1
|
Hassan N, Murray BG, Jagadeeshan S, Thomas R, Katselis GS, Ianowski JP. Intracellular Ca 2+ oscillation frequency and amplitude modulation mediate epithelial apical and basolateral membranes crosstalk. iScience 2024; 27:108629. [PMID: 38188522 PMCID: PMC10767210 DOI: 10.1016/j.isci.2023.108629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/04/2023] [Accepted: 11/30/2023] [Indexed: 01/09/2024] Open
Abstract
Since the early seminal studies on epithelial solute transport, it has been understood that there must be crosstalk among different members of the transport machinery to coordinate their activity and, thus, generate localized electrochemical gradients that force solute flow in the required direction that would otherwise be thermodynamically unfavorable. However, mechanisms underlying intracellular crosstalk remain unclear. We present evidence that crosstalk between apical and basolateral membrane transporters is mediated by intracellular Ca2+ signaling in insect renal epithelia. Ion flux across the basolateral membrane is encoded in the intracellular Ca2+ oscillation frequency and amplitude modulation and that information is used by the apical membrane to adjust ion flux accordingly. Moreover, imposing experimentally generated intracellular Ca2+ oscillation modulation causes cells to predictably adjust their ion transport properties. Our results suggest that intracellular Ca2+ oscillation frequency and amplitude modulation encode information on transmembrane ion flux that is required for crosstalk.
Collapse
Affiliation(s)
- Noman Hassan
- Department of Anatomy Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon S7N 5E5, Canada
| | - Brendan G. Murray
- Department of Anatomy Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon S7N 5E5, Canada
| | | | - Robert Thomas
- Department of Anatomy Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon S7N 5E5, Canada
| | - George S. Katselis
- Department of Medicine, Division of Canadian Centre for Rural and Agricultural Health, College of Medicine, University of Saskatchewan, Saskatoon S7N 2Z4, Canada
| | - Juan P. Ianowski
- Department of Anatomy Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon S7N 5E5, Canada
| |
Collapse
|
2
|
Moccia F, Brunetti V, Soda T, Berra-Romani R, Scarpellino G. Cracking the Endothelial Calcium (Ca 2+) Code: A Matter of Timing and Spacing. Int J Mol Sci 2023; 24:16765. [PMID: 38069089 PMCID: PMC10706333 DOI: 10.3390/ijms242316765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/16/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
A monolayer of endothelial cells lines the innermost surface of all blood vessels, thereby coming into close contact with every region of the body and perceiving signals deriving from both the bloodstream and parenchymal tissues. An increase in intracellular Ca2+ concentration ([Ca2+]i) is the main mechanism whereby vascular endothelial cells integrate the information conveyed by local and circulating cues. Herein, we describe the dynamics and spatial distribution of endothelial Ca2+ signals to understand how an array of spatially restricted (at both the subcellular and cellular levels) Ca2+ signals is exploited by the vascular intima to fulfill this complex task. We then illustrate how local endothelial Ca2+ signals affect the most appropriate vascular function and are integrated to transmit this information to more distant sites to maintain cardiovascular homeostasis. Vasorelaxation and sprouting angiogenesis were selected as an example of functions that are finely tuned by the variable spatio-temporal profile endothelial Ca2+ signals. We further highlighted how distinct Ca2+ signatures regulate the different phases of vasculogenesis, i.e., proliferation and migration, in circulating endothelial precursors.
Collapse
Affiliation(s)
- Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (V.B.); (G.S.)
| | - Valentina Brunetti
- Laboratory of General Physiology, Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (V.B.); (G.S.)
| | - Teresa Soda
- Department of Health Sciences, University of Magna Graecia, 88100 Catanzaro, Italy;
| | - Roberto Berra-Romani
- Department of Biomedicine, School of Medicine, Benemérita Universidad Autónoma de Puebla, Puebla 72410, Mexico;
| | - Giorgia Scarpellino
- Laboratory of General Physiology, Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (V.B.); (G.S.)
