1
|
Enhancing Electrotransfection Efficiency through Improvement in Nuclear Entry of Plasmid DNA. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 11:263-271. [PMID: 29858061 PMCID: PMC5992438 DOI: 10.1016/j.omtn.2018.02.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 02/22/2018] [Accepted: 02/26/2018] [Indexed: 01/15/2023]
Abstract
The nuclear envelope is a physiological barrier to electrogene transfer. To understand different mechanisms of the nuclear entry for electrotransfected plasmid DNA (pDNA), the current study investigated how manipulation of the mechanisms could affect electrotransfection efficiency (eTE), transgene expression level (EL), and cell viability. In the investigation, cells were first synchronized at G2-M phase prior to electrotransfection so that the nuclear envelope breakdown (NEBD) occurred before pDNA entered the cells. The NEBD significantly increased the eTE and the EL while the cell viability was not compromised. In the second experiment, the cells were treated with a nuclear pore dilating agent (i.e., trans-1,2-cyclohexanediol). The treatment could increase the EL, but had only minor effects on eTE. Furthermore, the treatment was more cytotoxic, compared with the cell synchronization. In the third experiment, a nuclear targeting sequence (i.e., SV40) was incorporated into the pDNA prior to electrotransfection. The incorporation was more effective than the cell synchronization for enhancing the EL, but not the eTE, and the effectiveness was cell type dependent. Taken together, the data described above suggested that synchronization of the NEBD could be a practical approach to improving electrogene transfer in all dividing cells.
Collapse
|
2
|
Mukherjee S, Chakraborty P, Saha P. Phosphorylation of Ku70 subunit by cell cycle kinases modulates the replication related function of Ku heterodimer. Nucleic Acids Res 2016; 44:7755-65. [PMID: 27402161 PMCID: PMC5027504 DOI: 10.1093/nar/gkw622] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 06/29/2016] [Accepted: 07/01/2016] [Indexed: 12/18/2022] Open
Abstract
The Ku protein, a heterodimer of Ku70 and Ku80, binds to chromosomal replication origins maximally at G1-phase and plays an essential role in assembly of origin recognition complex. However, the mechanism regulating such a critical periodic activity of Ku remained unknown. Here, we establish human Ku70 as a novel target of cyclin B1-Cdk1, which phosphorylates it in a Cy-motif dependent manner. Interestingly, cyclin E1- and A2-Cdk2 also phosphorylate Ku70, and as a result, the protein remains in a phosphorylated state during S-M phases of cell cycle. Intriguingly, the phosphorylation of Ku70 by cyclin-Cdks abolishes the interaction of Ku protein with replication origin due to disruption of the dimer. Furthermore, Ku70 is dephosphorylated in G1-phase, when Ku interacts with replication origin maximally. Strikingly, the over-expression of Ku70 with non-phosphorylable Cdk targets enhances the episomal replication of Ors8 origin and induces rereplication in HeLa cells, substantiating a preventive role of Ku phosphorylation in premature and untimely licensing of replication origin. Therefore, periodic phosphorylation of Ku70 by cyclin-Cdks prevents the interaction of Ku with replication origin after initiation events in S-phase and the dephosphorylation at the end of mitosis facilitates its participation in pre-replication complex formation.
Collapse
Affiliation(s)
- Soumita Mukherjee
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, Kolkata 700064, India
| | - Prabal Chakraborty
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, Kolkata 700064, India
| | - Partha Saha
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, Kolkata 700064, India Homi Bhaba National Institute, Mumbai 400094, India
| |
Collapse
|
3
|
Garcia PL, Miller AL, Kreitzburg KM, Council LN, Gamblin TL, Christein JD, Heslin MJ, Arnoletti JP, Richardson JH, Chen D, Hanna CA, Cramer SL, Yang ES, Qi J, Bradner JE, Yoon KJ. The BET bromodomain inhibitor JQ1 suppresses growth of pancreatic ductal adenocarcinoma in patient-derived xenograft models. Oncogene 2015; 35:833-45. [PMID: 25961927 DOI: 10.1038/onc.2015.126] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 03/04/2015] [Accepted: 03/16/2015] [Indexed: 12/23/2022]
Abstract
The primary aim of this study was to evaluate the antitumor efficacy of the bromodomain inhibitor JQ1 in pancreatic ductal adenocarcinoma (PDAC) patient-derived xenograft (tumorgraft) models. A secondary aim of the study was to evaluate whether JQ1 decreases expression of the oncogene c-Myc in PDAC tumors, as has been reported for other tumor types. We used five PDAC tumorgraft models that retain specific characteristics of tumors of origin to evaluate the antitumor efficacy of JQ1. Tumor-bearing mice were treated with JQ1 (50 mg/kg daily for 21 or 28 days). Expression analyses were performed with tumors harvested from host mice after treatment with JQ1 or vehicle control. An nCounter PanCancer Pathways Panel (NanoString Technologies) of 230 cancer-related genes was used to identify gene products affected by JQ1. Quantitative RT-PCR, immunohistochemistry and immunoblots were carried out to confirm that changes in RNA expression reflected changes in protein expression. JQ1 inhibited the growth of all five tumorgraft models (P<0.05), each of which harbors a KRAS mutation; but induced no consistent change in expression of c-Myc protein. Expression profiling identified CDC25B, a regulator of cell cycle progression, as one of the three RNA species (TIMP3, LMO2 and CDC25B) downregulated by JQ1 (P<0.05). Inhibition of tumor progression was more closely related to decreased expression of nuclear CDC25B than to changes in c-Myc expression. JQ1 and other agents that inhibit the function of proteins with bromodomains merit further investigation for treating PDAC tumors. Work is ongoing in our laboratory to identify effective drug combinations that include JQ1.
