboratory for Skin Cancer Research, CHU-Q (CHUL) Quebec University Hospital Research Centre &Laval University, 2705, Laurier Boulevard, Québec (QC) Canada G1V 4G2
| | - Mihaela Robu
- Laboratory for Skin Cancer Research, CHU-Q (CHUL) Quebec University Hospital Research Centre &Laval University, 2705, Laurier Boulevard, Québec (QC) Canada G1V 4G2
| | - Rashmi G Shah
- Laboratory for Skin Cancer Research, CHU-Q (CHUL) Quebec University Hospital Research Centre &Laval University, 2705, Laurier Boulevard, Québec (QC) Canada G1V 4G2
| | | | - Girish M Shah
- Laboratory for Skin Cancer Research, CHU-Q (CHUL) Quebec University Hospital Research Centre &Laval University, 2705, Laurier Boulevard, Québec (QC) Canada G1V 4G2
| |
Collapse
|
21
|
Mangerich A, Debiak M, Birtel M, Ponath V, Balszuweit F, Lex K, Martello R, Burckhardt-Boer W, Strobelt R, Siegert M, Thiermann H, Steinritz D, Schmidt A, Bürkle A. Sulfur and nitrogen mustards induce characteristic poly(ADP-ribosyl)ation responses in HaCaT keratinocytes with distinctive cellular consequences. Toxicol Lett 2015; 244:56-71. [PMID: 26383629 DOI: 10.1016/j.toxlet.2015.09.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 09/10/2015] [Accepted: 09/11/2015] [Indexed: 11/18/2022]
Abstract
Mustard agents are potent DNA alkylating agents with mutagenic, cytotoxic and vesicant properties. They include bi-functional agents, such as sulfur mustard (SM) or nitrogen mustard (mustine, HN2), as well as mono-functional agents, such as "half mustard" (CEES). Whereas SM has been used as a chemical warfare agent, several nitrogen mustard derivatives, such as chlorambucil and cyclophosphamide, are being used as established chemotherapeutics. Upon induction of specific forms of genotoxic stimuli, several poly(ADP-ribose) polymerases (PARPs) synthesize the nucleic acid-like biopolymer poly(ADP-ribose) (PAR) by using NAD(+) as a substrate. Previously, it was shown that SM triggers cellular poly(ADP-ribosyl) ation (PARylation), but so far this phenomenon is poorly characterized. In view of the protective effects of PARP inhibitors, the latter have been proposed as a treatment option of SM-exposed victims. In an accompanying article (Debiak et al., 2016), we have provided an optimized protocol for the analysis of the CEES-induced PARylation response in HaCaT keratinocytes, which forms an experimental basis to further analyze mustard-induced PARylation and its functional consequences, in general. Thus, in the present study, we performed a comprehensive characterization of the PARylation response in HaCaT cells after treatment with four different mustard agents, i.e., SM, CEES, HN2, and chlorambucil, on a qualitative, quantitative and functional level. In particular, we recorded substance-specific as well as dose- and time-dependent PARylation responses using independent bioanalytical methods based on single-cell immuno-fluorescence microscopy and quantitative isotope dilution mass spectrometry. Furthermore, we analyzed if and how PARylation contributes to mustard-induced toxicity by treating HaCaT cells with CEES, SM, and HN2 in combination with the clinically relevant PARP inhibitor ABT888. As evaluated by a novel immunofluorescence-based protocol for the detection of N7-ETE-guanine DNA adducts, the excision rate of CEES-induced DNA adducts was not affected by PARP inhibition. Furthermore, while CEES induced moderate changes in cellular NAD(+) levels, annexin V/PI flow cytometry analysis revealed that these changes did not affect CEES-induced short-term cytotoxicity 24h after treatment. In contrast, PARP inhibition impaired cell proliferation and clonogenic survival, and potentiated micronuclei formation of HaCaT cells upon CEES treatment. Similarly, PARP inhibition affected clonogenic survival of cells treated with bi-functional mustards such as SM and HN2. In conclusion, we demonstrate that PARylation plays a functional role in mustard-induced cellular stress response with substance-specific differences. Since PARP inhibitors exhibit therapeutic potential to treat SM-related pathologies and to sensitize cancer cells for mustard-based chemotherapy, potential long-term effects of PARP inhibition on genomic stability and carcinogenesis should be carefully considered when pursuing such a strategy.
Collapse
Affiliation(s)
- Aswin Mangerich
- University of Konstanz, Molecular Toxicology Group, Department of Biology, 78457 Konstanz, Germany
| | - Malgorzata Debiak
- University of Konstanz, Molecular Toxicology Group, Department of Biology, 78457 Konstanz, Germany
| | - Matthias Birtel
- University of Konstanz, Molecular Toxicology Group, Department of Biology, 78457 Konstanz, Germany
| | - Viviane Ponath
- University of Konstanz, Molecular Toxicology Group, Department of Biology, 78457 Konstanz, Germany
| | - Frank Balszuweit
- Bundeswehr Institute of Pharmacology and Toxicology, 80937 Munich, Germany
| | - Kirsten Lex
- University of Konstanz, Molecular Toxicology Group, Department of Biology, 78457 Konstanz, Germany
| | - Rita Martello
- University of Konstanz, Molecular Toxicology Group, Department of Biology, 78457 Konstanz, Germany
| | - Waltraud Burckhardt-Boer
- University of Konstanz, Molecular Toxicology Group, Department of Biology, 78457 Konstanz, Germany
| | - Romano Strobelt
- Bundeswehr Institute of Pharmacology and Toxicology, 80937 Munich, Germany
| | - Markus Siegert
- Bundeswehr Institute of Pharmacology and Toxicology, 80937 Munich, Germany
| | - Horst Thiermann
- Bundeswehr Institute of Pharmacology and Toxicology, 80937 Munich, Germany
| | - Dirk Steinritz
- Bundeswehr Institute of Pharmacology and Toxicology, 80937 Munich, Germany; Walther-Straub-Institute of Pharmacology and Toxicology, 80336 Munich, Germany
| | - Annette Schmidt
- Bundeswehr Institute of Pharmacology and Toxicology, 80937 Munich, Germany
| | - Alexander Bürkle
- University of Konstanz, Molecular Toxicology Group, Department of Biology, 78457 Konstanz, Germany.
| |
Collapse
|
22
|
RecQ helicases and PARP1 team up in maintaining genome integrity. Ageing Res Rev 2015; 23:12-28. [PMID: 25555679 DOI: 10.1016/j.arr.2014.12.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Revised: 12/18/2014] [Accepted: 12/22/2014] [Indexed: 01/04/2023]
Abstract
Genome instability represents a primary hallmark of aging and cancer. RecQL helicases (i.e., RECQL1, WRN, BLM, RECQL4, RECQL5) as well as poly(ADP-ribose) polymerases (PARPs, in particular PARP1) represent two central quality control systems to preserve genome integrity in mammalian cells. Consistently, both enzymatic families have been linked to mechanisms of aging and carcinogenesis in mice and humans. This is in accordance with clinical and epidemiological findings demonstrating that defects in three RecQL helicases, i.e., WRN, BLM, RECQL4, are related to human progeroid and cancer predisposition syndromes, i.e., Werner, Bloom, and Rothmund Thomson syndrome, respectively. Moreover, PARP1 hypomorphy is associated with a higher risk for certain types of cancer. On a molecular level, RecQL helicases and PARP1 are involved in the control of DNA repair, telomere maintenance, and replicative stress. Notably, over the last decade, it became apparent that all five RecQL helicases physically or functionally interact with PARP1 and/or its enzymatic product poly(ADP-ribose) (PAR). Furthermore, a profound body of evidence revealed that the cooperative function of RECQLs and PARP1 represents an important factor for maintaining genome integrity. In this review, we summarize the status quo of this molecular cooperation and discuss open questions that provide a basis for future studies to dissect the cooperative functions of RecQL helicases and PARP1 in aging and carcinogenesis.
