1
|
Salminen A. The role of inhibitory immune checkpoint receptors in the pathogenesis of Alzheimer's disease. J Mol Med (Berl) 2025; 103:1-19. [PMID: 39601807 PMCID: PMC11739239 DOI: 10.1007/s00109-024-02504-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/16/2024] [Accepted: 11/19/2024] [Indexed: 11/29/2024]
Abstract
There is mounting evidence that microglial cells have a key role in the pathogenesis of Alzheimer's disease (AD). In AD pathology, microglial cells not only are unable to remove β-amyloid (Aβ) plaques and invading pathogens but also are involved in synaptic pruning, chronic neuroinflammation, and neuronal degeneration. Microglial cells possess many different inhibitory immune checkpoint receptors, such as PD-1, LILRB2-4, Siglecs, and SIRPα receptors, which can be targeted by diverse cell membrane-bound and soluble ligand proteins to suppress the functions of microglia. Interestingly, in the brains of AD patients there are elevated levels of many of the inhibitory ligands acting via these inhibitory checkpoint receptors. For instance, Aβ oligomers, ApoE4, and fibronectin are able to stimulate the LILRB2-4 receptors. Increased deposition of sialoglycans, e.g., gangliosides, inhibits microglial function via Siglec receptors. AD pathology augments the accumulation of senescent cells, which are known to possess a high level of PD-L1 proteins, and thus, they can evade immune surveillance. A decrease in the expression of SIRPα receptor in microglia and its ligand CD47 in neurons enhances the phagocytic pruning of synapses in AD brains. Moreover, cerebral neurons contain inhibitory checkpoint receptors which can inhibit axonal growth, reduce synaptic plasticity, and impair learning and memory. It seems that inappropriate inhibitory immune checkpoint signaling impairs the functions of microglia and neurons thus promoting AD pathogenesis. KEY MESSAGES: Microglial cells have a major role in the pathogenesis of AD. A decline in immune activity of microglia promotes AD pathology. Microglial cells and neurons contain diverse inhibitory immune checkpoint receptors. The level of ligands for inhibitory checkpoint receptors is increased in AD pathology. Impaired signaling of inhibitory immune checkpoint receptors promotes AD pathology.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland.
| |
Collapse
|
2
|
Supakul S, Murakami R, Oyama C, Shindo T, Hatakeyama Y, Itsuno M, Bannai H, Shibata S, Maeda S, Okano H. Mutual interaction of neurons and astrocytes derived from iPSCs with APP V717L mutation developed the astrocytic phenotypes of Alzheimer's disease. Inflamm Regen 2024; 44:8. [PMID: 38419091 PMCID: PMC10900748 DOI: 10.1186/s41232-023-00310-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/22/2023] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND The development of induced pluripotent stem cells (iPSCs) technology has enabled human cellular disease modeling for inaccessible cell types, such as neural cells in the brain. However, many of the iPSC-derived disease models established to date typically involve only a single cell type. These monoculture models are inadequate for accurately simulating the brain environment, where multiple cell types interact. The limited cell type diversity in monoculture models hinders the accurate recapitulation of disease phenotypes resulting from interactions between different cell types. Therefore, our goal was to create cell models that include multiple interacting cell types to better recapitulate disease phenotypes. METHODS To establish a co-culture model of neurons and astrocytes, we individually induced neurons and astrocytes from the same iPSCs using our novel differentiation methods, and then co-cultured them. We evaluated the effects of co-culture on neurons and astrocytes using immunocytochemistry, immuno-electron microscopy, and Ca2+ imaging. We also developed a co-culture model using iPSCs from a patient with familial Alzheimer's disease (AD) patient (APP V717L mutation) to investigate whether this model would manifest disease phenotypes not seen in the monoculture models. RESULTS The co-culture of the neurons and astrocytes increased the branching of astrocyte processes, the number of GFAP-positive cells, neuronal activities, the number of synapses, and the density of presynaptic vesicles. In addition, immuno-electron microscopy confirmed the formation of a tripartite synaptic structure in the co-culture model, and inhibition of glutamate transporters increased neuronal activity. Compared to the co-culture model of the control iPSCs, the co-culture model of familial AD developed astrogliosis-like phenotype, which was not observed in the monoculture model of astrocytes. CONCLUSIONS Co-culture of iPSC-derived neurons and astrocytes enhanced the morphological changes mimicking the in vivo condition of both cell types. The formation of the functional tripartite synaptic structures in the co-culture model suggested the mutual interaction between the cells. Furthermore, the co-culture model with the APP V717L mutation expressed in neurons exhibited an astrocytic phenotype reminiscent of AD brain pathology. These results suggest that our co-culture model is a valuable tool for disease modeling of neurodegenerative diseases.
