1
|
Malhotra K, Malik A, Almalki WH, Sahebkar A, Kesharwani P. Reactive Oxygen Species and its Manipulation Strategies in Cancer Treatment. Curr Med Chem 2025; 32:55-73. [PMID: 37303173 DOI: 10.2174/0929867330666230609110455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/05/2023] [Accepted: 05/12/2023] [Indexed: 06/13/2023]
Abstract
Cancer is one of the serious diseases of modern times, occurring in all parts of the world and shows a wide range of effects on the human body. Reactive Oxygen Species (ROS) such as oxide and superoxide ions have both advantages and disadvantages during the progression of cancer, dependent on their concentration. It is a necessary part of the normal cellular mechanisms. Changes in its normal level can cause oncogenesis and other relatable problems. Metastasis can also be controlled by ROS levels in the tumor cells, which can be prevented by the use of antioxidants. However, ROS is also used for the initiation of apoptosis in cells by different mediators. There exists a cycle between the production of oxygen reactive species, their effect on the genes, role of mitochondria and the progression of tumors. ROS levels cause DNA damage by the oxidation process, gene damage, altered expression of the genes and signalling mechanisms. They finally lead to mitochondrial disability and mutations, resulting in cancer. This review summarizes the important role and activity of ROS in developing different types of cancers like cervical, gastric, bladder, liver, colorectal and ovarian cancers.
Collapse
Affiliation(s)
- Kabil Malhotra
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Arzoo Malik
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Waleed H Almalki
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| |
Collapse
|
2
|
Das A, Smith RJ, Andreadis ST. Harnessing the potential of monocytes/macrophages to regenerate tissue-engineered vascular grafts. Cardiovasc Res 2024; 120:839-854. [PMID: 38742656 PMCID: PMC11218695 DOI: 10.1093/cvr/cvae106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 02/19/2024] [Accepted: 04/02/2024] [Indexed: 05/16/2024] Open
Abstract
Cell-free tissue-engineered vascular grafts provide a promising alternative to treat cardiovascular disease, but timely endothelialization is essential for ensuring patency and proper functioning post-implantation. Recent studies from our lab showed that blood cells like monocytes (MCs) and macrophages (Mϕ) may contribute directly to cellularization and regeneration of bioengineered arteries in small and large animal models. While MCs and Mϕ are leucocytes that are part of the innate immune response, they share common developmental origins with endothelial cells (ECs) and are known to play crucial roles during vessel formation (angiogenesis) and vessel repair after inflammation/injury. They are highly plastic cells that polarize into pro-inflammatory and anti-inflammatory phenotypes upon exposure to cytokines and differentiate into other cell types, including EC-like cells, in the presence of appropriate chemical and mechanical stimuli. This review focuses on the developmental origins of MCs and ECs; the role of MCs and Mϕ in vessel repair/regeneration during inflammation/injury; and the role of chemical signalling and mechanical forces in Mϕ inflammation that mediates vascular graft regeneration. We postulate that comprehensive understanding of these mechanisms will better inform the development of strategies to coax MCs/Mϕ into endothelializing the lumen and regenerate the smooth muscle layers of cell-free bioengineered arteries and veins that are designed to treat cardiovascular diseases and perhaps the native vasculature as well.
Collapse
Affiliation(s)
- Arundhati Das
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, 908 Furnas Hall, Buffalo, NY 14260-4200, USA
| | - Randall J Smith
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, 332 Bonner Hall, Buffalo, NY 14260-1920, USA
| | - Stelios T Andreadis
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, 908 Furnas Hall, Buffalo, NY 14260-4200, USA
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, 332 Bonner Hall, Buffalo, NY 14260-1920, USA
- Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, The State University of New York, 701 Ellicott St, Buffalo, NY 14203, USA
- Cell, Gene and Tissue Engineering (CGTE) Center, University at Buffalo, The State University of New York, 813 Furnas Hall, Buffalo, NY 14260-4200, USA
| |
Collapse
|
3
|
Bedeschi M, Marino N, Cavassi E, Piccinini F, Tesei A. Cancer-Associated Fibroblast: Role in Prostate Cancer Progression to Metastatic Disease and Therapeutic Resistance. Cells 2023; 12:cells12050802. [PMID: 36899938 PMCID: PMC10000679 DOI: 10.3390/cells12050802] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/24/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
Prostate cancer (PCa) is one of the most common cancers in European males. Although therapeutic approaches have changed in recent years, and several new drugs have been approved by the Food and Drug Administration (FDA), androgen deprivation therapy (ADT) remains the standard of care. Currently, PCa represents a clinical and economic burden due to the development of resistance to ADT, paving the way to cancer progression, metastasis, and to long-term side effects induced by ADT and radio-chemotherapeutic regimens. In light of this, a growing number of studies are focusing on the tumor microenvironment (TME) because of its role in supporting tumor growth. Cancer-associated fibroblasts (CAFs) have a central function in the TME because they communicate with prostate cancer cells, altering their metabolism and sensitivity to drugs; hence, targeted therapy against the TME, and, in particular, CAFs, could represent an alternative therapeutic approach to defeat therapy resistance in PCa. In this review, we focus on different CAF origins, subsets, and functions to highlight their potential in future therapeutic strategies for prostate cancer.
Collapse
Affiliation(s)
- Martina Bedeschi
- BioScience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
- Correspondence: (M.B.); (A.T.); Tel.: +39-0543739932 (A.T.)
| | - Noemi Marino
- BioScience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| | - Elena Cavassi
- BioScience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| | - Filippo Piccinini
- BioScience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy
| | - Anna Tesei
- BioScience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
- Correspondence: (M.B.); (A.T.); Tel.: +39-0543739932 (A.T.)
| |
Collapse
|
4
|
Kazakova A, Sudarskikh T, Kovalev O, Kzhyshkowska J, Larionova I. Interaction of tumor‑associated macrophages with stromal and immune components in solid tumors: Research progress (Review). Int J Oncol 2023; 62:32. [PMID: 36660926 PMCID: PMC9851132 DOI: 10.3892/ijo.2023.5480] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/07/2022] [Indexed: 01/18/2023] Open
Abstract
Tumor‑associated macrophages (TAMs) are crucial cells of the tumor microenvironment (TME), which belong to the innate immune system and regulate primary tumor growth, immunosuppression, angiogenesis, extracellular matrix remodeling and metastasis. The review discusses current knowledge of essential cell‑cell interactions of TAMs within the TME of solid tumors. It summarizes the mechanisms of stromal cell (including cancer‑associated fibroblasts and endothelial cells)‑mediated monocyte recruitment and regulation of differentiation, as well as pro‑tumor and antitumor polarization of TAMs. Additionally, it focuses on the perivascular TAM subpopulations that regulate angiogenesis and lymphangiogenesis. It describes the possible mechanisms of reciprocal interactions of TAMs with other immune cells responsible for immunosuppression. Finally, it highlights the perspectives for novel therapeutic approaches to use combined cellular targets that include TAMs and other stromal and immune cells in the TME. The collected data demonstrated the importance of understanding cell‑cell interactions in the TME to prevent distant metastasis and reduce the risk of tumor recurrence.
Collapse
Affiliation(s)
- Anna Kazakova
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, Tomsk 634050, Russian Federation
| | - Tatiana Sudarskikh
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, Tomsk 634050, Russian Federation
| | - Oleg Kovalev
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634009, Russian Federation
| | - Julia Kzhyshkowska
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, Tomsk 634050, Russian Federation
- Institute of Transfusion Medicine and Immunology, Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, University of Heidelberg, D-68167 Mannheim, Germany
| | - Irina Larionova
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, Tomsk 634050, Russian Federation
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634009, Russian Federation
| |
Collapse
|
5
|
Badve SS, Gökmen-Polar Y. Targeting the Tumor-Tumor Microenvironment Crosstalk. Expert Opin Ther Targets 2023; 27:447-457. [PMID: 37395003 DOI: 10.1080/14728222.2023.2230362] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 06/23/2023] [Indexed: 07/04/2023]
Abstract
INTRODUCTION Cancer development and progression is a complex process influenced by co-evolution of the cancer cells and their microenvironment. However, traditional anti-cancer therapy is mostly targeted toward cancer cells. To improve the efficacy of cancer drugs, the complex interactions between the tumor (T) and the tumor microenvironment (TME) should be considered while developing therapeutics. AREAS COVERED The present review article will discuss the components of T-TME as well as the potential to co-target these two distinct elements. We document that these approaches have resulted in success in preventing tumor progression and metastasis, albeit in animal models in some cases. Lastly, it is important to consider the tissue context and tumor type as these could significantly modify the role of these molecules/pathways and hence the overall likelihood of response. Furthermore, we discuss the potential strategies to target the components of tumor microenvironment in anti-cancer therapy. PubMed and ClinicalTrials.gov was searched through May 2023. EXPERT OPINION The tumor-tumor microenvironment cross talk and heterogeneity are major mechanisms conferring resistance to standard of care. Better understanding of the tissue specific T-TME interactions and dual targeting has the promise of improving cancer control and clinical outcomes.
Collapse
Affiliation(s)
- Sunil S Badve
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, USA
| | - Yesim Gökmen-Polar
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, USA
| |
Collapse
|
6
|
Jones CE, Sharick JT, Sizemore ST, Cukierman E, Strohecker AM, Leight JL. A miniaturized screening platform to identify novel regulators of extracellular matrix alignment. CANCER RESEARCH COMMUNICATIONS 2022; 2:1471-1486. [PMID: 36530465 PMCID: PMC9757767 DOI: 10.1158/2767-9764.crc-22-0157] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 08/03/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
Abstract
Extracellular matrix alignment contributes to metastasis in a number of cancers and is a known prognostic stromal factor; however, the mechanisms controlling matrix organization remain unclear. Cancer-associated fibroblasts (CAF) play a critical role in this process, particularly via matrix production and modulation of key signaling pathways controlling cell adhesion and contractility. Stroma normalization, as opposed to elimination, is a highly sought strategy, and screening for drugs that effectively alter extracellular matrix (ECM) alignment is a practical way to identify novel CAF-normalizing targets that modulate ECM organization. To meet this need, we developed a novel high-throughput screening platform in which fibroblast-derived matrices were produced in 384-well plates, imaged with automated confocal microscopy, and analyzed using a customized MATLAB script. This platform is a technical advance because it miniaturizes the assay, eliminates costly and time-consuming experimental steps, and streamlines data acquisition and analysis to enable high-throughput screening applications. As a proof of concept, this platform was used to screen a kinase inhibitor library to identify modulators of matrix alignment. A number of novel potential regulators were identified, including several receptor tyrosine kinases (c-MET, tropomyosin receptor kinase 1 (NTRK1), HER2/ERBB2) and the serine/threonine kinases protein kinase A, C, and G (PKA, PKC, and PKG). The expression of these regulators was analyzed in publicly available patient datasets to examine the association between stromal gene expression and patient outcomes.
Collapse
Affiliation(s)
- Caitlin E. Jones
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio
| | - Joe T. Sharick
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio
- The James Comprehensive Cancer Center, Program in Cancer Biology, The Ohio State University, Columbus, Ohio
| | - Steven T. Sizemore
- The James Comprehensive Cancer Center, Program in Cancer Biology, The Ohio State University, Columbus, Ohio
- Department of Radiation Oncology, The Ohio State University, Columbus, Ohio
| | - Edna Cukierman
- Cancer Signaling and Epigenetics, The Marvin and Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Temple Health, Philadelphia, Pennsylvania
| | - Anne Marie Strohecker
- The James Comprehensive Cancer Center, Program in Cancer Biology, The Ohio State University, Columbus, Ohio
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, Ohio
| | - Jennifer L. Leight
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio
- The James Comprehensive Cancer Center, Program in Cancer Biology, The Ohio State University, Columbus, Ohio
| |
Collapse
|
7
|
Sim TM. Nanoparticle-assisted targeting of the tumour microenvironment. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Abstract
Eukaryotic cells have developed complex systems to regulate the production and response to reactive oxygen species (ROS). Different ROS control diverse aspects of cell behaviour from signalling to death, and deregulation of ROS production and ROS limitation pathways are common features of cancer cells. ROS also function to modulate the tumour environment, affecting the various stromal cells that provide metabolic support, a blood supply and immune responses to the tumour. Although it is clear that ROS play important roles during tumorigenesis, it has been difficult to reliably predict the effect of ROS modulating therapies. We now understand that the responses to ROS are highly complex and dependent on multiple factors, including the types, levels, localization and persistence of ROS, as well as the origin, environment and stage of the tumours themselves. This increasing understanding of the complexity of ROS in malignancies will be key to unlocking the potential of ROS-targeting therapies for cancer treatment.