Collapse
|
23
|
Maltseva EA, Rechkunova NI, Sukhanova MV, Lavrik OI. Poly(ADP-ribose) Polymerase 1 Modulates Interaction of the Nucleotide Excision Repair Factor XPC-RAD23B with DNA via Poly(ADP-ribosyl)ation. J Biol Chem 2015; 290:21811-20. [PMID: 26170451 DOI: 10.1074/jbc.m115.646638] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Indexed: 11/06/2022] Open
Abstract
Poly(ADP-ribosyl)ation is a reversible post-translational modification that plays an essential role in many cellular processes, including regulation of DNA repair. Cellular DNA damage response by the synthesis of poly(ADP-ribose) (PAR) is mediated mainly by poly(ADP-ribose) polymerase 1 (PARP1). The XPC-RAD23B complex is one of the key factors of nucleotide excision repair participating in the primary DNA damage recognition. By using several biochemical approaches, we have analyzed the influence of PARP1 and PAR synthesis on the interaction of XPC-RAD23B with damaged DNA. Free PAR binds to XPC-RAD23B with an affinity that depends on the length of the poly(ADP-ribose) strand and competes with DNA for protein binding. Using (32)P-labeled NAD(+) and immunoblotting, we also demonstrate that both subunits of the XPC-RAD23B are poly(ADP-ribosyl)ated by PARP1. The efficiency of XPC-RAD23B PARylation depends on DNA structure and increases after UV irradiation of DNA. Therefore, our study clearly shows that XPC-RAD23B is a target of poly(ADP-ribosyl)ation catalyzed by PARP1, which can be regarded as a universal regulator of DNA repair processes.
Collapse
Affiliation(s)
- Ekaterina A Maltseva
- From the Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentiev Ave., 630090 Novosibirsk and
| | - Nadejda I Rechkunova
- From the Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentiev Ave., 630090 Novosibirsk and the Department of Natural Sciences, Novosibirsk State University, 2 Pirogov St., 630090 Novosibirsk, Russia
| | - Maria V Sukhanova
- From the Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentiev Ave., 630090 Novosibirsk and the Department of Natural Sciences, Novosibirsk State University, 2 Pirogov St., 630090 Novosibirsk, Russia
| | - Olga I Lavrik
- From the Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentiev Ave., 630090 Novosibirsk and the Department of Natural Sciences, Novosibirsk State University, 2 Pirogov St., 630090 Novosibirsk, Russia
| |
Collapse
|
24
|
Mir H, Alex T, Rajawat J, Kadam A, Begum R. Response of Dictyostelium discoideum to UV-C and involvement of poly (ADP-ribose) polymerase. Cell Prolif 2015; 48:363-74. [PMID: 25858552 DOI: 10.1111/cpr.12182] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 12/05/2014] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVES Radiation and chemical mutagens are direct DNA-damaging agents and ultraviolet (UV) radiation is frequently used in biological studies. Consequent to ozone depletion, UV-C could become a great challenge to living organisms on earth, in the near future. The present study has focused on the role of poly (ADP-ribose) polymerase (PARP) during UV-C-induced growth and developmental changes in Dictyostelium discoideum, a phylogenetically important unicellular eukaryote. MATERIALS AND METHODS Dictyostelium discoideum cells were exposed to different doses of UV-C and PARP activity, and effects of its inhibition were studied. Expression of developmentally regulated genes yakA, car1, aca, csA, regA, ctnA, ctnB, gp24, hspD and dsn were analysed using semiquantitative RT-PCR. RESULTS We report that the D. discoideum cells displayed PARP activation within 2 min of UV-C irradiation and there was increase in NO levels in a dose-dependent manner. UV-C-irradiated cells had impaired growth, delayed or blocked development and delayed germination compared to control cells. In our previous studies we have shown that inhibition of PARP recovered oxidative stress-induced changes in D. discoideum; however, intriguingly PARP inhibition did not correct all defects as effectively in UV-C-irradiated cells. This possibly was due to interplay with increased NO signalling. CONCLUSIONS Our results signify that UV-C and oxidative stress affected growth and development in D. discoideum by different mechanisms; these studies could provide major clues to complex mechanisms of growth and development in higher organisms.
Collapse
Affiliation(s)
- H Mir
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390002, India
| | | | | | | | | |
Collapse
|
25
|
Harberts E, Zhou H, Fishelevich R, Liu J, Gaspari AA. Ultraviolet radiation signaling through TLR4/MyD88 constrains DNA repair and plays a role in cutaneous immunosuppression. THE JOURNAL OF IMMUNOLOGY 2015; 194:3127-35. [PMID: 25716994 DOI: 10.4049/jimmunol.1402583] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
UV radiation (UVR) induces DNA damage, leading to the accumulation of mutations in epidermal keratinocytes and immunosuppression, which contribute to the development of nonmelanoma skin cancer. We reported previously that the TLR4-MyD88 signaling axis is necessary for UV-induced apoptosis. In the dinitrofluorobenzene contact hypersensitivity model, UV-irradiated MyD88-deficient (MyD88(-/-)) C57BL/6 mice had intact ear swelling, exaggerated inflammation, and higher levels of dinitrofluorobenzene-specific IgG2a compared with wild-type (WT) mice. Even with normal UV-induced, dendritic cell migration, DNA damage in the local lymph nodes was less pronounced in MyD88(-/-) mice compared with WT mice. Cultured, UV-irradiated WT APCs showed cleavage (inactivation) of the DNA damage-recognition molecule PARP, whereas PARP persisted in MyD88(-/-) and TLR4(-/-) APCs. Epidermal DNA from in vivo UV-irradiated MyD88(-/-) mice had an increased resolution rate of cyclobutane pyrimidine dimers. Both in vitro treatment of MyD88(-/-) APCs with and intradermal in vivo injections of PARP inhibitor, PJ-34, caused WT-level cyclobutane pyrimidine dimer repair. Lymphoblasts deficient in DNA repair (derived from a xeroderma pigmentosum group A patient) failed to augment DNA repair after MyD88 knockdown after UVR, in contrast to lymphoblasts from a healthy control. These data suggest that interference with the TLR4/MyD88 pathway may be a useful tool in promoting DNA repair and maintaining immune responses following UVR-induced damage.