| |
Collapse
|
3
|
Wei H, Yin Y, Yang W, Zhu J, Chen L, Guo R, Yang Z, Li S. Nuciferine induces autophagy to relieve vascular cell adhesion molecule 1 activation via repressing the Akt/mTOR/AP1 signal pathway in the vascular endothelium. Front Pharmacol 2023; 14:1264324. [PMID: 37841916 PMCID: PMC10569124 DOI: 10.3389/fphar.2023.1264324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/14/2023] [Indexed: 10/17/2023] Open
Abstract
Pro-inflammatory factor-associated vascular cell adhesion molecule 1 (VCAM1) activation initiates cardiovascular events. This study aimed to explore the protective role of nuciferine on TNFα-induced VCAM1 activation. Nuciferine was administrated to both high-fat diet (HFD)-fed mice and the TNFα-exposed human vascular endothelial cell line. VCAM1 expression and further potential mechanism(s) were explored. Our data revealed that nuciferine intervention alleviated VCAM1 activation in response to both high-fat diet and TNFα exposure, and this protective effect was closely associated with autophagy activation since inhibiting autophagy by either genetic or pharmaceutical approaches blocked the beneficial role of nuciferine. Mechanistical studies revealed that Akt/mTOR inhibition, rather than AMPK, SIRT1, and p38 signal pathways, contributed to nuciferine-activated autophagy, which further ameliorated TNFα-induced VCAM1 via repressing AP1 activation, independent of transcriptional regulation by IRF1, p65, SP1, and GATA6. Collectively, our data uncovered a novel biological function for nuciferine in protecting VCAM1 activation, implying its potential application in improving cardiovascular events.
Collapse
Affiliation(s)
- Haibin Wei
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Biobank, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yujie Yin
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Wenwen Yang
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jinyan Zhu
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lin Chen
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Rui Guo
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhen Yang
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Songtao Li
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Clinical Nutrition, Affiliated Zhejiang Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
4
|
Sánchez-Tecuatl M, Moccia F, Martínez-Carballido JF, Berra-Romani R. An automated method to discover true events and classification of intracellular Ca 2+ profiles for endothelium in situ injury assay. Front Physiol 2023; 14:1161023. [PMID: 37250125 PMCID: PMC10213911 DOI: 10.3389/fphys.2023.1161023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/20/2023] [Indexed: 05/31/2023] Open
Abstract
Introduction: Endothelial cells (ECs), being located at the interface between flowing blood and vessel wall, maintain cardiovascular homeostasis by virtue of their ability to integrate chemical and physical cues through a spatio-temporally coordinated increase in their intracellular Ca2+ concentration ([Ca2+]i). Endothelial heterogeneity suggests the existence of spatially distributed functional clusters of ECs that display different patterns of intracellular Ca2+ response to extracellular inputs. Characterizing the overall Ca2+ activity of the endothelial monolayer in situ requires the meticulous analysis of hundreds of ECs. This complex analysis consists in detecting and quantifying the true Ca2+ events associated to extracellular stimulation and classifying their intracellular Ca2+ profiles (ICPs). The injury assay technique allows exploring the Ca2+-dependent molecular mechanisms involved in angiogenesis and endothelial regeneration. However, there are true Ca2+ events of nearly undetectable magnitude that are almost comparable with inherent instrumental noise. Moreover, undesirable artifacts added to the signal by mechanical injury stimulation complicate the analysis of intracellular Ca2+ activity. In general, the study of ICPs lacks uniform criteria and reliable approaches for assessing these highly heterogeneous spatial and temporal events. Methods: Herein, we present an approach to classify ICPs that consists in three stages: 1) identification of Ca2+ candidate events through thresholding of a feature termed left-prominence; 2) identification of non-true events, known as artifacts; and 3) ICP classification based upon event temporal location. Results: The performance assessment of true-events identification showed competitive sensitivity = [0.9995, 0.9831], specificity = [0.9946, 0.7818] and accuracy = [0.9978, 0.9579] improvements of 2x and 14x, respectively, compared with other methods. The ICP classifier enhanced by artifact detection showed 0.9252 average accuracy with the ground-truth sets provided for validation. Discussion: Results indicate that our approach ensures sturdiness to experimental protocol maneuvers, besides it is effective, simple, and configurable for different studies that use unidimensional time dependent signals as data. Furthermore, our approach would also be effective to analyze the ICPs generated by other cell types, other dyes, chemical stimulation or even signals recorded at higher frequency.
