1
|
Baade T, Michaelis M, Prestel A, Paone C, Klishin N, Herbinger M, Scheinost L, Nedielkov R, Hauck CR, Möller HM. A flexible loop in the paxillin LIM3 domain mediates its direct binding to integrin β subunits. PLoS Biol 2024; 22:e3002757. [PMID: 39231388 PMCID: PMC11374337 DOI: 10.1371/journal.pbio.3002757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 07/17/2024] [Indexed: 09/06/2024] Open
Abstract
Integrins are fundamental for cell adhesion and the formation of focal adhesions (FA). Accordingly, these receptors guide embryonic development, tissue maintenance, and haemostasis but are also involved in cancer invasion and metastasis. A detailed understanding of the molecular interactions that drive integrin activation, FA assembly, and downstream signalling cascades is critical. Here, we reveal a direct association of paxillin, a marker protein of FA sites, with the cytoplasmic tails of the integrin β1 and β3 subunits. The binding interface resides in paxillin's LIM3 domain, where based on the NMR structure and functional analyses, a flexible, 7-amino acid loop engages the unstructured part of the integrin cytoplasmic tail. Genetic manipulation of the involved residues in either paxillin or integrin β3 compromises cell adhesion and motility of murine fibroblasts. This direct interaction between paxillin and the integrin cytoplasmic domain identifies an alternative, kindlin-independent mode of integrin outside-in signalling particularly important for integrin β3 function.
Collapse
Affiliation(s)
- Timo Baade
- Lehrstuhl Zellbiologie, Universität Konstanz, Konstanz, Germany
- Konstanz Research School Chemical Biology, Universität Konstanz, Konstanz, Germany
| | - Marcus Michaelis
- Analytische Chemie, Universität Potsdam, Potsdam, Germany
- DFG Research Training Group 2473 "Bioactive Peptides"
| | | | - Christoph Paone
- Lehrstuhl Zellbiologie, Universität Konstanz, Konstanz, Germany
- Konstanz Research School Chemical Biology, Universität Konstanz, Konstanz, Germany
| | - Nikolai Klishin
- Analytische Chemie, Universität Potsdam, Potsdam, Germany
- DFG Research Training Group 2473 "Bioactive Peptides"
| | | | - Laura Scheinost
- Lehrstuhl Zellbiologie, Universität Konstanz, Konstanz, Germany
| | | | - Christof R Hauck
- Lehrstuhl Zellbiologie, Universität Konstanz, Konstanz, Germany
- Konstanz Research School Chemical Biology, Universität Konstanz, Konstanz, Germany
| | - Heiko M Möller
- Analytische Chemie, Universität Potsdam, Potsdam, Germany
- DFG Research Training Group 2473 "Bioactive Peptides"
| |
Collapse
|
2
|
Dashtbin S, Razavi S, Ganjali Koli M, Barneh F, Ekhtiari-Sadegh S, Akbari R, Irajian G, Pooshang Bagheri K. Intracellular bactericidal activity and action mechanism of MDP1 antimicrobial peptide against VRSA and MRSA in human endothelial cells. Front Microbiol 2024; 15:1416995. [PMID: 39252832 PMCID: PMC11381295 DOI: 10.3389/fmicb.2024.1416995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 08/05/2024] [Indexed: 09/11/2024] Open
Abstract
Introduction Staphylococcus aureus is a prominent cause of postoperative infections, often persisting within host cells, leading to chronic infections. Conventional antibiotics struggle to eliminate intracellular S. aureus due to poor cell penetration. Antimicrobial peptides are a new hope for tackling intracellular bacteria. Accordingly, this study examines the antimicrobial peptide MDP1, derived from melittin, for its efficacy against intracellular S. aureus. Methods In this study, the physiochemical properties (Prediction of three-dimensional structure, circular dichroism and helical wheel projection analysis) were investigated. Extracellular antibacterial activity and cytotoxicity of MDP1 were also assessed. The mechanism of interaction of MDP1 with S. aureus was evaluated by molecular dynamic simulation, atomic force and confocal microscopy. Bacterial internalization into an endothelial cell model was confirmed through culture and transmission electron microscopy. The effect of the peptide on intracellular bacteria was investigated by culture and epi-fluorescence microscopy. Results and discussion 3D structural prediction proved the conformation of MDP1 as an α-helix peptide. Helical-wheel projection analysis indicated the proper orientation of hydrophobic amino acid residues for membrane interaction. CD spectroscopy of MDP1 showed that MDP1 in SDS 10 and 30 mM adopted 87 and 91% helical conformation. Atomic force and confocal microscopy assessments as well as molecular dynamics studies revealed the peptide-bacterial membrane interaction. MDP1, at the concentration of 0.32 μg mL-1, demonstrated a fold reduction of 21.7 ± 1.8, 1.7 ± 0.2, and 7.3 ± 0.8 in intracellular bacterial load for ATCC, VRSA, and MRSA, respectively. Molecular dynamics results demonstrate a preferential interaction of MDP1 with POPG/POPE membranes, primarily driven by electrostatic forces and hydrogen bonding. In POPC systems, two out of four MDP1 interacted effectively, while all four MDP1 engaged with POPG/POPE membranes. Gathering all data together, MDP1 is efficacious in the reduction of intracellular VRSA and MRSA proved by culture and epi-fluorescent microscopy although further studies should be performed to increase the intracellular activity of MDP1.
Collapse
Affiliation(s)
- Shirin Dashtbin
- Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Microbiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shabnam Razavi
- Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Microbiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mokhtar Ganjali Koli
- Department of Chemistry, University of Kurdistan, Sanandaj, Iran
- Computational Chemistry Laboratory, Kask Afrand Exire Ltd., Sanandaj, Iran
| | - Farnoosh Barneh
- Venom and Biotherapeutics Molecules Laboratory, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Sarvenaz Ekhtiari-Sadegh
- Venom and Biotherapeutics Molecules Laboratory, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Reza Akbari
- Department of Microbiology and Virology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Gholamreza Irajian
- Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Microbiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Kamran Pooshang Bagheri
- Venom and Biotherapeutics Molecules Laboratory, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
3
|
Liang B, Li W, Yang C, Su J. LGP2 Facilitates Bacterial Escape through Binding Peptidoglycan via EEK Motif and Suppressing NOD2-RIP2 Axis in Cyprinidae and Xenocyprididae Families. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1791-1806. [PMID: 38629918 DOI: 10.4049/jimmunol.2300800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/14/2024] [Indexed: 05/22/2024]
Abstract
RIG-I-like receptors and NOD-like receptors play pivotal roles in recognizing microbe-associated molecular patterns and initiating immune responses. The LGP2 and NOD2 proteins are important members of the RIG-I-like receptor and NOD-like receptor families, recognizing viral RNA and bacterial peptidoglycan (PGN), respectively. However, in some instances bacterial infections can induce LPG2 expression via a mechanism that remains largely unknown. In the current study, we found that LGP2 can compete with NOD2 for PGN binding and inhibit antibacterial immunity by suppressing the NOD2-RIP2 axis. Recombinant CiLGP2 (Ctenopharyngodon idella LGP2) produced using either prokaryotic or eukaryotic expression platform can bind PGN and bacteria in pull-down and ELISA assays. Comparative protein structure models and intermolecular interaction prediction calculations as well as pull-down and colocalization experiments indicated that CiLGP2 binds PGN via its EEK motif with species and structural specificity. EEK deletion abolished PGN binding of CiLGP2, but insertion of the CiLGP2 EEK motif into zebrafish and mouse LGP2 did not confer PGN binding activity. CiLGP2 also facilitates bacterial replication by interacting with CiNOD2 to suppress expression of NOD2-RIP2 pathway genes. Sequence analysis and experimental verification demonstrated that LGP2 having EEK motif that can negatively regulate antibacterial immune function is present in Cyprinidae and Xenocyprididae families. These results show that LGP2 containing EEK motif competes with NOD2 for PGN binding and suppresses antibacterial immunity by inhibiting the NOD2-RIP2 axis, indicating that LGP2 plays a crucial negative role in antibacterial response beyond its classical regulatory function in antiviral immunity.
Collapse
Affiliation(s)
- Bo Liang
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Wenqian Li
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Chunrong Yang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Jianguo Su
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
| |
Collapse
|
4
|
Shi Y, Muenzner P, Schanz-Jurinka S, Hauck CR. The phosphatidylinositol-5' phosphatase synaptojanin1 limits integrin-mediated invasion of Staphylococcus aureus. Microbiol Spectr 2024; 12:e0200623. [PMID: 38358281 PMCID: PMC10986543 DOI: 10.1128/spectrum.02006-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 01/18/2024] [Indexed: 02/16/2024] Open
Abstract
The gram-positive bacterium Staphylococcus aureus can invade non-professional phagocytic cells by associating with the plasma protein fibronectin to exploit host cell integrins. Integrin-mediated internalization of these pathogens is facilitated by the local production of phosphatidylinositol-4,5-bisphosphate (PI-4,5-P2) via an integrin-associated isoform of phosphatidylinositol-5' kinase. In this study, we addressed the role of PI-4,5-P2-directed phosphatases on internalization of S. aureus. ShRNA-mediated knockdown of individual phosphoinositide 5-phosphatases revealed that synaptojanin1 (SYNJ1) is counteracting invasion of S. aureus into mammalian cells. Indeed, shRNA-mediated depletion as well as genetic deletion of synaptojanin1 via CRISPR/Cas9 resulted in a gain-of-function phenotype with regard to integrin-mediated uptake. Surprisingly, the surface level of integrins was slightly downregulated in Synj1-KO cells. Nevertheless, these cells showed enhanced local accumulation of PI-4,5-P2 and exhibited increased internalization of S. aureus. While the phosphorylation level of the integrin-associated protein tyrosine kinase FAK was unaltered, the integrin-binding and -activating protein talin was enriched in the vicinity of S. aureus in synaptojanin1 knockout cells. Scanning electron microscopy revealed enlarged membrane invaginations in the absence of synaptojanin1 explaining the increased capability of these cells to internalize integrin-bound microorganisms. Importantly, the enhanced uptake by Synj1-KO cells and the exaggerated morphological features were rescued by the re-expression of the wild-type enzyme but not phosphatase inactive mutants. Accordingly, synaptojanin1 activity limits integrin-mediated invasion of S. aureus, corroborating the important role of PI-4,5-P2 during this process.IMPORTANCEStaphylococcus aureus, an important bacterial pathogen, can invade non-professional phagocytes by capturing host fibronectin and engaging integrin α5β1. Understanding how S. aureus exploits this cell adhesion receptor for efficient cell entry can also shed light on the physiological regulation of integrins by endocytosis. Previous studies have found that a specific membrane lipid, phosphatidylinositol-4,5-bisphosphate (PIP2), supports the internalization process. Here, we extend these findings and report that the local levels of PIP2 are controlled by the activity of the PIP2-directed lipid phosphatase Synaptojanin1. By dephosphorylating PIP2 at bacteria-host cell attachment sites, Synaptojanin1 counteracts the integrin-mediated uptake of the microorganisms. Therefore, our study not only generates new insight into subversion of cellular receptors by pathogenic bacteria but also highlights the role of host cell proteins acting as restriction factors for bacterial invasion at the plasma membrane.
Collapse
Affiliation(s)
- Yong Shi
- Lehrstuhl für Zellbiologie, Universität Konstanz, Konstanz, Germany
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Petra Muenzner
- Lehrstuhl für Zellbiologie, Universität Konstanz, Konstanz, Germany
| | | | - Christof R. Hauck
- Lehrstuhl für Zellbiologie, Universität Konstanz, Konstanz, Germany
- Konstanz Research School Chemical Biology, Universität Konstanz, Konstanz, Germany
| |
Collapse
|
5
|
Nair AV, Singh A, Devasurmutt Y, Rahman SA, Tatu US, Chakravortty D. Spermidine constitutes a key determinant of motility and attachment of Salmonella Typhimurium through a novel regulatory mechanism. Microbiol Res 2024; 281:127605. [PMID: 38232495 DOI: 10.1016/j.micres.2024.127605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/28/2023] [Accepted: 01/07/2024] [Indexed: 01/19/2024]
Abstract
Spermidine is a poly-cationic molecule belonging to the family of polyamines and is ubiquitously present in all organisms. Salmonella synthesizes, and harbours specialized transporters to import spermidine. A group of polyamines have been shown to assist in Salmonella Typhimurium's virulence and regulation of Salmonella pathogenicity Inslad 1 (SPI-1) genes and stress resistance; however, the mechanism remains elusive. The virulence trait of Salmonella depends on its ability to employ multiple surface structures to attach and adhere to the surface of the target cells before invasion and colonization of the host niche. Our study discovers the mechanism by which spermidine assists in the early stages of Salmonella pathogenesis. For the first time, we report that Salmonella Typhimurium regulates spermidine transport and biosynthesis processes in a mutually inclusive manner. Using a mouse model, we show that spermidine is critical for invasion into the murine Peyer's patches, which further validated our in vitro cell line observation. We show that spermidine controls the mRNA expression of fimbrial (fimA) and non-fimbrial adhesins (siiE, pagN) in Salmonella and thereby assists in attachment to host cell surfaces. Spermidine also regulated the motility through the expression of flagellin genes by enhancing the translation of sigma-28, which features an unusual start codon and a poor Shine-Dalgarno sequence. Besides regulating the formation of the adhesive structures, spermidine tunes the expression of the two-component system BarA/SirA to regulate SPI-1 encoded genes. Thus, our study unravels a novel regulatory mechanism by which spermidine exerts critical functions during Salmonella Typhimurium pathogenesis.