Collapse
Affiliation(s)
- Erin Harberts
- Department of Microbiology and Immunology, University of Maryland, Baltimore, MD 21201; Department of Dermatology, University of Maryland, Baltimore, MD 21201; and
| | - Hua Zhou
- Department of Dermatology, University of Maryland, Baltimore, MD 21201; and
| | - Rita Fishelevich
- Department of Dermatology, University of Maryland, Baltimore, MD 21201; and
| | - Juan Liu
- Department of Dermatology, University of Maryland, Baltimore, MD 21201; and
| | - Anthony A Gaspari
- Department of Microbiology and Immunology, University of Maryland, Baltimore, MD 21201; Department of Dermatology, University of Maryland, Baltimore, MD 21201; and Research Service, Baltimore Veterans Affairs Medical Center, Baltimore, MD 21201
| |
Collapse
|
26
|
|
27
|
Lafon-Hughes L, Vilchez Larrea SC, Kun A, Fernández Villamil SH. VERO cells harbor a poly-ADP-ribose belt partnering their epithelial adhesion belt. PeerJ 2014; 2:e617. [PMID: 25332845 PMCID: PMC4201144 DOI: 10.7717/peerj.617] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 09/22/2014] [Indexed: 12/18/2022] Open
Abstract
Poly-ADP-ribose (PAR) is a polymer of up to 400 ADP-ribose units synthesized by poly-ADP-ribose-polymerases (PARPs) and degraded by poly-ADP-ribose-glycohydrolase (PARG). Nuclear PAR modulates chromatin compaction, affecting nuclear functions (gene expression, DNA repair). Diverse defined PARP cytoplasmic allocation patterns contrast with the yet still imprecise PAR distribution and still unclear functions. Based on previous evidence from other models, we hypothesized that PAR could be present in epithelial cells where cadherin-based adherens junctions are linked with the actin cytoskeleton (constituting the adhesion belt). In the present work, we have examined through immunofluorescence and confocal microscopy, the subcellular localization of PAR in an epithelial monkey kidney cell line (VERO). PAR was distinguished colocalizing with actin and vinculin in the epithelial belt, a location that has not been previously reported. Actin filaments disruption with cytochalasin D was paralleled by PAR belt disruption. Conversely, PARP inhibitors 3-aminobenzamide, PJ34 or XAV 939, affected PAR belt synthesis, actin distribution, cell shape and adhesion. Extracellular calcium chelation displayed similar effects. Our results demonstrate the existence of PAR in a novel subcellular localization. An initial interpretation of all the available evidence points towards TNKS-1 as the most probable PAR belt architect, although TNKS-2 involvement cannot be discarded. Forthcoming research will test this hypothesis as well as explore the existence of the PAR belt in other epithelial cells and deepen into its functional implications.
Collapse
Affiliation(s)
- Laura Lafon-Hughes
- Departamento de Genética, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE) , Montevideo , Uruguay
| | - Salomé C Vilchez Larrea
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres", Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires , Argentina
| | - Alejandra Kun
- Departamento de Proteínas y Ácidos Nucleicos, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE) , Montevideo , Uruguay ; Departamento de Biología Celular y Molecular, Sección Bioquímica, Facultad de Ciencias, Universidad de la República , Montevideo , Uruguay
| | - Silvia H Fernández Villamil
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres", Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires , Argentina ; Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires , Argentina
| |
Collapse
|
28
|
Fischer JMF, Popp O, Gebhard D, Veith S, Fischbach A, Beneke S, Leitenstorfer A, Bergemann J, Scheffner M, Ferrando-May E, Mangerich A, Bürkle A. Poly(ADP-ribose)-mediated interplay of XPA and PARP1 leads to reciprocal regulation of protein function. FEBS J 2014; 281:3625-41. [PMID: 24953096 PMCID: PMC4160017 DOI: 10.1111/febs.12885] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Revised: 05/30/2014] [Accepted: 06/17/2014] [Indexed: 01/02/2023]
Abstract
Poly(ADP‐ribose) (PAR) is a complex and reversible post‐translational modification that controls protein function and localization through covalent modification of, or noncovalent binding to target proteins. Previously, we and others characterized the noncovalent, high‐affinity binding of the key nucleotide excision repair (NER) protein XPA to PAR. In the present study, we address the functional relevance of this interaction. First, we confirm that pharmacological inhibition of cellular poly(ADP‐ribosyl)ation (PARylation) impairs NER efficacy. Second, we demonstrate that the XPA–PAR interaction is mediated by specific basic amino acids within a highly conserved PAR‐binding motif, which overlaps the DNA damage‐binding protein 2 (DDB2) and transcription factor II H (TFIIH) interaction domains of XPA. Third, biochemical studies reveal a mutual regulation of PARP1 and XPA functions showing that, on the one hand, the XPA–PAR interaction lowers the DNA binding affinity of XPA, whereas, on the other hand, XPA itself strongly stimulates PARP1 enzymatic activity. Fourth, microirradiation experiments in U2OS cells demonstrate that PARP inhibition alters the recruitment properties of XPA‐green fluorescent protein to sites of laser‐induced DNA damage. In conclusion, our results reveal that XPA and PARP1 regulate each other in a reciprocal and PAR‐dependent manner, potentially acting as a fine‐tuning mechanism for the spatio‐temporal regulation of the two factors during NER.
Collapse
Affiliation(s)
- Jan M F Fischer
- Molecular Toxicology Group, Department of Biology, University of Konstanz, Germany; Konstanz Research School Chemical Biology, University of Konstanz, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Jagirdar K, Yin K, Harrison M, Lim W, Muscat GEO, Sturm RA, Smith AG. The NR4A2 nuclear receptor is recruited to novel nuclear foci in response to UV irradiation and participates in nucleotide excision repair. PLoS One 2013; 8:e78075. [PMID: 24223135 PMCID: PMC3819332 DOI: 10.1371/journal.pone.0078075] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2012] [Accepted: 09/17/2013] [Indexed: 12/11/2022] Open
Abstract
Ultraviolet radiation (UVR) is one of the most common mutagens encountered by humans and induces the formation of cyclobutane pyrimidine dimers (CPDs) and pyrimidine-(6-4)-pyrimidone photoproduct (6-4PP) lesions in the genomic DNA. To prevent the accumulation of deleterious mutations these lesions must be efficiently repaired, primarily by nucleotide excision repair. We have previously demonstrated that the NR4A family of nuclear receptors are crucial mediators of the DNA repair function of the MC1R signalling pathway in melanocytes. Here we explore the role of the NR4A2 protein in the DNA repair process further. Using EYFP tagged-NR4A2 we have demonstrated a UVR induced recruitment to distinct nuclear foci where they co-localise with known DNA repair proteins. We reveal that the N-terminal domain of the receptor is required for this translocation and identify a role for p38 and PARP signalling in this process. Moreover disruption of the functional integrity of the Ligand Binding Domain of the receptor by deleting the terminal helix 12 effectively blocks co-localisation of the receptor with DNA repair factors. Restored co-localisation of the mutant receptor with DNA repair proteins in the presence of a Histone Deacetylase Inhibitor suggests that impaired chromatin accessibility underpins the mis-localisation observed. Finally NR4A2 over-expression facilitated a more efficient clearance of UVR induced CPD and 6-4PP lesions. Taken together these data uncover a novel role for the NR4A nuclear receptors as direct facilitators of nucleotide excision repair.