Collapse
|
9
|
Simon T, Salhia B. Cancer-Associated Fibroblast Subpopulations With Diverse and Dynamic Roles in the Tumor Microenvironment. Mol Cancer Res 2022; 20:183-192. [PMID: 34670861 PMCID: PMC9306405 DOI: 10.1158/1541-7786.mcr-21-0282] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/21/2021] [Accepted: 10/15/2021] [Indexed: 01/07/2023]
Abstract
Close interactions between cancer cells and cancer-associated fibroblasts (CAF) have repeatedly been reported to support tumor progression. Yet, targeting CAFs has so far failed to show a real benefit in cancer treatment, as preclinical studies have shown that such a strategy can enhance tumor growth. Accordingly, recent paradigm-shifting data suggest that certain CAF subpopulations could also show tumor-inhibitory capabilities. The present review aims to provide an in-depth description of the cellular heterogeneity of the CAF compartment in tumors. Through combining information from different cancer types, here we define 4 main CAF subpopulations that might cohabitate in any tumor microenvironment (TME). In addition, a model for the evolution of CAFs during tumor development is introduced. Moreover, the presence of tumor-inhibitory CAFs in the TME as well as their molecular characteristics are extensively discussed. Finally, the potential cellular origins of these distinct CAF subpopulations are reviewed. To our knowledge, this is the first attempt at establishing a broad but comprehensive classification of CAF subpopulations. Altogether, the present manuscript aims to provide the latest developments and innovative insights that could help refine future therapeutic targeting of CAFs for cancer treatment.
Collapse
Affiliation(s)
- Thomas Simon
- Department of Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Bodour Salhia
- Department of Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, California.,Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California.,Corresponding Author: Bodour Salhia, Department of Translational Genomics, Keck School of Medicine, University of Southern California, 1450 Biggy Street, Los Angeles, CA 90033. Phone: 323-442-3099; E-mail:
| |
Collapse
|
10
|
Amaldoss MJN, Mehmood R, Yang J, Koshy P, Kumar N, Unnikrishnan A, Sorrell CC. Anticancer Therapeutic Effects of Cerium Oxide Nanoparticles: Known and Unknown Molecular Mechanisms. Biomater Sci 2022; 10:3671-3694. [DOI: 10.1039/d2bm00334a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cerium-based nanoparticles (CeNPs), particularly cerium oxide (CeO2), have been studied extensively for their antioxidant and prooxidant properties. However, their complete redox and enzyme-mimetic mechanisms of therapeutic action at the molecular...
Collapse
|
11
|
Yang Y, Li D, Wu W, Huang D, Zheng H, Aihaiti Y. A Pan-Cancer Analysis of the Role of Selenoprotein P mRNA in Tumorigenesis. Int J Gen Med 2021; 14:7471-7485. [PMID: 34754222 PMCID: PMC8568700 DOI: 10.2147/ijgm.s332031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 10/11/2021] [Indexed: 12/31/2022] Open
Abstract
Background Selenium (Se) exhibits its anti-carcinogenic properties by regulating the redox system. However, the relationship between selenoprotein P (SeP), mRNA (SELENOP mRNA) and tumorigenesis remains unclear. Plasma SeP transports Se to various target tissues and has antioxidant characteristics. The present study aimed to explore the multifaceted pan-cancer properties of SELENOP in terms of its tissue-specific expression, prognostic value, immune function, and signaling pathway enrichment. Patients and Methods The expression profile of SELENOP was determined in 33 tumor types and survival, pathway enrichment, and correlation analyses were conducted based on TCGA database. The relationship between SELENOP expression and immune infiltration and macrophage subtype gene markers was investigated using the TIMER and GEPIA. Results SELENOP gene expression was decreased in many cancer tissues, but was upregulated in brain lower grade glioma (LGG). Furthermore, SELENOP expression was associated with a better prognosis in most cancers, but a poorer prognosis in LGG and uterine corpus endometrioid carcinoma (UCEC). Our results showed that SELENOP was correlated with infiltration level of six immune cell types, where SELENOP also showed a strong correlation with macrophages in some cancer types. However, we failed to determine macrophage polarization in 33 tumor types. SELENOP negatively regulated vascular endothelial cell proliferation in LGG and UCEC and epidermal cell differentiation in six tumor types. In contrast, upregulation was related to immune function, including T cell activation, B cell-mediated immunity, adaptive immune response and immune response regulation cell surface receptor signaling pathways in another six tumor types. Conclusion These findings highlighted the tissue-specific expression, prognostic value and immune characteristics of SELENOP in pan-cancer, and provided insights for illustrating the role of SELENOP in tumorigenesis.
Collapse
Affiliation(s)
- Yanni Yang
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, People's Republic of China.,Shaanxi University of Traditional Chinese Medicine, Xianyang, Shaanxi, People's Republic of China.,Department of Joint Surgery, Xi'an Jiaotong University Affiliated HongHui Hospital, Xi'an, Shaanxi, People's Republic of China
| | - Daning Li
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, People's Republic of China
| | - Wentao Wu
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, People's Republic of China
| | - Dingxing Huang
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, People's Republic of China
| | - Haishi Zheng
- Department of Joint Surgery, Xi'an Jiaotong University Affiliated HongHui Hospital, Xi'an, Shaanxi, People's Republic of China
| | - Yirixiati Aihaiti
- Department of Joint Surgery, Xi'an Jiaotong University Affiliated HongHui Hospital, Xi'an, Shaanxi, People's Republic of China
| |
Collapse
|
12
|
Hwang SH, Yang Y, Jung JH, Kim Y. Heterogeneous response of cancer-associated fibroblasts to the glucose deprivation through mitochondrial calcium uniporter. Exp Cell Res 2021; 406:112778. [PMID: 34384778 DOI: 10.1016/j.yexcr.2021.112778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 08/03/2021] [Accepted: 08/06/2021] [Indexed: 11/19/2022]
Abstract
Cancer-associated fibroblasts (CAFs) are an abundant component of the tumor microenvironment and have distinct features from normal fibroblasts (NFs). However, the discriminative nature of heterogeneous CAFs under glucose starvation remains unknown. In this study, we investigated the changes in the mitochondrial calcium concentration and relevant intracellular machinery in CAFs under glucose-deficient conditions. Xenografted tumor masses were dissected into multiple pieces and subjected to the CAF isolation using magnetically activated cell sorting (MACS). NFs were separated from the normal lung and skin. Under glucose starvation, CAFs from the tumor mass exhibited heterogeneity in cell proliferation, ATP production and calcium concentration. Compared to NFs, mitochondrial calcium concentration was significantly higher in glucose-starved CAFs with upregulation of mitochondrial calcium uniporter (MCU) that led to enhancement of ATP production and cell growth. Intriguingly, treatment of glucose-starved CAFs with oligomycin increased apoptosis by disrupted calcium homeostasis following overactivation of the mPTP. Moreover, oligomycin-induced apoptosis was mitigated by calcium chelation. This study demonstrated that the discriminative calcium influx to mitochondria through MCU coordinated cell growth and apoptosis in glucose-starved CAFs but not in NFs.
Collapse
Affiliation(s)
- Sung-Hyun Hwang
- Laboratory of Veterinary Clinical Pathology, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea; BK21 PLUS Program for Creative Veterinary Science Research, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Yeseul Yang
- Laboratory of Veterinary Clinical Pathology, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea; BK21 PLUS Program for Creative Veterinary Science Research, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Jae-Ha Jung
- Laboratory of Veterinary Clinical Pathology, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea; BK21 PLUS Program for Creative Veterinary Science Research, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Yongbaek Kim
- Laboratory of Veterinary Clinical Pathology, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea; Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea.
| |
Collapse
|
13
|
Dao NV, Ercole F, Urquhart MC, Kaminskas LM, Nowell CJ, Davis TP, Sloan EK, Whittaker MR, Quinn JF. Trisulfide linked cholesteryl PEG conjugate attenuates intracellular ROS and collagen-1 production in a breast cancer co-culture model. Biomater Sci 2021; 9:835-846. [PMID: 33231231 DOI: 10.1039/d0bm01544j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The progression of cancer has been closely-linked with augmentation of cellular reactive oxygen species (ROS) levels and ROS-associated changes in the tumour microenvironment (TME), including alterations to the extracellular matrix and associated low drug uptake. Herein we report the application of a co-culture model to simulate the ROS based cell-cell interactions in the TME using fibroblasts and breast cancer cells, and describe how novel reactive polymers can be used to modulate those interactions. Under the co-culture conditions, both cell types exhibited modifications in behaviour, including significant overproduction of ROS in the cancer cells, and elevation of the collagen-1 secretion and stained actin filament intensity in the fibroblasts. To examine the potential of using reactive antioxidant polymers to intercept ROS communication and thereby manipulate the TME, we employed H2S-releasing macromolecular conjugates which have been previously demonstrated to mitigate ROS production in HEK cells. The specific conjugate used, mPEG-SSS-cholesteryl (T), significantly reduced ROS levels in co-cultured cancer cells by approximately 50%. This reduction was significantly greater than that observed with the other positive antioxidant controls. Exposure to T was also found to downregulate levels of collagen-1 in the co-cultured fibroblasts, while exhibiting less impact on cells in mono-culture. This would suggest a possible downstream effect of ROS-mitigation by T on stromal-tumour cell signalling. Since fibroblast-derived collagens modulate crucial steps in tumorigenesis, this ROS-associated effect could potentially be harnessed to slow cancer progression. The model may also be beneficial for interrogating the impact of antioxidants on naturally enhanced ROS levels, rather than relying on the application of exogenous oxidants to simulate elevated ROS levels.
Collapse
Affiliation(s)
- Nam V Dao
- Australian Research Council - Centre of Excellence in Convergent Bio-Nano Science and Technology, Drug Delivery, Disposition and Dynamics Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia. and Department of Physical Chemistry and Physics, Hanoi University of Pharmacy, Hanoi 10000, Vietnam
| | - Francesca Ercole
- Australian Research Council - Centre of Excellence in Convergent Bio-Nano Science and Technology, Drug Delivery, Disposition and Dynamics Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia.
| | - Matthew C Urquhart
- Australian Research Council - Centre of Excellence in Convergent Bio-Nano Science and Technology, Drug Delivery, Disposition and Dynamics Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia.
| | - Lisa M Kaminskas
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Cameron J Nowell
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Thomas P Davis
- Australian Research Council - Centre of Excellence in Convergent Bio-Nano Science and Technology, Drug Delivery, Disposition and Dynamics Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia. and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Erica K Sloan
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia and Peter MacCallum Cancer Centre, Division of Surgery, Melbourne, VIC 3000, Australia
| | - Michael R Whittaker
- Australian Research Council - Centre of Excellence in Convergent Bio-Nano Science and Technology, Drug Delivery, Disposition and Dynamics Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia.
| | - John F Quinn
- Australian Research Council - Centre of Excellence in Convergent Bio-Nano Science and Technology, Drug Delivery, Disposition and Dynamics Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia. and Department of Chemical Engineering, Faculty of Engineering, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| |
Collapse
|
14
|
Sacco A, Battaglia AM, Botta C, Aversa I, Mancuso S, Costanzo F, Biamonte F. Iron Metabolism in the Tumor Microenvironment-Implications for Anti-Cancer Immune Response. Cells 2021; 10:303. [PMID: 33540645 PMCID: PMC7913036 DOI: 10.3390/cells10020303] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/26/2021] [Accepted: 01/28/2021] [Indexed: 02/06/2023] Open
Abstract
New insights into the field of iron metabolism within the tumor microenvironment have been uncovered in recent years. Iron promotes the production of reactive oxygen species, which may either trigger ferroptosis cell death or contribute to malignant transformation. Once transformed, cancer cells divert tumor-infiltrating immune cells to satisfy their iron demand, thus affecting the tumor immunosurveillance. In this review, we highlight how the bioavailability of this metal shapes complex metabolic pathways within the tumor microenvironment and how this affects both tumor-associated macrophages and tumor-infiltrating lymphocytes functions. Furthermore, we discuss the potentials as well as the current clinical controversies surrounding the use of iron metabolism as a target for new anticancer treatments in two opposed conditions: i) the "hot" tumors, which are usually enriched in immune cells infiltration and are extremely rich in iron availability within the microenvironment, and ii) the "cold" tumors, which are often very poor in immune cells, mainly due to immune exclusion.