Collapse
Affiliation(s)
- Abhilash Vijay Nair
- Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bengaluru, India
| | - Anmol Singh
- Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bengaluru, India
| | - Yashas Devasurmutt
- Department of Biochemistry, Division of Biological Sciences, Indian Institute of Science, Bengaluru, India
| | - S A Rahman
- Department of Biochemistry, Division of Biological Sciences, Indian Institute of Science, Bengaluru, India
| | - Utpal Shashikant Tatu
- Department of Biochemistry, Division of Biological Sciences, Indian Institute of Science, Bengaluru, India
| | - Dipshikha Chakravortty
- Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bengaluru, India; Adjunct Faculty, School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, India.
| |
Collapse
|
6
|
Sharifi A, Mahmoudi P, Sobhani K. The prevalence of adhesion and biofilm genes in Staphylococcus aureus isolates from bovine mastitis: A comprehensive meta-analysis. Vet Med Sci 2024; 10:e31378. [PMID: 38358017 PMCID: PMC10867877 DOI: 10.1002/vms3.1378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/13/2023] [Accepted: 01/29/2024] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND Mastitis poses significant challenges to the dairy industry, resulting in economic losses and increased veterinary expenses. Staphylococcus aureus is a common cause of bovine mastitis, relying on efficient adhesion and biofilm formation for infection. OBJECTIVES This study aimed to employ meta-analysis to investigate the occurrence of adhesion and biofilm genes in S. aureus associated with bovine mastitis, as documented in previous studies. METHODS This meta-analysis was done according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses, examined 22 eligible articles and revealed varying prevalence rates of adhesion and biofilm genes in S. aureus isolates from bovine mastitis. RESULTS Among the genes, clfB showed the highest prevalence (p-estimate = 0.905), followed by fnbA (p-estimate = 0.689) and fnbB (p-estimate = 0.502). The icaA and icaD genes also showed a relatively high prevalence (p-estimate = 0.694 and 0.814, respectively). Conversely, the biofilm-associated proteins gene had the lowest prevalence (p-estimate = 0.043). Subgroup analyses based on mastitis types and publication years revealed no significant differences in gene prevalence. Insufficient data hindered the analysis of fib, sasG , eno and bbp genes. CONCLUSION This study provides valuable insights for managing S. aureus-induced bovine mastitis. Additionally, larger-scale research, particularly on less-studied genes, is necessary to comprehend the molecular roles of adhesion and biofilm genes in S. aureus-induced bovine mastitis.
Collapse
Affiliation(s)
- Aram Sharifi
- Department of Animal ScienceFaculty of AgricultureUniversity of KurdistanSanandajKurdistanIran
| | - Peyman Mahmoudi
- Department of Animal ScienceFaculty of AgricultureUniversity of KurdistanSanandajKurdistanIran
| | - Keyvan Sobhani
- Department of Animal ScienceFaculty of AgricultureUniversity of KurdistanSanandajKurdistanIran
| |
Collapse
|
7
|
Robertin S, Brokatzky D, Lobato-Márquez D, Mostowy S. Regulation of integrin α5β1-mediated Staphylococcus aureus cellular invasion by the septin cytoskeleton. Eur J Cell Biol 2023; 102:151359. [PMID: 37683588 DOI: 10.1016/j.ejcb.2023.151359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 08/10/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023] Open
Abstract
Staphylococcus aureus, a Gram-positive bacterial pathogen, is an urgent health threat causing a wide range of clinical infections. Originally viewed as a strict extracellular pathogen, accumulating evidence has revealed S. aureus to be a facultative intracellular pathogen subverting host cell signalling to support invasion. The majority of clinical isolates produce fibronectin-binding proteins A and B (FnBPA and FnBPB) to interact with host integrin α5β1, a key component of focal adhesions. S. aureus binding of integrin α5β1 promotes its clustering on the host cell surface, triggering activation of focal adhesion kinase (FAK) and cytoskeleton rearrangements to promote bacterial invasion into non-phagocytic cells. Here, we discover that septins, a component of the cytoskeleton that assembles on membranes, are recruited as collar-like structures with actin to S. aureus invasion sites engaging integrin α5β1. To investigate septin recruitment to the plasma membrane in a bacteria-free system, we used FnBPA-coated latex beads and showed that septins are recruited upon activation of integrin α5β1. SEPT2 depletion reduced S. aureus invasion, but increased surface expression of integrin α5 and adhesion of S. aureus to host cells. Consistent with this, SEPT2 depletion increased cellular protein levels of integrin α5 and β1 subunits, as well as FAK. Collectively, these results provide insights into regulation of integrin α5β1 and invasion of S. aureus by the septin cytoskeleton.
Collapse
Affiliation(s)
- Stevens Robertin
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom
| | - Dominik Brokatzky
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom
| | - Damián Lobato-Márquez
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom
| | - Serge Mostowy
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom.
| |
Collapse
|
8
|
Friot A, Djebali S, Valsesia S, Parroche P, Dubois M, Baude J, Vandenesch F, Marvel J, Leverrier Y. Antigen specific activation of cytotoxic CD8 + T cells by Staphylococcus aureus infected dendritic cells. Front Cell Infect Microbiol 2023; 13:1245299. [PMID: 37953797 PMCID: PMC10639145 DOI: 10.3389/fcimb.2023.1245299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/22/2023] [Indexed: 11/14/2023] Open
Abstract
Staphylococcus aureus (S. aureus) is a pathogen associated with a wide variety of diseases, from minor to life-threatening infections. Antibiotic-resistant strains have emerged, leading to increasing concern about the control of S. aureus infections. The development of vaccines may be one way to overcome these resistant strains. However, S. aureus ability to internalize into cells - and thus to form a reservoir escaping humoral immunity - is a challenge for vaccine development. A role of T cells in the elimination of persistent S. aureus has been established in mice but it remains to be established if CD8+ T cells could display a cytotoxic activity against S. aureus infected cells. We examined in vitro the ability of CD8+ T cells to recognize and kill dendritic cells infected with S. aureus. We first evidenced that both primary mouse dendritic cells and DC2.4 cell line can be infected with S. aureus. We then generated a strain of S. aureus expressing a model CD8 epitope and transgenic F5 CD8+ T cells recognizing this model epitope were used as reporter T cells. In response to S. aureus-infected dendritic cells, F5 CD8+ T cells produced IFN-γ in an antigen-specific manner and displayed an increased ability to kill infected cells. Altogether, these results demonstrate that cells infected by S. aureus display bacteria-derived epitopes at their surface that are recognized by CD8+ T cells. This paves the way for the development of CD8+ T cell-based therapies against S. aureus.
Collapse
|
9
|
Guo Z, Ma Y, Jia Z, Wang L, Lu X, Chen Y, Wang Y, Hao H, Yu S, Wang Z. Crosstalk between integrin/FAK and Crk/Vps25 governs invasion of bovine mammary epithelial cells by S. agalactiae. iScience 2023; 26:107884. [PMID: 37766995 PMCID: PMC10520442 DOI: 10.1016/j.isci.2023.107884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 07/26/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Streptococcus agalactiae (S. agalactiae) is a contagious obligate parasite of the udder in dairy cows. Here, we examined S. agalactiae-host interactions in bovine mammary epithelial cells (BMECs) in vitro. We found that S. agalactiae infected BMECs through laminin β2 and integrin. Crk, Vps25, and RhoA were differentially expressed in S. agalactiae-infected cells. S. agalactiae infection activated FAK and Crk. FAK deficiency decreased the number of intracellular S. agalactiae and Crk activation. Knockdown of Crk or Vps25 increased the level of intracellular S. agalactiae, whereas its overexpression had the opposite effect. RhoA expression and actin cytoskeleton were altered in S. agalactiae-infected BMECs. Crk and Vps25 interact in cells, and invaded S. agalactiae also activates Crk, allowing it to cooperate with Vps25 to defend against intracellular infection by S. agalactiae. This study provides insights into the mechanism by which intracellular infection by S. agalactiae is regulated in BMECs.
Collapse
Affiliation(s)
- Zhixin Guo
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China
- School of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Yuze Ma
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Zhibo Jia
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Liping Wang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Xinyue Lu
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Yuhao Chen
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China
- School of Life Sciences, Jining Normal University, Jining 012000, China
| | - Yanfeng Wang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Huifang Hao
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Shuixing Yu
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Zhigang Wang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| |
Collapse
|
10
|
Leidecker M, Bertling A, Hussain M, Bischoff M, Eble JA, Fender AC, Jurk K, Rumpf C, Herrmann M, Kehrel BE, Niemann S. Protein Disulfide Isomerase and Extracellular Adherence Protein Cooperatively Potentiate Staphylococcal Invasion into Endothelial Cells. Microbiol Spectr 2023; 11:e0388622. [PMID: 36995240 PMCID: PMC10269700 DOI: 10.1128/spectrum.03886-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 03/09/2023] [Indexed: 03/31/2023] Open
Abstract
Invasion of host cells is an important feature of Staphylococcus aureus. The main internalization pathway involves binding of the bacteria to host cells, e.g., endothelial cells, via a fibronectin (Fn) bridge between S. aureus Fn binding proteins and α5β1-integrin, followed by phagocytosis. The secreted extracellular adherence protein (Eap) has been shown to promote this cellular uptake pathway of not only S. aureus, but also of bacteria otherwise poorly taken up by host cells, such as Staphylococcus carnosus. The exact mechanisms are still unknown. Previously, we demonstrated that Eap induces platelet activation by stimulation of the protein disulfide isomerase (PDI), a catalyst of thiol-disulfide exchange reactions. Here, we show that Eap promotes PDI activity on the surface of endothelial cells, and that this contributes critically to Eap-driven staphylococcal invasion. PDI-stimulated β1-integrin activation followed by increased Fn binding to host cells likely accounts for the Eap-enhanced uptake of S. aureus into non-professional phagocytes. Additionally, Eap supports the binding of S. carnosus to Fn-α5β1 integrin, thereby allowing its uptake into endothelial cells. To our knowledge, this is the first demonstration that PDI is crucial for the uptake of bacteria into host cells. We describe a hitherto unknown function of Eap-the promotion of an enzymatic activity with subsequent enhancement of bacterial uptake-and thus broaden mechanistic insights into its importance as a driver of bacterial pathogenicity. IMPORTANCE Staphylococcus aureus can invade and persist in non-professional phagocytes, thereby escaping host defense mechanisms and antibiotic treatment. The intracellular lifestyle of S. aureus contributes to the development of infection, e.g., in infective endocarditis or chronic osteomyelitis. The extracellular adherence protein secreted by S. aureus promotes its own internalization as well as that of bacteria that are otherwise poorly taken up by host cells, such as Staphylococcus carnosus. In our study, we demonstrate that staphylococcal uptake by endothelial cells requires catalytic disulfide exchange activity by the cell-surface protein disulfide isomerase, and that this critical enzymatic function is enhanced by Eap. The therapeutic application of PDI inhibitors has previously been investigated in the context of thrombosis and hypercoagulability. Our results add another intriguing possibility: therapeutically targeting PDI, i.e., as a candidate approach to modulate the initiation and/or course of S. aureus infectious diseases.
Collapse
Affiliation(s)
- Marleen Leidecker
- Institute of Medical Microbiology, University Hospital of Münster, Münster, Germany
| | - Anne Bertling
- Department of Anaesthesiology and Intensive Care, Experimental and Clinical Haemostasis, University Hospital of Münster, Münster, Germany
| | - Muzaffar Hussain
- Institute of Medical Microbiology, University Hospital of Münster, Münster, Germany
| | - Markus Bischoff
- Institute of Medical Microbiology and Hygiene, Saarland University, Homburg, Germany
| | - Johannes A. Eble
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany
| | - Anke C. Fender
- Department of Anaesthesiology and Intensive Care, Experimental and Clinical Haemostasis, University Hospital of Münster, Münster, Germany
- Institute of Pharmacology, University Hospital Essen, Essen, Germany
| | - Kerstin Jurk
- Department of Anaesthesiology and Intensive Care, Experimental and Clinical Haemostasis, University Hospital of Münster, Münster, Germany
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Christine Rumpf
- Institute of Medical Microbiology, University Hospital of Münster, Münster, Germany
| | - Mathias Herrmann
- Institute of Medical Microbiology, University Hospital of Münster, Münster, Germany
| | - Beate E. Kehrel
- Department of Anaesthesiology and Intensive Care, Experimental and Clinical Haemostasis, University Hospital of Münster, Münster, Germany
| | - Silke Niemann
- Institute of Medical Microbiology, University Hospital of Münster, Münster, Germany
| |
Collapse
|
11
|
Sharafutdinov I, Knorr J, Rottner K, Backert S, Tegtmeyer N. Cortactin: A universal host cytoskeletal target of Gram-negative and Gram-positive bacterial pathogens. Mol Microbiol 2022; 118:623-636. [PMID: 36396951 DOI: 10.1111/mmi.15002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 11/19/2022]
Abstract
Pathogenic bacteria possess a great potential of causing infectious diseases and represent a serious threat to human and animal health. Understanding the molecular basis of infection development can provide new valuable strategies for disease prevention and better control. In host-pathogen interactions, actin-cytoskeletal dynamics play a crucial role in the successful adherence, invasion, and intracellular motility of many intruding microbial pathogens. Cortactin, a major cellular factor that promotes actin polymerization and other functions, appears as a central regulator of host-pathogen interactions and different human diseases including cancer development. Various important microbes have been reported to hijack cortactin signaling during infection. The primary regulation of cortactin appears to proceed via serine and/or tyrosine phosphorylation events by upstream kinases, acetylation, and interaction with various other host proteins, including the Arp2/3 complex, filamentous actin, the actin nucleation promoting factor N-WASP, focal adhesion kinase FAK, the large GTPase dynamin-2, the guanine nucleotide exchange factor Vav2, and the actin-stabilizing protein CD2AP. Given that many signaling factors can affect cortactin activities, several microbes target certain unique pathways, while also sharing some common features. Here we review our current knowledge of the hallmarks of cortactin as a major target for eminent Gram-negative and Gram-positive bacterial pathogens in humans.