Collapse
Affiliation(s)
- Sopak Supakul
- Department of Physiology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Rei Murakami
- Department of Physiology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Chisato Oyama
- Department of Electrical Engineering and Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo, 169-8555, Japan
| | - Tomoko Shindo
- Electron Microscope Laboratory, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Yuki Hatakeyama
- Department of Physiology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Maika Itsuno
- Department of Physiology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Hiroko Bannai
- Department of Electrical Engineering and Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo, 169-8555, Japan
| | - Shinsuke Shibata
- Electron Microscope Laboratory, Keio University School of Medicine, Tokyo, 160-8582, Japan
- Division of Microscopic Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, 951-8510, Japan
| | - Sumihiro Maeda
- Department of Physiology, Keio University School of Medicine, Tokyo, 160-8582, Japan.
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo, 160-8582, Japan.
| |
Collapse
|
3
|
Feng Y, Huang C, Wang Y, Chen J. SIRPα: A key player in innate immunity. Eur J Immunol 2023; 53:e2350375. [PMID: 37672390 DOI: 10.1002/eji.202350375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 07/15/2023] [Accepted: 09/05/2023] [Indexed: 09/08/2023]
Abstract
Signal regulatory protein alpha (SIRPα) is a crucial inhibitory regulator expressed on the surface of myeloid cells, including macrophages, dendritic cells, monocytes, neutrophils, and microglia. SIRPα plays an indispensable role in innate immune and adoptive immune responses in cancer immunology, tissue homeostasis, and other physiological or phycological conditions. This review provides an overview of the research history, ligands, signal transduction pathways, and functional mechanisms associated with SIRPα. Additionally, we summarize the therapeutic implications of targeting SIRPα as a promising novel strategy in immuno-oncology.
Collapse
Affiliation(s)
- Yongyi Feng
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Chunliu Huang
- Molecular Imaging Center, Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Yingzhao Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jun Chen
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Guangdong Engineering & Technology Research Center for Disease-Model Animals, Laboratory Animal Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control of the Ministry of Education, Sun Yat-sen University, Guangzhou, China
- Jinfeng Laboratory, Chongqing, China
| |
Collapse
|
4
|
Pro-maturational Effects of Human iPSC-Derived Cortical Astrocytes upon iPSC-Derived Cortical Neurons. Stem Cell Reports 2020; 15:38-51. [PMID: 32502466 PMCID: PMC7363746 DOI: 10.1016/j.stemcr.2020.05.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/04/2020] [Accepted: 05/04/2020] [Indexed: 12/22/2022] Open
Abstract
Astrocytes influence neuronal maturation and function by providing trophic support, regulating the extracellular environment, and modulating signaling at synapses. The emergence of induced pluripotent stem cell (iPSC) technology offers a human system with which to validate and re-evaluate insights from animal studies. Here, we set out to examine interactions between human astrocytes and neurons derived from a common cortical progenitor pool, thereby recapitulating aspects of in vivo cortical development. We show that the cortical iPSC-derived astrocytes exhibit many of the molecular and functional hallmarks of astrocytes. Furthermore, optogenetic and electrophysiological co-culture experiments reveal that the iPSC-astrocytes can actively modulate ongoing synaptic transmission and exert pro-maturational effects upon developing networks of iPSC-derived cortical neurons. Finally, transcriptomic analyses implicate synapse-associated extracellular signaling in the astrocytes' pro-maturational effects upon the iPSC-derived neurons. This work helps lay the foundation for future investigations into astrocyte-to-neuron interactions in human health and disease. Human astrocytes and neurons are generated from a common cortical progenitor pool Astrocyte-neuron signaling is demonstrated with neurotransmitters and optogenetics Astrocyte co-culture promotes cortical neuron and synaptic network maturation Transcriptomics reveal extracellular astrocytic proteins that interact at synapses