Collapse
Affiliation(s)
- Alessandro Sacco
- Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy; (A.S.); (A.M.B.); (I.A.); (F.C.)
| | - Anna Martina Battaglia
- Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy; (A.S.); (A.M.B.); (I.A.); (F.C.)
| | | | - Ilenia Aversa
- Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy; (A.S.); (A.M.B.); (I.A.); (F.C.)
| | - Serafina Mancuso
- U.O. Biochimica Clinica, Azienda Ospedaliero Universitaria Mater Domini, 88100 Catanzaro, Italy;
| | - Francesco Costanzo
- Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy; (A.S.); (A.M.B.); (I.A.); (F.C.)
- Center of Interdepartmental Services (CIS), “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy
| | - Flavia Biamonte
- Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy; (A.S.); (A.M.B.); (I.A.); (F.C.)
- Center of Interdepartmental Services (CIS), “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
15
|
Role of Phytochemicals in Perturbation of Redox Homeostasis in Cancer. Antioxidants (Basel) 2021; 10:antiox10010083. [PMID: 33435480 PMCID: PMC7827008 DOI: 10.3390/antiox10010083] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/05/2021] [Accepted: 01/05/2021] [Indexed: 12/12/2022] Open
Abstract
Over the past few decades, research on reactive oxygen species (ROS) has revealed their critical role in the initiation and progression of cancer by virtue of various transcription factors. At certain threshold values, ROS act as signaling molecules leading to activation of oncogenic pathways. However, if perturbated beyond the threshold values, ROS act in an anti-tumor manner leading to cellular death. ROS mediate cellular death through various programmed cell death (PCD) approaches such as apoptosis, autophagy, ferroptosis, etc. Thus, external stimulation of ROS beyond a threshold is considered a promising therapeutic strategy. Phytochemicals have been widely regarded as favorable therapeutic options in many diseased conditions. Over the past few decades, mechanistic studies on phytochemicals have revealed their effect on ROS homeostasis in cancer. Considering their favorable side effect profile, phytochemicals remain attractive treatment options in cancer. Herein, we review some of the most recent studies performed using phytochemicals and, we further delve into the mechanism of action enacted by individual phytochemicals for PCD in cancer.
Collapse
|
16
|
Role of MSC in the Tumor Microenvironment. Cancers (Basel) 2020; 12:cancers12082107. [PMID: 32751163 PMCID: PMC7464647 DOI: 10.3390/cancers12082107] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/24/2020] [Accepted: 07/25/2020] [Indexed: 12/24/2022] Open
Abstract
The tumor microenvironment represents a dynamically composed matrix in which tissue-associated cancer cells are embedded together with a variety of further cell types to form a more or less separate organ-like structure. Constantly mutual interactions between cells of the tumor microenvironment promote continuous restructuring and growth in the tumor. A distinct organization of the tumor stroma also facilitates the formation of transient cancer stem cell niches, thereby contributing to progressive and dynamic tumor development. An important but heterogeneous mixture of cells that communicates among the cancer cells and the different tumor-associated cell types is represented by mesenchymal stroma-/stem-like cells (MSC). Following recruitment to tumor sites, MSC can change their functionalities, adapt to the tumor's metabolism, undergo differentiation and synergize with cancer cells. Vice versa, cancer cells can alter therapeutic sensitivities and change metastatic behavior depending on the type and intensity of this MSC crosstalk. Thus, close cellular interactions between MSC and cancer cells can eventually promote cell fusion by forming new cancer hybrid cells. Consequently, newly acquired cancer cell functions or new hybrid cancer populations enlarge the plasticity of the tumor and counteract successful interventional strategies. The present review article highlights some important features of MSC within the tumor stroma.
Collapse
|
17
|
Hacking S, Ebare K, Angert M, Lee L, Vitkovski T, Thomas R, Chavarria H, Jin C, Nasim M. Immature Stroma and Prognostic Profiling in Colorectal Carcinoma: Development and Validation of Novel Classification Systems. Pathol Res Pract 2020; 216:152970. [PMID: 32534718 DOI: 10.1016/j.prp.2020.152970] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/03/2020] [Accepted: 04/11/2020] [Indexed: 02/07/2023]
Abstract
Many pathological characteristics have utility for predicting prognosis in colorectal carcinoma (CRC). Some of the most important include tumor stage (TS), lymph node status (LNS) and tumor budding (TB). Tumor budding is a phenomenon originally described in 1949 as sprouting. TB assessment is not always reliable however, as it is subject to high inter-observer variation. This finding persists despite the current trends for sub-specialty training in surgical pathology. In light of this, new and reproducible histological prognostic markers could change the way we diagnose and manage patients with colorectal carcinoma. Studies have shown that desmoplastic reaction (DR) categorization can actually outperform other conventional prognostic factors, including tumor budding and tumor stage in predicting disease-free survival (DFS). Our study aimed to evaluate and assess the prognostic value of desmoplastic reaction in an American cohort with colorectal cancer using 3 different stromal classification scoring systems. In all three stromal grading systems, immature stroma was the most significant independent prognostic factor in CRC. Currently, none of the reporting protocols for the College of American Pathologists, the Royal College of Pathologists of the United Kingdom, and the Japanese Society for Cancer report on the presence of immature stroma. Importantly, regarding the ability to predict survival outcomes, our novel classification system has the potential to outperform other scoring methodologies.
Collapse
Affiliation(s)
- Sean Hacking
- Department of Pathology and Laboratory Medicine, Donald and Barbara Zucker School of Medicine at Northwell, United States.
| | - Kingsley Ebare
- Department of Pathology and Laboratory Medicine, Donald and Barbara Zucker School of Medicine at Northwell, United States
| | - Mallorie Angert
- Department of Pathology and Laboratory Medicine, Donald and Barbara Zucker School of Medicine at Northwell, United States
| | - Lili Lee
- Department of Pathology and Laboratory Medicine, Donald and Barbara Zucker School of Medicine at Northwell, United States
| | - Taisia Vitkovski
- Department of Pathology and Laboratory Medicine, Donald and Barbara Zucker School of Medicine at Northwell, United States
| | - Rebecca Thomas
- Department of Pathology and Laboratory Medicine, Donald and Barbara Zucker School of Medicine at Northwell, United States
| | - Hector Chavarria
- Department of Pathology and Laboratory Medicine, Donald and Barbara Zucker School of Medicine at Northwell, United States
| | - Cao Jin
- Department of Pathology and Laboratory Medicine, Donald and Barbara Zucker School of Medicine at Northwell, United States
| | - Mansoor Nasim
- Department of Pathology and Laboratory Medicine, Donald and Barbara Zucker School of Medicine at Northwell, United States
| |
Collapse
|
18
|
Brown RAM, Richardson KL, Kabir TD, Trinder D, Ganss R, Leedman PJ. Altered Iron Metabolism and Impact in Cancer Biology, Metastasis, and Immunology. Front Oncol 2020; 10:476. [PMID: 32328462 PMCID: PMC7160331 DOI: 10.3389/fonc.2020.00476] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 03/17/2020] [Indexed: 12/12/2022] Open
Abstract
Iron is an essential nutrient that plays a complex role in cancer biology. Iron metabolism must be tightly controlled within cells. Whilst fundamental to many cellular processes and required for cell survival, excess labile iron is toxic to cells. Increased iron metabolism is associated with malignant transformation, cancer progression, drug resistance and immune evasion. Depleting intracellular iron stores, either with the use of iron chelating agents or mimicking endogenous regulation mechanisms, such as microRNAs, present attractive therapeutic opportunities, some of which are currently under clinical investigation. Alternatively, iron overload can result in a form of regulated cell death, ferroptosis, which can be activated in cancer cells presenting an alternative anti-cancer strategy. This review focuses on alterations in iron metabolism that enable cancer cells to meet metabolic demands required during different stages of tumorigenesis in relation to metastasis and immune response. The strength of current evidence is considered, gaps in knowledge are highlighted and controversies relating to the role of iron and therapeutic targeting potential are discussed. The key question we address within this review is whether iron modulation represents a useful approach for treating metastatic disease and whether it could be employed in combination with existing targeted drugs and immune-based therapies to enhance their efficacy.
Collapse
Affiliation(s)
- Rikki A. M. Brown
- Queen Elizabeth II Medical Centre, Harry Perkins Institute of Medical Research, Perth, WA, Australia
- UWA Centre for Medical Research, University of Western Australia, Perth, WA, Australia
- UWA Medical School, University of Western Australia, Perth, WA, Australia
| | - Kirsty L. Richardson
- Queen Elizabeth II Medical Centre, Harry Perkins Institute of Medical Research, Perth, WA, Australia
- UWA Centre for Medical Research, University of Western Australia, Perth, WA, Australia
| | - Tasnuva D. Kabir
- Queen Elizabeth II Medical Centre, Harry Perkins Institute of Medical Research, Perth, WA, Australia
- UWA Centre for Medical Research, University of Western Australia, Perth, WA, Australia
| | - Debbie Trinder
- Queen Elizabeth II Medical Centre, Harry Perkins Institute of Medical Research, Perth, WA, Australia
- UWA Centre for Medical Research, University of Western Australia, Perth, WA, Australia
- UWA Medical School, University of Western Australia, Perth, WA, Australia
| | - Ruth Ganss
- Queen Elizabeth II Medical Centre, Harry Perkins Institute of Medical Research, Perth, WA, Australia
- UWA Centre for Medical Research, University of Western Australia, Perth, WA, Australia
| | - Peter J. Leedman
- Queen Elizabeth II Medical Centre, Harry Perkins Institute of Medical Research, Perth, WA, Australia
- UWA Centre for Medical Research, University of Western Australia, Perth, WA, Australia
- UWA Medical School, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
19
|
Esophageal Cancer Development: Crucial Clues Arising from the Extracellular Matrix. Cells 2020; 9:cells9020455. [PMID: 32079295 PMCID: PMC7072790 DOI: 10.3390/cells9020455] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/05/2020] [Accepted: 02/13/2020] [Indexed: 02/06/2023] Open
Abstract
In the last years, the extracellular matrix (ECM) has been reported as playing a relevant role in esophageal cancer (EC) development, with this compartment being related to several aspects of EC genesis and progression. This sounds very interesting due to the complexity of this highly incident and lethal tumor, which takes the sixth position in mortality among all tumor types worldwide. The well-established increase in ECM stiffness, which is able to trigger mechanotransduction signaling, is capable of regulating several malignant behaviors by converting alteration in ECM mechanics into cytoplasmatic biochemical signals. In this sense, it has been shown that some molecules play a key role in these events, particularly the different collagen isoforms, as well as enzymes related to its turnover, such as lysyl oxidase (LOX) and matrix metalloproteinases (MMPs). In fact, MMPs are not only involved in ECM stiffness, but also in other events related to ECM homeostasis, which includes ECM remodeling. Therefore, the crucial role of distinct MMPs isoform has already been reported, especially MMP-2, -3, -7, and -9, along EC development, thus strongly associating these proteins with the control of important cellular events during tumor progression, particularly in the process of invasion during metastasis establishment. In addition, by distinct mechanisms, a vast diversity of glycoproteins and proteoglycans, such as laminin, fibronectin, tenascin C, galectin, dermatan sulfate, and hyaluronic acid exert remarkable effects in esophageal malignant cells due to the activation of oncogenic signaling pathways mainly involved in cytoskeleton alterations during adhesion and migration processes. Finally, the wide spectrum of interactions potentially mediated by ECM may represent a singular intervention scenario in esophageal carcinogenesis natural history and, due to the scarce knowledge on the cellular and molecular mechanisms involved in EC development, the growing body of evidence on ECM’s role along esophageal carcinogenesis might provide a solid base to improve its management in the future.