Collapse
Affiliation(s)
- Irshad Sharafutdinov
- Department of Biology, Division of Microbiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jakob Knorr
- Department of Biology, Division of Microbiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Klemens Rottner
- Department of Cell Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
| | - Steffen Backert
- Department of Biology, Division of Microbiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Nicole Tegtmeyer
- Department of Biology, Division of Microbiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
12
|
Bhat CG, Budhwar R, Godwin J, Dillman AR, Rao U, Somvanshi VS. RNA-Sequencing of Heterorhabditis nematodes to identify factors involved in symbiosis with Photorhabdus bacteria. BMC Genomics 2022; 23:741. [PMCID: PMC9639317 DOI: 10.1186/s12864-022-08952-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/07/2022] [Indexed: 11/09/2022] Open
Abstract
Background Nematodes are a major group of soil inhabiting organisms. Heterorhabditis nematodes are insect-pathogenic nematodes and live in a close symbiotic association with Photorhabdus bacteria. Heterorhabditis-Photorhabdus pair offers a powerful and genetically tractable model to study animal-microbe symbiosis. It is possible to generate symbiont bacteria free (axenic) stages in Heterorhabditis. Here, we compared the transcriptome of symbiotic early-adult stage Heterorhabditis nematodes with axenic early-adult nematodes to determine the nematode genes and pathways involved in symbiosis with Photorhabdus bacteria. Results A de-novo reference transcriptome assembly of 95.7 Mb was created for H. bacteriophora by using all the reads. The assembly contained 46,599 transcripts with N50 value of 2,681 bp and the average transcript length was 2,054 bp. The differentially expressed transcripts were identified by mapping reads from symbiotic and axenic nematodes to the reference assembly. A total of 754 differentially expressed transcripts were identified in symbiotic nematodes as compared to the axenic nematodes. The ribosomal pathway was identified as the most affected among the differentially expressed transcripts. Additionally, 12,151 transcripts were unique to symbiotic nematodes. Endocytosis, cAMP signalling and focal adhesion were the top three enriched pathways in symbiotic nematodes, while a large number of transcripts coding for various responses against bacteria, such as bacterial recognition, canonical immune signalling pathways, and antimicrobial effectors could also be identified. Conclusions The symbiotic Heterorhabditis nematodes respond to the presence of symbiotic bacteria by expressing various transcripts involved in a multi-layered immune response which might represent non-systemic and evolved localized responses to maintain mutualistic bacteria at non-threatening levels. Subject to further functional validation of the identified transcripts, our findings suggest that Heterorhabditis nematode immune system plays a critical role in maintenance of symbiosis with Photorhabdus bacteria. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08952-4.
Collapse
Affiliation(s)
- Chaitra G. Bhat
- grid.418196.30000 0001 2172 0814Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, Delhi, 110012 India
| | - Roli Budhwar
- Bionivid Technology Private Limited, 209, 4th Cross Rd., B. Channasandra, Kasturi Nagar, Bengaluru, Karnataka 560043 India
| | - Jeffrey Godwin
- Bionivid Technology Private Limited, 209, 4th Cross Rd., B. Channasandra, Kasturi Nagar, Bengaluru, Karnataka 560043 India
| | - Adler R. Dillman
- grid.266097.c0000 0001 2222 1582Department of Nematology, University of California, Riverside, 92521 USA
| | - Uma Rao
- grid.418196.30000 0001 2172 0814Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, Delhi, 110012 India
| | - Vishal S. Somvanshi
- grid.418196.30000 0001 2172 0814Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, Delhi, 110012 India
| |
Collapse
|
13
|
Hou L, Du J, Ren Q, Zhu L, Zhao X, Kong X, Gu W, Wang L, Meng Q. Ubiquitin-modified proteome analysis of Eriocheir sinensis hemocytes during Spiroplasma eriocheiris infection. FISH & SHELLFISH IMMUNOLOGY 2022; 125:109-119. [PMID: 35500876 DOI: 10.1016/j.fsi.2022.04.046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/20/2022] [Accepted: 04/26/2022] [Indexed: 06/14/2023]
Abstract
Spiroplasma eriocheiris, the pathogen of Eriocheir sinensis tremor disease (TD), has bring a huge economic loss to China aquaculture. The hemocytes of crab as the first target cells of S. eriocheiris, but the interactive relationship between the E. sinensis and this pathogen not particularly clear. The present study is the first time to analysis the role of protein ubiquitination in the process of E. sinensis hemocytes response S. eriocheiris infection. By applying label-free quantitative liquid chromatography with tandem mass spectrometry proteomics, 950 lysine ubiquitination sites and 803 ubiquitination peptides on 458 proteins were identified, of which 48 ubiquitination sites on 40 proteins were quantified as significantly changed after the S. eriocheiris infection. Bioinformatics analysis of ubiquitination different proteins suggested many biological process and pathways were participated in the interaction between S. eriocheiris and host cell, such as ubiquitin system, endocytosis, prophenoloxidase system (proPO system), cell apoptosis, glycolysis. Our study can enhance our understanding of interaction between the crab and S. eriocheiris, and also provides basis to study the role of protein ubiquitination in other crustacean innate immune system.
Collapse
Affiliation(s)
- Libo Hou
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, 453007, China
| | - Jie Du
- Animal Husbandry and Veterinary College, Jiangsu Vocational College of Agriculture and Forestry, Jurong, Jiangsu, 212400, China
| | - Qiulin Ren
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, 453007, China
| | - Lei Zhu
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, 453007, China
| | - Xianliang Zhao
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, 453007, China
| | - Xianghui Kong
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, 453007, China
| | - Wei Gu
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing, 210046, China
| | - Li Wang
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China.
| | - Qingguo Meng
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing, 210046, China.
| |
Collapse
|
14
|
Factors Affecting Spontaneous Endocytosis and Survival of Probiotic Lactobacilli in Human Intestinal Epithelial Cells. Microorganisms 2022; 10:microorganisms10061142. [PMID: 35744660 PMCID: PMC9230732 DOI: 10.3390/microorganisms10061142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 11/29/2022] Open
Abstract
Mutualistic bacteria have different forms of interaction with the host. In contrast to the invasion of pathogenic bacteria, naturally occurring internalization of commensal bacteria has not been studied in depth. Three in vitro methods, gentamicin protection, flow cytometry and confocal laser scanning microscopy, have been implemented to accurately assess the internalization of two lactobacillus strains—Lacticaseibacillus paracasei BL23 and Lacticaseibacillus rhamnosus GG—in Caco-2 and T84 intestinal epithelial cells (IECs) under a variety of physiological conditions and with specific inhibitors. First and most interesting, internalization occurred at a variable rate that depends on the bacterial strain and IEC line, and the most efficient was BL23 internalization by T84 and, second, efficient internalization required active IEC proliferation, as it improved naturally at the early confluence stages and by stimulation with epidermal growth factor (EGF). IFN-γ is bound to innate immune responses and autolysis; this cytokine had a significant effect on internalization, as shown by flow cytometry, but increased internalization was not perceived in all conditions, possibly because it was also stimulating autolysis and, as a consequence, the viability of bacteria after uptake could be affected. Bacterial uptake required actin polymerization, as shown by cytochalasin D inhibition, and it was partially bound to clathrin and caveolin dependent endocytosis. It also showed partial inhibition by ML7 indicating the involvement of cholesterol lipid rafts and myosin light chain kinase (MLCK) activation, at least in the LGG uptake by Caco-2. Most interestingly, bacteria remained viable inside the IEC for as long as 72 h without damaging the epithelial cells, and paracellular transcytosis was observed. These results stressed the fact that internalization of commensal and mutualistic bacteria is a natural, nonpathogenic process that may be relevant in crosstalk processes between the intestinal populations and the host, and future studies could determine its connection to processes such as commensal tolerance, resilience of microbial populations or transorganic bacterial migration.
Collapse
|
15
|
Diversity and pathogenesis of Staphylococcus aureus from bovine mastitis: current understanding and future perspectives. BMC Vet Res 2022; 18:115. [PMID: 35331225 PMCID: PMC8944054 DOI: 10.1186/s12917-022-03197-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 03/03/2022] [Indexed: 11/10/2022] Open
Abstract
Staphylococcus aureus is a leading cause of bovine mastitis worldwide. Despite some improved understanding of disease pathogenesis, progress towards new methods for the control of intramammary infections (IMI) has been limited, particularly in the field of vaccination. Although herd management programs have helped to reduce the number of clinical cases, S. aureus mastitis remains a major disease burden. This review summarizes the past 16 years of research on bovine S. aureus population genetics, and molecular pathogenesis that have been conducted worldwide. We describe the diversity of S. aureus associated with bovine mastitis and the geographical distribution of S. aureus clones in different continents. We also describe studies investigating the evolution of bovine S. aureus and the importance of host-adaptation in its emergence as a mastitis pathogen. The available information on the prevalence of virulence determinants and their functional relevance during the pathogenesis of bovine mastitis are also discussed. Although traits such as biofilm formation and innate immune evasion are critical for the persistence of bacteria, the current understanding of the key host-pathogen interactions that determine the outcome of S. aureus IMI is very limited. We suggest that greater investment in research into the genetic and molecular basis of bovine S. aureus pathogenesis is essential for the identification of novel therapeutic and vaccine targets.
Collapse
|
16
|
Pleiotropic Effects of Statins: New Therapeutic Approaches to Chronic, Recurrent Infection by Staphylococcus aureus. Pharmaceutics 2021; 13:pharmaceutics13122047. [PMID: 34959329 PMCID: PMC8706520 DOI: 10.3390/pharmaceutics13122047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 11/25/2021] [Accepted: 11/28/2021] [Indexed: 01/01/2023] Open
Abstract
An emergent approach to bacterial infection is the use of host rather than bacterial-directed strategies. This approach has the potential to improve efficacy in especially challenging infection settings, including chronic, recurrent infection due to intracellular pathogens. For nearly two decades, the pleiotropic effects of statin drugs have been examined for therapeutic usefulness beyond the treatment of hypercholesterolemia. Interest originated after retrospective studies reported decreases in the risk of death due to bacteremia or sepsis for those on a statin regimen. Although subsequent clinical trials have yielded mixed results and earlier findings have been questioned for biased study design, in vitro and in vivo studies have provided clear evidence of protective mechanisms that include immunomodulatory effects and the inhibition of host cell invasion. Ultimately, the benefits of statins in an infection setting appear to require attention to the underlying host response and to the timing of the dosage. From this examination of statin efficacy, additional novel host-directed strategies may produce adjunctive therapeutic approaches for the treatment of infection where traditional antimicrobial therapy continues to yield poor outcomes. This review focuses on the opportunistic pathogen, Staphylococcus aureus, as a proof of principle in examining the promise and limitations of statins in recalcitrant infection.
Collapse
|
17
|
Afriyie-Asante A, Dabla A, Dagenais A, Berton S, Smyth R, Sun J. Mycobacterium tuberculosis Exploits Focal Adhesion Kinase to Induce Necrotic Cell Death and Inhibit Reactive Oxygen Species Production. Front Immunol 2021; 12:742370. [PMID: 34745115 PMCID: PMC8564185 DOI: 10.3389/fimmu.2021.742370] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/04/2021] [Indexed: 01/25/2023] Open
Abstract
Tuberculosis is a deadly, contagious respiratory disease that is caused by the pathogenic bacterium Mycobacterium tuberculosis (Mtb). Mtb is adept at manipulating and evading host immunity by hijacking alveolar macrophages, the first line of defense against inhaled pathogens, by regulating the mode and timing of host cell death. It is established that Mtb infection actively blocks apoptosis and instead induces necrotic-like modes of cell death to promote disease progression. This survival strategy shields the bacteria from destruction by the immune system and antibiotics while allowing for the spread of bacteria at opportunistic times. As such, it is critical to understand how Mtb interacts with host macrophages to manipulate the mode of cell death. Herein, we demonstrate that Mtb infection triggers a time-dependent reduction in the expression of focal adhesion kinase (FAK) in human macrophages. Using pharmacological perturbations, we show that inhibition of FAK (FAKi) triggers an increase in a necrotic form of cell death during Mtb infection. In contrast, genetic overexpression of FAK (FAK+) completely blocked macrophage cell death during Mtb infection. Using specific inhibitors of necrotic cell death, we show that FAK-mediated cell death during Mtb infection occurs in a RIPK1-depedent, and to a lesser extent, RIPK3-MLKL-dependent mechanism. Consistent with these findings, FAKi results in uncontrolled replication of Mtb, whereas FAK+ reduces the intracellular survival of Mtb in macrophages. In addition, we demonstrate that enhanced control of intracellular Mtb replication by FAK+ macrophages is a result of increased production of antibacterial reactive oxygen species (ROS) as inhibitors of ROS production restored Mtb burden in FAK+ macrophages to same levels as in wild-type cells. Collectively, our data establishes FAK as an important host protective response during Mtb infection to block necrotic cell death and induce ROS production, which are required to restrict the survival of Mtb.