Collapse
|
5
|
Castle AR, Gill AC. Physiological Functions of the Cellular Prion Protein. Front Mol Biosci 2017; 4:19. [PMID: 28428956 PMCID: PMC5382174 DOI: 10.3389/fmolb.2017.00019] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 03/22/2017] [Indexed: 01/09/2023] Open
Abstract
The prion protein, PrPC, is a small, cell-surface glycoprotein notable primarily for its critical role in pathogenesis of the neurodegenerative disorders known as prion diseases. A hallmark of prion diseases is the conversion of PrPC into an abnormally folded isoform, which provides a template for further pathogenic conversion of PrPC, allowing disease to spread from cell to cell and, in some circumstances, to transfer to a new host. In addition to the putative neurotoxicity caused by the misfolded form(s), loss of normal PrPC function could be an integral part of the neurodegenerative processes and, consequently, significant research efforts have been directed toward determining the physiological functions of PrPC. In this review, we first summarise important aspects of the biochemistry of PrPC before moving on to address the current understanding of the various proposed functions of the protein, including details of the underlying molecular mechanisms potentially involved in these functions. Over years of study, PrPC has been associated with a wide array of different cellular processes and many interacting partners have been suggested. However, recent studies have cast doubt on the previously well-established links between PrPC and processes such as stress-protection, copper homeostasis and neuronal excitability. Instead, the functions best-supported by the current literature include regulation of myelin maintenance and of processes linked to cellular differentiation, including proliferation, adhesion, and control of cell morphology. Intriguing connections have also been made between PrPC and the modulation of circadian rhythm, glucose homeostasis, immune function and cellular iron uptake, all of which warrant further investigation.
Collapse
|
6
|
Kothapalli CR, Honarmandi P. Theoretical and experimental quantification of the role of diffusive chemogradients on neuritogenesis within three-dimensional collagen scaffolds. Acta Biomater 2014; 10:3664-74. [PMID: 24830550 DOI: 10.1016/j.actbio.2014.05.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Revised: 04/27/2014] [Accepted: 05/05/2014] [Indexed: 02/08/2023]
Abstract
A critical challenge to regenerating close mimics of native axonal pathways under chronic neurodegenerative disease or injury conditions is the inability to stimulate, sustain and steer neurite outgrowth over a long distance, until they reach their intended targets. Understanding neurite outgrowth necessitates quantitative determination of the role of molecular gradients on growth cone navigation under dynamic physiological conditions. High-fidelity biomimetic platforms are needed to computationally and experimentally acquire and analyze spatiotemporal molecular gradient evolution and the growth cone response across multiple conditions along this gradient pathway. In this study, we utilized a simple microfluidic platform in which diffusive gradients were generated within a 3-D porous scaffold in a defined and reproducible manner. The platform's characteristics (spatiotemporal gradient, steepness, diffusion time, etc.) were precisely quantified at every specified location within the scaffold. Using this platform, we show that the cortical neurite response within 3-D collagen scaffolds, at both the cellular and molecular level, is extremely sensitive to subtle changes in localized concentration and gradient steepness of IGF-1 within that region. This platform could also be used to study other biological processes such as morphogenesis and cancer metastasis, where chemogradients are expected to significantly regulate the outcomes. Results from this study might be of tremendous use in designing biomaterial scaffolds for neural tissue engineering, axonal pathway regeneration under injury or disease, and in formulating targeted drug-delivery strategies.