Collapse
Affiliation(s)
- Marcial Sánchez-Tecuatl
- Electronics Department, Instituto Nacional de Astrofísica, Óptica y Electrónica, Puebla, Mexico
| | - Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Pavia, Italy
| | | | - Roberto Berra-Romani
- Department of Biomedicine, School of Medicine, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| |
Collapse
|
5
|
Harnessing conserved signaling and metabolic pathways to enhance the maturation of functional engineered tissues. NPJ Regen Med 2022; 7:44. [PMID: 36057642 PMCID: PMC9440900 DOI: 10.1038/s41536-022-00246-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 08/05/2022] [Indexed: 11/08/2022] Open
Abstract
The development of induced-pluripotent stem cell (iPSC)-derived cell types offers promise for basic science, drug testing, disease modeling, personalized medicine, and translatable cell therapies across many tissue types. However, in practice many iPSC-derived cells have presented as immature in physiological function, and despite efforts to recapitulate adult maturity, most have yet to meet the necessary benchmarks for the intended tissues. Here, we summarize the available state of knowledge surrounding the physiological mechanisms underlying cell maturation in several key tissues. Common signaling consolidators, as well as potential synergies between critical signaling pathways are explored. Finally, current practices in physiologically relevant tissue engineering and experimental design are critically examined, with the goal of integrating greater decision paradigms and frameworks towards achieving efficient maturation strategies, which in turn may produce higher-valued iPSC-derived tissues.
Collapse
|
6
|
Liu B, Wei YP, Fan X, Hu X, Chen Z, Liu X, Xu Y, Wang L, Wang T, Ruiz M, Dupuis J, Yuan P, Liu J, Huang S, Zhu L, Jing ZC, Hu Q. Calcium Sensing Receptor Variants Increase Pulmonary Hypertension Susceptibility. Hypertension 2022; 79:1348-1360. [PMID: 35477244 DOI: 10.1161/hypertensionaha.121.18399] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Pulmonary arterial hypertension is an incurable disease, in which the extracellular CaSR (calcium sensing receptor) is mechanistically important. This study was aimed to genetically link the CaSR gene and function to the disease severity. METHODS Sanger sequencing, Sugen/hypoxia pulmonary arterial hypertension rat model, CaSR mutated rat, transcriptional reporter assay and measurement of CaSR activity were used. RESULTS Sanger sequencing identified a significant association between the variant rs1042636(A>G), located in CaSR exon 7, and idiopathic pulmonary arterial hypertension (IPAH) formation in patients. The frequency of 2968G homozygotes was higher in patients with IPAH compared with healthy individuals (23.6% versus 17.5%; P=0.001, OR=1.864), and the minor alleles of rs6776158, rs1048213, and rs9883099, located in CaSR promoter, raised the IPAH odds ratio to 2.173. Patients with IPAH carrying heterozygotes or homozygotes genotype of rs1042636 showed markedly higher pulmonary artery pressure and reduced survival compared with individuals carrying the wild-type allele. The minor alleles of rs6776158, rs1048213, and rs9883099 increased CaSR expression in reporter assay. In Sugen/hypoxia pulmonary arterial hypertension rats, the point mutation replicating rs1042636 found in IPAH exacerbated pulmonary arterial hypertension severity by promoting the overexpression and the enhanced activity of CaSR. CONCLUSIONS Our functional genomic analysis thus indicates that the CaSR minor alleles of rs1042636, rs6776158, rs1048213, and rs9883099 contribute to the development and severity of IPAH. These findings may benefit clinical prognosis and treatment for IPAH.