Collapse
Affiliation(s)
- Kasturee Jagirdar
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Kelvin Yin
- School of Biomedical Science, The University of Queensland, Brisbane, Queensland, Australia
| | - Matthew Harrison
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Wen Lim
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - George E. O. Muscat
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Richard A. Sturm
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Aaron G. Smith
- School of Biomedical Science, The University of Queensland, Brisbane, Queensland, Australia
- * E-mail:
| |
Collapse
|
30
|
Shilovsky GA, Khokhlov AN, Shram SI. The protein poly(ADP-ribosyl)ation system: its role in genome stability and lifespan determination. BIOCHEMISTRY (MOSCOW) 2013; 78:433-44. [PMID: 23848145 DOI: 10.1134/s0006297913050015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The processes that lead to violation of genome integrity are known to increase with age. This phenomenon is caused both by increased production of reactive oxygen species and a decline in the efficiency of antioxidant defense system as well as systems maintaining genome stability. Accumulation of different unrepairable genome damage with age may be the cause of many age-related diseases and the development of phenotypic and physiological signs of aging. It is also clear that there is a close connection between the mechanisms of the maintenance of genome stability, on one hand, and the processes of spontaneous tumor formation and lifespan, on the other. In this regard, the system of protein poly(ADP-ribosyl)ation activated in response to a variety of DNA damage seems to be of particular interest. Data accumulated to date suggest it to be a kind of focal point of cellular processes, guiding the path of cell survival or death depending on the degree of DNA damage. This review summarizes and analyzes data on the involvement of poly(ADP-ribosyl)ation in various mechanisms of DNA repair, its interaction with progeria proteins, and the possible role in the development of spontaneous tumors and lifespan determination. Special attention is given to the relationship between various polymorphisms of the human poly(ADP-ribose) polymerase-1 gene and longevity.
Collapse
Affiliation(s)
- G A Shilovsky
- Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | | | | |
Collapse
|
31
|
Predictive biomarkers for cancer therapy with PARP inhibitors. Oncogene 2013; 33:3894-907. [PMID: 24037533 DOI: 10.1038/onc.2013.352] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 07/09/2013] [Accepted: 07/12/2013] [Indexed: 12/17/2022]
Abstract
Poly(ADP-ribose) polymerase (PARP) inhibitors have raised high expectations for the treatment of multiple malignancies. PARP inhibitors, which can be used as monotherapies or in combination with DNA-damaging agents, are particularly efficient against tumors with defects in DNA repair mechanisms, in particular the homologous recombination pathway, for instance due to BRCA mutations. Thus, deficient DNA repair provides a framework for the success of PARP inhibitors in medical oncology. Here, we review encouraging results obtained in recent clinical trials investigating the safety and efficacy of PARP inhibitors as anticancer agents. We discuss emerging mechanisms of regulation of homologous recombination and how inhibition of DNA repair might be used in cancer therapy. We surmise that the identification of patients that are likely to benefit from PARP inhibition will improve the clinical use of PARP inhibitors in a defined target population. Thus, we will place special emphasis on biomarker discovery.
Collapse
|
32
|
Touching base with PARPs: moonlighting in the repair of UV lesions and double-strand breaks. Trends Biochem Sci 2013; 38:321-30. [PMID: 23562323 DOI: 10.1016/j.tibs.2013.03.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2012] [Revised: 03/04/2013] [Accepted: 03/05/2013] [Indexed: 12/13/2022]
Abstract
Distinct types of DNA damage elicit signaling and repair pathways that counteract the adverse effect of DNA lesions to maintain genome stability. The negatively charged polymer poly(ADP-ribose), which is catalyzed by poly(ADP-ribose) polymerase (PARP) enzymes, is a post-translational modification that serves as a chromatin-based platform for the recruitment of a variety of repair factors and chromatin-remodeling enzymes. Recent work implicates PARP3 in the efficient joining of DNA double-strand breaks during non-homologous end-joining (NHEJ), whereas PARP1 modulates the repair of UV-induced DNA lesions. Here we discuss emerging roles of PARP enzymes in mechanistically distinct DNA repair pathways and highlight unresolved issues and questions for future research.
Collapse
|
33
|
Robert I, Karicheva O, Reina San Martin B, Schreiber V, Dantzer F. Functional aspects of PARylation in induced and programmed DNA repair processes: preserving genome integrity and modulating physiological events. Mol Aspects Med 2013; 34:1138-52. [PMID: 23454615 DOI: 10.1016/j.mam.2013.02.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 02/04/2013] [Accepted: 02/18/2013] [Indexed: 12/24/2022]
Abstract
To cope with the devastating insults constantly inflicted to their genome by intrinsic and extrinsic DNA damaging sources, cells have evolved a sophisticated network of interconnected DNA caretaking mechanisms that will detect, signal and repair the lesions. Among the underlying molecular mechanisms that regulate these events, PARylation catalyzed by Poly(ADP-ribose) polymerases (PARPs), appears as one of the earliest post-translational modification at the site of the lesion that is known to elicit recruitment and regulation of many DNA damage response proteins. In this review we discuss how the complex PAR molecule operates in stress-induced DNA damage signaling and genome maintenance but also in various physiological settings initiated by developmentally programmed DNA breakage. To illustrate the latter, particular emphasis will be placed on the emerging contribution of PARPs to B cell receptor assembly and diversification.
Collapse
Affiliation(s)
- Isabelle Robert
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut National de Santé et de Recherche Médicale (INSERM), Centre National de Recherche Scientifique (CNRS), UMR 7104, Université de Strasbourg, 67404 Illkirch, France
| | | | | | | | | |
Collapse
|
34
|
Role of poly(ADP-ribose) polymerase-1 in the removal of UV-induced DNA lesions by nucleotide excision repair. Proc Natl Acad Sci U S A 2013; 110:1658-63. [PMID: 23319653 DOI: 10.1073/pnas.1209507110] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Among the earliest responses of mammalian cells to DNA damage is catalytic activation of a nuclear enzyme poly(ADP-ribose) polymerase-1 (PARP-1). Activated PARP-1 forms the polymers of ADP-ribose (pADPr or PAR) that posttranslationally modify its target proteins, such as PARP-1 and DNA repair-related proteins. Although this metabolism is known to be implicated in other repair pathways, here we show its role in the versatile nucleotide excision repair pathway (NER) that removes a variety of DNA damages including those induced by UV. We show that PARP inhibition or specific depletion of PARP-1 decreases the efficiency of removal of UV-induced DNA damage from human skin fibroblasts or mouse epidermis. Using NER-proficient and -deficient cells and in vitro PARP-1 assays, we show that damaged DNA-binding protein 2 (DDB2), a key lesion recognition protein of the global genomic subpathway of NER (GG-NER), associates with PARP-1 in the vicinity of UV-damaged chromatin, stimulates its catalytic activity, and is modified by pADPr. PARP inhibition abolishes UV-induced interaction of DDB2 with PARP-1 or xeroderma pigmentosum group C (XPC) and also decreases localization of XPC to UV-damaged DNA, which is a key step that leads to downstream events in GG-NER. Thus, PARP-1 collaborates with DDB2 to increase the efficiency of the lesion recognition step of GG-NER.