Collapse
|
7
|
Toth AB, Terauchi A, Zhang LY, Johnson-Venkatesh EM, Larsen DJ, Sutton MA, Umemori H. Synapse maturation by activity-dependent ectodomain shedding of SIRPα. Nat Neurosci 2013; 16:1417-25. [PMID: 24036914 PMCID: PMC3820962 DOI: 10.1038/nn.3516] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 08/13/2013] [Indexed: 01/11/2023]
Abstract
Formation of appropriate synaptic connections is critical for proper functioning of the brain. After initial synaptic differentiation, active synapses are stabilized by neural activity-dependent signals to establish functional synaptic connections. However, the molecular mechanisms underlying activity-dependent synapse maturation remain to be elucidated. Here we show that activity-dependent ectodomain shedding of SIRPα mediates presynaptic maturation. Two target-derived molecules, FGF22 and SIRPα, sequentially organize the glutamatergic presynaptic terminals during the initial synaptic differentiation and synapse maturation stages, respectively, in the mouse hippocampus. SIRPα drives presynaptic maturation in an activity-dependent fashion. Remarkably, neural activity cleaves the extracellular domain of SIRPα, and the shed ectodomain, in turn, promotes the maturation of the presynaptic terminal. This process involves CaM kinase, matrix metalloproteinases, and the presynaptic receptor CD47. Finally, SIRPα-dependent synapse maturation has significant impacts on synaptic function and plasticity. Thus, ectodomain shedding of SIRPα is an activity-dependent trans-synaptic mechanism for the maturation of functional synapses.
Collapse
Affiliation(s)
- Anna B Toth
- 1] Molecular & Behavioral Neuroscience Institute, University of Michigan Medical School, Ann Arbor, Michigan, USA. [2]
| | | | | | | | | | | | | |
Collapse
|
8
|
Li PP, Zhou JJ, Meng M, Madhavan R, Peng HB. Reciprocal regulation of axonal Filopodia and outgrowth during neuromuscular junction development. PLoS One 2012; 7:e44759. [PMID: 22957106 PMCID: PMC3434160 DOI: 10.1371/journal.pone.0044759] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 08/06/2012] [Indexed: 01/01/2023] Open
Abstract
Background The assembly of the vertebrate neuromuscular junction (NMJ) is initiated when nerve and muscle first contact each other by filopodial processes which are thought to enable close interactions between the synaptic partners and facilitate synaptogenesis. We recently reported that embryonic Xenopus spinal neurons preferentially extended filopodia towards cocultured muscle cells and that basic fibroblast growth factor (bFGF) produced by muscle activated neuronal FGF receptor 1 (FGFR1) to induce filopodia and favor synaptogenesis. Intriguingly, in an earlier study we found that neurotrophins (NTs), a different set of target-derived factors that act through Trk receptor tyrosine kinases, promoted neuronal growth but hindered presynaptic differentiation and NMJ formation. Thus, here we investigated how bFGF- and NT-signals in neurons jointly elicit presynaptic changes during the earliest stages of NMJ development. Methodology/Principal Findings Whereas forced expression of wild-type TrkB in neurons reduced filopodial extension and triggered axonal outgrowth, expression of a mutant TrkB lacking the intracellular kinase domain enhanced filopodial growth and slowed axonal advance. Neurons overexpressing wild-type FGFR1 also displayed more filopodia than control neurons, in accord with our previous findings, and, notably, this elevation in filopodial density was suppressed when neurons were chronically treated from the beginning of the culture period with BDNF, the NT that specifically activates TrkB. Conversely, inhibition by BDNF of NMJ formation in nerve-muscle cocultures was partly reversed by the overexpression of bFGF in muscle. Conclusions Our results suggest that the balance between neuronal FGFR1- and TrkB-dependent filopodial assembly and axonal outgrowth regulates the establishment of incipient NMJs.