Collapse
Affiliation(s)
- P L Garcia
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - A L Miller
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - K M Kreitzburg
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - L N Council
- Division of Anatomic Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - T L Gamblin
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - J D Christein
- Division of General Surgery, Gastrointestinal Surgery or Surgical Oncology, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - M J Heslin
- Division of General Surgery, Gastrointestinal Surgery or Surgical Oncology, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - J P Arnoletti
- Division of General Surgery, Gastrointestinal Surgery or Surgical Oncology, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - J H Richardson
- Division of General Surgery, Gastrointestinal Surgery or Surgical Oncology, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - D Chen
- Division of Preventive Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - C A Hanna
- Division of Anatomic Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - S L Cramer
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - E S Yang
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - J Qi
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA
| | - J E Bradner
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA
| | - K J Yoon
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
4
|
TGFβ can stimulate the p(38)/β-catenin/PPARγ signaling pathway to promote the EMT, invasion and migration of non-small cell lung cancer (H460 cells). Clin Exp Metastasis 2014; 31:881-95. [PMID: 25168821 DOI: 10.1007/s10585-014-9677-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Accepted: 08/14/2014] [Indexed: 12/22/2022]
Abstract
Signaling pathway(s) responsible for transforming growth factor β (TGFβ)-induced epithelial mesenchymal transition (EMT), invasion and migration of H460 cells (non-small cell lung cancer/NSCLC) was identified in the study. The results showed that TGFβ-induced p(38)/β-catenin/PPARγ signaling pathway played a critical role in the promotion of EMT, invasion and migration of H460 cells. All these pathological outcomes attributed to PPARγ-increased expression of p-EGFR, p-c-MET and Vimentin and the decrease of E-cadherin. Transforming growth factor β and p(38)-induced β-catenin not only stimulated the expression of PPARγ but also physically interacted with it. Blocking the ligand binding domain of PPARγ (with GW9662) could significantly interfere the binding between PPARγ and β-catenin, and interrupt the nuclear infiltration of both factors. These findings suggested that β-catenin was an upstream regulator and a ligand of PPARγ, and the binding between these two molecules was critical for their nuclear infiltration. Transforming growth factor β-induced tumor invasion and migration was also seen in U373 cells (brain glioma, with high inducible PPARγ) in a PPARγ-dependent manner, but not in CH27 cells (squamous NSCLC, with low PPARγ). PPARγ shRNA, GW9662, JW67 and 2,4-diaminoquinazoline were all revealed to have important values in the control of the intrinsic and TGFβ-induced EMT, tumor invasion and migration of H460 cells. The results further suggested that PPARγ and β-catenin may be the potential markers for the early diagnosis and/or treatment of metastatic tumors.
Collapse
|
5
|
Leman AR, Noguchi E. Chromatin immunoprecipitation to investigate origin association of replication factors in mammalian cells. Methods Mol Biol 2014; 1170:539-47. [PMID: 24906335 DOI: 10.1007/978-1-4939-0888-2_30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A variety of DNA-binding proteins regulate DNA transactions including DNA replication and DNA damage response. To initiate DNA replication in S phase of the cell cycle, numerous replication proteins must be recruited to the replication origin in order to unwind and synthesize DNA. Some replication factors stay at the origin, while replisome components move with the replication fork. When the replisome encounters DNA damage or other issues during DNA replication, the replication fork stalls and accumulates single-stranded DNA that triggers the ATR-dependent replication checkpoint, in order to slow down S phase and arrest the cell cycle at the G2-M transition. It is also possible that replication forks collapse, leading to double-strand breaks that recruit various DNA damage response proteins to activate cell cycle checkpoints and DNA repair pathways. Therefore, defining the localization of DNA transaction factors during the cell cycle should provide important insights into mechanistic understanding of DNA replication and its related processes. In this chapter, we describe a chromatin immunoprecipitation method to locate replisome components at replication origins in human cells.
Collapse
Affiliation(s)
- Adam R Leman
- Department of Biology, Duke University, Durham, NC, USA
| | | |
Collapse
|
6
|
Patil M, Pabla N, Ding HF, Dong Z. Nek1 interacts with Ku80 to assist chromatin loading of replication factors and S-phase progression. Cell Cycle 2013; 12:2608-16. [PMID: 23851348 DOI: 10.4161/cc.25624] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
NIMA-related kinases (Neks) play divergent roles in mammalian cells. While several Neks regulate mitosis, Nek1 was reported to regulate DNA damage response, centrosome duplication and primary cilium formation. Whether Nek1 participates in cell cycle regulation is not known. Here we report that loss of Nek1 results in severe proliferation defect due to a delay in S-phase of the cell cycle. Nek1-deficient cells show replication stress and checkpoint activation under normal growth conditions. Nek1 accumulates on the chromatin during normal DNA replication. In response to replication stress, Nek1 is further activated for chromatin localization. Nek1 interacts with Ku80 and, in Nek1-deficient cells chromatin localization of Ku80 and several other DNA replication factors is significantly reduced. Thus, Nek1 may facilitate S-phase progression by interacting with Ku80 and regulating chromatin loading of replication factors.
Collapse
Affiliation(s)
- Mallikarjun Patil
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Georgia Regents University and Charlie Norwood Veterans Affairs Medical Center, Augusta, GA, USA
| | | | | | | |
Collapse
|
7
|
Abdelbaqi K, Di Paola D, Rampakakis E, Zannis-Hadjopoulos M. Ku protein levels, localization and association to replication origins in different stages of breast tumor progression. J Cancer 2013; 4:358-70. [PMID: 23781282 PMCID: PMC3677623 DOI: 10.7150/jca.6289] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 05/23/2013] [Indexed: 11/05/2022] Open
Abstract
Human origins of DNA replication are specific sequences within the genome whereby DNA replication is initiated. A select group of proteins, known as the pre-replication (pre-RC) complex, in whose formation the Ku protein (Ku70/Ku86) was shown to play a role, bind to replication origins to initiate DNA replication. In this study, we have examined the involvement of Ku in breast tumorigenesis and tumor progression and found that the Ku protein expression levels in human breast metastatic (MCF10AC1a) cells were higher in the chromatin fraction compared to hyperplastic (MCF10AT) and normal (MCF10A) human breast cells, but remained constant in both the nuclear and cytoplasmic fractions. In contrast, in human intestinal cells, the Ku expression level was relatively constant for all cell fractions. Nascent DNA abundance and chromatin association of Ku70/86 revealed that the c-myc origin activity in MCF10AC1a is 2.5 to 5-fold higher than in MCF10AT and MCF10A, respectively, and Ku was bound to the c-myc origin more abundantly in MCF10AC1a, by approximately 1.5 to 4.2-fold higher than in MCF10AT and MCF10A, respectively. In contrast, similar nascent DNA abundance and chromatin association was found for all cell lines for the lamin B2 origin, associated with the constitutively active housekeeping lamin B2 gene. Electrophoretic mobility shift assays (EMSAs) performed on the nuclear extracts (NEs) of the three cell types revealed the presence of protein-DNA replication complexes on both the c-myc and lamin B2 origins, but an increase in binding activity was observed from normal, to transformed, to cancer cells for the c-myc origin, whereas no such difference was seen for the lamin B2 origin. Overall, the results suggest that increased Ku chromatin association, beyond wild type levels, alters cellular processes, which have been implicated in tumorigenesis.