Collapse
Affiliation(s)
- Bingxun Liu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China (B.L., X.F., Z.C., X.L.,Y.X., L.Z., Q.H.)
| | - Yun-Peng Wei
- Department of Cardiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (Y.-P.W., Z.-C.J.)
| | - Xiaohang Fan
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China (B.L., X.F., Z.C., X.L.,Y.X., L.Z., Q.H.).,Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, HUST, Wuhan, China (B.X., X.F., X.H., Z.C., X.L., Y.X., L.W., T.W., L.Z., Q.H.)
| | - Xiaoyi Hu
- Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, HUST, Wuhan, China (B.X., X.F., X.H., Z.C., X.L., Y.X., L.W., T.W., L.Z., Q.H.).,Department of Respiratory and Critical Care Medicine, Tongji Hospital; Tongji Medical College, HUST, Wuhan, China (X.H., L.W., T.W.)
| | - Zeshuai Chen
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China (B.L., X.F., Z.C., X.L.,Y.X., L.Z., Q.H.).,Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, HUST, Wuhan, China (B.X., X.F., X.H., Z.C., X.L., Y.X., L.W., T.W., L.Z., Q.H.)
| | - Xiaoyuan Liu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China (B.L., X.F., Z.C., X.L.,Y.X., L.Z., Q.H.).,Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, HUST, Wuhan, China (B.X., X.F., X.H., Z.C., X.L., Y.X., L.W., T.W., L.Z., Q.H.)
| | - Yan Xu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China (B.L., X.F., Z.C., X.L.,Y.X., L.Z., Q.H.).,Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, HUST, Wuhan, China (B.X., X.F., X.H., Z.C., X.L., Y.X., L.W., T.W., L.Z., Q.H.)
| | - Lu Wang
- Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, HUST, Wuhan, China (B.X., X.F., X.H., Z.C., X.L., Y.X., L.W., T.W., L.Z., Q.H.).,Department of Respiratory and Critical Care Medicine, Tongji Hospital; Tongji Medical College, HUST, Wuhan, China (X.H., L.W., T.W.)
| | - Tao Wang
- Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, HUST, Wuhan, China (B.X., X.F., X.H., Z.C., X.L., Y.X., L.W., T.W., L.Z., Q.H.).,Department of Respiratory and Critical Care Medicine, Tongji Hospital; Tongji Medical College, HUST, Wuhan, China (X.H., L.W., T.W.)
| | - Matthieu Ruiz
- Department of Nutrition, Université de Montréal, Canada (M.R.).,Montreal Heart Institute, Québec, Canada (M.R., J.D.)
| | - Jocelyn Dupuis
- Montreal Heart Institute, Québec, Canada (M.R., J.D.).,Department of medicine, Université de Montréal, Québec, Canada (J.D.)
| | - Ping Yuan
- Department of Cardiopulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai' China (P.Y., J.L.)
| | - Jinming Liu
- Department of Cardiopulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai' China (P.Y., J.L.)
| | - Songling Huang
- Department of Clinical Laboratory, the First Affiliate Hospital of Kunming Medical University, Kunming, China (S.H.)
| | - Liping Zhu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China (B.L., X.F., Z.C., X.L.,Y.X., L.Z., Q.H.).,Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, HUST, Wuhan, China (B.X., X.F., X.H., Z.C., X.L., Y.X., L.W., T.W., L.Z., Q.H.)
| | - Zhi-Cheng Jing
- Department of Cardiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (Y.-P.W., Z.-C.J.)
| | - Qinghua Hu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China (B.L., X.F., Z.C., X.L.,Y.X., L.Z., Q.H.).,Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, HUST, Wuhan, China (B.X., X.F., X.H., Z.C., X.L., Y.X., L.W., T.W., L.Z., Q.H.)