Collapse
Affiliation(s)
- Pan P. Li
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Jie J. Zhou
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Min Meng
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Raghavan Madhavan
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - H. Benjamin Peng
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
- * E-mail:
| |
Collapse
|
9
|
Volknandt W, Karas M. Proteomic analysis of the presynaptic active zone. Exp Brain Res 2012; 217:449-61. [DOI: 10.1007/s00221-012-3031-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 02/04/2012] [Indexed: 02/06/2023]
|
10
|
Morciano M, Beckhaus T, Karas M, Zimmermann H, Volknandt W. The proteome of the presynaptic active zone: from docked synaptic vesicles to adhesion molecules and maxi-channels. J Neurochem 2009; 108:662-75. [PMID: 19187093 DOI: 10.1111/j.1471-4159.2008.05824.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The presynaptic proteome controls neurotransmitter release and the short and long term structural and functional dynamics of the nerve terminal. Using a monoclonal antibody against synaptic vesicle protein 2 we immunopurified a presynaptic compartment containing the active zone with synaptic vesicles docked to the presynaptic plasma membrane as well as elements of the presynaptic cytomatrix. Individual protein bands separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis were subjected to nanoscale-liquid chromatography electrospray ionization-tandem mass spectrometry. Combining this method with 2-dimensional benzyldimethyl-n-hexadecylammonium chloride/sodium dodecyl sulfate-polyacrylamide gel electrophoresis and matrix-assisted laser desorption ionization time of flight and immunodetection we identified 240 proteins comprising synaptic vesicle proteins, components of the presynaptic fusion and retrieval machinery, proteins involved in intracellular signal transduction, a large variety of adhesion molecules and proteins potentially involved in regulating the functional and structural dynamics of the pre-synapse. Four maxi-channels, three isoforms of voltage-dependent anion channels and the tweety homolog 1 were co-isolated with the docked synaptic vesicles. As revealed by in situ hybridization, tweety homolog 1 reveals a distinct expression pattern in the rodent brain. Our results add novel information to the proteome of the presynaptic active zone and suggest that in particular proteins potentially involved in the short and long term structural modulation of the mature presynaptic compartment deserve further detailed analysis.
Collapse
Affiliation(s)
- Marco Morciano
- Neurochemistry, Biocenter of Goethe-University, Frankfurt am Main, Germany
| | | | | | | | | |
Collapse
|
11
|
Umemori H, Sanes JR. Signal regulatory proteins (SIRPS) are secreted presynaptic organizing molecules. J Biol Chem 2008; 283:34053-61. [PMID: 18819922 DOI: 10.1074/jbc.m805729200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Formation of chemical synapses requires exchange of organizing signals between the synaptic partners. Using synaptic vesicle aggregation in cultured neurons as a marker of presynaptic differentiation, we purified candidate presynaptic organizers from mouse brain. A major bioactive species was the extracellular domain of signal regulatory protein alpha (SIRP-alpha), a transmembrane immunoglobulin superfamily member concentrated at synapses. The extracellular domain of SIRP-alpha is cleaved and shed in a developmentally regulated manner. The presynaptic organizing activity of SIRP-alpha is mediated in part by CD47. SIRP-alpha homologues, SIRP-beta and -gamma also have synaptic vesicle clustering activity. The effects of SIRP-alpha are distinct from those of another presynaptic organizer, FGF22: the two proteins induced vesicle clusters of different sizes, differed in their ability to promote neurite branching, and acted through different receptors and signaling pathways. SIRP family proteins may act together with other organizing molecules to pattern synapses.
Collapse
Affiliation(s)
- Hisashi Umemori
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, Massachusetts 02138, USA.
| | | |
Collapse
|
12
|
Hou ST, Jiang SX, Smith RA. Permissive and repulsive cues and signalling pathways of axonal outgrowth and regeneration. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 267:125-81. [PMID: 18544498 DOI: 10.1016/s1937-6448(08)00603-5] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Successful axonal outgrowth in the adult central nervous system (CNS) is central to the process of nerve regeneration and brain repair. To date, much of the knowledge on axonal guidance and outgrowth comes from studies on neuritogenesis and patterning during development where distal growth cones constantly sample the local environment and respond to specific physical and trophic influences. Opposing permissive (e.g., growth factors) and hostile signals (e.g., repulsive cues) are processed, leading to growth cone remodelling, and a concomitant restructuring of the cytoskeleton, thereby permitting pioneering extension and a potential for establishing synaptic connections. Repulsive cues, such as semaphorins, ephrins and myelin-secreted inhibitory glycoproteins, act through their respective receptors to affect the collapsing or turning of growth cones via several pathways, such as the Rho GTPases signalling which precipitates the cytoskeletal changes. One of the direct modulators of microtubules is the family of brain-specific proteins, collapsin response mediator protein (CRMP). Exciting evidence emerged recently that cleavage of CRMPs in response to injury-activated proteases, such as calpain, signals axonal retraction and neuronal death in adult post-mitotic neurons, while blocking this signal transduction prevents axonal retraction and death following excitotoxic insult and cerebral ischemia. Regeneration is minimal in injured postnatal CNS, albeit the occurrence of some limited remodelling in areas where synaptic plasticity is prevalent. Frequently in the absence of axonal regeneration, there is not only an inevitable loss of functional connections, but also a loss of neurons, such as through the actions of dependence receptors. Deciphering the cues and signalling pathways of axonal guidance and outgrowth may hold the key to fully understanding nerve regeneration and brain repair, thereby opening the way for developing potential therapeutics.