Collapse
Affiliation(s)
- Afrakoma Afriyie-Asante
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Ankita Dabla
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Amy Dagenais
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Stefania Berton
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Robin Smyth
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Jim Sun
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada.,Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
18
|
Niemann S, Nguyen MT, Eble JA, Chasan AI, Mrakovcic M, Böttcher RT, Preissner KT, Roßlenbroich S, Peters G, Herrmann M. More Is Not Always Better-the Double-Headed Role of Fibronectin in Staphylococcus aureus Host Cell Invasion. mBio 2021; 12:e0106221. [PMID: 34663090 PMCID: PMC8524341 DOI: 10.1128/mbio.01062-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 09/17/2021] [Indexed: 12/30/2022] Open
Abstract
While Staphylococcus aureus has classically been considered an extracellular pathogen, these bacteria are also capable of being taken up by host cells, including nonprofessional phagocytes such as endothelial cells, epithelial cells, or osteoblasts. The intracellular S. aureus lifestyle contributes to infection development. The predominant recognition and internalization pathway appears to be the binding of the bacteria via a fibronectin bridge to the α5β1-integrin on the host cell membrane, followed by phagocytosis. Although osteoblasts showed high expression of α5β1-integrin and fibronectin, and bacteria adhered to osteoblasts to a high proportion, here we demonstrate by internalization assays and immunofluorescence microscopy that S. aureus was less engulfed in osteoblasts than in epithelial cells. The addition of exogenous fibronectin during the infection of cells with S. aureus resulted in an increased uptake by epithelial cells but not by osteoblasts. This contrasts with the previous conception of the uptake mechanism, where high expression of integrin and fibronectin would promote the bacterial uptake into host cells. Extracellular fibronectin surrounding osteoblasts, but not epithelial cells, is organized in a fibrillary network. The inhibition of fibril formation, the short interfering RNA-mediated reduction of fibronectin expression, and the disruption of the fibronectin-fibril meshwork all resulted in a significant increase in S. aureus uptake by osteoblasts. Thus, the network of fibronectin fibrils appears to strongly reduce the uptake of S. aureus into a given host cell, indicating that the supramolecular structure of fibronectin determines the capacity of particular host cells to internalize the pathogen. IMPORTANCE Traditionally, Staphylococcus aureus has been considered an extracellular pathogen. However, among other factors, the frequent failure of antimicrobial therapy and the ability of the pathogen to cause recurrent disease have established the concept of eukaryotic invasion of the pathogen, thereby evading the host's immune system. In the current model of host cell invasion, bacteria initially bind to α5β1 integrin on the host cell side via a fibronectin bridge, which eventually leads to phagocytosis of S. aureus by host cells. However, in this study, we demonstrate that not the crude amount but the supramolecular structure of fibronectin molecules deposited on the eukaryotic cell surface plays an essential role in bacterial uptake by host cells. Our findings explain the large differences of S. aureus uptake efficacy in different host cell types as well as in vivo differences between courses of bacterial infections and the localization of bacteria in different clinical settings.
Collapse
Affiliation(s)
- Silke Niemann
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | - Minh-Thu Nguyen
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | - Johannes A. Eble
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany
| | - Achmet I. Chasan
- Institute of Immunology, University of Münster, Münster, Germany
| | - Maria Mrakovcic
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
- Institute of Infectiology, University of Münster, Münster, Germany
| | - Ralph T. Böttcher
- Department of Molecular Medicine, Max Planck Institute for Biochemistry, Martinsried, Germany
| | - Klaus T. Preissner
- Kerckhoff-Herzforschungsinstitut, Department of Cardiology, Medical School, Justus-Liebig-University, Giessen, Germany
| | - Steffen Roßlenbroich
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Münster, Münster, Germany
| | - Georg Peters
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | - Mathias Herrmann
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| |
Collapse
|
19
|
Ying YT, Ren WJ, Tan X, Yang J, Liu R, Du AF. Annexin A2-Mediated Internalization of Staphylococcus aureus into Bovine Mammary Epithelial Cells Requires Its Interaction with Clumping Factor B. Microorganisms 2021; 9:2090. [PMID: 34683411 PMCID: PMC8538401 DOI: 10.3390/microorganisms9102090] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 09/26/2021] [Accepted: 10/01/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Staphylococcus aureus is a leading cause of contagious mastitis in dairy cattle. Internalization of S. aureus by bovine mammary gland epithelial cells is thought to be responsible for persistent and chronic intramammary infection, but the underlying mechanisms are not fully understood. METHODS In the present study, we evaluated the role of Annexin A2 (AnxA2), a membrane-binding protein, in S. aureus invasion into bovine mammary epithelial cell line (MAC-T). In vitro binding assays were performed to co-immunoprecipitate the binding proteins of AnxA2 in the lysates of S. aureus. RESULTS AnxA2 mediated the internalization but not adherence of S. aureus. Engagement of AnxA2 stimulated an integrin-linked protein kinase (ILK)/p38 MAPK cascade to induce S. aureus invasion. One of the AnxA2-precipitated proteins was identified as S. aureus clumping factor B (ClfB) through use of mass spectrometry. Direct binding of ClfB to AnxA2 was further confirmed by using a pull-down assay. Pre-incubation with recombinant ClfB protein enhanced S. aureus internalization, an effect that was specially blocked by anti-AnxA2 antibody. CONCLUSION Our results demonstrate that binding of ClfB to AnxA2 has a function in promoting S. aureus internalization. Targeting the interaction of ClfB and AnxA2 may confer protection against S. aureus mastitis.
Collapse
Affiliation(s)
- Yi-Tian Ying
- Department of Veterinary Medicine, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China; (Y.-T.Y.); (W.-J.R.); (J.Y.); (R.L.); (A.-F.D.)
- Veterinary Medical Center, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China
- Institute of Preventive Veterinary Sciences, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China
| | - Wei-Jia Ren
- Department of Veterinary Medicine, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China; (Y.-T.Y.); (W.-J.R.); (J.Y.); (R.L.); (A.-F.D.)
- Veterinary Medical Center, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China
- Institute of Preventive Veterinary Sciences, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China
| | - Xun Tan
- Department of Veterinary Medicine, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China; (Y.-T.Y.); (W.-J.R.); (J.Y.); (R.L.); (A.-F.D.)
- Veterinary Medical Center, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China
- Institute of Preventive Veterinary Sciences, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China
| | - Jing Yang
- Department of Veterinary Medicine, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China; (Y.-T.Y.); (W.-J.R.); (J.Y.); (R.L.); (A.-F.D.)
- Veterinary Medical Center, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China
- Institute of Preventive Veterinary Sciences, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China
| | - Rui Liu
- Department of Veterinary Medicine, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China; (Y.-T.Y.); (W.-J.R.); (J.Y.); (R.L.); (A.-F.D.)
| | - Ai-Fang Du
- Department of Veterinary Medicine, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China; (Y.-T.Y.); (W.-J.R.); (J.Y.); (R.L.); (A.-F.D.)
- Veterinary Medical Center, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China
- Institute of Preventive Veterinary Sciences, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China
| |
Collapse
|
20
|
Medapati MR, Bhagirath AY, Singh N, Schroth RJ, Bhullar RP, Duan K, Chelikani P. Bitter Taste Receptor T2R14 Modulates Gram-Positive Bacterial Internalization and Survival in Gingival Epithelial Cells. Int J Mol Sci 2021; 22:ijms22189920. [PMID: 34576085 PMCID: PMC8469602 DOI: 10.3390/ijms22189920] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/10/2021] [Accepted: 09/11/2021] [Indexed: 01/01/2023] Open
Abstract
Bitter-taste receptors (T2Rs) have emerged as key players in host–pathogen interactions and important modulators of oral innate immunity. Previously, we reported that T2R14 is expressed in gingival epithelial cells (GECs) and interacts with competence stimulating peptides (CSPs) secreted by the cariogenic Streptococcus mutans. The underlying mechanisms of the innate immune responses and physiological effects of T2R14 on Gram-positive bacteria are not well characterized. In this study, we examined the role of T2R14 in internalization and growth inhibitory effects on Gram-positive bacteria, namely Staphylococcus aureus and S. mutans. We utilized CRISPR-Cas9 T2R14 knockdown (KD) GECs as the study model to address these key physiological mechanisms. Our data reveal that the internalization of S. aureus is significantly decreased, while the internalization of S. mutans remains unaffected upon knockdown of T2R14 in GECs. Surprisingly, GECs primed with S. mutans CSP-1 resulted in an inhibition of growth for S. aureus, but not for S. mutans. The GECs infected with S. aureus induced T2R14-dependent human β-defensin-2 (hBD-2) secretion; however, S. mutans–infected GECs did not induce hBD-2 secretion, but induced T2R14 dependent IL-8 secretion. Interestingly, our results show that T2R14 KD affects the cytoskeletal reorganization in GECs, thereby inhibiting S. aureus internalization. Our study highlights the distinct mechanisms and a direct role of T2R14 in influencing physiological responses to Gram-positive bacteria in the oral cavity.
Collapse
Affiliation(s)
- Manoj Reddy Medapati
- Manitoba Chemosensory Biology Research Group, Department of Oral Biology, Rady Faculty of Health Sciences, Dr. Gerald Niznick College of Dentistry, University of Manitoba, 780 Bannatyne Avenue, Winnipeg, MB R3E 0W2, Canada; (M.R.M.); (A.Y.B.); (N.S.); (R.J.S.); (R.P.B.); (K.D.)
| | - Anjali Yadav Bhagirath
- Manitoba Chemosensory Biology Research Group, Department of Oral Biology, Rady Faculty of Health Sciences, Dr. Gerald Niznick College of Dentistry, University of Manitoba, 780 Bannatyne Avenue, Winnipeg, MB R3E 0W2, Canada; (M.R.M.); (A.Y.B.); (N.S.); (R.J.S.); (R.P.B.); (K.D.)
- Children’s Hospital Research Institute of Manitoba (CHRIM), University of Manitoba, 715 McDermot Avenue, Winnipeg, MB R3E 3P4, Canada
| | - Nisha Singh
- Manitoba Chemosensory Biology Research Group, Department of Oral Biology, Rady Faculty of Health Sciences, Dr. Gerald Niznick College of Dentistry, University of Manitoba, 780 Bannatyne Avenue, Winnipeg, MB R3E 0W2, Canada; (M.R.M.); (A.Y.B.); (N.S.); (R.J.S.); (R.P.B.); (K.D.)
| | - Robert J. Schroth
- Manitoba Chemosensory Biology Research Group, Department of Oral Biology, Rady Faculty of Health Sciences, Dr. Gerald Niznick College of Dentistry, University of Manitoba, 780 Bannatyne Avenue, Winnipeg, MB R3E 0W2, Canada; (M.R.M.); (A.Y.B.); (N.S.); (R.J.S.); (R.P.B.); (K.D.)
- Children’s Hospital Research Institute of Manitoba (CHRIM), University of Manitoba, 715 McDermot Avenue, Winnipeg, MB R3E 3P4, Canada
- Department of Preventive Dental Sciences, Rady Faculty of Health Sciences, Dr. Gerald Niznick College of Dentistry, University of Manitoba, 780 Bannatyne Avenue, Winnipeg, MB R3E 0W2, Canada
| | - Rajinder P. Bhullar
- Manitoba Chemosensory Biology Research Group, Department of Oral Biology, Rady Faculty of Health Sciences, Dr. Gerald Niznick College of Dentistry, University of Manitoba, 780 Bannatyne Avenue, Winnipeg, MB R3E 0W2, Canada; (M.R.M.); (A.Y.B.); (N.S.); (R.J.S.); (R.P.B.); (K.D.)
| | - Kangmin Duan
- Manitoba Chemosensory Biology Research Group, Department of Oral Biology, Rady Faculty of Health Sciences, Dr. Gerald Niznick College of Dentistry, University of Manitoba, 780 Bannatyne Avenue, Winnipeg, MB R3E 0W2, Canada; (M.R.M.); (A.Y.B.); (N.S.); (R.J.S.); (R.P.B.); (K.D.)
- Children’s Hospital Research Institute of Manitoba (CHRIM), University of Manitoba, 715 McDermot Avenue, Winnipeg, MB R3E 3P4, Canada
| | - Prashen Chelikani
- Manitoba Chemosensory Biology Research Group, Department of Oral Biology, Rady Faculty of Health Sciences, Dr. Gerald Niznick College of Dentistry, University of Manitoba, 780 Bannatyne Avenue, Winnipeg, MB R3E 0W2, Canada; (M.R.M.); (A.Y.B.); (N.S.); (R.J.S.); (R.P.B.); (K.D.)
- Children’s Hospital Research Institute of Manitoba (CHRIM), University of Manitoba, 715 McDermot Avenue, Winnipeg, MB R3E 3P4, Canada
- Correspondence: ; Tel.: +1-204-789-3539; Fax: +1-204-789-3913
| |
Collapse
|
21
|
Shi Y, Berking A, Baade T, Legate KR, Fässler R, Hauck CR. PIP5KIγ90-generated phosphatidylinositol-4,5-bisphosphate promotes the uptake of Staphylococcus aureus by host cells. Mol Microbiol 2021; 116:1249-1267. [PMID: 34519119 DOI: 10.1111/mmi.14807] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/01/2021] [Indexed: 12/17/2022]
Abstract
Staphylococcus aureus, a Gram-positive pathogen, invades cells mainly in an integrin-dependent manner. As the activity or conformation of several integrin-associated proteins can be regulated by phosphatidylinositol-4,5-bisphosphate (PI-4,5-P2 ), we investigated the roles of PI-4,5-P2 and PI-4,5-P2 -producing enzymes in cellular invasion by S. aureus. PI-4,5-P2 accumulated upon contact of S. aureus with the host cell, and targeting of an active PI-4,5-P2 phosphatase to the plasma membrane reduced bacterial invasion. Knockdown of individual phosphatidylinositol-4-phosphate 5-kinases revealed that phosphatidylinositol-4-phosphate 5-kinase γ (PIP5KIγ) plays an important role in bacterial internalization. Specific ablation of the talin and FAK-binding motif in PIP5KIγ90 reduced bacterial invasion, which could be rescued by reexpression of an active, but not inactive PIP5KIγ90. Furthermore, PIP5KIγ90-deficient cells showed normal basal PI-4,5-P2 levels in the plasma membrane but reduced the accumulation of PI-4,5-P2 and talin at sites of S. aureus attachment and overall lower levels of FAK phosphorylation. These results highlight the importance of local synthesis of PI-4,5-P2 by a focal adhesion-associated lipid kinase for integrin-mediated internalization of S. aureus.