| |
Collapse
|
7
|
Serov D, Tankanag A, Astashev M. Low-frequency oscillations of murine skin microcirculations and periodic changes of [Ca 2+ ] i and [NO] i levels in murine endotheliocytes: An effect of provocative tests. Cell Biol Int 2021; 46:427-442. [PMID: 34882893 DOI: 10.1002/cbin.11743] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 11/07/2021] [Accepted: 12/04/2021] [Indexed: 01/14/2023]
Abstract
The five frequency intervals of skin blood oscillation were described: cardiac, respiratory, myogenic, neurogenic, and endothelial. The endothelial interval is derived into NO-independent and NO-dependent. The exact molecular, cell, or systemic mechanisms of endothelial oscillations generation are unclear. We proposed that oscillations of Ca2+ and NO in endotheliocytes may be possible sources of skin blood perfusion (SBP) oscillations in endothelial interval. To examine our hypothesis we compared the oscillations of cytoplasmic Ca2+ and NO ([Ca2+ ]i and [NO]i ) concentration in cultured murine microvascular endotheliocytes and SBP oscillations in mice. Local heating test and model hypoxia were used as tools to evaluate an interconnection of studied parameters. [Ca2+ ]i and [NO]i were measured simultaneously by Fura-2 AM and DAF-FM. The SBP was measured by laser Doppler flowmetry. The [Ca2+ ]i and [NO]i oscillations at 0.005-0.01 Hz were observed in endotheliocytes, that coincides the ranges of NO-independent endothelial interval. Heating decreased amplitude of [Ca2+ ]i and [NO]i oscillations in cells in NO-independent endothelial interval, while amplitudes of SBP oscillations increased in NO-independent and NO-dependent intervals. Hypoxia reduced the [NO]i oscillations amplitude. Heating test during hypoxia increased NO-independent endothelial SBP oscillations and decreased myogenic ones, did not effect on [NO]i oscillations, and shifted [Ca2+ ]i oscillations peak from 0.005-0.01 Hz to 0.01-0.018 Hz. We observed the [Ca2+ ]i and [NO]i oscillations synchronization within a cell and between cells for the first time. Heating abolished these synchronizations. Therefore low-frequency [Ca2+ ]i and [NO]i oscillations in endotheliocytes may be considered as modulators of low-frequency endothelial SBP oscillations.
Collapse
Affiliation(s)
- Dmitriy Serov
- Institute of Cell Biophisics, Russian Academy of Sciences, Laboratory of Cellular Neurobiology, Pushchino, Moscow region, Russia.,Prokhorov General Physics Institute of the Russian Academy of Sciences, Biophotonics Center, Moscow, Russia
| | - Arina Tankanag
- Institute of Cell Biophisics, Russian Academy of Sciences, Laboratory of Cellular Neurobiology, Pushchino, Moscow region, Russia
| | - Maksim Astashev
- Institute of Cell Biophisics, Russian Academy of Sciences, Laboratory of Cellular Neurobiology, Pushchino, Moscow region, Russia.,Prokhorov General Physics Institute of the Russian Academy of Sciences, Biophotonics Center, Moscow, Russia
| |
Collapse
|
8
|
Ayad O, Al Sayed ZR, Sebille S, Magaud C, Chapotte-Baldacci CA, Jayle C, Faivre JF, Gaborit N, Chatelier A, Bois P. In vitro differentiation of W8B2 + human cardiac stem cells: gene expression of ionic channels and spontaneous calcium activity. Cell Mol Biol Lett 2020; 25:50. [PMID: 33292162 PMCID: PMC7646077 DOI: 10.1186/s11658-020-00242-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 10/29/2020] [Indexed: 11/18/2022] Open
Abstract
Background Human cardiac stem cells expressing the W8B2 marker (W8B2+ CSCs) were recently identified and proposed as a new model of multipotent CSCs capable of differentiating into smooth muscle cells, endothelial cells and immature myocytes. Nevertheless, no characterization of ion channel or calcium activity during the differentiation of these stem cells has been reported. Methods The objectives of this study were thus to analyze (using the TaqMan Low-Density Array technique) the gene profile of W8B2+ CSCs pertaining to the regulation of ion channels, transporters and other players involved in the calcium homeostasis of these cells. We also analyzed spontaneous calcium activity (via the GCaMP calcium probe) during the in vitro differentiation of W8B2+ CSCs into cardiac myocytes. Results Our results show an entirely different electrophysiological genomic profile between W8B2+ CSCs before and after differentiation. Some specific nodal genes, such as Tbx3, HCN, ICaT, L, KV, and NCX, are overexpressed after this differentiation. In addition, we reveal spontaneous calcium activity or a calcium clock whose kinetics change during the differentiation process. A pharmacological study carried out on differentiated W8B2+ CSCs showed that the NCX exchanger and IP3 stores play a fundamental role in the generation of these calcium oscillations. Conclusions Taken together, the present results provide important information on ion channel expression and intrinsic calcium dynamics during the differentiation process of stem cells expressing the W8B2 marker.