Collapse
Affiliation(s)
- Khalil Abdelbaqi
- 1. Goodman Cancer Research Center, McGill University, Montreal, Quebec, Canada H3G 1Y6; ; 2. Department of Biochemistry, McGill University, Montreal, Quebec, Canada H3G 1Y6
| | | | | | | |
Collapse
|
8
|
Di Paola D, Rampakakis E, Chan MK, Zannis-Hadjopoulos M. Differential chromatin structure encompassing replication origins in transformed and normal cells. Genes Cancer 2012; 3:152-76. [PMID: 23050047 DOI: 10.1177/1947601912457026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 07/10/2012] [Indexed: 12/23/2022] Open
Abstract
This study examines the chromatin structure encompassing replication origins in transformed and normal cells. Analysis of the global levels of histone H3 acetylated at K9&14 (open chromatin) and histone H3 trimethylated at K9 (closed chromatin) revealed a higher ratio of open to closed chromatin in the transformed cells. Also, the trithorax and polycomb group proteins, Brg-1 and Bmi-1, respectively, were overexpressed and more abundantly bound to chromatin in the transformed cells. Quantitative comparative analyses of episomal and in situ chromosomal replication origin activity as well as chromatin immunoprecipitation (ChIP) assays, using specific antibodies targeting members of the pre-replication complex (pre-RC) as well as open/closed chromatin markers encompassing both episomal and chromosomal origins, revealed that episomal origins had similar levels of in vivo activity, nascent DNA abundance, pre-RC protein association, and elevated open chromatin structure at the origin in both cell types. In contrast, the chromosomal origins corresponding to 20mer1, 20mer2, and c-myc displayed a 2- to 3-fold higher activity and pre-RC protein abundance as well as higher ratios of open to closed chromatin and of Brg-1 to Bmi-1 in the transformed cells, whereas the origin associated with the housekeeping lamin B2 gene exhibited similar levels of activity, pre-RC protein abundance, and higher ratios of open to closed chromatin and of Brg-1 to Bmi-1 in both cell types. Nucleosomal positioning analysis, using an MNase-Southern blot assay, showed that all the origin regions examined were situated within regions of inconsistently positioned nucleosomes, with the nucleosomes being spaced farther apart from each other prior to the onset of S phase in both cell types. Overall, the results indicate that cellular transformation is associated with differential epigenetic regulation, whereby chromatin structure is more open, rendering replication origins more accessible to initiator proteins, thus allowing increased origin activity.
Collapse
Affiliation(s)
- Domenic Di Paola
- Goodman Cancer Center and Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
9
|
Di Paola D, Zannis-Hadjopoulos M. Comparative analysis of pre-replication complex proteins in transformed and normal cells. J Cell Biochem 2012; 113:1333-47. [PMID: 22134836 DOI: 10.1002/jcb.24006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
This study examines the abundance of the major protein constituents of the pre-replication complex (pre-RC), both genome-wide and in association with specific replication origins, namely the lamin B2, c-myc, 20mer1, and 20mer2 origins. Several pre-RC protein components, namely ORC1-6, Cdc6, Cdt1, MCM4, MCM7, as well as additional replication proteins, such as Ku70/86, 14-3-3, Cdc45, and PCNA, were comparatively and quantitatively analyzed in both transformed and normal cells. The results show that these proteins are overexpressed and more abundantly bound to chromatin in the transformed compared to normal cells. Interestingly, the 20mer1, 20mer2, and c-myc origins exhibited a two- to threefold greater origin activity and a two- to threefold greater in vivo association of the pre-RC proteins with these origins in the transformed cells, whereas the origin associated with the housekeeping lamin B2 gene exhibited both similar levels of activity and in vivo association of these pre-RC proteins in both cell types. Overall, the results indicate that cellular transformation is associated with an overexpression and increased chromatin association of the pre-RC proteins. This study is significant, because it represents the most systematic comprehensive analysis done to date, using multiple replication proteins and different replication origins in both normal and transformed cell lines.
Collapse
Affiliation(s)
- Domenic Di Paola
- Goodman Cancer Research Center, McGill University, Montreal, Quebec, Canada H3G 1Y6
| | | |
Collapse
|
10
|
Sideridou M, Zakopoulou R, Evangelou K, Liontos M, Kotsinas A, Rampakakis E, Gagos S, Kahata K, Grabusic K, Gkouskou K, Trougakos IP, Kolettas E, Georgakilas AG, Volarevic S, Eliopoulos AG, Zannis-Hadjopoulos M, Moustakas A, Gorgoulis VG. Cdc6 expression represses E-cadherin transcription and activates adjacent replication origins. ACTA ACUST UNITED AC 2012; 195:1123-40. [PMID: 22201124 PMCID: PMC3246883 DOI: 10.1083/jcb.201108121] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Cdc6 replication licensing factor acts as a molecular switch at the E-cadherin locus, leading to E-cadherin transcriptional repression and local activation of replication. E-cadherin (CDH1) loss occurs frequently in carcinogenesis, contributing to invasion and metastasis. We observed that mouse and human epithelial cell lines overexpressing the replication licensing factor Cdc6 underwent phenotypic changes with mesenchymal features and loss of E-cadherin. Analysis in various types of human cancer revealed a strong correlation between increased Cdc6 expression and reduced E-cadherin levels. Prompted by these findings, we discovered that Cdc6 repressed CDH1 transcription by binding to the E-boxes of its promoter, leading to dissociation of the chromosomal insulator CTCF, displacement of the histone variant H2A.Z, and promoter heterochromatinization. Mutational analysis identified the Walker B motif and C-terminal region of Cdc6 as essential for CDH1 transcriptional suppression. Strikingly, CTCF displacement resulted in activation of adjacent origins of replication. These data demonstrate that Cdc6 acts as a molecular switch at the E-cadherin locus, linking transcriptional repression to activation of replication, and provide a telling example of how replication licensing factors could usurp alternative programs to fulfill distinct cellular functions.
Collapse
Affiliation(s)
- Maria Sideridou
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, University of Athens, 11527 Athens, Greece
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Miotto B, Struhl K. JNK1 phosphorylation of Cdt1 inhibits recruitment of HBO1 histone acetylase and blocks replication licensing in response to stress. Mol Cell 2011; 44:62-71. [PMID: 21856198 DOI: 10.1016/j.molcel.2011.06.021] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Revised: 02/08/2011] [Accepted: 06/23/2011] [Indexed: 10/17/2022]
Abstract
In response to environmental stresses, cells activate stress-response genes and inhibit DNA replication. HBO1 histone acetylase is a coactivator both for AP-1 transcription factors responding to stress-activated JNK kinases and also for the Cdt1 licensing factor that ensures that DNA is replicated exactly once per cell cycle. In response to nongenotoxic stress, JNK phosphorylates Jun, an AP-1 transcription factor, leading to increased recruitment of HBO1 and increased transcription of target genes. In addition, JNK phosphorylates Cdt1 on threonine 29, leading to rapid dissociation of HBO1 from replication origins, thereby blocking initiation of DNA replication. Upon relief of stress, HBO1 reassociates with replication origins. Thus, regulated and reciprocal recruitment of the HBO1 coactivator to target genes and replication origins via JNK-mediated phosphorylation of the recruiting transcription and replication licensing factors coordinates the transcriptional and DNA replication response to cellular stress.