Collapse
Affiliation(s)
- Yong Shi
- Lehrstuhl für Zellbiologie, Universität Konstanz, Konstanz, Germany
| | - Anne Berking
- Lehrstuhl für Zellbiologie, Universität Konstanz, Konstanz, Germany
| | - Timo Baade
- Lehrstuhl für Zellbiologie, Universität Konstanz, Konstanz, Germany.,Konstanz Research School Chemical Biology, Universität Konstanz, Konstanz, Germany
| | | | | | - Christof R Hauck
- Lehrstuhl für Zellbiologie, Universität Konstanz, Konstanz, Germany.,Konstanz Research School Chemical Biology, Universität Konstanz, Konstanz, Germany
| |
Collapse
|
22
|
Helicobacter pylori CagA Induces Cortactin Y-470 Phosphorylation-Dependent Gastric Epithelial Cell Scattering via Abl, Vav2 and Rac1 Activation. Cancers (Basel) 2021; 13:cancers13164241. [PMID: 34439396 PMCID: PMC8391897 DOI: 10.3390/cancers13164241] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/10/2021] [Accepted: 08/15/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Various microbial pathogens target the actin-binding protein cortactin to promote their own uptake, proliferation and spread, and exhibit proposed roles in human cancerogenesis. We aimed to study the molecular mechanisms of how the gastric pathogen Helicobacter pylori hijacks cortactin phosphorylation via tyrosine kinase Abl to trigger cancer-related signal transduction events. We discovered that cortactin phosphorylated at Y-470 recruits the signaling factor Vav2 to activate the small Rho GTPase Rac1, and finally, a cancer cell motility phenotype. We also demonstrate that phosphorylation of cortactin at Y-470 can be completely inhibited by the well-known Abl inhibitor imatinib. Imatinib is an established oral chemotherapy medication, employed for efficient systemic treatment of various cancers. These results reveal a comprehensive novel pathway for how precisely H. pylori manipulates host signaling in gastric disease development, and may pave the way for new opportunities of treatment of the outcome of infections with this pathogen, i.e., through using imatinib. Abstract The pathogen Helicobacter pylori is the first reported bacterial type-1 carcinogen playing a role in the development of human malignancies, including gastric adenocarcinoma. Cancer cell motility is an important process in this scenario, however, the molecular mechanisms are still not fully understood. Here, we demonstrate that H. pylori subverts the actin-binding protein cortactin through its type-IV secretion system and injected oncoprotein CagA, e.g., by inducing tyrosine phosphorylation of cortactin at Y-470, which triggers gastric epithelial cell scattering and motility. During infection of AGS cells, cortactin was discovered to undergo tyrosine dephosphorylation at residues Y-421 and Y-486, which is mediated through inactivation of Src kinase. However, H. pylori also profoundly activates tyrosine kinase Abl, which simultaneously phosphorylates cortactin at Y-470. Phosphorylated cortactin interacts with the SH2-domain of Vav2, a guanine nucleotide exchange factor for the Rho-family of GTPases. The cortactin/Vav2 complex then stimulates a previously unrecognized activation cascade including the small GTPase Rac1, to effect actin rearrangements and cell scattering. We hypothesize that injected CagA targets cortactin to locally open the gastric epithelium in order to get access to certain nutrients. This may disturb the cellular barrier functions, likely contributing to the induction of cell motility, which is important in gastric cancer development.
Collapse
|
23
|
Yokota M, Häffner N, Kassier M, Brunner M, Shambat SM, Brennecke F, Schniering J, Marques Maggio E, Distler O, Zinkernagel AS, Maurer B. Staphylococcus aureus impairs dermal fibroblast functions with deleterious effects on wound healing. FASEB J 2021; 35:e21695. [PMID: 34160101 DOI: 10.1096/fj.201902836r] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 04/16/2021] [Accepted: 05/10/2021] [Indexed: 12/28/2022]
Abstract
Chronic wounds are a major disease burden worldwide. The breach of the epithelial barrier facilitates transition of skin commensals to invasive facultative pathogens. Therefore, we investigated the potential effects of Staphylococcus aureus (SA) on dermal fibroblasts as key cells for tissue repair. In co-culture systems combining live or heat-killed SA with dermal fibroblasts derived from the BJ-5ta cell line, healthy individuals, and patients with systemic sclerosis, we assessed tissue repair including pro-inflammatory cytokines, matrix metalloproteases (MMPs), myofibroblast functions, and host defense responses. Only live SA induced the upregulation of IL-1β/-6/-8 and MMP1/3 as co-factors of tissue degradation. Additionally, the increased cell death reduced collagen production, proliferation, migration, and contractility, prerequisite mechanisms for wound closure. Intracellular SA triggered inflammatory and type I IFN responses via intracellular dsDNA sensor molecules and MyD88 and STING signaling pathways. In conclusion, live SA affected various key tissue repair functions of dermal fibroblasts from different sources to a similar extent. Thus, SA infection of dermal fibroblasts should be taken into account for future wound management strategies.
Collapse
Affiliation(s)
- Masaya Yokota
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, Zurich, Switzerland.,Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Nicola Häffner
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Matthew Kassier
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, Zurich, Switzerland
| | - Matthias Brunner
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, Zurich, Switzerland
| | - Srikanth Mairpady Shambat
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Fabian Brennecke
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, Zurich, Switzerland
| | - Janine Schniering
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, Zurich, Switzerland
| | - Ewerton Marques Maggio
- Institute of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Oliver Distler
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, Zurich, Switzerland
| | - Annelies Sophie Zinkernagel
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Britta Maurer
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, Zurich, Switzerland.,Department of Rheumatology and Immunology, University Hospital Bern, University Bern, Bern, Switzerland
| |
Collapse
|
24
|
Manipulation of Focal Adhesion Signaling by Pathogenic Microbes. Int J Mol Sci 2021; 22:ijms22031358. [PMID: 33572997 PMCID: PMC7866387 DOI: 10.3390/ijms22031358] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 12/22/2022] Open
Abstract
Focal adhesions (FAs) serve as dynamic signaling hubs within the cell. They connect intracellular actin to the extracellular matrix (ECM) and respond to environmental cues. In doing so, these structures facilitate important processes such as cell-ECM adhesion and migration. Pathogenic microbes often modify the host cell actin cytoskeleton in their pursuit of an ideal replicative niche or during invasion to facilitate uptake. As actin-interfacing structures, FA dynamics are also intimately tied to actin cytoskeletal organization. Indeed, exploitation of FAs is another avenue by which pathogenic microbes ensure their uptake, survival and dissemination. This is often achieved through the secretion of effector proteins which target specific protein components within the FA. Molecular mimicry of the leucine-aspartic acid (LD) motif or vinculin-binding domains (VBDs) commonly found within FA proteins is a common microbial strategy. Other effectors may induce post-translational modifications to FA proteins through the regulation of phosphorylation sites or proteolytic cleavage. In this review, we present an overview of the regulatory mechanisms governing host cell FAs, and provide examples of how pathogenic microbes have evolved to co-opt them to their own advantage. Recent technological advances pose exciting opportunities for delving deeper into the mechanistic details by which pathogenic microbes modify FAs.
Collapse
|
25
|
Evans MD, Sammelson R, McDowell S. Differential effects of cotreatment of the antibiotic rifampin with host-directed therapeutics in reducing intracellular Staphylococcus aureus infection. PeerJ 2020; 8:e10330. [PMID: 33240647 PMCID: PMC7664464 DOI: 10.7717/peerj.10330] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 10/19/2020] [Indexed: 11/20/2022] Open
Abstract
Background Chronic infection by Staphylococcus aureus drives pathogenesis in important clinical settings, such as recurrent pulmonary infection in cystic fibrosis and relapsing infection in osteomyelitis. Treatment options for intracellular S. aureus infection are limited. Rifampin, a lipophilic antibiotic, readily penetrates host cell membranes, yet monotherapy is associated with rapid antibiotic resistance and development of severe adverse events. Antibiotic cotreatment can reduce this progression, yet efficacy diminishes as antibiotic resistance develops. ML141 and simvastatin inhibit S. aureus invasion through host-directed rather than bactericidal mechanisms. Objective To determine whether cotreatment of ML141 or of simvastatin with rifampin would enhance rifampin efficacy. Methods Assays to assess host cell invasion, host cell viability, host cell membrane permeability, and bactericidal activity were performed using the human embryonic kidney (HEK) 293-A cell line infected with S. aureus (29213) and treated with vehicle control, simvastatin, ML141, rifampin, or cotreatment of simvastatin or ML141 with rifampin. Results We found cotreatment of ML141 with rifampin reduced intracellular infection nearly 85% when compared to the no treatment control. This decrease more than doubled the average 40% reduction in response to rifampin monotherapy. In contrast, cotreatment of simvastatin with rifampin failed to improve rifampin efficacy. Also, in contrast to ML141, simvastatin increased propidium iodide (PI) positive cells, from an average of 10% in control HEK 293-A cells to nearly 20% in simvastatin-treated cells, indicating an increase in host cell membrane permeability. The simvastatin-induced increase was reversed to control levels by cotreatment of simvastatin with rifampin. Conclusion Taken together, rifampin efficacy is increased through host-directed inhibition of S. aureus invasion by ML141, while efficacy is not increased by simvastatin. Considerations regarding novel therapeutic approaches may be dependent on underlying differences in pharmacology.
Collapse
Affiliation(s)
- Melissa D Evans
- Department of Biology, Ball State University, Muncie, IN, United States of America
| | - Robert Sammelson
- Department of Chemistry, Ball State University, Muncie, IN, United States of America
| | - Susan McDowell
- Department of Biology, Ball State University, Muncie, IN, United States of America
| |
Collapse
|
26
|
Schlesier T, Siegmund A, Rescher U, Heilmann C. Characterization of the Atl-mediated staphylococcal internalization mechanism. Int J Med Microbiol 2020; 310:151463. [PMID: 33197865 DOI: 10.1016/j.ijmm.2020.151463] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/16/2020] [Accepted: 10/22/2020] [Indexed: 12/18/2022] Open
Abstract
Staphylococcus aureus internalization by non-professional phagocytes is considered a main pathogenicity mechanism leading to chronic infections. The well-established mechanism of Staphylococcus aureus internalization is mediated by fibronectin (Fn)-binding proteins (FnBPs), Fn as a bridging molecule and the host cell α5β1 integrin. We previously identified a novel alternative internalization mechanism in Staphylococcus aureus, which involves the major autolysin Atl and the host cell heat shock cognate protein 70 (Hsc70). Atl-dependent internalization is also employed by the coagulase-negative Staphylococcus epidermidis, where it might represent the major or even sole internalization mechanism, because of the lack of FnBP-homologous proteins. In this study, we aimed to further characterize the Atl-dependent staphylococcal internalization mechanism. We performed biomolecular interaction analysis (BIA) to quantify the adhesive properties of Atl and found multivalent and high affinity interactions of Atl with Fn and Hsc70. Confocal laser scanning microscopy (CLSM) and a flow-cytometric internalization assay in combination with different pharmacological inhibitors suggested an involvement of the α5β1 integrin, Fn and Hsc70 and subsequent signaling events mediated by Src and phosphoinositide 3 (PI3) kinases in the Atl-dependent staphylococcal uptake by EA.hy 926 cells. Further characterization of the endocytic machinery implicated a role for clathrin-dependent receptor-mediated endocytosis involving actin cytoskeletal rearrangements and microtubules. In conclusion, Atl ubiquitous among staphylococcal species may substitute for the FnBPs ensuring low-level internalization via a mechanism that seems to share important features with the FnBP-mediated staphylococcal uptake potentially being the prerequisite for the development of therapy-resistant chronic infections by staphylococcal strains that lack FnBPs.
Collapse
Affiliation(s)
- Tim Schlesier
- Institute of Medical Microbiology, D-48149, Münster, Germany
| | - Anke Siegmund
- Institute of Medical Microbiology, University Hospital of Jena, D-07747, Jena, Germany
| | - Ursula Rescher
- Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation (ZMBE), D-48149, Münster, Germany; Interdisciplinary Center for Clinical Research (IZKF), University Hospital of Münster, D-48149, Münster, Germany
| | - Christine Heilmann
- Institute of Medical Microbiology, D-48149, Münster, Germany; Interdisciplinary Center for Clinical Research (IZKF), University Hospital of Münster, D-48149, Münster, Germany.
| |
Collapse
|
27
|
Báez-Magaña M, Alva-Murillo N, Medina-Estrada I, Arceo-Martínez MT, López-Meza JE, Ochoa-Zarzosa A. Plant Defensin γ-Thionin Induces MAPKs and Activates Histone Deacetylases in Bovine Mammary Epithelial Cells Infected With Staphylococcus aureus. Front Vet Sci 2020; 7:390. [PMID: 32793642 PMCID: PMC7394055 DOI: 10.3389/fvets.2020.00390] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 06/01/2020] [Indexed: 11/13/2022] Open
Abstract
Defensins are an important group of host defense peptides. They have immunomodulatory properties, which have been mainly described for mammal defensins, but similar effects for plant defensins remain unknown. Previously, we showed that the defensin γ-thionin (Capsicum chinense) reduces Staphylococcus aureus internalization into bovine mammary epithelial cells (bMECs) while inducing Toll-like receptor 2 (TLR2), modulating the inflammatory response. Here, we analyze the effect of γ-thionin on the TLR2 pathway in bMECs infected with S. aureus and determine if it modulates epigenetic marks. Pre-treated bMECs with γ-thionin (100 ng/ml) reduced the basal activation of p38 and ERK1/2 (~3-fold), but JNK was increased (~1.5-fold). Also, infected bMECs induced p38, but this effect was reversed by γ-thionin, whereas ERK1/2 was reduced by infection but stimulated by γ-thionin. Likewise, γ-thionin reduced the activation of Akt kinase ~50%. Furthermore, γ-thionin induced the activation of transcriptional factors of inflammatory response, highlighting EGR, E2F-1, AP-1, and MEF, which were turned off by bacteria. Also, γ-thionin induced the activation of histone deacetylases (HDACs, ~4-fold) at 24 h in infected bMECs and reduced LSD1 demethylase (HDMs, ~30%) activity. Altogether, these results demonstrated the first time that a plant defensin interferes with inflammatory signaling pathways in mammalian cells.