Collapse
|
20
|
Stromal reprogramming: A target for tumor therapy. Life Sci 2019; 239:117049. [PMID: 31730862 DOI: 10.1016/j.lfs.2019.117049] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/04/2019] [Accepted: 11/06/2019] [Indexed: 01/18/2023]
Abstract
Cancer associated fibroblasts (CAFs) as the dominant, long-lived and highly plastic cells within the tumor microenvironment (TME) with multi-faceted roles that are endowed with tumor aggressive features. They can instruct and shape the stroma of tumor into being a highly qualified bed for cellular recruitment, differentiation and plasticity in the host tissue or secondary organ/s. In this Review, we have a discussion over CAF reprogramming as a general concept, inducers and outcomes, pursued by suggesting potential strategies to combat this key promoter of tumor.
Collapse
|
21
|
Jezierska-Drutel A, Attaran S, Hopkins BL, Skoko JJ, Rosenzweig SA, Neumann CA. The peroxidase PRDX1 inhibits the activated phenotype in mammary fibroblasts through regulating c-Jun N-terminal kinases. BMC Cancer 2019; 19:812. [PMID: 31419957 PMCID: PMC6697950 DOI: 10.1186/s12885-019-6031-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 08/12/2019] [Indexed: 01/11/2023] Open
Abstract
Background Reactive oxygen species (ROS), including hydrogen peroxide, drive differentiation of normal fibroblasts into activated fibroblasts, which can generate high amounts of hydrogen peroxide themselves, thereby increasing oxidative stress in the microenvironment. This way, activated fibroblasts can transition into cancer-associated fibroblasts (CAFs). Methods Mammary fibroblasts from either female 8 weeks old PRDX1 knockout and wildtype mice or Balb/c mice were studied for characteristic protein expression using immunofluorescence and immunoblotting. Cancer-associated fibroblasts was examined by transwell migration and invasion assays. The binding of PRDX1 to JNK1 was assessed by co-immuneprecipitation and JNK regulation of CAF phenotypes was examined using the JNK inhibitor SP600125. Extracellular hydrogen peroxide levels were measured by chemiluminescence via the reaction between hypochlorite and luminol. Statistical analyses were done using Students t-test. Results We show here PRDX1 activity as an essential switch in regulating the activated phenotype as loss of PRDX1 results in the development of a CAF-like phenotype in mammary fibroblasts. We also show that PRDX1 regulates JNK kinase signaling thereby inhibiting CAF-like markers and CAF invasion. Inhibition of JNK activity reduced these behaviors. Conclusions These data suggest that PRDX1 repressed the activated phenotype of fibroblasts in part through JNK inhibition which may present a novel therapeutic option for CAF-enriched cancers such as breast cancer. Electronic supplementary material The online version of this article (10.1186/s12885-019-6031-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Agnieszka Jezierska-Drutel
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15213, USA.,Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Shireen Attaran
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15213, USA.,Women's Cancer Research Center, UPMC Hillman Cancer Center, Pittsburgh, PA, 15213, USA
| | - Barbara L Hopkins
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, 15213, USA.,Women's Cancer Research Center, UPMC Hillman Cancer Center, Pittsburgh, PA, 15213, USA
| | - John J Skoko
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15213, USA.,Women's Cancer Research Center, UPMC Hillman Cancer Center, Pittsburgh, PA, 15213, USA
| | - Steven A Rosenzweig
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Carola A Neumann
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15213, USA. .,Women's Cancer Research Center, UPMC Hillman Cancer Center, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
22
|
Short SP, Pilat JM, Williams CS. Roles for selenium and selenoprotein P in the development, progression, and prevention of intestinal disease. Free Radic Biol Med 2018; 127:26-35. [PMID: 29778465 PMCID: PMC6168360 DOI: 10.1016/j.freeradbiomed.2018.05.066] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 05/09/2018] [Accepted: 05/16/2018] [Indexed: 02/07/2023]
Abstract
Selenium (Se) is a micronutrient essential to human health, the function of which is mediated in part by incorporation into a class of proteins known as selenoproteins (SePs). As many SePs serve antioxidant functions, Se has long been postulated to protect against inflammation and cancer development in the gut by attenuating oxidative stress. Indeed, numerous studies over the years have correlated Se levels with incidence and severity of intestinal diseases such as inflammatory bowel disease (IBD) and colorectal cancer (CRC). Similar results have been obtained with the Se transport protein, selenoprotein P (SELENOP), which is decreased in the plasma of both IBD and CRC patients. While animal models further suggest that decreases in Se or SELENOP augment colitis and intestinal tumorigenesis, large-scale clinical trials have yet to show a protective effect in patient populations. In this review, we discuss the function of Se and SELENOP in intestinal diseases and how research into these mechanisms may impact patient treatment.
Collapse
Affiliation(s)
- Sarah P Short
- Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, Vanderbilt University Medical Center, Nashville, TN, USA; Program in Cancer Biology, Vanderbilt University, Nashville, TN, USA
| | - Jennifer M Pilat
- Program in Cancer Biology, Vanderbilt University, Nashville, TN, USA
| | - Christopher S Williams
- Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, Vanderbilt University Medical Center, Nashville, TN, USA; Program in Cancer Biology, Vanderbilt University, Nashville, TN, USA; Vanderbilt University School of Medicine, Vanderbilt University, Nashville, TN, USA; Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA; Veterans Affairs Tennessee Valley HealthCare System, Nashville, TN, USA.
| |
Collapse
|
23
|
Brenneisen P, Reichert AS. Nanotherapy and Reactive Oxygen Species (ROS) in Cancer: A Novel Perspective. Antioxidants (Basel) 2018; 7:antiox7020031. [PMID: 29470419 PMCID: PMC5836021 DOI: 10.3390/antiox7020031] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 02/12/2018] [Accepted: 02/19/2018] [Indexed: 12/12/2022] Open
Abstract
The incidence of numerous types of cancer has been increasing over recent years, representing the second-most frequent cause of death after cardiovascular diseases. Even though, the number of effective anticancer drugs is increasing as well, a large number of patients suffer from severe side effects (e.g., cardiomyopathies) caused by these drugs. This adversely affects the patients’ well-being and quality of life. On the molecular level, tumor cells that survive treatment modalities can become chemotherapy-resistant. In addition, adverse impacts on normal (healthy, stromal) cells occur concomitantly. Strategies that minimize these negative impacts on normal cells and which at the same time target tumor cells efficiently are needed. Recent studies suggest that redox-based combinational nanotherapies may represent one option in this direction. Here, we discuss recent advances in the application of nanoparticles, alone or in combination with other drugs, as a promising anticancer tool. Such novel strategies could well minimize harmful side effects and improve patients’ health prognoses.
Collapse
Affiliation(s)
- Peter Brenneisen
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany.
| | - Andreas S Reichert
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany.
| |
Collapse
|
24
|
Kovacs D, Bastonini E, Ottaviani M, Cota C, Migliano E, Dell’Anna ML, Picardo M. Vitiligo Skin: Exploring the Dermal Compartment. J Invest Dermatol 2018; 138:394-404. [DOI: 10.1016/j.jid.2017.06.033] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 06/21/2017] [Accepted: 06/27/2017] [Indexed: 11/28/2022]
|
25
|
Thabet NM, Moustafa EM. Synergistic effect of Ebselen and gamma radiation on breast cancer cells. Int J Radiat Biol 2017; 93:784-792. [PMID: 28463038 DOI: 10.1080/09553002.2017.1325024] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
PURPOSE To explore the synergistic effect of a seleno-organic compound Ebselen (Ebs) and/or γ-radiation to exert antitumor effects on human breast cancer (MCF-7) cell line in vitro. MATERIALS AND METHODS Ebs cytotoxicity at various concentrations (10, 25, 50 and 75 μg), cell proliferation and clonogenic assay of Ebs and/or γ-radiation (at 1, 3 and 6 Gy), expression of p-IκBα and NF-κB, inflammatory cytokines levels (TNF-α, IL-2, INF-γ, IL-10 and TGF-β), apoptotic factors (Caspase-3, Granzyme-B and TRAIL) and angiogenic factor (VEGF) were investigated. RESULTS The results showed that the effective dosage of this combination was observed at 25 μg/ml of Ebs with γ-radiation at 6 Gy. Data displayed a significant reduction in NF-κB mRNA along with an elevation in granzyme-B mRNA and TRAIL mRNA expression. Furthermore, protein expression of caspase-3 was elevated, whereas p-IκBα and p-NF-κB(p65) protein expression was reduced significantly. Also, a significant decline in TNF-α, IL-2, INF-γ, TGF-β with a significant increase in IL-10 levels were revealed. Meanwhile, a significant decrease in VEGF level and proliferation capacity were observed. CONCLUSIONS We conclude that a combination of Ebs with radiotherapy has a major antitumor efficiency in inducing apoptosis and inhibiting cancer cell progression, due to the synergistic effect in regulating gene and protein expression, and in a modulating response of pro-and anti-inflammatory cytokines.
Collapse
Affiliation(s)
- Noura M Thabet
- a Radiation Biology Department , National Centre for Radiation Research and Technology (NCRRT), Atomic Energy Authority , Cairo , Egypt
| | - Enas M Moustafa
- a Radiation Biology Department , National Centre for Radiation Research and Technology (NCRRT), Atomic Energy Authority , Cairo , Egypt
| |
Collapse
|
26
|
Resveratrol inhibits hepatocellular carcinoma progression driven by hepatic stellate cells by targeting Gli-1. Mol Cell Biochem 2017; 434:17-24. [DOI: 10.1007/s11010-017-3031-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 04/01/2017] [Indexed: 02/06/2023]
|
27
|
Hanley CJ, Noble F, Ward M, Bullock M, Drifka C, Mellone M, Manousopoulou A, Johnston HE, Hayden A, Thirdborough S, Liu Y, Smith DM, Mellows T, Kao WJ, Garbis SD, Mirnezami A, Underwood TJ, Eliceiri KW, Thomas GJ. A subset of myofibroblastic cancer-associated fibroblasts regulate collagen fiber elongation, which is prognostic in multiple cancers. Oncotarget 2017; 7:6159-74. [PMID: 26716418 PMCID: PMC4868747 DOI: 10.18632/oncotarget.6740] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 12/05/2015] [Indexed: 12/18/2022] Open
Abstract
Collagen structure has been shown to influence tumor cell invasion, metastasis and clinical outcome in breast cancer. However, it remains unclear how it affects other solid cancers. Here we utilized multi-photon laser scanning microscopy and Second Harmonic Generation to identify alterations to collagen fiber structure within the tumor stroma of head & neck, esophageal and colorectal cancers. Image segmentation algorithms were then applied to quantitatively characterize these morphological changes, showing that elongated collagen fibers significantly correlated with poor clinical outcome (Log Rank p < 0.05). We used TGF-β treatment to model fibroblast conversion to smooth muscle actin SMA-positive cancer associated fibroblasts (CAFs) and found that these cells induce the formation of elongated collagen fibers in vivo. However, proteomic/transcriptomic analysis of SMA-positive CAFs cultured ex-vivo showed significant heterogeneity in the expression of genes with collagen fibril organizing gene ontology. Notably, stratifying patients according to stromal SMA-positivity and collagen fiber elongation was found to provide a highly significant correlation with poor survival in all 3 cancer types (Log Rank p ≤ 0.003). In summary, we show that increased collagen fiber length correlates with poor patient survival in multiple tumor types and that only a sub-set of SMA-positive CAFs can mediate the formation of this collagen structure.