Collapse
Affiliation(s)
- Benoit Miotto
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
12
|
Lin LC, Hsu SL, Wu CL, Liu WC, Hsueh CM. Peroxisome proliferator-activated receptor γ (PPARγ) plays a critical role in the development of TGFβ resistance of H460 cell. Cell Signal 2011; 23:1640-50. [DOI: 10.1016/j.cellsig.2011.05.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 05/23/2011] [Accepted: 05/23/2011] [Indexed: 10/18/2022]
|
13
|
Zhang AT, Langley AR, Christov CP, Kheir E, Shafee T, Gardiner TJ, Krude T. Dynamic interaction of Y RNAs with chromatin and initiation proteins during human DNA replication. J Cell Sci 2011; 124:2058-69. [PMID: 21610089 DOI: 10.1242/jcs.086561] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Non-coding Y RNAs are required for the initiation of chromosomal DNA replication in mammalian cells. It is unknown how they perform this function or if they associate with a nuclear structure during DNA replication. Here, we investigate the association of Y RNAs with chromatin and their interaction with replication proteins during DNA replication in a human cell-free system. Our results show that fluorescently labelled Y RNAs associate with unreplicated euchromatin in late G1 phase cell nuclei before the initiation of DNA replication. Following initiation, Y RNAs are displaced locally from nascent and replicated DNA present in replication foci. In intact human cells, a substantial fraction of endogenous Y RNAs are associated with G1 phase nuclei, but not with G2 phase nuclei. Y RNAs interact and colocalise with the origin recognition complex (ORC), the pre-replication complex (pre-RC) protein Cdt1, and other proteins implicated in the initiation of DNA replication. These data support a molecular 'catch and release' mechanism for Y RNA function during the initiation of chromosomal DNA replication, which is consistent with Y RNAs acting as replication licensing factors.
Collapse
Affiliation(s)
- Alice Tianbu Zhang
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB23EJ, UK
| | | | | | | | | | | | | |
Collapse
|
14
|
Wong PG, Glozak MA, Cao TV, Vaziri C, Seto E, Alexandrow M. Chromatin unfolding by Cdt1 regulates MCM loading via opposing functions of HBO1 and HDAC11-geminin. Cell Cycle 2010; 9:4351-63. [PMID: 20980834 DOI: 10.4161/cc.9.21.13596] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The efficiency of metazoan origins of DNA replication is known to be enhanced by histone acetylation near origins. Although this correlates with increased MCM recruitment, the mechanism by which such acetylation regulates MCM loading is unknown. We show here that Cdt1 induces large-scale chromatin decondensation that is required for MCM recruitment. This process occurs in G₁, is suppressed by Geminin, and requires HBO1 HAT activity and histone H4 modifications. HDAC11, which binds Cdt1 and replication origins during S-phase, potently inhibits Cdt1-induced chromatin unfolding and re-replication, suppresses MCM loading and binds Cdt1 more efficiently in the presence of Geminin. We also demonstrate that chromatin at endogenous origins is more accessible in G₁ relative to S-phase. These results provide evidence that histone acetylation promotes MCM loading via enhanced chromatin accessibility. This process is regulated positively by Cdt1 and HBO1 in G₁ and repressed by Geminin-HDAC11 association with Cdt1 in S-phase, and represents a novel form of replication licensing control.
Collapse
Affiliation(s)
- Philip G Wong
- Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | | | | | | | | | | |
Collapse
|
15
|
Di Paola D, Rampakakis E, Chan MK, Arvanitis DN, Zannis-Hadjopoulos M. Increased origin activity in transformed versus normal cells: identification of novel protein players involved in DNA replication and cellular transformation. Nucleic Acids Res 2010; 38:2314-31. [PMID: 20064876 PMCID: PMC2853114 DOI: 10.1093/nar/gkp1192] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Revised: 12/03/2009] [Accepted: 12/07/2009] [Indexed: 01/05/2023] Open
Abstract
Using libraries of replication origins generated previously, we identified three clones that supported the autonomous replication of their respective plasmids in transformed, but not in normal cells. Assessment of their in vivo replication activity by in situ chromosomal DNA replication assays revealed that the chromosomal loci corresponding to these clones coincided with chromosomal replication origins in all cell lines, which were more active by 2-3-fold in the transformed by comparison to the normal cells. Evaluation of pre-replication complex (pre-RC) protein abundance at these origins in transformed and normal cells by chromatin immunoprecipitation assays, using anti-ORC2, -cdc6 and -cdt1 antibodies, showed that they were bound by these pre-RC proteins in all cell lines, but a 2-3-fold higher abundance was observed in the transformed by comparison to the normal cells. Electrophoretic mobility shift assays (EMSAs) performed on the most efficiently replicating clone, using nuclear extracts from the transformed and normal cells, revealed the presence of a DNA replication complex in transformed cells, which was barely detectable in normal cells. Subsequent supershift EMSAs suggested the presence of transformation-specific complexes. Mass spectrometric analysis of these complexes revealed potential new protein players involved in DNA replication that appear to correlate with cellular transformation.