Collapse
Affiliation(s)
- Marisol Báez-Magaña
- Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| | - Nayeli Alva-Murillo
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Mexico
| | - Ivan Medina-Estrada
- Trayectoria en Genómica Alimentaria, Universidad de la Ciénega del Estado de Michoacán de Ocampo, Sahuayo, Mexico
| | - María Teresa Arceo-Martínez
- Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| | - Joel E López-Meza
- Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| | - Alejandra Ochoa-Zarzosa
- Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| |
Collapse
|
28
|
A comprehensive review of bacterial osteomyelitis with emphasis on Staphylococcus aureus. Microb Pathog 2020; 148:104431. [PMID: 32801004 DOI: 10.1016/j.micpath.2020.104431] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/29/2020] [Accepted: 07/29/2020] [Indexed: 02/04/2023]
Abstract
Osteomyelitis, a significant infection of bone tissue, gives rise to two main groups of infection: acute and chronic. These groups are further categorized in terms of the duration of infection. Usually, children and adults are more susceptible to acute and chronic infections, respectively. The aforementioned groups of osteomyelitis share almost 80% of the corresponding bacterial pathogens. Among all bacteria, Staphylococcus aureus (S. aureus) is a significant pathogen and is associated with a high range of osteomyelitis symptoms. S. aureus has many strategies for interacting with host cells including Small Colony Variant (SCV), biofilm formation, and toxin secretion. In addition, it induces an inflammatory response and causes host cell death by apoptosis and necrosis. However, any possible step to take in this respect is dependent on the conditions and host responses. In the absence of any immune responses and antibiotics, bacteria actively duplicate themselves; however, in the presence of phagocytic cell and harassing conditions, they turn into a SCV, remaining sustainable for a long time. SCV is characterized by notable advantages such as (a) intracellular life that mediates a dam against immune cells and (b) low ATP production that mediates resistance against antibiotics.
Collapse
|
29
|
Ji Z, Su J, Hou Y, Yao Z, Yu B, Zhang X. EGFR/FAK and c-Src signalling pathways mediate the internalisation of Staphylococcus aureus by osteoblasts. Cell Microbiol 2020; 22:e13240. [PMID: 32584493 DOI: 10.1111/cmi.13240] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 06/15/2020] [Accepted: 06/18/2020] [Indexed: 01/18/2023]
Abstract
Internalisation of Staphylococcus aureus in osteoblasts plays a critical role in the persistence and recurrence of osteomyelitis, the mechanisms involved in this process remain largely unknown. In the present study, evidence of internalised S. aureus in osteoblasts was found in long bone of haematogenous osteomyelitis in mice after 2 weeks of infection. Meanwhile, eliminating extracellular S. aureus by gentamicin can partially rescue bone loss, whereas the remaining intracellular S. aureus in osteoblasts may be associated with continuous bone destruction. In osteoblastic MC3T3 cells, intracellular S. aureus was detectable as early as 15 min after infection, and the internalisation rates increased with the extension of infection time. Additionally, S. aureus invasion stimulated the expression of phosphor-focal adhesion kinase (FAK), phosphor-epidermal growth factor receptor (EGFR) and phosphor-c-Src in a time-dependent way, and blocking EGFR/FAK or c-Src signalling significantly reduced the internalisation rate of S. aureus in osteoblasts. Our findings provide new insights into the mechanism of S. aureus internalisation in osteoblast and raise the potential of targeting EGFR/FAK and c-Src as adjunctive therapeutics for treating chronic S. aureus osteomyelitis.
Collapse
Affiliation(s)
- Zhiguo Ji
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jianwen Su
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yilong Hou
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zilong Yao
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Bin Yu
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xianrong Zhang
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
30
|
Watkins KE, Unnikrishnan M. Evasion of host defenses by intracellular Staphylococcus aureus. ADVANCES IN APPLIED MICROBIOLOGY 2020; 112:105-141. [PMID: 32762866 DOI: 10.1016/bs.aambs.2020.05.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Staphylococcus aureus is one of the leading causes of hospital and community-acquired infections worldwide. The increasing occurrence of antibiotic resistant strains and the high rates of recurrent staphylococcal infections have placed several treatment challenges on healthcare systems. In recent years, it has become evident that S. aureus is a facultative intracellular pathogen, able to invade and survive in a range of cell types. The ability to survive intracellularly provides this pathogen with yet another way to evade antibiotics and immune responses during infection. Intracellular S. aureus have been strongly linked to several recurrent infections, including severe bone infections and septicemias. S. aureus is armed with an array of virulence factors as well as an intricate network of regulators that enable it to survive, replicate and escape from a number of immune and nonimmune host cells. It is able to successfully manipulate host cell pathways and use it as a niche to multiply, disseminate, as well as persist during an infection. This bacterium is also known to adapt to the intracellular environment by forming small colony variants, which are metabolically inactive. In this review we will discuss the clinical evidence, the molecular pathways involved in S. aureus intracellular persistence, and new treatment strategies for targeting intracellular S. aureus.
Collapse
|
31
|
Muenzner P, Hauck CR. Neisseria gonorrhoeae Blocks Epithelial Exfoliation by Nitric-Oxide-Mediated Metabolic Cross Talk to Promote Colonization in Mice. Cell Host Microbe 2020; 27:793-808.e5. [PMID: 32289262 DOI: 10.1016/j.chom.2020.03.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 12/19/2019] [Accepted: 03/17/2020] [Indexed: 12/18/2022]
Abstract
Several pathogens suppress exfoliation, a key defense of epithelia against microbial colonization. Common among these pathogens, exemplified by Neisseria gonorrhoeae, is their ability to bind carcinoembryonic antigen-related cell adhesion molecules (CEACAMs). Gonococcal CEACAM engagement triggers the expression of CD105, which is necessary to block epithelial exfoliation, whereas homotypic CEACAM-CEACAM interactions or antibody-mediated CEACAM clustering does not lead to CD105 expression. Here, we show that CEACAM-associated bacteria release nitric oxide (NO) during anaerobic respiration, and membrane-permeable NO initiates a eukaryotic signaling pathway involving soluble guanylate cyclase (sGC), protein kinase G, and the transcription factor CREB to upregulate CD105 expression. A murine vaginal infection model with N. gonorrhoeae reveals this metabolic cross communication allows bacterial suppression of epithelial exfoliation to facilitate mucosal colonization. Disrupting NO-initiated responses in host cells re-establishes epithelial exfoliation and inhibits mouse genital tract colonization by N. gonorrhoeae, suggesting a host-directed approach to prevent bacterial infections.
Collapse
Affiliation(s)
- Petra Muenzner
- Lehrstuhl Für Zellbiologie, Fachbereich Biologie, Universität Konstanz, 78457 Konstanz, Germany
| | - Christof R Hauck
- Lehrstuhl Für Zellbiologie, Fachbereich Biologie, Universität Konstanz, 78457 Konstanz, Germany; Konstanz Research School Chemical Biology, Universität Konstanz, 78457 Konstanz, Germany.
| |
Collapse
|
32
|
Wang X, Wang S, Fu J, Sun D, Shen J, Xie Z. Risk factors associated with recurrence of extremity osteomyelitis treated with the induced membrane technique. Injury 2020; 51:307-311. [PMID: 31771787 DOI: 10.1016/j.injury.2019.11.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/10/2019] [Accepted: 11/20/2019] [Indexed: 02/02/2023]
Abstract
INTRODUCTION Our aim was to observe the efficacy of the induced membrane technique in the treatment of extremity osteomyelitis and to analyse the causes of infection recurrence and its risk factors. METHODS We retrospectively analysed 424 cases of extremity osteomyelitis treated with the induced membrane technique in our department between May 2013 and June 2017. Infection recurrence time, recurrence sites and other relevant information were collected, summarized, and analysed. RESULTS A total of 424 patients were considered as "cured" of osteomyelitis after the first stage and the induced membrane technique was performed to rebuild the bone defects. After a mean follow-up of 31.6 (16-63) months, 52 patients had recurrence of infection, including 42 tibias and 10 femurs. The recurrence rate was 12.26%. Symptoms were relieved in 16 patients after intravenous antibiotic treatment. In the remaining 36 cases (8.49%), the infection was uncontrolled by intravenous antibiotics and surgical debridement was performed. The recurrence rate of infection of the tibia (16.22%) was higher than that of the femur (8.70%). The recurrence rate of post-traumatic osteomyelitis (14.66%) was significantly higher than that of hematogenous osteomyelitis (2.41%). Patients in whom Pseudomonas aeruginosa was isolated at the first stage had a recurrence rate of 28% (7/25), which was higher than that with the other isolated bacteria. Logistic regression analysis showed that repeated operations (≥3), post-traumatic osteomyelitis, and internal fixation at the first stage were risk factors for recurrence of infection, with odds ratios (ORs) of 2.30, 5.53 and 5.28 respectively. CONCLUSIONS The induced membrane technique is an effective method in the treatment of extremity osteomyelitis, although infection recurs in some cases. Repeated operations, post-traumatic osteomyelitis, and internal fixation at the first stage were risk factors for recurrence of infection. P. aeruginosa isolated at the first stage, tibia osteomyelitis, the presence of sinus, or flaps may also be associated with recurrence of infection.
Collapse
Affiliation(s)
- Xiaohua Wang
- National & Regional United Engineering Laboratory of Tissue Engineering, Department of Orthopaedics, First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, PR China
| | - Shulin Wang
- National & Regional United Engineering Laboratory of Tissue Engineering, Department of Orthopaedics, First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, PR China
| | - Jingshu Fu
- National & Regional United Engineering Laboratory of Tissue Engineering, Department of Orthopaedics, First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, PR China
| | - Dong Sun
- National & Regional United Engineering Laboratory of Tissue Engineering, Department of Orthopaedics, First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, PR China
| | - Jie Shen
- National & Regional United Engineering Laboratory of Tissue Engineering, Department of Orthopaedics, First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, PR China
| | - Zhao Xie
- National & Regional United Engineering Laboratory of Tissue Engineering, Department of Orthopaedics, First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, PR China.
| |
Collapse
|
33
|
Hou L, Zhou H, Wan H, Liu Z, Wang L, Cheng Y, Wu X, Gu W, Wang W, Meng Q. TMT-based quantitative proteomic analysis of Eriocheir sinensis hemocytes and thoracic ganglion during Spiroplasma eriocheiris infection. FISH & SHELLFISH IMMUNOLOGY 2020; 96:126-137. [PMID: 31760166 DOI: 10.1016/j.fsi.2019.11.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/29/2019] [Accepted: 11/02/2019] [Indexed: 06/10/2023]
Abstract
Spiroplasma eriocheiris, a novel pathogen of Chinese mitten crab Eriocheir sinensis tremor disease, has led into catastrophic economic losses in aquaculture. S. eriocheiris invaded the hemocytes in the early stage, then invaded nerve tissue and caused typically paroxysmal tremors of pereiopod in the late stage of infection. The purpose of this study was to detect the infection mechanism of hemocytes in the early stage and thoracic ganglion in the late stage of S. eriocheiris infection at the protein level. Hemocytes and thoracic ganglion were collected at 24 h and 10 d after injection (the crabs with typical paroxysmal tremors of the pereiopod), respectively. TMT was performed with isobaric markers, followed by liquid chromatography tandem mass spectrometry (LC-MS/MS). In hemocytes, 127 proteins were up-regulated and 85 proteins were down-regulated in 2747 quantified proteins. Many proteins and process including proPO system proteins, hemolymph coagulation system proteins and lectins were differently expressed in hemocytes and involved in the early immune process of E. sinensis against S. eriocheiris infection. Meanwhile, 545 significantly different expression proteins (292 down-regulated and 253 up-regulated protein including a number of immune-associated, nervous system development and signal transmission related proteins) were identified in thoracic ganglion in the late stage of S. eriocheiris infection. The qRT-PCR analysis results shown that the selected significantly changed proteins in hemocytes and thoracic ganglion were consistent with the TMT proteomics. This paper reported for the first time to study the responses of crab hemocyte and thoracic ganglion against the S. eriocheiris infection at different stages. These findings help us understand the infection mechanism of S. eriocheiris at different stage with the different tissue.
Collapse
Affiliation(s)
- Libo Hou
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences & College of Marine Science and Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Haifeng Zhou
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences & College of Marine Science and Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Hui Wan
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences & College of Marine Science and Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Zhanghuai Liu
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences & College of Marine Science and Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Li Wang
- College of Life Science and Technology, Southwest Minzu University, Chengdu, 610041, China
| | - Yongxu Cheng
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China
| | - Xugan Wu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China
| | - Wei Gu
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences & College of Marine Science and Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu, China
| | - Wen Wang
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences & College of Marine Science and Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China.
| | - Qingguo Meng
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences & College of Marine Science and Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu, China.
| |
Collapse
|
34
|
Wen Q, Gu F, Sui Z, Su Z, Yu T. The Process of Osteoblastic Infection by Staphylococcus Aureus. Int J Med Sci 2020; 17:1327-1332. [PMID: 32624688 PMCID: PMC7330672 DOI: 10.7150/ijms.45960] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 05/18/2020] [Indexed: 12/22/2022] Open
Abstract
Bone infection is difficult to cure, and relapse frequently occurs, which is a major treatment problem. One of the main reasons for the refractory and recurrent nature of bone infection is that bacteria, such as Staphylococcus aureus (S. aureus), can be internalized into osteoblasts after infecting bone tissue, thereby avoiding attack by the immune system and antibiotics. Understanding how bacteria (such as S. aureus) are internalized into osteoblasts is key to effective treatment. S. aureus is the most common pathogenic bacterium that causes bone infection. This paper reviews the literature, analyzes the specific process of osteoblastic S. aureus infection, and summarizes specific treatment strategies to improve bone infection treatment.