Collapse
|
35
|
Lakatos P, Szabó É, Hegedűs C, Haskó G, Gergely P, Bai P, Virág L. 3-Aminobenzamide protects primary human keratinocytes from UV-induced cell death by a poly(ADP-ribosyl)ation independent mechanism. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1833:743-51. [PMID: 23246565 DOI: 10.1016/j.bbamcr.2012.12.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2012] [Revised: 10/22/2012] [Accepted: 12/03/2012] [Indexed: 12/28/2022]
Abstract
Poly(ADP-ribosyl)ation (PARylation) is a NAD(+)-dependent protein modification carried out by PARP [poly(ADP-ribose) polymerase] enzymes. Here we set out to investigate whether PARylation regulates UVB-induced cell death in primary human keratinocytes. We used the benchmark PARP inhibitor 3-aminobenzamide (3AB) and a more potent and specific inhibitor PJ34 and found that UVB (0.05-0.2J/cm(2)) induced a dose dependent loss of viability that was prevented by 3AB but not by PJ34. Similarly to PJ34, two other new generation PARP inhibitors also failed to protect keratinocytes from UVB-induced loss of viability. Moreover, silencing PARP-1 in HaCaT human keratinocytes sensitized cells to UVB toxicity but 3AB provided protection to both control HaCaT cells and to PARP-1 silenced cells indicating that the photoprotective effect of 3AB is independent of PARP inhibition. Lower UVB doses (0.0125-0.05J/cm(2)) caused inhibition of proliferation of keratinocytes which was prevented by 3AB but augmented by PJ34. UVB-induced keratinocyte death displayed the characteristics of both apoptosis (morphology, caspase activity, DNA fragmentation) and necrosis (morphology, LDH release) with all of these parameters being inhibited by 3AB and apoptotic parameters slightly enhanced by PJ34. UVA also caused apoptotic and necrotic cell death in keratinocytes with 3AB protecting and PJ34 sensitizing cells to UVA-induced toxicity. 3AB prevented UVB-induced mitochondrial membrane depolarization and generation of hydrogen peroxide. In summary, PARylation is a survival mechanism in UV-treated keratinocytes. Moreover, 3-aminobenzamide is photoprotective and acts by a PARP-independent mechanism at a premitochondrial step of phototoxicity.
Collapse
Affiliation(s)
- Petra Lakatos
- Department of Medical Chemistry, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary
| | | | | | | | | | | | | |
Collapse
|
36
|
Pines A, Vrouwe MG, Marteijn JA, Typas D, Luijsterburg MS, Cansoy M, Hensbergen P, Deelder A, de Groot A, Matsumoto S, Sugasawa K, Thoma N, Vermeulen W, Vrieling H, Mullenders L. PARP1 promotes nucleotide excision repair through DDB2 stabilization and recruitment of ALC1. ACTA ACUST UNITED AC 2012; 199:235-49. [PMID: 23045548 PMCID: PMC3471223 DOI: 10.1083/jcb.201112132] [Citation(s) in RCA: 198] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PARP1-mediated poly(ADP-ribosyl)ation of DDB2 prolongs its occupation on UV-damaged chromatin and promotes the recruitment of the chromatin remodeler ALC1. The WD40-repeat protein DDB2 is essential for efficient recognition and subsequent removal of ultraviolet (UV)-induced DNA lesions by nucleotide excision repair (NER). However, how DDB2 promotes NER in chromatin is poorly understood. Here, we identify poly(ADP-ribose) polymerase 1 (PARP1) as a novel DDB2-associated factor. We demonstrate that DDB2 facilitated poly(ADP-ribosyl)ation of UV-damaged chromatin through the activity of PARP1, resulting in the recruitment of the chromatin-remodeling enzyme ALC1. Depletion of ALC1 rendered cells sensitive to UV and impaired repair of UV-induced DNA lesions. Additionally, DDB2 itself was targeted by poly(ADP-ribosyl)ation, resulting in increased protein stability and a prolonged chromatin retention time. Our in vitro and in vivo data support a model in which poly(ADP-ribosyl)ation of DDB2 suppresses DDB2 ubiquitylation and outline a molecular mechanism for PARP1-mediated regulation of NER through DDB2 stabilization and recruitment of the chromatin remodeler ALC1.
Collapse
Affiliation(s)
- Alex Pines
- Department of Toxicogenetics, Leiden University Medical Center, Leiden, Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Effects of niacin restriction on sirtuin and PARP responses to photodamage in human skin. PLoS One 2012; 7:e42276. [PMID: 22860104 PMCID: PMC3409181 DOI: 10.1371/journal.pone.0042276] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2012] [Accepted: 07/02/2012] [Indexed: 01/23/2023] Open
Abstract
Sirtuins (SIRTs) and poly(ADP-ribose) polymerases (PARPs), NAD(+)-dependent enzymes, link cellular energy status with responses to environmental stresses. Skin is frequently exposed to the DNA damaging effects of UV irradiation, a known etiology in skin cancer. Thus, understanding the defense mechanisms in response to UV, including the role of SIRTs and PARPs, may be important in developing skin cancer prevention strategies. Here, we report expression of the seven SIRT family members in human skin. SIRTs gene expressions are progressively upregulated in A431 epidermoid carcinoma cells (SIRTs1 and 3), actinic keratoses (SIRTs 2, 3, 5, 6, and 7) and squamous cell carcinoma (SIRTs 1-7). Photodamage induces dynamic changes in SIRT expression with upregulation of both SIRT1 and SIRT4 mRNAs. Specific losses of SIRT proteins occur early after photodamage followed by accumulation later, especially for SIRT4. Niacin restriction, which decreases NAD(+), the sirtuin substrate, results in an increase in acetylated proteins, upregulation of SIRTs 2 and 4, increased inherent DNA damage, alterations in SIRT responses to photodamage, abrogation of PARP activation following photodamage, and increased sensitivity to photodamage that is completely reversed by repleting niacin. These data support the hypothesis that SIRTs and PARPs play important roles in resistance to photodamage and identify specific SIRTs that respond to photodamage and may be targets for skin cancer prevention.
Collapse
|
38
|
Sousa FG, Matuo R, Soares DG, Escargueil AE, Henriques JAP, Larsen AK, Saffi J. PARPs and the DNA damage response. Carcinogenesis 2012; 33:1433-40. [PMID: 22431722 DOI: 10.1093/carcin/bgs132] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Adenosine diphosphate (ADP)-ribosylation is an important posttranslational modification catalyzed by a variety of enzymes, including poly (ADP ribose) polymerases (PARPs), which use nicotinamide adenine dinucleotide (NAD(+)) as a substrate to synthesize and transfer ADP-ribose units to acceptor proteins. The PARP family members possess a variety of structural domains, span a wide range of functions and localize to various cellular compartments. Among the molecular actions attributed to PARPs, their role in the DNA damage response (DDR) has been widely documented. In particular, PARPs 1-3 are involved in several cellular processes that respond to DNA lesions, which include DNA damage recognition, signaling and repair as well as local transcriptional blockage, chromatin remodeling and cell death induction. However, how these enzymes are able to participate in such numerous and diverse mechanisms in response to DNA damage is not fully understood. Herein, the DDR functions of PARPs 1-3 and the emerging roles of poly (ADP ribose) polymers in DNA damage are reviewed. The development of PARP inhibitors, their applications and mechanisms of action are also discussed in the context of the DDR.