Collapse
Affiliation(s)
- Domenic Di Paola
- Goodman Cancer Center and Department of Biochemistry, McGill University, Montreal, Quebec, H3G 1Y6, Canada
| | - Emmanouil Rampakakis
- Goodman Cancer Center and Department of Biochemistry, McGill University, Montreal, Quebec, H3G 1Y6, Canada
| | - Man Kid Chan
- Goodman Cancer Center and Department of Biochemistry, McGill University, Montreal, Quebec, H3G 1Y6, Canada
| | - Dina N. Arvanitis
- Goodman Cancer Center and Department of Biochemistry, McGill University, Montreal, Quebec, H3G 1Y6, Canada
| | - Maria Zannis-Hadjopoulos
- Goodman Cancer Center and Department of Biochemistry, McGill University, Montreal, Quebec, H3G 1Y6, Canada
| |
Collapse
|
16
|
Leman AR, Noguchi C, Lee CY, Noguchi E. Human Timeless and Tipin stabilize replication forks and facilitate sister-chromatid cohesion. J Cell Sci 2010; 123:660-70. [PMID: 20124417 PMCID: PMC2823575 DOI: 10.1242/jcs.057984] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2009] [Indexed: 11/20/2022] Open
Abstract
The Timeless-Tipin protein complex has been reported to be important for replication checkpoint and normal DNA replication processes. However, the precise mechanisms by which Timeless-Tipin preserves genomic integrity are largely unclear. Here, we describe the roles of Timeless-Tipin in replication fork stabilization and sister chromatid cohesion. We show in human cells that Timeless is recruited to replication origin regions and dissociate from them as replication proceeds. Cdc45, which is known to be required for replication fork progression, shows similar patterns of origin association to those of Timeless. Depletion of Timeless-Tipin causes chromosome fragmentation and defects in damage repair in response to fork collapse, suggesting that it is required for replication fork maintenance under stress. We also demonstrate that depletion of Timeless-Tipin impairs sister chromatid cohesion and causes a defect in mitotic progression. Consistently, Timeless-Tipin co-purifies with cohesin subunits and is required for their stable association with chromatin during S phase. Timeless associates with the cohesion-promoting DNA helicase ChlR1, which, when overexpressed, partially alleviates the cohesion defect of cells depleted of Timeless-Tipin. These results suggest that Timeless-Tipin functions as a replication fork stabilizer that couples DNA replication with sister chromatid cohesion established at replication forks.
Collapse
Affiliation(s)
- Adam R. Leman
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Chiaki Noguchi
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Candice Y. Lee
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Eishi Noguchi
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| |
Collapse
|
17
|
Benadiba M, Miyake JA, Colquhoun A. Gamma-linolenic acid alters Ku80, E2F1, and bax expression and induces micronucleus formation in C6 glioma cells in vitro. IUBMB Life 2009; 61:244-51. [PMID: 19180667 DOI: 10.1002/iub.154] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Gamma-linolenic acid (GLA) is an inhibitor of tumor cell proliferation in both in vitro and in vivo conditions. The aim of this study was to investigate the effects of 150 muM GLA on the expression of E2F1, cyclin D1, bax, bcl2, Ku70, and Ku80 in C6 rat glioma cells. The Ku proteins were chosen as previous studies have shown that loss or reduction in their expression causes increased DNA damage and micronucleus formation in the presence of radiation. The fact that GLA exposure is known to enhance the efficacy of radiation treatment raised the question whether the Ku proteins could be involved in this effect as seen for other molecules such as roscovitine and flavopiridol. GLA altered the mRNA expression of E2F1, cyclin D1, and bax, but no changes were found for bcl2, Ku70, and Ku80. Alterations in protein expression were observed for bax, Ku80, and E2F1. The 45% decrease in E2F1 expression was proportional to decreased cell proliferation (44%). Morphological analysis found a 25% decrease in mitotic activity in the GLA-treated cells, which was accompanied by a 49% decrease in S-phase by FACS analysis. A 39% increase in the number of micronuclei detected by Hoechst fluorescence points to GLA's effects on cell division even at concentrations that do not produce significant increases in apoptosis. Most important was the finding that Ku80 expression, a critical protein involved in DNA repair as a heterodimer with Ku70, was decreased by 71%. It is probable that reduced Ku80 is responsible for the increase in micronucleus formation in GLA-treated cells in a similar manner to that found in Ku80 null cells exposed to radiation. The decreased expression of Ku80 and E2F1 could make cells more susceptible to radiotherapy and chemotherapy.
Collapse
Affiliation(s)
- Marcel Benadiba
- Department of Cell and Developmental Biology, University of São Paulo, São Paulo, SP, Brazil
| | | | | |
Collapse
|
18
|
Cheng YJ, Jiang HS, Hsu SL, Lin LC, Wu CL, Ghanta VK, Hsueh CM. XIAP-mediated protection of H460 lung cancer cells against cisplatin. Eur J Pharmacol 2009; 627:75-84. [PMID: 19903469 DOI: 10.1016/j.ejphar.2009.11.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Revised: 10/15/2009] [Accepted: 11/03/2009] [Indexed: 10/20/2022]
Abstract
Molecular mechanism(s) responsible for drug resistance of non-small cell lung cancer (NSCLC) cells to cisplatin was investigated. Results showed that cisplatin (50muM)-induced cell death (apoptosis) was more significant in CH27 and A549 cell lines than in H460. The high protein levels of X-linked inhibitor-of-apoptosis protein (XIAP) observed in H460 cells appeared to play a key role in the regulation of cisplatin resistance of H460 cells. XIAP can bind to and suppress the activities of caspase 3 in H460 cells and lead to apoptosis inhibition of these cells. Blockade of XIAP activity by Embelin (XIAP inhibitor) or siRNA has increased caspase 3 activities and promoted cisplatin-induced cell death of H460 cells. The results indicate a therapeutic value of Embelin and/or XIAP siRNA in the control of cisplatin-resistant NSCLC cells (H460).
Collapse
Affiliation(s)
- Yow-Jyun Cheng
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | | | | | | | | | | | | |
Collapse
|
19
|
Rampakakis E, Di Paola D, Chan MK, Zannis-Hadjopoulos M. Dynamic changes in chromatin structure through post-translational modifications of histone H3 during replication origin activation. J Cell Biochem 2009; 108:400-7. [PMID: 19585526 DOI: 10.1002/jcb.22266] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Genome duplication relies on the timely activation of multiple replication origins throughout the genome during S phase. Each origin is marked by the assembly of a multiprotein pre-replication complex (pre-RC) and the recruitment of the replicative machinery, which can gain access to replication origins on the DNA through the barrier of specific chromatin structures. Inheritance of the genetic information is further accompanied by maintenance and inheritance of the epigenetic marks, which are accomplished by the activity of histone and DNA modifying enzymes traveling with the replisome. Here, we studied the changes in the chromatin structure at the loci of three replication origins, the early activated human lamin B2 (LB2) and monkey Ors8 (mOrs8) origins and the late-activated human homologue of the latter (hOrs8), during their activation, by measuring the abundance of post-translationally modified histone H3. The data show that dynamic changes in the levels of acetylated, methylated and phosphorylated histone H3 occur during the initiation of DNA replication at these three origin loci, which differ between early- and late-firing origins as well as between human- and monkey-derived cell lines. These results suggest that specific histone modifications are associated with origin firing, temporal activation and replication fork progression and underscore the importance of species specificity.