Collapse
Affiliation(s)
- Christopher J Hanley
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Fergus Noble
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Matthew Ward
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Marc Bullock
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Cole Drifka
- Laboratory for Optical and Computational Instrumentation (LOCI), Department of Biomedical Engineering, University of Madison, Wisconsin 53706, USA
| | - Massimiliano Mellone
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Antigoni Manousopoulou
- Clinical and Experimental Sciences Unit, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Harvey E Johnston
- Clinical and Experimental Sciences Unit, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Annette Hayden
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Steve Thirdborough
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Yuming Liu
- Laboratory for Optical and Computational Instrumentation (LOCI), Department of Biomedical Engineering, University of Madison, Wisconsin 53706, USA
| | - David M Smith
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Toby Mellows
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - W John Kao
- Laboratory for Optical and Computational Instrumentation (LOCI), Department of Biomedical Engineering, University of Madison, Wisconsin 53706, USA
| | - Spiros D Garbis
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK.,Clinical and Experimental Sciences Unit, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Alex Mirnezami
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Tim J Underwood
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Kevin W Eliceiri
- Laboratory for Optical and Computational Instrumentation (LOCI), Department of Biomedical Engineering, University of Madison, Wisconsin 53706, USA
| | - Gareth J Thomas
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| |
Collapse
|
28
|
Gill JG, Piskounova E, Morrison SJ. Cancer, Oxidative Stress, and Metastasis. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2017; 81:163-175. [PMID: 28082378 DOI: 10.1101/sqb.2016.81.030791] [Citation(s) in RCA: 179] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Reactive oxygen species (ROS) are highly reactive molecules that arise from a number of cellular sources, including oxidative metabolism in mitochondria. At low levels they can be advantageous to cells, activating signaling pathways that promote proliferation or survival. At higher levels, ROS can damage or kill cells by oxidizing proteins, lipids, and nucleic acids. It was hypothesized that antioxidants might benefit high-risk patients by reducing the rate of ROS-induced mutations and delaying cancer initiation. However, dietary supplementation with antioxidants has generally proven ineffective or detrimental in clinical trials. High ROS levels limit cancer cell survival during certain windows of cancer initiation and progression. During these periods, dietary supplementation with antioxidants may promote cancer cell survival and cancer progression. This raises the possibility that rather than treating cancer patients with antioxidants, they should be treated with pro-oxidants that exacerbate oxidative stress or block metabolic adaptations that confer oxidative stress resistance.
Collapse
Affiliation(s)
- Jennifer G Gill
- Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, Texas 75390.,Department of Pediatrics, Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Elena Piskounova
- Department of Pediatrics, Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Sean J Morrison
- Department of Pediatrics, Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390.,Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| |
Collapse
|
29
|
Abstract
Selenium is a micronutrient essential to human health and has long been associated with cancer prevention. Functionally, these effects are thought to be mediated by a class of selenium-containing proteins known as selenoproteins. Indeed, many selenoproteins have antioxidant activity which can attenuate cancer development by minimizing oxidative insult and resultant DNA damage. However, oxidative stress is increasingly being recognized for its "double-edged sword" effect in tumorigenesis, whereby it can mediate both negative and positive effects on tumor growth depending on the cellular context. In addition to their roles in redox homeostasis, recent work has also implicated selenoproteins in key oncogenic and tumor-suppressive pathways. Together, these data suggest that the overall contribution of selenoproteins to tumorigenesis is complicated and may be affected by a variety of factors. In this review, we discuss what is currently known about selenoproteins in tumorigenesis with a focus on their contextual roles in cancer development, growth, and progression.
Collapse
Affiliation(s)
- Sarah P Short
- Vanderbilt University Medical Center, Nashville, TN, United States
| | - Christopher S Williams
- Vanderbilt University Medical Center, Nashville, TN, United States; Vanderbilt University School of Medicine, Vanderbilt University, Nashville, TN, United States; Vanderbilt University, Nashville, TN, United States; Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, United States; Veterans Affairs Tennessee Valley HealthCare System, Nashville, TN, United States.
| |
Collapse
|
30
|
Peiris-Pagès M, Smith DL, Győrffy B, Sotgia F, Lisanti MP. Proteomic identification of prognostic tumour biomarkers, using chemotherapy-induced cancer-associated fibroblasts. Aging (Albany NY) 2016; 7:816-38. [PMID: 26539730 PMCID: PMC4637208 DOI: 10.18632/aging.100808] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cancer cells grow in highly complex stromal microenvironments, which through metabolic remodelling, catabolism, autophagy and inflammation nurture them and are able to facilitate metastasis and resistance to therapy. However, these changes in the metabolic profile of stromal cancer-associated fibroblasts and their impact on cancer initiation, progression and metastasis are not well-known. This is the first study to provide a comprehensive proteomic portrait of the azathioprine and taxol-induced catabolic state on human stromal fibroblasts, which comprises changes in the expression of metabolic enzymes, myofibroblastic differentiation markers, antioxidants, proteins involved in autophagy, senescence, vesicle trafficking and protein degradation, and inducers of inflammation. Interestingly, many of these features are major contributors to the aging process. A catabolic stroma signature, generated with proteins found differentially up-regulated in taxol-treated fibroblasts, strikingly correlates with recurrence, metastasis and poor patient survival in several solid malignancies. We therefore suggest the inhibition of the catabolic state in healthy cells as a novel approach to improve current chemotherapy efficacies and possibly avoid future carcinogenic processes.
Collapse
Affiliation(s)
- Maria Peiris-Pagès
- The Breast Cancer Now Research Unit, Institute of Cancer Sciences, University of Manchester, UK.,The Manchester Centre for Cellular Metabolism (MCCM), Institute of Cancer Sciences, University of Manchester, UK
| | - Duncan L Smith
- The Cancer Research UK Manchester Institute, University of Manchester, UK
| | - Balázs Győrffy
- MTA TTK Lendület Cancer Biomarker Research Group, Budapest, Hungary.,Semmelweis University 2nd Dept. of Pediatrics, Budapest, Hungary
| | - Federica Sotgia
- The Breast Cancer Now Research Unit, Institute of Cancer Sciences, University of Manchester, UK.,The Manchester Centre for Cellular Metabolism (MCCM), Institute of Cancer Sciences, University of Manchester, UK
| | - Michael P Lisanti
- The Breast Cancer Now Research Unit, Institute of Cancer Sciences, University of Manchester, UK.,The Manchester Centre for Cellular Metabolism (MCCM), Institute of Cancer Sciences, University of Manchester, UK
| |
Collapse
|
31
|
Nwosu ZC, Alborzinia H, Wölfl S, Dooley S, Liu Y. Evolving Insights on Metabolism, Autophagy, and Epigenetics in Liver Myofibroblasts. Front Physiol 2016; 7:191. [PMID: 27313533 PMCID: PMC4887492 DOI: 10.3389/fphys.2016.00191] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 05/12/2016] [Indexed: 12/14/2022] Open
Abstract
Liver myofibroblasts (MFB) are crucial mediators of extracellular matrix (ECM) deposition in liver fibrosis. They arise mainly from hepatic stellate cells (HSCs) upon a process termed “activation.” To a lesser extent, and depending on the cause of liver damage, portal fibroblasts, mesothelial cells, and fibrocytes may also contribute to the MFB population. Targeting MFB to reduce liver fibrosis is currently an area of intense research. Unfortunately, a clog in the wheel of antifibrotic therapies is the fact that although MFB are known to mediate scar formation, and participate in liver inflammatory response, many of their molecular portraits are currently unknown. In this review, we discuss recent understanding of MFB in health and diseases, focusing specifically on three evolving research fields: metabolism, autophagy, and epigenetics. We have emphasized on therapeutic prospects where applicable and mentioned techniques for use in MFB studies. Subsequently, we highlighted uncharted territories in MFB research to help direct future efforts aimed at bridging gaps in current knowledge.
Collapse
Affiliation(s)
- Zeribe C Nwosu
- Molecular Hepatology Section, Department of Medicine II, Medical Faculty Mannheim, University of Heidelberg Mannheim, Germany
| | - Hamed Alborzinia
- Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg Heidelberg, Germany
| | - Stefan Wölfl
- Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg Heidelberg, Germany
| | - Steven Dooley
- Molecular Hepatology Section, Department of Medicine II, Medical Faculty Mannheim, University of Heidelberg Mannheim, Germany
| | - Yan Liu
- Molecular Hepatology Section, Department of Medicine II, Medical Faculty Mannheim, University of Heidelberg Mannheim, Germany
| |
Collapse
|
32
|
Paracrine tumor signaling induces transdifferentiation of surrounding fibroblasts. Crit Rev Oncol Hematol 2015; 97:303-11. [PMID: 26467073 DOI: 10.1016/j.critrevonc.2015.09.008] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 08/06/2015] [Accepted: 09/29/2015] [Indexed: 12/14/2022] Open
Abstract
Growth stimuli in cancer growth resemble those exhibited in wound healing. However, the process of nemosis is absent in cancer-associated fibroblasts (CAFs), which remain constitutively active. CAFs are present in almost all solid tumors but are most abundant in breast, prostate and pancreatic cancers. TGF-β1, TGF-β2, PDGF, IL-6, bFGF, reactive oxide species and protein kinase C are considered the key players in tumor-induced transdifferentiation of surrounding fibroblasts. Full-extent transdifferentiation was obtained only when the medium contained TGF-β1 or TGF-β2 (with or without other factors), whereas PDGF, bFGF or IL-6 (each alone) induced only partial transdifferentiation. Recent evidence suggests that the fibroblasts associated with primary cancers differ from those associated with metastases. The metastases-associated fibroblasts are converted by a metastasis-specific spectrum of factors. A large portion of paracrine tumor signaling is mediated by cancer cell-derived vesicles termed exosomes and microvesicles. The cancer cell-derived exosomes contain abundant and diverse proteomes and a number of signaling factors (TGF-ß1, TGF-ß2, IL-6, MMP2 and MMP9), particularly under hypoxic conditions. In contrast to the traditional view, the clonal expansion and selection of neoplastic cells should not be viewed outside the host body context. It is vital for a neoplastic cell to achieve the ability to re-program host body cells into CAFs and by this influence to modulate its microenvironment and receive positive feedback for growth and drug resistance. Neoplastic cells, which fail to develop such capacity, do not pass critical barriers in tumorigenesis and remain dormant and benign.
Collapse
|
33
|
Bonuccelli G, Avnet S, Grisendi G, Salerno M, Granchi D, Dominici M, Kusuzaki K, Baldini N. Role of mesenchymal stem cells in osteosarcoma and metabolic reprogramming of tumor cells. Oncotarget 2015; 5:7575-88. [PMID: 25277190 PMCID: PMC4202145 DOI: 10.18632/oncotarget.2243] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The tumor microenvironment plays an important role in cancer progression. Here, we focused on the role of reactive mesenchymal stem cells (MSC) in osteosarcoma (OS), and used human adipose MSC and a panel of OS cell lines (Saos-2, HOS, and 143B) to investigate the mutual effect of normal-cancer cell metabolic programming. Our results showed that MSC are driven by oxidative stress induced by OS cells to undergo Warburg metabolism, with increased lactate production. Therefore, we analyzed the expression of lactate monocarboxylate transporters. By real time PCR and immunofluorescence, in MSC we detected the expression of MCT-4, the transporter for lactate efflux, whereas MCT-1, responsible for lactate uptake, was expressed in OS cells. In agreement, silencing of MCT-1 by siRNA significantly affected the ATP production in OS cancer cells. Thus, cancer cells directly increase their mitochondrial biogenesis using this energy-rich metabolite that is abundantly provided by MSC as an effect of the altered microenvironmental conditions induced by OS cells. We also showed that lactate produced by MSC promotes the migratory ability of OS cells. These data provide novel information to be exploited for cancer therapies targeting the mutual metabolic reprogramming of cancer cells and their stroma.