Collapse
Affiliation(s)
- Qiangqiang Wen
- Department of Orthopedics, First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Feng Gu
- Department of Orthopedics, First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Zhenjiang Sui
- Department of Orthopedics, First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Zilong Su
- Department of Orthopedics, First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Tiecheng Yu
- Department of Orthopedics, First Hospital of Jilin University, Changchun 130021, Jilin, China
| |
Collapse
|
35
|
Trypanosoma cruzi extracellular amastigotes selectively trigger the PI3K/Akt and Erk pathways during HeLa cell invasion. Microbes Infect 2019; 21:485-489. [DOI: 10.1016/j.micinf.2019.06.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/28/2019] [Accepted: 06/12/2019] [Indexed: 11/15/2022]
|
36
|
Host-Targeted Therapeutics against Multidrug Resistant Intracellular Staphylococcus aureus. Antibiotics (Basel) 2019; 8:antibiotics8040241. [PMID: 31795127 PMCID: PMC6963206 DOI: 10.3390/antibiotics8040241] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/21/2019] [Accepted: 11/25/2019] [Indexed: 12/14/2022] Open
Abstract
Staphylococcus aureus is a facultative intracellular pathogen that invades and replicates within many types of human cells. S. aureus has shown to rapidly overcome traditional antibiotherapy by developing multidrug resistance. Furthermore, intracellular S. aureus is protected from the last-resort antibiotics—vancomycin, daptomycin, and linezolid—as they are unable to achieve plasma concentrations sufficient for intracellular killing. Therefore, there is an urgent need to develop novel anti-infective therapies against S. aureus infections. Here, we review the current state of the field and highlight the exploitation of host-directed approaches as a promising strategy going forward.
Collapse
|
37
|
Fibronectin and Its Role in Human Infective Diseases. Cells 2019; 8:cells8121516. [PMID: 31779172 PMCID: PMC6952806 DOI: 10.3390/cells8121516] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 11/19/2019] [Accepted: 11/22/2019] [Indexed: 01/25/2023] Open
Abstract
Fibronectin is a multidomain glycoprotein ubiquitously detected in extracellular fluids and matrices of a variety of animal and human tissues where it functions as a key link between matrices and cells. Fibronectin has also emerged as the target for a large number of microorganisms, particularly bacteria. There are clear indications that the binding of microorganism’ receptors to fibronectin promotes attachment to and infection of host cells. Each bacterium may use different receptors which recognize specific fibronectin domains, mostly the N-terminal domain and the central cell-binding domain. In many cases, fibronectin receptors have actions over and above that of simple adhesion: In fact, adhesion is often the prerequisite for invasion and internalization of microorganisms in the cells of colonized tissues. This review updates the current understanding of fibronectin receptors of several microorganisms with emphasis on their biochemical and structural properties and the role they can play in the onset and progression of host infection diseases. Furthermore, we describe the antigenic profile and discuss the possibility of designing adhesion inhibitors based on the structure of the fibronectin-binding site in the receptor or the receptor-binding site in fibronectin.
Collapse
|
38
|
Lewandowska-Sabat AM, Kirsanova E, Klopp C, Solberg TR, Heringstad B, Østerås O, Boysen P, Olsaker I. Transcription Profiling of Monocyte-Derived Macrophages Infected In Vitro With Two Strains of Streptococcus agalactiae Reveals Candidate Pathways Affecting Subclinical Mastitis in Cattle. Front Genet 2019; 10:689. [PMID: 31417606 PMCID: PMC6681682 DOI: 10.3389/fgene.2019.00689] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 07/02/2019] [Indexed: 12/12/2022] Open
Abstract
Macrophages are key cells of innate immune response and serve as the first line of defense against bacteria. Transcription profiling of bacteria-infected macrophages could provide important insights on the pathogenicity and host defense mechanisms during infection. We have examined transcription profiles of bovine monocyte-derived macrophages (bMDMs) isolated from the blood of 12 animals and infected in vitro with two strains of Streptococcus agalactiae. Illumina sequencing of RNA from 36 bMDMs cultures exposed in vitro to either one of two sequence types of S. agalactiae (ST103 or ST12) for 6 h and unchallenged controls was performed. Analyses of over 1,656 million high-quality paired-end sequence reads revealed 5,936 and 6,443 differentially expressed genes (p < 0.05) in bMDMs infected with ST103 and ST12, respectively, versus unchallenged controls. Moreover, 588 genes differentially expressed between bMDMs infected with ST103 versus ST12 were identified. Ingenuity pathway analysis of the differentially up-regulated genes in the bMDMs infected with ST103 revealed significant enrichment for granulocyte adhesion and diapedesis, while significant enrichment for the phagosome formation pathway was found among down-regulated genes. Moreover, Ingenuity pathway analysis of the differentially up-regulated genes in the bMDMs infected with ST12 showed significant enrichment for type 1/type 2 T helper cell activation, while the complement activation pathway was overrepresented in the down-regulated genes. Our study identified pathogen-induced regulation of key genes and pathways involved in the immune response of macrophages against infection but also likely involved in bacterial evasion of the host immune system. These results may contribute to better understanding of the mechanisms underlying subclinical infection such as bovine streptococcal mastitis.
Collapse
Affiliation(s)
- Anna Monika Lewandowska-Sabat
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Elena Kirsanova
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | | | | | - Bjørg Heringstad
- Geno Breeding and A.I. Association, Hamar, Norway
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Olav Østerås
- Norwegian Cattle Health Services and TINE Extension Services, Ås, Norway
| | - Preben Boysen
- Department of Food Safety and Infection Biology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Ingrid Olsaker
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| |
Collapse
|
39
|
Otopathogenic Staphylococcus aureus Invades Human Middle Ear Epithelial Cells Primarily through Cholesterol Dependent Pathway. Sci Rep 2019; 9:10777. [PMID: 31346200 PMCID: PMC6658548 DOI: 10.1038/s41598-019-47079-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 06/26/2019] [Indexed: 01/20/2023] Open
Abstract
Chronic suppurative otitis media (CSOM) is one of the most common infectious diseases of the middle ear especially affecting children, leading to delay in language development and communication. Although Staphylococcus aureus is the most common pathogen associated with CSOM, its interaction with middle ear epithelial cells is not well known. In the present study, we observed that otopathogenic S. aureus has the ability to invade human middle ear epithelial cells (HMEECs) in a dose and time dependent manner. Scanning electron microscopy demonstrated time dependent increase in the number of S. aureus on the surface of HMEECs. We observed that otopathogenic S. aureus primarily employs a cholesterol dependent pathway to colonize HMEECs. In agreement with these findings, confocal microscopy showed that S. aureus colocalized with lipid rafts in HMEECs. The results of the present study provide new insights into the pathogenesis of S. aureus induced CSOM. The availability of in vitro cell culture model will pave the way to develop novel effective treatment modalities for CSOM beyond antibiotic therapy.
Collapse
|
40
|
Foster TJ. Surface Proteins of Staphylococcus aureus. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0046-2018. [PMID: 31267926 PMCID: PMC10957221 DOI: 10.1128/microbiolspec.gpp3-0046-2018] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Indexed: 12/20/2022] Open
Abstract
The surface of Staphylococcus aureus is decorated with over 20 proteins that are covalently anchored to peptidoglycan by the action of sortase A. These cell wall-anchored (CWA) proteins can be classified into several structural and functional groups. The largest is the MSCRAMM family, which is characterized by tandemly repeated IgG-like folded domains that bind peptide ligands by the dock lock latch mechanism or the collagen triple helix by the collagen hug. Several CWA proteins comprise modules that have different functions, and some individual domains can bind different ligands, sometimes by different mechanisms. For example, the N-terminus of the fibronectin binding proteins comprises an MSCRAMM domain which binds several ligands, while the C-terminus is composed of tandem fibronectin binding repeats. Surface proteins promote adhesion to host cells and tissue, including components of the extracellular matrix, contribute to biofilm formation by stimulating attachment to the host or indwelling medical devices followed by cell-cell accumulation via homophilic interactions between proteins on neighboring cells, help bacteria evade host innate immune responses, participate in iron acquisition from host hemoglobin, and trigger invasion of bacteria into cells that are not normally phagocytic. The study of genetically manipulated strains using animal infection models has shown that many CWA proteins contribute to pathogenesis. Fragments of CWA proteins have the potential to be used in multicomponent vaccines to prevent S. aureus infections.
Collapse
|
41
|
Onofre TS, Rodrigues JPF, Yoshida N. Depletion of Host Cell Focal Adhesion Kinase Increases the Susceptibility to Invasion by Trypanosoma cruzi Metacyclic Forms. Front Cell Infect Microbiol 2019; 9:231. [PMID: 31297342 PMCID: PMC6607697 DOI: 10.3389/fcimb.2019.00231] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 06/11/2019] [Indexed: 11/13/2022] Open
Abstract
Focal adhesion kinase (FAK), a cytoplasmic protein tyrosine kinase (PTK), is implicated in diverse cellular processes, including the regulation of F-actin dynamics. Host cell F-actin rearrangement is critical for invasion of Trypanosoma cruzi, the protozoan parasite that causes Chagas disease. It is unknown whether FAK is involved in the internalization process of metacyclic trypomastigote (MT), the parasite form that is important for vectorial transmission. MT can enter the mammalian host through the ocular mucosa, lesion in the skin, or by the oral route. Oral infection by MT is currently a mode of transmission responsible for outbreaks of acute Chagas disease. Here we addressed the question by generating HeLa cell lines deficient in FAK. Host cell invasion assays showed that, as compared to control wild type (WT) cells, FAK-deficient cells were significantly more susceptible to parasite invasion. Lysosome spreading and a disarranged actin cytoskeleton, two features associated with susceptibility to MT invasion, were detected in FAK-deficient cells, as opposed to WT cells that exhibited a more organized F-actin arrangement, and lysosomes concentrated in the perinuclear area. As compared to WT cells, the capacity of FAK-deficient cells to bind a recombinant protein based on gp82, the MT surface molecule that mediates invasion, was higher. On the other hand, when treated with FAK-specific inhibitor PF573228, WT cells exhibited a dense meshwork of actin filaments, lysosome accumulation around the nucleus, and had increased resistance to MT invasion. In cells treated with PF573228, the phosphorylation levels of FAK were reduced and, as a consequence of FAK inactivation, diminished phosphorylation of extracellular signal-regulated protein kinases (ERK1/2) was observed. Fibronectin, known to impair MT invasion, induced the formation of thick bundles of F-actin and ERK1/2 dephosphorylation.
Collapse
Affiliation(s)
- Thiago Souza Onofre
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - João Paulo Ferreira Rodrigues
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Nobuko Yoshida
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
42
|
Chen D, Cao L, Wang X. MPZL1 promotes tumor cell proliferation and migration via activation of Src kinase in ovarian cancer. Oncol Rep 2019; 42:679-687. [PMID: 31233194 PMCID: PMC6610034 DOI: 10.3892/or.2019.7199] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 05/28/2019] [Indexed: 12/18/2022] Open
Abstract
Tumor metastasis is the leading cause of mortality in patients with advanced ovarian cancer. Myelin protein zero like 1 (MPZL1) is a transmembrane glycoprotein that promotes migration of hepatocellular carcinoma cells and is involved in extracellular matrix-induced signal transduction. However, the functional role of MPZL1 in ovarian cancer has not been well elucidated. The present study conducted western blotting, phase-contrast imaging and immunohistochemistry to reveal the functions of MPZL1 in ovarian cancer. The present study demonstrated that the expression levels of MPZL1 were associated with malignant features of ovarian cancer. Furthermore, overexpression of MPZL1 significantly promoted cell proliferation, migration and invasion of ovarian cancer cells. Conversely, MPZL1 depletion by short hairpin RNA inhibited migration and invasion of ovarian cancer cells. In addition, this study demonstrated that phosphorylation of Src kinase was increased upon MPZL1 overexpression. Additionally, phosphorylation and activation of pro-metastatic proteins p130 and cortactin were induced by phosphorylated Src kinase. Collectively, these findings indicated that MPZL1 may be a novel pro-metastatic gene, which promotes tumor cell proliferation and migration through Src-mediated phosphorylation of p130 and cortactin in ovarian cancer.
Collapse
Affiliation(s)
- Danni Chen
- Department of Obstetrics and Gynecology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, P.R. China
| | - Lei Cao
- Department of Obstetrics and Gynecology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, P.R. China
| | - Xiaojie Wang
- Department of Obstetrics and Gynecology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, P.R. China
| |
Collapse
|
43
|
Abstract
The entry of pathogens into nonphagocytic host cells has received much attention in the past three decades, revealing a vast array of strategies employed by bacteria and viruses. A method of internalization that has been extensively studied in the context of viral infections is the use of the clathrin-mediated pathway. More recently, a role for clathrin in the entry of some intracellular bacterial pathogens was discovered. Classically, clathrin-mediated endocytosis was thought to accommodate internalization only of particles smaller than 150 nm; however, this was challenged upon the discovery that Listeria monocytogenes requires clathrin to enter eukaryotic cells. Now, with discoveries that clathrin is required during other stages of some bacterial infections, another paradigm shift is occurring. There is a more diverse impact of clathrin during infection than previously thought. Much of the recent data describing clathrin utilization in processes such as bacterial attachment, cell-to-cell spread and intracellular growth may be due to newly discovered divergent roles of clathrin in the cell. Not only does clathrin act to facilitate endocytosis from the plasma membrane, but it also participates in budding from endosomes and the Golgi apparatus and in mitosis. Here, the manipulation of clathrin processes by bacterial pathogens, including its traditional role during invasion and alternative ways in which clathrin supports bacterial infection, is discussed. Researching clathrin in the context of bacterial infections will reveal new insights that inform our understanding of host-pathogen interactions and allow researchers to fully appreciate the diverse roles of clathrin in the eukaryotic cell.