Collapse
Affiliation(s)
- E Rampakakis
- Rosalind and Morris Goodman Cancer Center, Department of Biochemistry, McGill University, Montreal, Quebec, Canada H3A 1A3
| | | | | | | |
Collapse
|
20
|
Rampakakis E, Zannis-Hadjopoulos M. Transient dsDNA breaks during pre-replication complex assembly. Nucleic Acids Res 2009; 37:5714-24. [PMID: 19638425 PMCID: PMC2761281 DOI: 10.1093/nar/gkp617] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Initiation of DNA replication involves the ordered assembly of the multi-protein pre-replicative complex (pre-RC) during G1 phase. Previously, DNA topoisomerase II (topo II) was shown to associate with the DNA replication origin located in the lamin B2 gene locus in a cell-cycle-modulated manner. Here we report that activation of both the early-firing lamin B2 and the late-firing hOrs8 human replication origins involves DNA topo II-dependent, transient, site-specific dsDNA-break formation. Topo IIβ in complex with the DNA repair protein Ku associates in vivo and in vitro with the pre-RC region, introducing dsDNA breaks in a biphasic manner, during early and mid-G1 phase. Inhibition of topo II activity interferes with the pre-RC assembly resulting in prolonged G1 phase. The data mechanistically link DNA topo IIβ-dependent dsDNA breaks and the components of the DNA repair machinery with the initiation of DNA replication and suggest an important role for DNA topology in origin activation.
Collapse
Affiliation(s)
- Emmanouil Rampakakis
- Goodman Cancer Center and Department of Biochemistry, McGill University, Montreal, Quebec, Canada H3A 1A3
| | | |
Collapse
|
21
|
Netchvolodov KK, Kurova VS, Kononikhin AS, Savochkina YUA, Nikolaevb EN, Kupriyanova NS, Ryskov AP, Varfolomeev SD. Complexes of DNA-dependent protein kinase with single-stranded oligo-(AGGG)6: identification and possible role in modulation of ribosomal RNA transcription. DOKL BIOCHEM BIOPHYS 2009; 424:1-4. [PMID: 19341095 DOI: 10.1134/s1607672909010013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- K K Netchvolodov
- Institute of Gene Biology, Russian Academy of Sciences, ul. Vavilova 34/5, Moscow, 119334 Russia
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Rampakakis E, Arvanitis DN, Di Paola D, Zannis-Hadjopoulos M. Metazoan origins of DNA replication: regulation through dynamic chromatin structure. J Cell Biochem 2009; 106:512-20. [PMID: 19173303 DOI: 10.1002/jcb.22070] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
DNA replication in eukaryotes is initiated at multiple replication origins distributed over the entire genome, which are normally activated once per cell cycle. Due to the complexity of the metazoan genome, the study of metazoan replication origins and their activity profiles has been less advanced than in simpler genome systems. DNA replication in eukaryotes involves many protein-protein and protein-DNA interactions, occurring in multiple stages. As in prokaryotes, control over the timing and frequency of initiation is exerted at the initiation site. A prerequisite for understanding the regulatory mechanisms of eukaryotic DNA replication is the identification and characterization of the cis-acting sequences that serve as replication origins and the trans-acting factors (proteins) that interact with them. Furthermore, in order to understand how DNA replication may become deregulated in malignant cells, the distinguishing features between normal and malignant origins of DNA replication as well as the proteins that interact with them must be determined. Based on advances that were made using simple genome model systems, several proteins involved in DNA replication have been identified. This review summarizes the current findings about metazoan origins of DNA replication and their interacting proteins as well as the role of chromatin structure in their regulation. Furthermore, progress in origin identification and isolation procedures as well as potential mechanisms to inhibit their activation in cancer development and progression are discussed.
Collapse
Affiliation(s)
- E Rampakakis
- Department of Biochemistry, Goodman Cancer Centre, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
23
|
Sibani S, Rampakakis E, Di Paola D, Zannis-Hadjopoulos M. Fine mapping and functional activity of the adenosine deaminase origin in murine embryonic fibroblasts. J Cell Biochem 2008; 104:773-84. [PMID: 18181156 DOI: 10.1002/jcb.21662] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
DNA replication initiates at origins within the genome. The late-firing murine adenosine deaminase (mAdA) origin is located within a 2 kb fragment of DNA, making it difficult to examine by realtime technology. In this study, fine mapping of the mAdA region by measuring the abundance of nascent strand DNA identified two origins, mAdA-1 and mAdA-C, located 397 bp apart from each other. Both origins conferred autonomous replication to plasmids transfected in murine embryonic fibroblasts (MEFs), and exhibited similar activities in vivo and in vitro. Furthermore, both were able to recruit the DNA replication initiator proteins Cdc6 and Ku in vitro, similar to other bona fide replication origins. When tested in a murine Ku80(-/-) cell line, both origins exhibited replication activities comparable to those observed in wildtype cells, as did the hypoxanthine-guanine phosphoribosyltransferase (HPRT) and c-myc origins. This contrasts with previously published studies using Ku80-deficient human cells lines and suggests differences in the mechanism of initiation of DNA replication between the murine and human systems.
Collapse
Affiliation(s)
- Sahar Sibani
- McGill Cancer Center and Department of Biochemistry, McGill University, Montreal, Quebec, Canada H3G 1Y6
| | | | | | | |
Collapse
|
24
|
The DNA end-binding protein Ku regulates silencing at the internal HML and HMR loci in Saccharomyces cerevisiae. Genetics 2008; 180:1407-18. [PMID: 18791224 DOI: 10.1534/genetics.108.094490] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Heterochromatin resides near yeast telomeres and at the cryptic mating-type loci, HML and HMR, where it silences transcription of the alpha- and a-mating-type genes, respectively. Ku is a conserved DNA end-binding protein that binds telomeres and regulates silencing in yeast. The role of Ku in silencing is thought to be limited to telomeric silencing. Here, we tested whether Ku contributes to silencing at HML or HMR. Mutant analysis revealed that yKu70 and Sir1 act collectively to silence the mating-type genes at HML and HMR. In addition, loss of yKu70 function leads to expression of different reporter genes inserted at HMR. Quantitative chromatin-immunoprecipitation experiments revealed that yKu70 binds to HML and HMR and that binding of Ku to these internal loci is dependent on Sir4. The interaction between yKu70 and Sir4 was characterized further and found to be dependent on Sir2 but not on Sir1, Sir3, or yKu80. These observations reveal that, in addition to its ability to bind telomeric DNA ends and aid in the silencing of genes at telomeres, Ku binds to internal silent loci via protein-protein interactions and contributes to the efficient silencing of these loci.