Collapse
Affiliation(s)
- Fabricio G Sousa
- Departamento de Biofísica, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | | | | | | | | | | | | |
Collapse
|
39
|
Giblin FJ, Lin LR, Leverenz VR, Dang L. A class I (Senofilcon A) soft contact lens prevents UVB-induced ocular effects, including cataract, in the rabbit in vivo. Invest Ophthalmol Vis Sci 2011; 52:3667-75. [PMID: 21421866 DOI: 10.1167/iovs.10-6885] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
PURPOSE UVB radiation from sunlight is known to be a risk factor for human cataract. The purpose in this study was to investigate the ability of a class I UV-blocking soft contact lens to protect against UVB-induced effects on the ocular tissues of the rabbit in vivo. METHODS Eyes of rabbits were exposed to UVB light for 30 minutes (270-360 nm, peak at 310 nm, 1.7 mW/cm(2) on the cornea). Eyes were irradiated in the presence of either a UV-blocking senofilcon A contact lens, a minimally UV-blocking lotrafilcon A contact lens, or no contact lens at all. Effects on the cornea and lens were evaluated at various times after exposure. RESULTS Eyes irradiated with no contact lens protection showed corneal epithelial cell loss plus lens epithelial cell swelling, vacuole formation, and DNA single-strand breaks, as well as lens anterior subcapsular opacification. The senofilcon A lens protected nearly completely against the UVB-induced effects, whereas the lotrafilcon A lens showed no protection. CONCLUSIONS The results indicate that use of a senofilcon A contact lens is beneficial in protecting ocular tissues of the rabbit against the harmful effects of UVB light, including photokeratitis and cataract.
Collapse
Affiliation(s)
- Frank J Giblin
- Eye Research Institute, Oakland University, Rochester, Michigan 48309-4480, USA.
| | | | | | | |
Collapse
|
40
|
Shah GM, Kandan-Kulangara F, Montoni A, Shah RG, Brind'amour J, Vodenicharov MD, Affar EB. Approaches to detect PARP-1 activation in vivo, in situ, and in vitro. Methods Mol Biol 2011; 780:3-34. [PMID: 21870251 DOI: 10.1007/978-1-61779-270-0_1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
An accurate and sensitive detection of catalytic activation of poly(ADP-ribose) polymerase-1 (PARP-1) is required to be performed in a wide variety of samples because this activity plays a role in various cellular responses to DNA damage ranging from DNA repair to cell death, as well as in housekeeping functions, such as transcription. Since PARP-1 gene is expressed constitutively, its activation cannot be surmised from increased expression of its mRNA or protein, but by demonstrating the consequences of its catalytic -reaction which results in consumption of the substrate nicotinamide adenine dinucleotide (NAD(+)) and formation of three products, namely, polymer of ADP-ribose (pADPr or PAR), nicotinamide, and protons. Here, we describe various approaches commonly used in our laboratory for detection of PARP-1 activation in vivo (cells, tissues, and tumors), in situ, and in vitro via assessment of formation of pADPr, depletion of the substrate NAD, or formation of protons resulting in rapid and reversible intracellular acidification. It is important to note that although some other members of the PARP family can carry out the same catalytic reaction, many of these assays largely reflect PARP-1 activation in a vast majority of the experimental circumstances and more specifically in DNA damage responses. However, if required, PARP-1-specific action should be confirmed by use of PARP-1 knockout or RNAi-mediated knockdown approaches.
Collapse
Affiliation(s)
- Girish M Shah
- Laboratory for Skin Cancer Research, CHUL (CHUQ) Hospital Research Centre of Laval University, Laval University, Québec, Canada
| | | | | | | | | | | | | |
Collapse
|
41
|
Hastak K, Alli E, Ford JM. Synergistic chemosensitivity of triple-negative breast cancer cell lines to poly(ADP-Ribose) polymerase inhibition, gemcitabine, and cisplatin. Cancer Res 2010; 70:7970-80. [PMID: 20798217 DOI: 10.1158/0008-5472.can-09-4521] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The basal-like subtype of breast cancer is characterized by a triple-negative (TN) phenotype (estrogen receptor, progesterone receptor, and human epidermal growth factor receptor-2/neu negative). TN breast cancers share similar gene expression profiles and DNA repair deficiencies with BRCA1-associated breast cancers. BRCA1-mutant cells exhibit sensitivity to gemcitabine, cisplatin, and poly(ADP-ribose) polymerase (PARP) inhibition; therefore, we hypothesized that TN cancer cells may also exhibit sensitivity to these drugs. In this study, we report that TN breast cancer cells are more sensitive to these drugs compared with non-TN breast cancer cells. Moreover, combination treatments indicated that PARP inhibition by the small-molecule inhibitor PJ34 or siRNA knockdown synergized with gemcitabine and cisplatin in TN cells but not in luminal cancer cells. TN cells exhibited reduced repair of UV-induced cyclobutane pyrimidine dimers after PARP inhibition, suggesting that the synergistic effect of PJ34 and gemcitabine or cisplatin reflected inefficient nucleotide excision repair. Mechanistic investigations revealed that in TN cells, PJ34 reduced the levels of ΔNp63α with a concurrent increase in p73 and its downstream target p21. Thus, the sensitivity to combination treatment seemed to be mediated by sustained DNA damage and inefficient DNA repair triggering p63/p73-mediated apoptosis. Our results suggest a novel therapeutic strategy to treat women with TN breast cancer, an aggressive disease that presently lacks effective treatment options.
Collapse
Affiliation(s)
- Kedar Hastak
- Division of Oncology, Stanford University School of Medicine, Stanford, California, USA
| | | | | |
Collapse
|
42
|
Park J, Halliday GM, Surjana D, Damian DL. Nicotinamide prevents ultraviolet radiation-induced cellular energy loss. Photochem Photobiol 2010; 86:942-8. [PMID: 20492562 DOI: 10.1111/j.1751-1097.2010.00746.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
UV radiation is carcinogenic by causing mutations in the skin and also by suppressing cutaneous antitumor immunity. We previously found nicotinamide (vitamin B3) to be highly effective at reducing UV-induced immunosuppression in human volunteers, with microarray studies on in vivo irradiated human skin suggesting that nicotinamide normalizes subsets of apoptosis, immune function and energy metabolism-related genes that are downregulated by UV exposure. Using human adult low calcium temperature keratinocytes, we further investigated nicotinamide's effects on cellular energy metabolism. We found that nicotinamide prevented UV-induced cellular ATP loss and protected against UV-induced glycolytic blockade. To determine whether nicotinamide alters the effects of UV-induced oxidative stress posttranslationally, we also measured UV-induced reactive oxygen species (ROS). Nicotinamide had no effect on ROS formation, and at the low UV doses used in these studies, equivalent to ambient daily sun exposure, there was no evidence of apoptosis. Hence, nicotinamide appears to exert its UV protective effects on the skin via its role in cellular energy pathways.