Collapse
Affiliation(s)
- Sheng T Hou
- Institute for Biological Sciences, National Research Council of Canada, Ottawa, Ontario, K1A 0R6, Canada
| | | | | |
Collapse
|
13
|
Zhao XT, Qian YK, Chan AWS, Madhavan R, Peng HB. Regulation of ACh receptor clustering by the tyrosine phosphatase Shp2. Dev Neurobiol 2007; 67:1789-801. [PMID: 17659592 DOI: 10.1002/dneu.20556] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
At the vertebrate neuromuscular junction (NMJ), postsynaptic aggregation of muscle acetylcholine receptors (AChRs) depends on the activation of MuSK, a muscle-specific tyrosine kinase that is stimulated by neural agrin and regulated by muscle-intrinsic tyrosine kinases and phosphatases. We recently reported that Shp2, a tyrosine phosphatase containing src homology two domains, suppressed MuSK-dependent AChR clustering in cultured myotubes, but how this effect of Shp2 is controlled has remained unclear. In this study, biochemical assays showed that agrin-treatment of C2 mouse myotubes enhanced the tyrosine phosphorylation of signal regulatory protein alpha1 (SIRPalpha1), a known activator of Shp2, and promoted SIRPalpha1's interaction with Shp2. Moreover, in situ experiments revealed that treatment of myotubes with the Shp2-selective inhibitor NSC-87877 increased spontaneous and agrin-induced AChR clustering, and that AChR clustering was also enhanced in myotubes ectopically expressing inactive (dominant-negative) Shp2; in contrast, AChR clustering was reduced in myotubes expressing constitutively active Shp2. Significantly, expression of truncated (nonShp2-binding) and full-length (Shp2-binding) forms of SIRPalpha1 in myotubes also increased and decreased AChR clustering, respectively, and coexpression of truncated SIRPalpha1 with active Shp2 and full-length SIRPalpha1 with inactive Shp2 reversed the actions of the exogenous Shp2 proteins on AChR clustering. These results suggest that SIRPalpha1 is a novel downstream target of MuSK that activates Shp2, which, in turn, suppresses AChR clustering. We propose that an inhibitory loop involving both tyrosine kinases and phosphatases sets the level of agrin/MuSK signaling and constrains it spatially to help generate high-density AChR clusters selectively at NMJs.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Enzyme Inhibitors/pharmacology
- Immunoprecipitation
- Mice
- Microscopy, Fluorescence
- Models, Neurological
- Muscle Fibers, Skeletal/metabolism
- Protein Tyrosine Phosphatase, Non-Receptor Type 11/drug effects
- Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism
- RNA, Messenger
- Receptor Protein-Tyrosine Kinases/metabolism
- Receptors, Cholinergic/drug effects
- Receptors, Cholinergic/metabolism
- Receptors, Immunologic/metabolism
- Transfection
Collapse
Affiliation(s)
- Xiaotao T Zhao
- Department of Biology, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | | | | | | | | |
Collapse
|
14
|
Mitsuhashi H, Futai E, Sasagawa N, Hayashi Y, Nishino I, Ishiura S. Csk-homologous kinase interacts with SHPS-1 and enhances neurite outgrowth of PC12 cells. J Neurochem 2007; 105:101-12. [PMID: 17999719 DOI: 10.1111/j.1471-4159.2007.05121.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