Collapse
|
25
|
Rampakakis E, Di Paola D, Zannis-Hadjopoulos M. Ku is involved in cell growth, DNA replication and G1-S transition. J Cell Sci 2008; 121:590-600. [PMID: 18252799 DOI: 10.1242/jcs.021352] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The Ku protein (Ku70-Ku80) is involved in various genome-maintenance processes such as DNA replication and repair, telomere maintenance, and chromosomal stability. We previously found that Ku80 is implicated in the loading of members of the pre-replicative complex (pre-RC) onto replication origins. Here, we report that acute reduction of Ku80 to 10% of its normal levels leads to impaired DNA replication and activation of a replication stress checkpoint. In the absence of Ku80, decreased levels of the initiator proteins Orc1 and Orc6 as well as reduced chromatin binding of Orc1, Orc4 and Cdc45 were observed, leading to decreased origin firing, whereas Orc2 and Orc3 were unaffected. Prolonged perturbation of DNA replication caused the block of cell-cycle progression in late G1 phase with low Cdk2 activity due to increased p21 expression and decreased Cdc25A and Cdk2 levels. The data suggest the interplay between the DNA-replication and cell-cycle machineries and shed light on a new role of Ku in G1-S transition.
Collapse
Affiliation(s)
- Emmanouil Rampakakis
- McGill Cancer Centre and Department of Biochemistry, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | | | | |
Collapse
|
26
|
Kremer BE, Adang LA, Macara IG. Septins regulate actin organization and cell-cycle arrest through nuclear accumulation of NCK mediated by SOCS7. Cell 2007; 130:837-50. [PMID: 17803907 PMCID: PMC2085444 DOI: 10.1016/j.cell.2007.06.053] [Citation(s) in RCA: 166] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2006] [Revised: 04/16/2007] [Accepted: 06/25/2007] [Indexed: 11/26/2022]
Abstract
Mammalian septins are GTP-binding proteins the functions of which are not well understood. Knockdown of SEPT2, 6, and 7 causes stress fibers to disintegrate and cells to lose polarity. We now show that this phenotype is induced by nuclear accumulation of the adaptor protein NCK, as the effects can be reversed or induced by cytoplasmic or nuclear NCK, respectively. NCK is carried into the nucleus by SOCS7 (suppressor of cytokine signaling 7), which possesses nuclear import/export signals. SOCS7 interacts with septins and NCK through distinct domains. DNA damage induces actin and septin rearrangement and rapid nuclear accumulation of NCK and SOCS7. Moreover, NCK expression is essential for cell-cycle arrest. The septin-SOCS7-NCK axis intersects with the canonical DNA damage cascade downstream of ATM/ATR and is essential for p53 Ser15 phosphorylation. These data illuminate an unanticipated connection between septins, SOCS7, NCK signaling, and the DNA damage response.
Collapse
Affiliation(s)
- Brandon E Kremer
- Department of Microbiology, University of Virginia School of Medicine, Charlottesville, VA 22908-0577, USA
| | | | | |
Collapse
|
27
|
Shi L, Qiu D, Zhao G, Corthesy B, Lees-Miller S, Reeves WH, Kao PN. Dynamic binding of Ku80, Ku70 and NF90 to the IL-2 promoter in vivo in activated T-cells. Nucleic Acids Res 2007; 35:2302-10. [PMID: 17389650 PMCID: PMC1874627 DOI: 10.1093/nar/gkm117] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2006] [Revised: 02/07/2007] [Accepted: 02/08/2007] [Indexed: 01/07/2023] Open
Abstract
IL-2 gene expression in activated T-cells is initiated by chromatin remodeling at the IL-2 proximal promoter and conversion of a transcriptional repressor into a potent transcriptional activator. A purine-box regulator complex was purified from activated Jurkat T-cell nuclei based on sequence-specific DNA binding to the antigen receptor response element (ARRE)/nuclear factor of activated T-cells (NF-AT) target DNA sequence in the proximal IL-2 promoter. ARRE DNA-binding subunits were identified as NF90, NF45 and systemic lupus erythematosis autoantigens, Ku80 and Ku70. Monoclonal antibodies to Ku80, Ku70 and NF90 specifically inhibit constitutive and inducible ARRE DNA-binding activity in Jurkat T-cells. Ku80, Ku70 and NF90 bind specifically to the IL-2 gene promoter in vivo, as demonstrated by chromatin immunoprecipitation. Activation of Jurkat T-cells and mouse primary spleen cells induces binding of Ku80 and NF90 to the IL-2 promoter in vivo, and decreases binding of Ku70 to the IL-2 promoter in vivo, and these dynamic changes are inhibited by immunosuppressants cyclosporin A and triptolide. Dynamic changes in binding of Ku80, Ku70 and NF90 to the IL-2 proximal promoter in vivo correlate with chromatin remodeling and transcriptional initiation in activated T-cells.