Collapse
Affiliation(s)
- Eleanor A Latomanski
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Hayley J Newton
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| |
Collapse
|
44
|
Clustering of integrin β cytoplasmic domains triggers nascent adhesion formation and reveals a protozoan origin of the integrin-talin interaction. Sci Rep 2019; 9:5728. [PMID: 30952878 PMCID: PMC6450878 DOI: 10.1038/s41598-019-42002-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/20/2019] [Indexed: 01/16/2023] Open
Abstract
Integrins and integrin-dependent cell-matrix adhesions are essential for a number of physiological processes. Integrin function is tightly regulated via binding of cytoplasmic proteins to integrin intracellular domains. Yet, the complexity of cell-matrix adhesions in mammals, with more than 150 core adhesome proteins, complicates the analysis of integrin-associated protein complexes. Interestingly, the evolutionary origin of integrins dates back before the transition from unicellular life to complex multicellular animals. Though unicellular relatives of metazoa have a less complex adhesome, nothing is known about the initial steps of integrin activation and adhesion complex assembly in protozoa. Therefore, we developed a minimal, microscope-based system using chimeric integrins to investigate receptor-proximal events during focal adhesion assembly. Clustering of the human integrin β1 tail led to recruitment of talin, kindlin, and paxillin and mutation of the known talin binding site abolished recruitment of this protein. Proteins indirectly linked to integrins, such as vinculin, migfilin, p130CAS, or zyxin were not enriched around the integrin β1 tail. With the exception of integrin β4 and integrin β8, the cytoplasmic domains of all human integrin β subunits supported talin binding. Likewise, the cytoplasmic domains of integrin β subunits expressed by the protozoan Capsaspora owczarzaki readily recruited talin and this interaction was based on an evolutionary conserved NPXY/F amino acid motif. The results we present here validate the use of our novel microscopic assay to uncover details of integrin-based protein-protein interactions in a cellular context and suggest that talin binding to integrin β cytoplasmic tails is an ancient feature of integrin regulation.
Collapse
|
45
|
Host-directed kinase inhibitors act as novel therapies against intracellular Staphylococcus aureus. Sci Rep 2019; 9:4876. [PMID: 30890742 PMCID: PMC6425000 DOI: 10.1038/s41598-019-41260-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 03/05/2019] [Indexed: 01/09/2023] Open
Abstract
Host-directed therapeutics are a promising anti-infective strategy against intracellular bacterial pathogens. Repurposing host-targeted drugs approved by the FDA in the US, the MHRA in the UK and/or regulatory equivalents in other countries, is particularly interesting because these drugs are commercially available, safe doses are documented and they have been already approved for other clinical purposes. In this study, we aimed to identify novel therapies against intracellular Staphylococcus aureus, an opportunistic pathogen that is able to exploit host molecular and metabolic pathways to support its own intracellular survival. We screened 133 host-targeting drugs and found three host-directed tyrosine kinase inhibitors (Ibrutinib, Dasatinib and Crizotinib) that substantially impaired intracellular bacterial survival. We found that Ibrutinib significantly increased host cell viability after S. aureus infection via inhibition of cell invasion and intracellular bacterial proliferation. Using phosphoproteomics data, we propose a putative mechanism of action of Ibrutinib involving several host factors, including EPHA2, C-JUN and NWASP. We confirmed the importance of EPHA2 for staphylococcal infection in an EPHA2-knock-out cell line. Our study serves as an important example of feasibility for identifying host-directed therapeutics as candidates for repurposing.
Collapse
|
46
|
Moldovan A, Fraunholz MJ. In or out: Phagosomal escape of Staphylococcus aureus. Cell Microbiol 2019; 21:e12997. [PMID: 30576050 DOI: 10.1111/cmi.12997] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 11/29/2018] [Accepted: 12/17/2018] [Indexed: 12/29/2022]
Abstract
Staphylococcus aureus is internalised by host cells in vivo, and recent research results suggest that the bacteria use this intracellularity to persist in the host and form a reservoir for recurrent infections. However, in different cells types, the pathogen resorts to alternative strategies to survive phagocytosis and the antimicrobial mechanisms of host cells. In non-professional phagocytes, S. aureus either escapes the endosome followed by cytoplasmic replication or replicates within autophagosomes. Professional phagocytes possess a limited capacity to kill S. aureus and hence the bacteria, well equipped with immune evasive mechanisms, replicate within the cells, eventually lyse out of the cells and thus persist in a continuous cycle of phagocytosis, host cell death, and bacterial release.
Collapse
Affiliation(s)
- Adriana Moldovan
- Chair of Microbiology, University of Würzburg, Würzburg, Germany
| | | |
Collapse
|
47
|
Zhang B, Wu H, Fang L, Ding P, Xu K, Yang Q, Liu R. MerTK Does Not Mediate Phagocytosis of Staphylococcus aureus but Attenuates Inflammation Induced by Staphylococcal Lipoteichoic Acid Through Blocking NF-κB Activation. Inflammation 2018; 40:1543-1552. [PMID: 28528507 DOI: 10.1007/s10753-017-0595-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Mer receptor tyrosine kinase (MerTK) expressed in macrophages is essential for phagocytosis of apoptotic cells. Here, we investigate whether MerTK is involved in the phagocytosis of Staphylococcus aureus (S. aureus) and regulation of staphylococcal lipoteichoic acid (LTA)-induced inflammatory response in macrophages. We found that stimulating RAW264.7 macrophages with S. aureus activated multiple signaling pathways including toll-like receptor 2 (TLR2), scavenger receptor A (SR-A), and MerTK. Meanwhile, S. aureus stimulation also induced activation of proteins focal adhesion kinase (FAK) and Rac1, which are related to phagocytosis. Pretreatment with a specific Mer-blocking antibody significantly inhibited S. aureus-induced phosphorylation of MerTK, while it had no effect on S. aureus-induced activation of FAK and Rac1. Moreover, by confocal laser microscope, we observed that the antibody blockade of MerTK had little impact on the phagocytosis of S. aureus by RAW264.7 macrophages. Additionally, pretreatment with this antibody further promoted LTA-induced phosphorylation of nuclear factor κB (NF-κB) p65 subunit and production of pro-inflammatory cytokines, such as TNF-α, IL-6, IL-1β, and macrophage inflammatory protein-2 (MIP-2). Collectively, these results suggest that MerTK does not play an essential role in the phagocytosis of S. aureus but attenuates inflammation induced by staphylococcal LTA through blocking NF-κB activation.
Collapse
Affiliation(s)
- Bing Zhang
- Department of Respiration, Hefei Second People's Hospital, Anhui Medical University, Heping Road 246, Hefei, Anhui, 230022, People's Republic of China
| | - Huimei Wu
- Department of Respiration, Anhui Geriatric Institute, First Affiliated Hospital, Anhui Medical University, Jixi Road 218, Hefei, Anhui, 230022, People's Republic of China
| | - Lei Fang
- Department of Respiration, Anhui Geriatric Institute, First Affiliated Hospital, Anhui Medical University, Jixi Road 218, Hefei, Anhui, 230022, People's Republic of China
| | - Peishan Ding
- Department of Respiration, Anhui Geriatric Institute, First Affiliated Hospital, Anhui Medical University, Jixi Road 218, Hefei, Anhui, 230022, People's Republic of China
| | - Ke Xu
- Department of Respiration, Anhui Geriatric Institute, First Affiliated Hospital, Anhui Medical University, Jixi Road 218, Hefei, Anhui, 230022, People's Republic of China
| | - Qingbin Yang
- Department of Respiration, Hefei Second People's Hospital, Anhui Medical University, Heping Road 246, Hefei, Anhui, 230022, People's Republic of China
| | - Rongyu Liu
- Department of Respiration, Anhui Geriatric Institute, First Affiliated Hospital, Anhui Medical University, Jixi Road 218, Hefei, Anhui, 230022, People's Republic of China.
| |
Collapse
|
48
|
Liu M, Yang S, Zheng C, Luo X, Bei W, Cai P. Binding to type I collagen is essential for the infectivity of Vibrio parahaemolyticus to host cells. Cell Microbiol 2018; 20:e12856. [PMID: 29763968 DOI: 10.1111/cmi.12856] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 03/28/2018] [Accepted: 04/17/2018] [Indexed: 01/20/2023]
Abstract
Vibrio parahaemolyticus is a globally present marine bacterium that often leads to acute gastroenteritis. Two type III secretion systems (T3SSs), T3SS1 and T3SS2, are important for host infection. Type I collagen is a component of the extracellular matrix and is abundant in the small intestine. However, whether type I collagen serves as the cellular receptor for V. parahaemolyticus infection of host cells remains enigmatic. In this study, we discovered that type I collagen is not only important for the attachment of V. parahaemolyticus to host cells but is also involved in T3SS1-dependent cytotoxicity. In addition, 2 virulence factors, MAM7 and VpadF enable V. parahaemolyticus to interact with type I collagen and mediate T3SS2-dependent host cell invasion. Type I collagen, the collagen receptor α1 integrin, and its downstream factor phosphatidylinositol 3-kinase (PI3K) are responsible for V. parahaemolyticus invasion of host cells. Further biochemical studies revealed that VpadF mainly relies on the C-terminal region for type I collagen binding and MAM7 relies on mce domains to bind to type I collagen. As MAM7 and/or VpadF homologues are widely distributed in the genus Vibrio, we propose that Vibrios have evolved a unique strategy to infect host cells by binding to type I collagen.
Collapse
Affiliation(s)
- Ming Liu
- State Key Laboratory of Agricultural Microbiology, College of Resources of Environment, Huazhong Agricultural University, Wuhan, China
| | - Shanshan Yang
- State Key Laboratory of Agricultural Microbiology, College of Resources of Environment, Huazhong Agricultural University, Wuhan, China
| | - Chengkun Zheng
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Xuesong Luo
- State Key Laboratory of Agricultural Microbiology, College of Resources of Environment, Huazhong Agricultural University, Wuhan, China
| | - Weicheng Bei
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Peng Cai
- State Key Laboratory of Agricultural Microbiology, College of Resources of Environment, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
49
|
Lewandowska-Sabat AM, Hansen SF, Solberg TR, Østerås O, Heringstad B, Boysen P, Olsaker I. MicroRNA expression profiles of bovine monocyte-derived macrophages infected in vitro with two strains of Streptococcus agalactiae. BMC Genomics 2018; 19:241. [PMID: 29636015 PMCID: PMC5894239 DOI: 10.1186/s12864-018-4591-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 03/09/2018] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are short, non-coding RNAs that regulate gene expression at the post-transcriptional level and play a key role in the control of innate and adaptive immune responses. For a subclinical infection such as bovine streptococcal mastitis, early detection is a great challenge, and miRNA profiling could potentially assist in the diagnosis and contribute to the understanding of the pathogenicity and defense mechanisms. We have examined the miRNA repertoire and the transcript level of six key immune genes [tumor necrosis factor alpha (TNFα), interleukin-1 beta (IL-1β), interleukin-6 (IL-6), interleukin-8 (IL-8), interleukin-10 (IL-10) and transforming growth factor beta 1 (TGFβ1)] during the early phase response of bovine immature macrophages to in vitro infection with live Streptococcus agalactiae. Next generation sequencing of small RNA libraries from 20 cultures of blood monocyte-derived macrophages exposed to either one of two sequence types of S. agalactiae (ST103 or ST12) for 6 h in vitro and unchallenged controls was performed. RESULTS Analyzes of over 356 million high quality sequence reads, revealed differential expression of 17 and 44 miRNAs (P < 0.05) in macrophages infected with ST103 and ST12, respectively, versus unchallenged control cultures. We also identified the expression of 31 potentially novel bovine miRNAs. Pathway analysis of the differentially regulated miRNAs and their predicted target genes in the macrophages infected with ST12 revealed significant enrichment for inflammatory response and apoptosis, while significant enrichment for integrin and GABA signaling were found in ST103 infected macrophages. Furthermore, both bacterial strains regulated miRNAs involved in the alternative activation of macrophages. The transcript levels of TNF-α, IL-1β, IL-6, IL-8 and IL-10 were significantly up-regulated by both bacterial strains, however the expression of TGFβ1 was significantly down-regulated only by ST12. CONCLUSIONS Our study identified pathogen-induced differential regulation of miRNAs controlling inflammation and polarization in bovine macrophages. This implies that miRNAs have potential to serve as biomarkers for early detection of bacterial infection.
Collapse
Affiliation(s)
- Anna Monika Lewandowska-Sabat
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 0033, Oslo, Norway.
| | - Silje Furre Hansen
- Department of Food Safety and Infection Biology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 0033, Oslo, Norway
| | | | - Olav Østerås
- Norwegian Cattle Health Services and TINE Extension Services, 1431, Ås, Norway
| | - Bjørg Heringstad
- Geno Breeding and A.I. Association, Hamar, Norway.,Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, 1432, Ås, Norway
| | - Preben Boysen
- Department of Food Safety and Infection Biology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 0033, Oslo, Norway
| | - Ingrid Olsaker
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 0033, Oslo, Norway
| |
Collapse
|
50
|
Staphylococcal Osteomyelitis: Disease Progression, Treatment Challenges, and Future Directions. Clin Microbiol Rev 2018; 31:31/2/e00084-17. [PMID: 29444953 DOI: 10.1128/cmr.00084-17] [Citation(s) in RCA: 254] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Osteomyelitis is an inflammatory bone disease that is caused by an infecting microorganism and leads to progressive bone destruction and loss. The most common causative species are the usually commensal staphylococci, with Staphylococcus aureus and Staphylococcus epidermidis responsible for the majority of cases. Staphylococcal infections are becoming an increasing global concern, partially due to the resistance mechanisms developed by staphylococci to evade the host immune system and antibiotic treatment. In addition to the ability of staphylococci to withstand treatment, surgical intervention in an effort to remove necrotic and infected bone further exacerbates patient impairment. Despite the advances in current health care, osteomyelitis is now a major clinical challenge, with recurrent and persistent infections occurring in approximately 40% of patients. This review aims to provide information about staphylococcus-induced bone infection, covering the clinical presentation and diagnosis of osteomyelitis, pathophysiology and complications of osteomyelitis, and future avenues that are being explored to treat osteomyelitis.
Collapse
|