Collapse
Affiliation(s)
- Joohong Park
- Discipline of Dermatology, Bosch Institute, Sydney Cancer Centre at Royal Prince Alfred Hospital, University of Sydney, Camperdown, New South Wales, Australia
| | | | | | | |
Collapse
|
43
|
Mascolo M, Vecchione ML, Ilardi G, Scalvenzi M, Molea G, Di Benedetto M, Nugnes L, Siano M, De Rosa G, Staibano S. Overexpression of Chromatin Assembly Factor-1/p60 helps to predict the prognosis of melanoma patients. BMC Cancer 2010; 10:63. [PMID: 20178651 PMCID: PMC2843674 DOI: 10.1186/1471-2407-10-63] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Accepted: 02/24/2010] [Indexed: 02/02/2023] Open
Abstract
Background Cutaneous melanoma (CM) is the most lethal form of skin malignancy, which registers a constant increase in incidence worldwide. The identification of molecular alteration(s) involved in its biological aggressiveness represents a major challenge for researchers, considering that existing therapies are ineffective to treat metastasizing cases. The epigenetic control of chromatin dynamics during DNA synthesis, replication, and repair is fundamental for the orderly progression of cell proliferation. The Chromatin Assembly Factor 1 (CAF-1) complex acts as a major regulator of this process; its intermediate (p60) subunit has been recently proposed as a novel proliferation and prognostic marker for several tumors. We aimed to establish if the evaluation of the expression of CAF-1/p60 in primary CM may help define the prevision of outcome of patients. Methods Immunohistochemistry with anti-CAF-1/p60 was performed on paraffin-embedded tissue sections of 130 cases of primary CM retrieved from the archive files of the Department of Biomorphological and Functional Sciences, Section of Pathology, University "Federico II" of Naples, Italy. Results were compared with histopathological and follow-up data of patients. Results CAF-1/p60 was expressed in all CM. A significant statistical association between the overexpression of the protein and the occurrence of skin, node and/or distant metastases (P < 0.05) emerged, independently from histopathological prognostic factors. Conclusions CAF-1/p60 looks promising as a new prognostic marker for CM and sheds new light on the molecular events associated with photocancerogenesis and melanoma biology. The screening for CAF-1/p60 might contribute to the molecular sub-classification of CM, with improved translational outcomes.
Collapse
Affiliation(s)
- Massimo Mascolo
- Department of Biomorphological and Functional Sciences, Pathology Section, University of Naples Federico II, School of Medicine, Naples, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Lin CH, Huang CL, Chuang MC, Wang YJ, Chen DR, Chen ST, Lin PH. Protective role of estrogen receptor-alpha on lower chlorinated PCB congener-induced DNA damage and repair in human tumoral breast cells. Toxicol Lett 2009; 188:11-9. [PMID: 19433264 DOI: 10.1016/j.toxlet.2009.02.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Revised: 02/06/2009] [Accepted: 02/09/2009] [Indexed: 01/21/2023]
Abstract
Polychlorinated biphenyls (PCBs) are ubiquitous environmental contaminants. Much of the research has focused on the carcinogenic potential of higher chlorinated PCBs, but accumulative evidence has shown that lower chlorinated PCB congeners have initiating and promoting activities. The goal of this study was to examine the potential of lower chlorinated PCBs, including 2,2',5,5'-tetrachlorobiphenyl (PCB52) and 3,3',4,4'-tetrachlorobiphenyl (PCB77), to induce DNA damage and apoptosis in human MDA-MB-231 (MDA) and MCF-7 breast cancer cells. Results confirmed that treatment of cells with PCB52 and PCB77 resulted in oxidative stress and caspase-dependent apoptosis in both MDA and MCF-7 cells. We noticed that at non-cytotoxic concentrations PCB52 and PCB77-induced decreases in intracellular NAD(P)H in MDA cells but not in MCF-7 cells. Further investigation confirmed that decreases in intracellular NAD(P)H in PCB-treated MDA cells are primarily due to reduction in intracellular NAD(+) pool mediated by poly(ADP-ribose)polymerase-1 activation through formation of DNA strand breaks. Antagonism was observed between PCB52 and PCB77 for the effect on induction of DNA strand breaks in MDA cells. Overall, this evidence demonstrates that at non-cytotoxic concentrations, lower chlorinated PCB congeners are capable of inducing oxidative DNA lesions in ERalpha(-)/MDA cells but not in ERalpha(+)/MCF-7 cells and that functional ERalpha plays a protective role in modulating the PCB-induced DNA damage in human breast cancer cells.
Collapse
Affiliation(s)
- Chia-Hua Lin
- Department of Environmental Engineering, National Chung-Hsing University, Taichung 402, Taiwan
| | | | | | | | | | | | | |
Collapse
|
45
|
Poly(adenosine diphosphate-ribose) polymerase-1 expression in cutaneous malignant melanomas as a new molecular marker of aggressive tumor. Pathol Oncol Res 2008; 15:47-53. [PMID: 18752052 DOI: 10.1007/s12253-008-9086-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2008] [Accepted: 07/04/2008] [Indexed: 10/21/2022]
Abstract
Poly(adenosine diphosphate-ribose) polymerases (PARPs) are a family of enzymes, which catalyses poly (ADP-ribosyl)ation of DNA-binding proteins and directly involved in genomic stability, DNA repair, and apoptosis. In this study, we evaluated the immunomorphology of PARP-1 in melanoma and its prognostic importance. We studied PARP-1 expression by immunohistochemistry in a selected series of 54 primary cutaneous malignant melanoma (CMM). The findings of the present study suggest that the neoplastic progression toward the invasive (both horizontal and vertical) growth phase of CMM cells is characterized by the loss of cleavage of PARP-1, probably signaling an imbalance of the apoptotic process in these cells and leading to further gain to aggression. Over-expression of full-length PARP-1 was correlated with recurrence and/or progression of the disease and so act as a promising new biological marker of CMM. Our study represents the evidence of a direct correlation between the PARP-1-mediated apoptotic process and the biologic behavior of CMM.
Collapse
|
46
|
Lin PH, Lin CH, Huang CC, Fang JP, Chuang MC. 2,3,7,8-Tetrachlorodibenzo-p-Dioxin Modulates the Induction of DNA Strand Breaks and Poly(ADP-ribose) Polymerase-1 Activation by 17β-Estradiol in Human Breast Carcinoma Cells Through Alteration of CYP1A1 and CYP1B1 Expression. Chem Res Toxicol 2008; 21:1337-47. [DOI: 10.1021/tx700396d] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Po-Hsiung Lin
- Department of Environmental Engineering, National Chung Hsing University, Taichung 402, Taiwan
| | - Chia-Hua Lin
- Department of Environmental Engineering, National Chung Hsing University, Taichung 402, Taiwan
| | - Chuan-Chen Huang
- Department of Environmental Engineering, National Chung Hsing University, Taichung 402, Taiwan
| | - Ju-Pin Fang
- Department of Environmental Engineering, National Chung Hsing University, Taichung 402, Taiwan
| | - Ming-Chieh Chuang
- Department of Environmental Engineering, National Chung Hsing University, Taichung 402, Taiwan
| |
Collapse
|
47
|
Ghodgaonkar MM, Zacal N, Kassam S, Rainbow AJ, Shah GM. Depletion of poly(ADP-ribose) polymerase-1 reduces host cell reactivation of a UV-damaged adenovirus-encoded reporter gene in human dermal fibroblasts. DNA Repair (Amst) 2008; 7:617-32. [PMID: 18289944 DOI: 10.1016/j.dnarep.2008.01.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2007] [Revised: 01/04/2008] [Accepted: 01/05/2008] [Indexed: 12/19/2022]
Abstract
In response to ultraviolet radiation (UV), mammalian cells rapidly activate a nuclear enzyme poly(ADP-ribose) polymerase-1 (PARP), and we recently showed that one of the causes for PARP-activation is UV-induced direct DNA photolesions which are repaired by nucleotide excision repair process (NER). To determine whether PARP can play a role in NER, we stably depleted PARP in NER-proficient human skin fibroblasts GM637 by DNA vector-based RNAi. In these cells, we examined host cell reactivation (HCR) of UVB or UVC-irradiated recombinant adenovirus AdCA35lacZ, encoding a beta-galactosidase (beta-gal) reporter gene. The depletion of PARP decreased the HCR of UVB- or UVC-damaged reporter gene to a similar extent, indicating the role of PARP in NER. Moreover, PARP-depletion reduced the HCR capacity of the NER-competent GM637 cells to a level closer to that in the XP-C and CS-B cell lines, which are deficient in the lesion recognition steps of the global genome repair (GGR) and transcription-coupled repair (TCR) sub-pathways of NER, respectively. In order to identify the potential role of PARP in these two sub-pathways of NER from that of its known role in base excision repair (BER) of UVB-induced oxidant damage, we depleted PARP from XP-C and CS-B cells and examined HCR of the reporter gene damaged by UVB, UVC or photoactivated methylene blue, the latter causing predominantly 8-oxo-2'-deoxyguanosine damage that is repaired by BER. Interestingly, a decreased HCR due to PARP-depletion was observed in both the NER-deficient cell lines in response to virus damaged by these three agents, albeit with different kinetics from 12 to 44h after infection. The role of PARP in NER was highlighted by a decreased clonogenic survival of UV-irradiated NER-competent GM637 cells depleted of PARP. Our results, while confirming the role of PARP in base excision repair, suggest a novel role of PARP in both the GGR and TCR sub-pathways of NER.