Collapse
Affiliation(s)
- Gloria Bonuccelli
- Department of Biomedical and Neuromotion Sciences, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Sofia Avnet
- Laboratory for Orthopedic Pathophysiology and Regenerative Medicine, Rizzoli Orthopedic Institute, Bologna, Italy
| | - Giulia Grisendi
- Department of Medical and Surgical Sciences for Children and Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Manuela Salerno
- Department of Biomedical and Neuromotion Sciences, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Donatella Granchi
- Laboratory for Orthopedic Pathophysiology and Regenerative Medicine, Rizzoli Orthopedic Institute, Bologna, Italy
| | - Massimo Dominici
- Department of Medical and Surgical Sciences for Children and Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Katsuyuki Kusuzaki
- Department of Molecular Cell Physiology, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
| | - Nicola Baldini
- Department of Biomedical and Neuromotion Sciences, Alma Mater Studiorum-University of Bologna, Bologna, Italy. Laboratory for Orthopedic Pathophysiology and Regenerative Medicine, Rizzoli Orthopedic Institute, Bologna, Italy
| |
Collapse
|
34
|
Effect of Fe3O4 Nanoparticles on Skin Tumor Cells and Dermal Fibroblasts. BIOMED RESEARCH INTERNATIONAL 2015; 2015:530957. [PMID: 26090418 PMCID: PMC4454731 DOI: 10.1155/2015/530957] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 02/24/2015] [Indexed: 01/25/2023]
Abstract
Iron oxide (Fe3O4) nanoparticles have been used in many biomedical approaches. The toxicity of Fe3O4 nanoparticles on mammalian cells was published recently. Though, little is known about the viability of human cells after treatment with Fe3O4 nanoparticles. Herein, we examined the toxicity, production of reactive oxygen species, and invasive capacity after treatment of human dermal fibroblasts (HDF) and cells of the squamous tumor cell line (SCL-1) with Fe3O4 nanoparticles. These nanoparticles had an average size of 65 nm. Fe3O4 nanoparticles induced oxidative stress via generation of reactive oxygen species (ROS) and subsequent initiation of lipid peroxidation. Furthermore, the question was addressed of whether Fe3O4 nanoparticles affect myofibroblast formation, known to be involved in tumor invasion. Herein, Fe3O4 nanoparticles prevent the expression alpha-smooth muscle actin and therefore decrease the number of myofibroblastic cells. Moreover, our data show in vitro that concentrations of Fe3O4 nanoparticles, which are nontoxic for normal cells, partially reveal a ROS-triggered cytotoxic but also a pro-invasive effect on the fraction of squamous cancer cells surviving the treatment with Fe3O4 nanoparticles. The data herein show that the Fe3O4 nanoparticles appear not to be adequate for use in therapeutic approaches against cancer cells, in contrast to recently published data with cerium oxide nanoparticles.
Collapse
|
35
|
Kim MS, Yun JI, Gong SP, Ahn JY, Lim JM, Song YH, Park KH, Lee ST. Development of a chemically defined in vitro culture system to effectively stimulate the proliferation of adult human dermal fibroblasts. Exp Dermatol 2015; 24:543-5. [PMID: 25808127 DOI: 10.1111/exd.12695] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2015] [Indexed: 01/03/2023]
Abstract
Despite the fact that dermal fibroblasts are a practical model for research related to cell physiology and cell therapy, an in vitro culture system excluding serum, which complicates standardization and specificity and induces variability and unwanted effects, does not exist. We tried to establish a CDCS that supports effective proliferation of aHDFs. KDMEM supplemented with 5% (v/v) KSR, 12 ng/ml bFGF, 5 ng/ml EGF and 1 μg/ml hydrocortisone supported sufficient proliferation of aHDFs for 1 week. However, aHDF proliferation was decreased greatly after subculture. This problem could be overcome by culturing aHDFs in CDCM in culture plates coated with 10 μg/ml FN. Long-term culture of aHDFs was achieved using CDCM and FN-coated culture plates for 7 weeks. The optimized CDCS increased the proliferation of aHDFs significantly, without any increase in the senescence rate or alteration in morphology of aHDFs, despite long-term culture. In conclusion, we established a CDCS that improved proliferation of aHDFs while inhibiting cellular senescence. The CDCS will contribute to advances in various future research related to clinical skin regeneration.
Collapse
Affiliation(s)
- Min Seong Kim
- Department of Animal Life Science, Kangwon National University, Chuncheon, Korea
| | - Jung Im Yun
- College of Veterinary Medicine, Kangwon National University, Chuncheon, Korea
| | - Seung Pyo Gong
- Department of Marine Biomaterials and Aquaculture, Pukyong National University, Busan, Korea
| | - Ji Yeon Ahn
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea
| | - Jeong Mook Lim
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea
| | - Young Han Song
- Department of Animal Life Science, Kangwon National University, Chuncheon, Korea.,Division of Animal Resource Science, Kangwon National University, Chuncheon, Korea
| | - Kyu Hyun Park
- Department of Animal Life Science, Kangwon National University, Chuncheon, Korea.,Division of Animal Resource Science, Kangwon National University, Chuncheon, Korea
| | - Seung Tae Lee
- Department of Animal Life Science, Kangwon National University, Chuncheon, Korea.,Division of Applied Animal Science, Kangwon National University, Chuncheon, Korea
| |
Collapse
|
36
|
Calvani M, Pelon F, Comito G, Taddei ML, Moretti S, Innocenti S, Nassini R, Gerlini G, Borgognoni L, Bambi F, Giannoni E, Filippi L, Chiarugi P. Norepinephrine promotes tumor microenvironment reactivity through β3-adrenoreceptors during melanoma progression. Oncotarget 2015; 6:4615-32. [PMID: 25474135 PMCID: PMC4467103 DOI: 10.18632/oncotarget.2652] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 10/27/2014] [Indexed: 11/25/2022] Open
Abstract
Stress has an emerging role in cancer and targeting stress-related β-adrenergic receptors (AR) has been proposed as a potential therapeutic approach in melanoma. Here we report that β3-AR expression correlates with melanoma aggressiveness. In addition, we highlight that β3-AR expression is not only restricted to cancer cells, but it is also expressed in vivo in stromal, inflammatory and vascular cells of the melanoma microenvironment. Particularly, we demonstrated that β3-AR can (i) instruct melanoma cells to respond to environmental stimuli, (ii) enhance melanoma cells response to stromal fibroblasts and macrophages, (iii) increase melanoma cell motility and (iv) induce stem-like traits. Noteworthy, β3-AR activation in melanoma accessory cells drives stromal reactivity by inducing pro-inflammatory cytokines secretion and de novo angiogenesis, sustaining tumor growth and melanoma aggressiveness. β3-ARs also play a mandatory role in the recruitment to tumor sites of circulating stromal cells precursors, in the differentiation of these cells towards different lineages, further favoring tumor inflammation, angiogenesis and ultimately melanoma malignancy. Our findings validate selective β3-AR antagonists as potential promising anti-metastatic agents. These could be used to complement current therapeutic approaches for melanoma patients (e.g. propranolol) by targeting non-neoplastic stromal cells, hence reducing therapy resistance of melanoma.
Collapse
Affiliation(s)
- Maura Calvani
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Tuscany Tumor Institute and “Center for Research, Transfer and High Education DenoTHE”, Florence 50134, Italy
| | - Floriane Pelon
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Tuscany Tumor Institute and “Center for Research, Transfer and High Education DenoTHE”, Florence 50134, Italy
| | - Giuseppina Comito
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Tuscany Tumor Institute and “Center for Research, Transfer and High Education DenoTHE”, Florence 50134, Italy
| | - Maria Letizia Taddei
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Tuscany Tumor Institute and “Center for Research, Transfer and High Education DenoTHE”, Florence 50134, Italy
| | - Silvia Moretti
- Department of Surgery and Translational Medicine, Dermatology Section University of Florence, Florence, Italy
| | | | - Romina Nassini
- Department of Health Sciences, Clinical Pharmacology and Oncology Unit, University of Florence, Florence, Italy
| | - Gianni Gerlini
- Plastic Surgery Unit, Regional Melanoma Referral Center, Tuscan Tumor Institute, Santa Maria Annunziata Hospital, Florence 50012, Italy
| | - Lorenzo Borgognoni
- Plastic Surgery Unit, Regional Melanoma Referral Center, Tuscan Tumor Institute, Santa Maria Annunziata Hospital, Florence 50012, Italy
| | - Franco Bambi
- Transfusion Medicine and Cell Therapy “A. Meyer” University Children's Hospital, Florence, Italy
| | - Elisa Giannoni
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Tuscany Tumor Institute and “Center for Research, Transfer and High Education DenoTHE”, Florence 50134, Italy
| | - Luca Filippi
- Neonatal Intensive Care Unit, Medical Surgical Fetal-Neonatal Department, “A. Meyer” University Children's Hospital, Florence, Italy
| | - Paola Chiarugi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Tuscany Tumor Institute and “Center for Research, Transfer and High Education DenoTHE”, Florence 50134, Italy
| |
Collapse
|
37
|
von Montfort C, Alili L, Teuber-Hanselmann S, Brenneisen P. Redox-active cerium oxide nanoparticles protect human dermal fibroblasts from PQ-induced damage. Redox Biol 2014; 4:1-5. [PMID: 25479549 PMCID: PMC4309849 DOI: 10.1016/j.redox.2014.11.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 11/19/2014] [Accepted: 11/20/2014] [Indexed: 12/28/2022] Open
Abstract
Recently, it has been published that cerium (Ce) oxide nanoparticles (CNP; nanoceria) are able to downregulate tumor invasion in cancer cell lines. Redox-active CNP exhibit both selective pro-oxidative and antioxidative properties, the first being responsible for impairment of tumor growth and invasion. A non-toxic and even protective effect of CNP in human dermal fibroblasts (HDF) has already been observed. However, the effect on important parameters such as cell death, proliferation and redox state of the cells needs further clarification. Here, we present that nanoceria prevent HDF from reactive oxygen species (ROS)-induced cell death and stimulate proliferation due to the antioxidative property of these particles. Beneficial, non-cytotoxic effect of cerium oxide nanoparticles on stromal cells. Supporting a prospective therapeutical approach of such particles. Protection of stromal cells against the oxidative damage.
Collapse
Affiliation(s)
- Claudia von Montfort
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich-Heine University, Düsseldorf 40225, Germany
| | - Lirija Alili
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich-Heine University, Düsseldorf 40225, Germany.
| | - Sarah Teuber-Hanselmann
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich-Heine University, Düsseldorf 40225, Germany
| | - Peter Brenneisen
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich-Heine University, Düsseldorf 40225, Germany
| |
Collapse
|
38
|
Taddei ML, Cavallini L, Comito G, Giannoni E, Folini M, Marini A, Gandellini P, Morandi A, Pintus G, Raspollini MR, Zaffaroni N, Chiarugi P. Senescent stroma promotes prostate cancer progression: the role of miR-210. Mol Oncol 2014; 8:1729-46. [PMID: 25091736 DOI: 10.1016/j.molonc.2014.07.009] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 07/10/2014] [Accepted: 07/11/2014] [Indexed: 12/30/2022] Open
Abstract
We focused our interest on senescent human-derived fibroblasts in the progression of prostate cancer. Hypoxic senescent fibroblasts promote prostate cancer aggressiveness by inducing epithelial to mesenchymal transition (EMT) and by secreting energy-rich compounds to support cancer cell growth. Hypoxic senescent fibroblasts additionally increase: i) the recruitment of monocytes and their M2-macrophage polarization, ii) the recruitment of bone marrow-derived endothelial precursor cells, facilitating their vasculogenic ability and iii) capillary morphogenesis, proliferation and invasion of human mature endothelial cells. In addition, we highlight that overexpression of the hypoxia-induced miR-210 in young fibroblasts increases their senescence-associated features and converts them into cancer associated fibroblast (CAF)-like cells, able to promote cancer cells EMT, to support angiogenesis and to recruit endothelial precursor cells and monocytes/macrophages.