Collapse
Affiliation(s)
- Oualid Ayad
- University of Poitiers Signalisation et Transports Ioniques Membranaires, EA7349, Poitiers Cedex 09, France
| | - Zeina R Al Sayed
- CNRS, INSERM, l'institut du thorax, Université de Nantes, 44000, Nantes, France
| | - Stéphane Sebille
- University of Poitiers Signalisation et Transports Ioniques Membranaires, EA7349, Poitiers Cedex 09, France
| | - Christophe Magaud
- University of Poitiers Signalisation et Transports Ioniques Membranaires, EA7349, Poitiers Cedex 09, France
| | | | - Christophe Jayle
- CHU of Poitiers chirurgie cardiaque et thoracique, , Poitiers Cedex 09, France
| | - Jean-François Faivre
- University of Poitiers Signalisation et Transports Ioniques Membranaires, EA7349, Poitiers Cedex 09, France
| | - Nathalie Gaborit
- CNRS, INSERM, l'institut du thorax, Université de Nantes, 44000, Nantes, France
| | - Aurélien Chatelier
- University of Poitiers Signalisation et Transports Ioniques Membranaires, EA7349, Poitiers Cedex 09, France
| | - Patrick Bois
- University of Poitiers Signalisation et Transports Ioniques Membranaires, EA7349, Poitiers Cedex 09, France.
| |
Collapse
|
9
|
Tan R, Li J, Liu F, Liao P, Ruiz M, Dupuis J, Zhu L, Hu Q. Phenylalanine induces pulmonary hypertension through calcium-sensing receptor activation. Am J Physiol Lung Cell Mol Physiol 2020; 319:L1010-L1020. [PMID: 32964725 DOI: 10.1152/ajplung.00215.2020] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Phenylalanine levels are associated with pulmonary hypertension in metabolic profiling clinical studies. However, the pathophysiological role of phenylalanine on pulmonary circulation is still unclear. We experimentally addressed the direct impact of phenylalanine on pulmonary circulation in rats and explored the underlying molecular pathway. Phenylalanine was injected intraperitoneally into Sprague-Dawley rats (400 mg/100 g body wt) as a single dose or daily in a chronic manner for 2, 3, and 4 wk. Chronic injection of phenylalanine induced pulmonary hypertension with time-dependent severity, evidenced by elevated pulmonary artery pressure and pulmonary vascular resistance as well as pulmonary artery and right ventricular hypertrophy. Using tandem mass spectrometry analysis, we found a quick twofold increase in blood level of phenylalanine 2 h following injection. This increase led to a significant accumulation of phenylalanine in lung after 4 h, which remained sustained at up to a threefold increase after 4 wk. In addition, a cellular thermal shift assay with lung tissues from phenylalanine-injected rats revealed the binding of phenylalanine to the calcium-sensing receptor (CaSR). In vitro experiments with cultured pulmonary arterial smooth muscle cells showed that phenylalanine activated CaSR, as indicated by an increase in intracellular calcium content, which was attenuated or diminished by the inhibition or knockdown of CaSR. Finally, the global knockout or lung-specific knockdown of CaSR significantly attenuated phenylalanine-induced pulmonary hypertension. Chronic phenylalanine injection induces pulmonary hypertension through binding to CaSR and its subsequent activation. Here, we demonstrate a pathophysiological role of phenylalanine in pulmonary hypertension through the CaSR. This study provides a novel animal model for pulmonary hypertension and reveals a potentially clinically significant role for this metabolite in human pulmonary hypertension as a marker, a mediator of disease, and a possible therapeutic target.