Collapse
Affiliation(s)
- Medini M Ghodgaonkar
- Laboratory for Skin Cancer Research, CHUL Research Centre (CHUQ), Faculty of Medicine, Laval University, Quebec, Quebec G1V 4G2, Canada
| | | | | | | | | |
Collapse
|
48
|
Lee MW, Kim WJ, Beardsley DI, Brown KD. N-methyl-N'-nitro-N-nitrosoguanidine activates multiple cell death mechanisms in human fibroblasts. DNA Cell Biol 2007; 26:683-94. [PMID: 17678437 DOI: 10.1089/dna.2007.0594] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Response to genotoxic stress may trigger the activation of distinct mechanisms that serve to promote cell death, including apoptosis and necrosis. In this study we examined the response of human fibroblasts, either proficient or deficient for the damage-activated protein kinase ataxia telangiectasia-mutated (ATM), to the alkylating agent N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). Analysis of both long- and short-term viability shows that both ATM-proficient YZ-5 and ATM-deficient EBS-7 fibroblasts display a cytotoxic response to MNNG. Consistent with activation of apoptosis in response to MNNG, we observed increased caspase-3 cleavage and activity, appearance of fragmented nuclei, and increased staining with annexin V in both ATM-proficient and -deficient fibroblasts. Flow cytometry demonstrated that these cell lines also display a nonapoptotic cell death in response to MNNG. This form of cell death is associated with activation of poly-ADP ribose polymerase (PARP), and analysis of PARP activity indicated increased protein poly(ADP-ribosylation) in YZ-5 when compared to EBS-7. This PARP activity was accompanied by apoptosis-inducing factor release and translocation from the mitochondria to the nucleus. Finally, the PARP inhibitor 3,4-dihydro-5-[4-(1-piperidinyl)butoxy]-1(2H)-isoquinolinone (DPQ) or the caspase-3 inhibitor benzyloxycarbonyl-VAD-fluoromethyl ketone dramatically diminished the cytotoxic response to MNNG, reinforcing the roles for apoptotic and nonapoptotic cell death in human fibroblasts treated with MNNG. From these findings, we conclude that MNNG induces a heterogeneous death response in human fibroblasts.
Collapse
Affiliation(s)
- Michael W Lee
- Department of Biochemistry and Molecular Biology and the UF-Shands Cancer Center Program in Cancer Genetics, Epigenetics and Tumor Virology, University of Florida College of Medicine, Gainesville, Florida 32610, USA
| | | | | | | |
Collapse
|
49
|
Ryabokon NI, Goncharova RI, Duburs G, Hancock R, Rzeszowska-Wolny J. Changes in poly(ADP-ribose) level modulate the kinetics of DNA strand break rejoining. Mutat Res 2007; 637:173-81. [PMID: 17935742 DOI: 10.1016/j.mrfmmm.2007.08.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2007] [Revised: 07/16/2007] [Accepted: 08/07/2007] [Indexed: 12/20/2022]
Abstract
ADP-ribose polymers are rapidly synthesized in cell nuclei by the poly(ADP-ribose) polymerases PARP-1 and PARP-2 in response to DNA strand interruptions, using NAD(+) as precursor. The level of induced poly(ADP-ribose) formation is proportional to the level of DNA damage and can be decreased by NAD(+) or PARP deficiency, followed by poor DNA repair and genomic instability. Here we studied the correlation between poly(ADP-ribose) level and DNA strand break repair in lymphoblastoid Raji cells. Poly(ADP-ribose) synthesis was induced by 100 microM H(2)O(2) and intensified by the 1,4-dihydropyridine derivative AV-153. The level of poly(ADP-ribose) in individual cells was analyzed by quantitative in situ immunofluorescence and confirmed in whole-cell extracts by Western blotting, and DNA damage was assessed by alkaline comet assays. Cells showed a approximately 100-fold increase in poly(ADP-ribose) formation during the first 5 min of recovery from H(2)O(2) treatment, followed by a gradual decrease up to 15 min. This synthesis was completely inhibited by the PARP inhibitor NU1025 (100 microM) while the cells treated with AV-153, at non-genotoxic concentrations of 1 nM-10 microM, showed a concentration-dependent increase of poly(ADP-ribose) level up to 130% after the first minute of recovery. The transient increase in poly(ADP-ribose) level was strongly correlated with the speed and efficiency of DNA strand break rejoining (correlation coefficient r > or = 0.92, p<0.05). These results are consistent with the idea that poly(ADP-ribose) formation immediately after genome damage reflects rapid assembly and efficient functioning of repair machinery.
Collapse
Affiliation(s)
- Nadezhda I Ryabokon
- Department of Experimental and Clinical Radiobiology, M Sklodowska-Curie Memorial Cancer Center and Institute, Wybrzeze Armii Krajowej 15, 44-101, Gliwice, Poland
| | | | | | | | | |
Collapse
|
50
|
Voss P, Grune T. The nuclear proteasome and the degradation of oxidatively damaged proteins. Amino Acids 2006; 32:527-34. [PMID: 17103119 DOI: 10.1007/s00726-006-0428-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2006] [Accepted: 09/01/2006] [Indexed: 10/23/2022]
Abstract
The accumulation of oxidized proteins is known to be linked to some severe neurodegenerative diseases like Alzheimer's, Parkinson's and Huntington's disease. Furthermore, the aging process is also accompanied by an ongoing aggregation of misfolded and damaged proteins. Therefore, mammalian cells have developed potent degradation systems, which selectively degrade damaged and misfolded proteins. The proteasomal system is largely responsible for the removal of oxidatively damaged proteins form the cellular environment. Not only cytosolic proteins are prone to oxidative stress, also nuclear proteins are readily oxidized. The nuclear proteasomal system is responsible for the degradation of these proteins. This review is focused on the specific degradation of oxidized nuclear proteins, the role of the proteasome in this process and the regulation of the nuclear proteasomal system under oxidative conditions.
Collapse
Affiliation(s)
- P Voss
- Research Institute of Environmental Medicine, Heinrich Heine University, Duesseldorf, Germany
| | | |
Collapse
|