Collapse
Affiliation(s)
- Maria Letizia Taddei
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy.
| | - Lorenzo Cavallini
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Giuseppina Comito
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Elisa Giannoni
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Marco Folini
- Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Via G. Amadeo 42, 20133 Milan, Italy
| | - Alberto Marini
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B 07100 Sassari, Italy
| | - Paolo Gandellini
- Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Via G. Amadeo 42, 20133 Milan, Italy
| | - Andrea Morandi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Gianfranco Pintus
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B 07100 Sassari, Italy
| | - Maria Rosaria Raspollini
- Histology and Molecular Diagnostic, University Hospital Careggi, Viale G.B. Morgagni 85, 50134 Florence, Italy
| | - Nadia Zaffaroni
- Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Via G. Amadeo 42, 20133 Milan, Italy
| | - Paola Chiarugi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy; Center for Research, Transfer and High Education 'Study at Molecular and Clinical Level of Chronic, Inflammatory, Degenerative and Neoplastic Disorders for the Development on Novel Therapies', Italy
| |
Collapse
|
39
|
Alevizos L, Kataki A, Derventzi A, Gomatos I, Loutraris C, Gloustianou G, Manouras A, Konstadoulakis MM, Zografos G. Breast cancer nodal metastasis correlates with tumour and lymph node methylation profiles of Caveolin-1 and CXCR4. Clin Exp Metastasis 2014; 31:511-20. [PMID: 24590865 DOI: 10.1007/s10585-014-9645-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 02/19/2014] [Indexed: 12/28/2022]
Abstract
DNA methylation is the best characterised epigenetic change so far. However, its role in breast cancer metastasis has not as yet been elucidated. The aim of this study was to investigate the differences between the methylation profiles characterising primary tumours and their corresponding positive or negative for metastasis lymph nodes (LN) and correlate these with tumour metastatic potential. Methylation signatures of Caveolin-1, CXCR4, RAR-β, Cyclin D2 and Twist gene promoters were studied in 30 breast cancer primary lesions and their corresponding metastasis-free and tumour-infiltrated LN with Methylation-Specific PCR. CXCR4 and Caveolin-1 expression was further studied by immunohistochemistry. Tumours were typified by methylation of RAR-β and hypermethylation of Cyclin-D2 and Twist gene promoters. Tumour patterns were highly conserved in tumour-infiltrated LN. CXCR4 and Caveolin-1 promoter methylation patterns differentiated between node-negative and metastatic tumours. Nodal metastasis was associated with tumour and lymph node profiles of extended methylation of Caveolin-1 and lack of CXCR4 hypermethylation. Immunodetection studies verified CXCR4 and Caveolin-1 hypermethylation as gene silencing mechanism. Absence of Caveolin-1 expression in stromal cells associated with tumour aggressiveness while strong Caveolin-1 expression in tumour cells correlated with decreased 7-year disease-free survival. Methylation-mediated activation of CXCR4 and inactivation of Caveolin-1 was linked with nodal metastasis while intratumoral Caveolin-1 expression heterogeneity correlated with disease progression. This evidence contributes to the better understanding and, thereby, therapeutic management of breast cancer metastasis process.
Collapse
Affiliation(s)
- Leonidas Alevizos
- Laboratory of Surgical Research, 1st Department of Propaedeutic Surgery, Hippokration Hospital of Athens, Athens Medical School, University of Athens, 114 Queen's Sofia Avenue, 11527, Athens, Greece,
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Lei J, Huo X, Duan W, Xu Q, Li R, Ma J, Li X, Han L, Li W, Sun H, Wu E, Ma Q. α-Mangostin inhibits hypoxia-driven ROS-induced PSC activation and pancreatic cancer cell invasion. Cancer Lett 2014; 347:129-38. [PMID: 24513179 DOI: 10.1016/j.canlet.2014.02.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 01/22/2014] [Accepted: 02/03/2014] [Indexed: 12/18/2022]
Abstract
Recent advances indicating a key role of microenvironment for tumor progression, we investigated the role of PSCs and hypoxia in pancreatic cancer aggressiveness, and examined the potential protective effect of α-mangostin on hypoxia-driven pancreatic cancer progression. Our data indicate that hypoxic PSCs exploit their oxidative stress due to hypoxia to secrete soluble factors favouring pancreatic cancer invasion. α-Mangostin suppresses hypoxia-induced PSC activation and pancreatic cancer cell invasion through the inhibition of HIF-1α stabilization and GLI1 expression. Increased generation of hypoxic ROS is responsible for HIF-1α stabilization and GLI1 upregulation. Therefore, α-mangostin may be beneficial in preventing hypoxia-induced pancreatic cancer progression.
Collapse
Affiliation(s)
- Jianjun Lei
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, 277 West Yanta Road, Xi'an 710061, Shaanxi Province, China
| | - Xiongwei Huo
- Department of General Surgery, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, 277 West Yanta Road, Xi'an 710061, Shaanxi Province, China
| | - Wanxing Duan
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, 277 West Yanta Road, Xi'an 710061, Shaanxi Province, China
| | - Qinhong Xu
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, 277 West Yanta Road, Xi'an 710061, Shaanxi Province, China
| | - Rong Li
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, 277 West Yanta Road, Xi'an 710061, Shaanxi Province, China
| | - Jiguang Ma
- Department of Oncology, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, 277 West Yanta Road, Xi'an 710061, Shaanxi Province, China
| | - Xuqi Li
- Department of General Surgery, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, 277 West Yanta Road, Xi'an 710061, Shaanxi Province, China
| | - Liang Han
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, 277 West Yanta Road, Xi'an 710061, Shaanxi Province, China
| | - Wei Li
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, 277 West Yanta Road, Xi'an 710061, Shaanxi Province, China
| | - Hao Sun
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, 277 West Yanta Road, Xi'an 710061, Shaanxi Province, China.
| | - Erxi Wu
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, USA
| | - Qingyong Ma
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, 277 West Yanta Road, Xi'an 710061, Shaanxi Province, China.
| |
Collapse
|
41
|
Fibroblast-to-myofibroblast switch is mediated by NAD(P)H oxidase generated reactive oxygen species. Biosci Rep 2014; 34:BSR20130091. [PMID: 27919042 PMCID: PMC3891321 DOI: 10.1042/bsr20130091] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 09/26/2013] [Indexed: 01/29/2023] Open
Abstract
Tumour–stroma interaction is a prerequisite for tumour progression in skin cancer. Hereby, a critical step in stromal function is the transition of tumour-associated fibroblasts to MFs (myofibroblasts) by growth factors, for example TGFβ (transforming growth factor beta(). In this study, the question was addressed of whether fibroblast-associated NAD(P)H oxidase (NADH/NADPH oxidase), known to be activated by TGFβ1, is involved in the fibroblast-to-MF switch. The up-regulation of αSMA (alpha smooth muscle actin), a biomarker for MFs, is mediated by a TGFβ1-dependent increase in the intracellular level of ROS (reactive oxygen species). This report demonstrates two novel aspects of the TGFβ1 signalling cascade, namely the generation of ROS due to a biphasic NAD(P)H oxidase activity and a ROS-dependent downstream activation of p38 leading to a transition of dermal fibroblasts to MFs that can be inhibited by the selective NAD(P)H oxidase inhibitor apocynin. These data suggest that inhibition of NAD(P)H oxidase activity prevents the fibroblast-to-MF switch and may be important for chemoprevention in context of a ‘stromal therapy’ which was described earlier.
Collapse
|
42
|
Alili L, Sack M, von Montfort C, Giri S, Das S, Carroll KS, Zanger K, Seal S, Brenneisen P. Downregulation of tumor growth and invasion by redox-active nanoparticles. Antioxid Redox Signal 2013; 19. [PMID: 23198807 PMCID: PMC3752511 DOI: 10.1089/ars.2012.4831] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
AIMS Melanoma is the most aggressive type of malignant skin cancer derived from uncontrolled proliferation of melanocytes. Melanoma cells possess a high potential to metastasize, and the prognosis for advanced melanoma is rather poor due to its strong resistance to conventional chemotherapeutics. Nanomaterials are at the cutting edge of the rapidly developing area of nanomedicine. The potential of nanoparticles for use as carrier in cancer drug delivery is infinite with novel applications constantly being tested. The noncarrier use of cerium oxide nanoparticles (CNPs) is a novel and promising approach, as those particles per se show an anticancer activity via their oxygen vacancy-mediated chemical reactivity. RESULTS In this study, the question was addressed of whether the use of CNPs might be a valuable tool to counteract the invasive capacity and metastasis of melanoma cells in the future. Therefore, the effect of those nanoparticles on human melanoma cells was investigated in vitro and in vivo. Concentrations of polymer-coated CNPs being nontoxic for stromal cells showed a cytotoxic, proapoptotic, and anti-invasive capacity on melanoma cells. In vivo xenograft studies with immunodeficient nude mice showed a decrease of tumor weight and volume after treatment with CNPs. INNOVATION In summary, the redox-active CNPs have selective pro-oxidative and antioxidative properties, and this study is the first to show that CNPs prevent tumor growth in vivo. CONCLUSION The application of redox-active CNPs may form the basis of new paradigms in the treatment and prevention of cancers.
Collapse
Affiliation(s)
- Lirija Alili
- Medical Faculty, Institute of Biochemistry & Molecular Biology I, Heinrich-Heine-University, 40225 Duesseldorf, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Wu Y, Antony S, Meitzler JL, Doroshow JH. Molecular mechanisms underlying chronic inflammation-associated cancers. Cancer Lett 2013; 345:164-73. [PMID: 23988267 DOI: 10.1016/j.canlet.2013.08.014] [Citation(s) in RCA: 197] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 08/08/2013] [Accepted: 08/13/2013] [Indexed: 12/17/2022]
Abstract
Although it is now accepted that chronic inflammation plays an essential role in tumorigenesis, the underlying molecular mechanisms linking inflammation and cancer remain to be fully explored. Inflammatory mediators present in the tumor microenvironment, including cytokines and growth factors, as well as reactive oxygen species (ROS) and reactive nitrogen species (RNS), have been implicated in the etiology of inflammation-associated cancers. Epithelial NADPH oxidase (Nox) family proteins, which generate ROS regulated by cytokines, are upregulated during chronic inflammation and cancer. ROS serve as effector molecules participating in host defense or as chemo-attractants recruiting leukocytes to wounds, thereby influencing the inflammatory reaction in damaged tissues. ROS can alter chromosomal DNA, leading to genomic instability, and may serve as signaling molecules that affect tumor cell proliferation, survival, metabolism, angiogenesis, and metastasis. Targeting Noxs and their downstream signaling components may be a promising approach to pre-empting inflammation-related malignancies.
Collapse
Affiliation(s)
- Yongzhong Wu
- Laboratory of Molecular Pharmacology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Smitha Antony
- Laboratory of Molecular Pharmacology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jennifer L Meitzler
- Laboratory of Molecular Pharmacology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - James H Doroshow
- Laboratory of Molecular Pharmacology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
44
|
Luo Y, Lan L, Jiang YG, Zhao JH, Li MC, Wei NB, Lin YH. Epithelial-mesenchymal transition and migration of prostate cancer stem cells is driven by cancer-associated fibroblasts in an HIF-1α/β-catenin-dependent pathway. Mol Cells 2013; 36:138-44. [PMID: 23839513 PMCID: PMC3887956 DOI: 10.1007/s10059-013-0096-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 05/13/2013] [Accepted: 06/03/2013] [Indexed: 12/18/2022] Open
Abstract
Although cancer stem cells (CSCs) play a crucial role in seeding the initiation of tumor progression, they do not always possess the same potent ability as tumor metastasis. Thus, precisely how migrating CSCs occur, still remains unclear. In the present study, we first comparatively analyzed a series of prostate CSCs, which exhibited a dynamically increasing and disseminating ability in nude mice. We observed that the transcriptional activity of HIF-1α and β-catenin became gradually elevated in these stem cells and their epithelial-mesenchymal transition (EMT) characteristic altered from an epithelial type to a mesenchymal type. Next, we further used cancer-associated fibroblasts (CAFs), which were cultured from surgically resected tissues of prostate cancer (PCa) to stimulate prostate CSCs. Similar results were reconfirmed and showed that the protein levels of both HIF-1α and β-catenin were markedly improved. In addition, the EMT phenotype displayed a homogenous mesenchymal type, accompanied with increased aggressive potency in vitro. Most importantly, the aforementioned promoting effect of CAFs on prostate CSCs was completely repressed after "silencing" the activity of β-catenin by transfection of stem cells with ShRNA. Taken together, our observations suggest that prostate migrating CSCs, with a mesenchymal phenotype, could be triggered by CAFs in a HIF-1α/β-catenin-dependent signaling pathway.