Collapse
Affiliation(s)
- Rubin Tan
- Department of Pathophysiology, School of Basic Medicine; and Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Physiology, School of Basic Medicine, Xuzhou Medical University, Xuzhou, China
| | - Jiansha Li
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fangbo Liu
- Department of Pathophysiology, School of Basic Medicine; and Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pu Liao
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Matthieu Ruiz
- Department of Medicine, Université de Montréal, Montreal, Quebec, Canada.,Montreal Heart Institute Research Center, Montreal, Quebec, Canada
| | - Jocelyn Dupuis
- Department of Medicine, Université de Montréal, Montreal, Quebec, Canada.,Montreal Heart Institute Research Center, Montreal, Quebec, Canada
| | - Liping Zhu
- Department of Pathophysiology, School of Basic Medicine; and Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qinghua Hu
- Department of Pathophysiology, School of Basic Medicine; and Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
10
|
Liu B, Zhu L, Yuan P, Marsboom G, Hong Z, Liu J, Zhang P, Hu Q. Comprehensive identification of signaling pathways for idiopathic pulmonary arterial hypertension. Am J Physiol Cell Physiol 2020; 318:C913-C930. [PMID: 32159364 DOI: 10.1152/ajpcell.00382.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Whole exome sequencing (WES) was used in the research of familial pulmonary arterial hypertension (FPAH). CAV1 and KCNK3 were found as two novel candidate genes of FPAH. However, few pathogenic genes were identified in idiopathic pulmonary arterial hypertension (IPAH). We conducted WES in 20 unrelated IPAH patients who did not carry the known PAH-pathogenic variants among BMPR2, CAV1, KCNK3, SMAD9, ALK1, and ENG. We found a total of 4,950 variants in 3,534 genes, including 4,444 single-nucleotide polymorphisms and 506 insertions/deletions (InDels). Through the comprehensive and multilevel analysis, we disclosed several novel signaling cascades significantly connected to IPAH, including variants related to cadherin signaling pathway, dilated cardiomyopathy, glucose metabolism, immune response, mucin-type O-glycosylation, phospholipase C (PLC)-activating G protein-coupled receptor (GPCR) signaling pathway, vascular contraction and generation, and voltage-dependent Ca2+ channels. We also conducted validation studies in five mutant genes related to PLC-activating GPCR signaling pathway potentially involved in intracellular calcium regulation through Sanger sequencing for mutation accuracy, qRT-PCR for mRNA stability, immunofluorescence for subcellular localization, Western blotting for protein level, Fura-2 imaging for intracellular calcium, and proliferation analysis for cell function. The validation experiments showed that those variants in CCR5 and C3AR1 significantly increased the rise of intracellular calcium and the variant in CCR5 profoundly enhanced proliferative capacity of human pulmonary artery smooth muscle cells. Thus, our study suggests that multiple genetically affected signaling pathways take effect together to cause the formation of IPAH and the development of right heart failure and may further provide new therapy targets or putative clues for the present treatments such as limited therapeutic effectiveness of Ca2+ channel blockers.
Collapse
Affiliation(s)
- Bingxun Liu
- Department of Pathophysiology, School of Basic Medicine, and Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liping Zhu
- Department of Pathophysiology, School of Basic Medicine, and Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ping Yuan
- Department of Cardiopulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Glenn Marsboom
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, Illinois
| | - Zhigang Hong
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, Illinois
| | - Jinming Liu
- Department of Cardiopulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Peng Zhang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qinghua Hu
- Department of Pathophysiology, School of Basic Medicine, and Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
11
|
Zhu L, Xiao R, Zhang X, Lang Y, Liu F, Yu Z, Zhang J, Su Y, Lu Y, Wang T, Luo S, Wang J, Liu ML, Dupuis J, Jing ZC, Li T, Xiong W, Hu Q. Spermine on Endothelial Extracellular Vesicles Mediates Smoking-Induced Pulmonary Hypertension Partially Through Calcium-Sensing Receptor. Arterioscler Thromb Vasc Biol 2020; 39:482-495. [PMID: 30626206 DOI: 10.1161/atvbaha.118.312280] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Objective- This study aims to determine whether and how the enriched metabolites of endothelial extracellular vesicles (eEVs) are critical for cigarette smoke-induced direct injury of endothelial cells and the development of pulmonary hypertension, rarely explored in contrast to long-investigated mechanisms secondary to chronic hypoxemia. Approach and Results- Metabonomic screen of eEVs from cigarette-smoking human subjects reveals prominent elevation of spermine-a polyamine metabolite with potent agonist activity for the extracellular CaSR (calcium-sensing receptor). CaSR inhibition with the negative allosteric modulator Calhex231 or CaSR knockdown attenuates cigarette smoke-induced pulmonary hypertension in rats without emphysematous changes in lungs or chronic hypoxemia. Cigarette smoke exposure increases the generation of spermine-positive eEVs and their spermine content. Immunocytochemical staining and immunogold electron microscopy recognize the spermine enrichment not only within the cytosol but also on the outer surface of eEV membrane. The repression of spermine synthesis, the inhibitory analog of spermine, N1-dansyl-spermine, Calhex231, or CaSR knockdown profoundly suppresses eEV exposure-mobilized cytosolic calcium signaling, pulmonary artery constriction, and smooth muscle cell proliferation. Confocal imaging of immunohistochemical staining demonstrates the migration of spermine-positive eEVs from endothelium into smooth muscle cells in pulmonary arteries of cigarette smoke-exposed rats. The repression of spermine synthesis or CaSR knockout results in attenuated development of pulmonary hypertension induced by an intravascular administration of eEVs. Conclusions- Cigarette smoke enhances eEV generation with spermine enrichment at their outer surface and cytosol, which activates CaSR and subsequently causes smooth muscle cell constriction and proliferation, therefore, directly leading to the development of pulmonary hypertension.