SHPS-1 is an immunoglobulin superfamily protein with four immunoreceptor tyrosine-based inhibitory motifs (ITIMs) in its cytoplasmic region. Various neurotrophic factors induce the tyrosine phosphorylation of SHPS-1 and the association of SHPS-1 with the protein tyrosine phosphatase SHP-2. Using a yeast two-hybrid screen, we identified a protein tyrosine kinase, Csk-homologous kinase (CHK), as an SHPS-1-interacting protein. Immunoprecipitation and pull-down assays using glutathione S-transferase (GST) fusion proteins containing the Src homology 2 (SH2) domain of CHK revealed that CHK associates with tyrosine-phosphorylated SHPS-1 via its SH2 domain. HIS3 assay in a yeast two-hybrid system using the tyrosine-to-phenylalanine mutants of SHPS-1 indicated that the first and second ITIMs of SHPS-1 are required to bind CHK. Over-expression of wild-type CHK, but not a kinase-inactive CHK mutant, enhanced the phosphorylation of SHPS-1 and its subsequent association with SHP-2. CHK phosphorylated each of four tyrosines in the cytoplasmic region of SHPS-1 in vitro. Co-expression of SHPS-1 and CHK enhanced neurite outgrowth in PC12 cells. Thus, CHK phosphorylates and associates with SHPS-1 and is involved in neural differentiation via SHP-2 activation.
Collapse
Affiliation(s)
- Hiroaki Mitsuhashi
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
15
|
Gatlin JC, Estrada-Bernal A, Sanford SD, Pfenninger KH. Myristoylated, alanine-rich C-kinase substrate phosphorylation regulates growth cone adhesion and pathfinding. Mol Biol Cell 2006; 17:5115-30. [PMID: 16987960 PMCID: PMC1679677 DOI: 10.1091/mbc.e05-12-1183] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Repellents evoke growth cone turning by eliciting asymmetric, localized loss of actin cytoskeleton together with changes in substratum attachment. We have demonstrated that semaphorin-3A (Sema3A)-induced growth cone detachment and collapse require eicosanoid-mediated activation of protein kinase C epsilon (PKC epsilon) and that the major PKC epsilon target is the myristoylated, alanine-rich C-kinase substrate (MARCKS). Here, we show that PKC activation is necessary for growth cone turning and that MARCKS, while at the membrane, colocalizes with alpha3-integrin in a peripheral adhesive zone of the growth cone. Phosphorylation of MARCKS causes its translocation from the membrane to the cytosol. Silencing MARCKS expression dramatically reduces growth cone spread, whereas overexpression of wild-type MARCKS inhibits growth cone collapse triggered by PKC activation. Expression of phosphorylation-deficient, mutant MARCKS greatly expands growth cone adhesion, and this is characterized by extensive colocalization of MARCKS and alpha3-integrin, resistance to eicosanoid-triggered detachment and collapse, and reversal of Sema3A-induced repulsion into attraction. We conclude that MARCKS is involved in regulating growth cone adhesion as follows: its nonphosphorylated form stabilizes integrin-mediated adhesions, and its phosphorylation-triggered release from adhesions causes localized growth cone detachment critical for turning and collapse.
Collapse
Affiliation(s)
- Jesse C. Gatlin
- Departments of Pediatrics and of Cell and Developmental Biology, University of Colorado School of Medicine, and University of Colorado Cancer Center, Aurora, CO 80045
| | - Adriana Estrada-Bernal
- Departments of Pediatrics and of Cell and Developmental Biology, University of Colorado School of Medicine, and University of Colorado Cancer Center, Aurora, CO 80045
| | - Staci D. Sanford
- Departments of Pediatrics and of Cell and Developmental Biology, University of Colorado School of Medicine, and University of Colorado Cancer Center, Aurora, CO 80045
| | - Karl H. Pfenninger
- Departments of Pediatrics and of Cell and Developmental Biology, University of Colorado School of Medicine, and University of Colorado Cancer Center, Aurora, CO 80045
| |
Collapse
|