Collapse
Affiliation(s)
- Yong Luo
- Department of Urology, Affiliated Beijing Anzhen Hospital of Capital Medical University, Beijing,
People’s Republic of China
| | | | - Yong-Guang Jiang
- Department of Urology, Affiliated Beijing Anzhen Hospital of Capital Medical University, Beijing,
People’s Republic of China
| | - Jia-Hui Zhao
- Department of Urology, Affiliated Beijing Anzhen Hospital of Capital Medical University, Beijing,
People’s Republic of China
| | - Ming-Chuan Li
- Department of Urology, Affiliated Beijing Anzhen Hospital of Capital Medical University, Beijing,
People’s Republic of China
| | - Neng-Bao Wei
- Department of Urology, Affiliated Beijing Anzhen Hospital of Capital Medical University, Beijing,
People’s Republic of China
| | - Yun-Hua Lin
- Department of Urology, Affiliated Beijing Anzhen Hospital of Capital Medical University, Beijing,
People’s Republic of China
| |
Collapse
|
45
|
Comito G, Giannoni E, Segura CP, Barcellos-de-Souza P, Raspollini MR, Baroni G, Lanciotti M, Serni S, Chiarugi P. Cancer-associated fibroblasts and M2-polarized macrophages synergize during prostate carcinoma progression. Oncogene 2013; 33:2423-31. [PMID: 23728338 DOI: 10.1038/onc.2013.191] [Citation(s) in RCA: 378] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 04/02/2013] [Indexed: 12/30/2022]
Abstract
Inflammation is now acknowledged as an hallmark of cancer. Cancer-associated fibroblasts (CAFs) force a malignant cross talk with cancer cells, culminating in their epithelial-mesenchymal transition and achievement of stemness traits. Herein, we demonstrate that stromal tumor-associated cells cooperate to favor malignancy of prostate carcinoma (PCa). Indeed, prostate CAFs are active factors of monocyte recruitment toward tumor cells, mainly acting through stromal-derived growth factor-1 delivery and promote their trans-differentiation toward the M2 macrophage phenotype. The relationship between M2 macrophages and CAFs is reciprocal, as M2 macrophages are able to affect mesenchymal-mesenchymal transition of fibroblasts, leading to their enhanced reactivity. On the other side, PCa cells themselves participate in this cross talk through secretion of monocyte chemotactic protein-1, facilitating monocyte recruitment and again macrophage differentiation and M2 polarization. Finally, this complex interplay among cancer cells, CAFs and M2 macrophages, cooperates in increasing tumor cell motility, ultimately fostering cancer cells escaping from primary tumor and metastatic spread, as well as in activation of endothelial cells and their bone marrow-derived precursors to drive de novo angiogenesis. In keeping with our data obtained in vitro, the analysis of patients affected by prostate cancers at different clinical stages revealed a clear increase in the M2/M1 ratio in correlation with clinical values. These data, coupled with the role of CAFs in carcinoma malignancy to elicit expression of stem-like traits, should focus great interest for innovative strategies aimed at the co-targeting of inflammatory cells and fibroblasts to improve therapeutic efficacy.
Collapse
Affiliation(s)
- G Comito
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - E Giannoni
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - C P Segura
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - P Barcellos-de-Souza
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - M R Raspollini
- Histology and Molecular Diagnostic University Careggi Hospital, University of Florence, Florence, Italy
| | - G Baroni
- Histology and Molecular Diagnostic University Careggi Hospital, University of Florence, Florence, Italy
| | - M Lanciotti
- Department of Urology Careggi Hospital, University of Florence, Florence, Italy
| | - S Serni
- Department of Urology Careggi Hospital, University of Florence, Florence, Italy
| | - P Chiarugi
- 1] Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy [2] Tuscany Tumor Institute and 'Center for Research, Transfer and High Education DenoTHE', Florence, Italy
| |
Collapse
|
46
|
Fiaschi T, Giannoni E, Taddei ML, Cirri P, Marini A, Pintus G, Nativi C, Richichi B, Scozzafava A, Carta F, Torre E, Supuran CT, Chiarugi P. Carbonic anhydrase IX from cancer-associated fibroblasts drives epithelial-mesenchymal transition in prostate carcinoma cells. Cell Cycle 2013; 12:1791-801. [PMID: 23656776 DOI: 10.4161/cc.24902] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Extracellular acidification, a mandatory feature of several malignancies, has been mainly correlated with metabolic reprogramming of tumor cells toward Warburg metabolism, as well as to the expression of carbonic anydrases or proton pumps by malignant tumor cells. We report herein that for aggressive prostate carcinoma, acknowledged to be reprogrammed toward an anabolic phenotype and to upload lactate to drive proliferation, extracellular acidification is mainly mediated by stromal cells engaged in a molecular cross-talk circuitry with cancer cells. Indeed, cancer-associated fibroblasts, upon their activation by cancer delivered soluble factors, rapidly express carbonic anhydrase IX (CA IX). While expression of CAIX in cancer cells has already been correlated with poor prognosis in various human tumors, the novelty of our findings is the upregulation of CAIX in stromal cells upon activation. The de novo expression of CA IX, which is not addicted to hypoxic conditions, is driven by redox-based stabilization of hypoxia-inducible factor-1. Extracellular acidification due to carbonic anhydrase IX is mandatory to elicit activation of stromal fibroblasts delivered metalloprotease-2 and -9, driving in cancer cells the epithelial-mesenchymal transition epigenetic program, a key event associated with increased motility, survival and stemness. Both genetic silencing and pharmacological inhibition of CA IX (with sulfonamide/sulfamides potent inhibitors) or metalloprotease-9 are sufficient to impede epithelial-mesenchymal transition and invasiveness of prostate cancer cells induced by contact with cancer-associated fibroblasts. We also confirmed in vivo the upstream hierarchical role of stromal CA IX to drive successful metastatic spread of prostate carcinoma cells. These data include stromal cells, as cancer-associated fibroblasts as ideal targets for carbonic anhydrase IX-directed anticancer therapies.
Collapse
Affiliation(s)
- Tania Fiaschi
- Department of Biomedical, Experimental and Clinical Sciences, University of Florence, Tuscany, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Mehner C, Radisky DC. Triggering the landslide: The tumor-promotional effects of myofibroblasts. Exp Cell Res 2013; 319:1657-62. [PMID: 23528452 DOI: 10.1016/j.yexcr.2013.03.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 03/13/2013] [Indexed: 12/30/2022]
Abstract
Cancers become significantly more dangerous when the tumor progresses from in situ, or contained, to an invasive state, in which the cancer cells acquire the ability to pass through the surrounding basement membrane (BM), a specialized extracellular matrix (ECM) that provides structure and contextual information to the underlying tissue. While the majority of tumors are carcinomas, derived from epithelial cells, it is the stromal cells surrounding the epithelial-derived tumor cells, including fibroblasts and myofibroblasts, vasculature, and immune cells, that are largely responsible for the production and remodeling of the ECM. Here, we will discuss myofibroblasts as key effectors of tumor progression, focusing on recent advances in breast and pancreatic carcinoma, showing how myofibroblasts may function properly in normal tissue remodeling and wound-healing processes, how in the tumor context they can drive cancer invasion and metastasis, and how the pathogenic functions of myofibroblasts may be targeted therapeutically.
Collapse
Affiliation(s)
- Christine Mehner
- Mayo Clinic Cancer Center, Jacksonville, FL 32225, United States.
| | - Derek C Radisky
- Mayo Clinic Cancer Center, Jacksonville, FL 32225, United States.
| |
Collapse
|
48
|
Serratì S, Chillà A, Laurenzana A, Margheri F, Giannoni E, Magnelli L, Chiarugi P, Dotor J, Feijoo E, Bazzichi L, Bombardieri S, Kahaleh B, Fibbi G, Del Rosso M. Systemic sclerosis endothelial cells recruit and activate dermal fibroblasts by induction of a connective tissue growth factor (CCN2)/transforming growth factor β-dependent mesenchymal-to-mesenchymal transition. ACTA ACUST UNITED AC 2013; 65:258-69. [PMID: 22972461 DOI: 10.1002/art.37705] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 09/06/2012] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Clinical evidence suggests that the vascular abnormalities of systemic sclerosis (SSc) precede the onset of fibrosis, but molecular cues accounting for a possible vascular connection of SSc fibrosis have been elusive, although they have been searched for intensively. Since we had previously shown that connective tissue growth factor (CCN2), endowed with fibroblast-oriented activities, was overexpressed by endothelial cells (ECs) from SSc patients, we undertook this study to investigate its role and mechanisms in fibroblast activation. METHODS Normal fibroblasts were challenged with conditioned medium of normal microvascular ECs (MVECs) and MVECs obtained from SSc patients with the diffuse form of the disease. Fibroblast invasion was studied using the Boyden chamber Matrigel assay. Fibroblast activation was evaluated by Western blotting and immunofluorescence of α-smooth muscle actin (α-SMA), vimentin, and type I collagen. Matrix metalloproteinase (MMP) production was evaluated by zymography and reverse transcription-polymerase chain reaction. Signal transduction and activation of the small GTPases RhoA and Rac1 were studied by Western blotting. Inhibition of SSc MVEC conditioned medium-dependent fibroblast activation was obtained by anti-CCN2 antibodies and the transforming growth factor β (TGFβ) antagonist peptide p17. RESULTS SSc MVEC CCN2 stimulated fibroblast activation and invasion. Such activities depended on CCN2-induced overexpression of TGFβ and its type I, II, and III receptors combined with overproduction of MMP-2 and MMP-9 gelatinases. All of these effects were reversed by the TGFβ antagonist peptide p17. Motility increase required Rac1 activation and RhoA inhibition and was inhibited by an MMP inhibitor. These features connoted a mesenchymal style of cell invasion. Since fibroblast activation also fostered overexpression of α-SMA, vimentin, and type I collagen, the CCN2-dependent increase in fibroblast activities recapitulated the characteristics of a mesenchymal-to-mesenchymal transition. CONCLUSION SSc MVECs recruit and activate dermal fibroblasts by induction of a CCN2/TGFβ-dependent mesenchymal-to-mesenchymal transition.
Collapse
Affiliation(s)
- Simona Serratì
- Department of Experimental Pathology and Oncology, University of Florence, Florence, Italy, and Istituto Tumori Giovanni Paolo II, Bari, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
|
50
|
Taddei ML, Giannoni E, Comito G, Chiarugi P. Microenvironment and tumor cell plasticity: an easy way out. Cancer Lett 2013; 341:80-96. [PMID: 23376253 DOI: 10.1016/j.canlet.2013.01.042] [Citation(s) in RCA: 180] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 01/23/2013] [Accepted: 01/24/2013] [Indexed: 12/12/2022]
Abstract
Cancer cells undergo genetic changes allowing their adaptation to environmental changes, thereby obtaining an advantage during the long metastatic route, disseminated of several changes in the surrounding environment. In particular, plasticity in cell motility, mainly due to epigenetic regulation of cancer cells by environmental insults, engage adaptive strategies aimed essentially to survive in hostile milieu, thereby escaping adverse sites. This review is focused on tumor microenvironment as a collection of structural and cellular elements promoting plasticity and adaptive programs. We analyze the role of extracellular matrix stiffness, hypoxia, nutrient deprivation, acidity, as well as different cell populations of tumor microenvironment.
Collapse
Affiliation(s)
- Maria Letizia Taddei
- Department of Biochemical Sciences, University of Florence, Viale Morgagni 50, 50134 Firenze, Italy
| | | | | | | |
Collapse
|