Collapse
Affiliation(s)
- Lingfang Shi
- Pulmonary and Critical Care Medicine, Stanford University Medical Center, Stanford, CA 94305-5236, USA, Immunology and Allergy, Internal Medicine Department, University of Lausanne, CH-1011, Lausanne, Switzerland, Department of Biochemistry & Molecular Biology, University of Calgary, 3330 Hospital Drive NW, Calgary, Alta., Canada T2N 4N1 and Division of Rheumatology and Clinical Immunology, University of Florida, Gainesville, FL 32610-0211, USA
| | - Daoming Qiu
- Pulmonary and Critical Care Medicine, Stanford University Medical Center, Stanford, CA 94305-5236, USA, Immunology and Allergy, Internal Medicine Department, University of Lausanne, CH-1011, Lausanne, Switzerland, Department of Biochemistry & Molecular Biology, University of Calgary, 3330 Hospital Drive NW, Calgary, Alta., Canada T2N 4N1 and Division of Rheumatology and Clinical Immunology, University of Florida, Gainesville, FL 32610-0211, USA
| | - Guohua Zhao
- Pulmonary and Critical Care Medicine, Stanford University Medical Center, Stanford, CA 94305-5236, USA, Immunology and Allergy, Internal Medicine Department, University of Lausanne, CH-1011, Lausanne, Switzerland, Department of Biochemistry & Molecular Biology, University of Calgary, 3330 Hospital Drive NW, Calgary, Alta., Canada T2N 4N1 and Division of Rheumatology and Clinical Immunology, University of Florida, Gainesville, FL 32610-0211, USA
| | - Blaise Corthesy
- Pulmonary and Critical Care Medicine, Stanford University Medical Center, Stanford, CA 94305-5236, USA, Immunology and Allergy, Internal Medicine Department, University of Lausanne, CH-1011, Lausanne, Switzerland, Department of Biochemistry & Molecular Biology, University of Calgary, 3330 Hospital Drive NW, Calgary, Alta., Canada T2N 4N1 and Division of Rheumatology and Clinical Immunology, University of Florida, Gainesville, FL 32610-0211, USA
| | - Susan Lees-Miller
- Pulmonary and Critical Care Medicine, Stanford University Medical Center, Stanford, CA 94305-5236, USA, Immunology and Allergy, Internal Medicine Department, University of Lausanne, CH-1011, Lausanne, Switzerland, Department of Biochemistry & Molecular Biology, University of Calgary, 3330 Hospital Drive NW, Calgary, Alta., Canada T2N 4N1 and Division of Rheumatology and Clinical Immunology, University of Florida, Gainesville, FL 32610-0211, USA
| | - Westley H. Reeves
- Pulmonary and Critical Care Medicine, Stanford University Medical Center, Stanford, CA 94305-5236, USA, Immunology and Allergy, Internal Medicine Department, University of Lausanne, CH-1011, Lausanne, Switzerland, Department of Biochemistry & Molecular Biology, University of Calgary, 3330 Hospital Drive NW, Calgary, Alta., Canada T2N 4N1 and Division of Rheumatology and Clinical Immunology, University of Florida, Gainesville, FL 32610-0211, USA
| | - Peter N. Kao
- Pulmonary and Critical Care Medicine, Stanford University Medical Center, Stanford, CA 94305-5236, USA, Immunology and Allergy, Internal Medicine Department, University of Lausanne, CH-1011, Lausanne, Switzerland, Department of Biochemistry & Molecular Biology, University of Calgary, 3330 Hospital Drive NW, Calgary, Alta., Canada T2N 4N1 and Division of Rheumatology and Clinical Immunology, University of Florida, Gainesville, FL 32610-0211, USA
| |
Collapse
|
28
|
Callejo M, Sibani S, Di Paola D, Price GG, Zannis-Hadjopoulos M. Identification and functional analysis of a human homologue of the monkey replication origin ors8. J Cell Biochem 2007; 99:1606-15. [PMID: 16823771 DOI: 10.1002/jcb.20868] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We previously isolated from African green monkey (CV-1) cells a replication origin, ors8, that is active at the onset of S-phase. Here, its homologous sequence (hors8, accession number: DQ230978) was amplified from human cells, using the monkey-ors8-specific primers. Sequence alignment between the monkey and the human fragment revealed a 92% identity. Nascent DNA abundance analysis, involving quantification by real-time PCR, indicated that hors8 is an active replication origin, as the abundance of nascent DNA from a genomic region containing it was 97-fold higher relative to a non-origin region in the same locus. Furthermore, the data showed that the hors8 fragment is capable of supporting the episomal replication of its plasmid, when cloned into pBlueScript (pBS), as assayed by the DpnI resistance assay after transfection of HeLa cells. A quantitative chromatin immunoprecipitation (ChIP) assay, using antibodies against Ku, Orc2, and Cdc6, showed that these DNA replication initiator proteins were associated in vivo with the human ors8 (hors8). Finally, nascent DNA abundance experiments from human cells synchronized at different phases of the cell cycle revealed that hors8 is a late-firing origin of DNA replication, having the highest activity 8 h after release from late G(1).
Collapse
Affiliation(s)
- Mario Callejo
- McGill Cancer Centre, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | | | | | | | | |
Collapse
|
29
|
Gray SJ, Gerhardt J, Doerfler W, Small LE, Fanning E. An origin of DNA replication in the promoter region of the human fragile X mental retardation (FMR1) gene. Mol Cell Biol 2006; 27:426-37. [PMID: 17101793 PMCID: PMC1800797 DOI: 10.1128/mcb.01382-06] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Fragile X syndrome, the most common form of inherited mental retardation in males, arises when the normally stable 5 to 50 CGG repeats in the 5' untranslated region of the fragile X mental retardation protein 1 (FMR1) gene expand to over 200, leading to DNA methylation and silencing of the FMR1 promoter. Although the events that trigger local CGG expansion remain unknown, the stability of trinucleotide repeat tracts is affected by their position relative to an origin of DNA replication in model systems. Origins of DNA replication in the FMR1 locus have not yet been described. Here, we report an origin of replication adjacent to the FMR1 promoter and CGG repeats that was identified by scanning a 35-kb region. Prereplication proteins Orc3p and Mcm4p bind to chromatin in the FMR1 initiation region in vivo. The position of the FMR1 origin relative to the CGG repeats is consistent with a role in repeat maintenance. The FMR1 origin is active in transformed cell lines, fibroblasts from healthy individuals, fibroblasts from patients with fragile X syndrome, and fetal cells as early as 8 weeks old. The potential role of the FMR1 origin in CGG tract instability is discussed.
Collapse
Affiliation(s)
- Steven J Gray
- Department of Biological Sciences and Vanderbilt-Ingram Cancer Center, , Vanderbilt University, Nashville, TN 37235-1634, USA
| | | | | | | | | |
Collapse
|
30
|
Uegaki K, Adachi N, So S, Iiizumi S, Koyama H. Heterozygous inactivation of human Ku70/Ku86 heterodimer does not affect cell growth, double-strand break repair, or genome integrity. DNA Repair (Amst) 2005; 5:303-11. [PMID: 16325483 DOI: 10.1016/j.dnarep.2005.10.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2005] [Revised: 10/19/2005] [Accepted: 10/19/2005] [Indexed: 10/25/2022]
Abstract
Ku, the heterodimer of Ku70 and Ku86, plays crucial roles in non-homologous end-joining (NHEJ), a major pathway for repairing DNA double-strand breaks (DSBs) in mammalian cells. It has recently been reported that heterozygous disruption of the human KU86 locus results in haploinsufficient phenotypes, including retarded growth, increased radiosensitivity, elevated p53 levels and shortened telomeres. In this paper, however, we show that heterozygous inactivation of either the KU70 or KU86 gene does not cause any defects in cell proliferation or DSB repair in human somatic cells. Moreover, although these heterozygous cell lines express reduced levels of both Ku70 and Ku86, they appear to maintain overall genome integrity with no elevated p53 levels or telomere shortening. These results clearly indicate that Ku haploinsufficiency is not a commonly observed phenomenon in human cells. Our data also suggest that the impact of KU70/KU86 mutations on telomere metabolism varies between cell types in humans.
Collapse
Affiliation(s)
- Koichi Uegaki
- Kihara Institute for Biological Research, Graduate School of Integrated Science, Yokohama City University, Totsuka-ku, Yokohama 244-0813, Japan
| | | | | | | | | |
Collapse
|