Collapse
Affiliation(s)
- Liping Zhu
- From the Department of Pathophysiology, School of Basic Medicine (L.Z., R.X., X.Z., Y.L., F.L., Z.Y., S.L., Q.H.).,Key Laboratory of Pulmonary Diseases of Ministry of Health (L.Z., R.X., X.Z., Y.Lang, F.L., Z.Y., J.Z., Y.S., Y.Lu, T.W., S.L., W.X., Q.H.)
| | - Rui Xiao
- From the Department of Pathophysiology, School of Basic Medicine (L.Z., R.X., X.Z., Y.L., F.L., Z.Y., S.L., Q.H.).,Key Laboratory of Pulmonary Diseases of Ministry of Health (L.Z., R.X., X.Z., Y.Lang, F.L., Z.Y., J.Z., Y.S., Y.Lu, T.W., S.L., W.X., Q.H.)
| | - Xiuyun Zhang
- From the Department of Pathophysiology, School of Basic Medicine (L.Z., R.X., X.Z., Y.L., F.L., Z.Y., S.L., Q.H.).,Key Laboratory of Pulmonary Diseases of Ministry of Health (L.Z., R.X., X.Z., Y.Lang, F.L., Z.Y., J.Z., Y.S., Y.Lu, T.W., S.L., W.X., Q.H.)
| | - Yuheng Lang
- Key Laboratory of Pulmonary Diseases of Ministry of Health (L.Z., R.X., X.Z., Y.Lang, F.L., Z.Y., J.Z., Y.S., Y.Lu, T.W., S.L., W.X., Q.H.).,Department of Pathology and Department of Respiratory and Critical Care Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (Y.L., T.W., W.X.)
| | - Fangbo Liu
- From the Department of Pathophysiology, School of Basic Medicine (L.Z., R.X., X.Z., Y.L., F.L., Z.Y., S.L., Q.H.).,Key Laboratory of Pulmonary Diseases of Ministry of Health (L.Z., R.X., X.Z., Y.Lang, F.L., Z.Y., J.Z., Y.S., Y.Lu, T.W., S.L., W.X., Q.H.)
| | - Zhe Yu
- From the Department of Pathophysiology, School of Basic Medicine (L.Z., R.X., X.Z., Y.L., F.L., Z.Y., S.L., Q.H.).,Key Laboratory of Pulmonary Diseases of Ministry of Health (L.Z., R.X., X.Z., Y.Lang, F.L., Z.Y., J.Z., Y.S., Y.Lu, T.W., S.L., W.X., Q.H.)
| | - Jiwei Zhang
- Key Laboratory of Pulmonary Diseases of Ministry of Health (L.Z., R.X., X.Z., Y.Lang, F.L., Z.Y., J.Z., Y.S., Y.Lu, T.W., S.L., W.X., Q.H.).,Department of Pathology and Department of Respiratory and Critical Care Medicine, Union Hospital (J.Z., Y.S.)
| | - Yuan Su
- Key Laboratory of Pulmonary Diseases of Ministry of Health (L.Z., R.X., X.Z., Y.Lang, F.L., Z.Y., J.Z., Y.S., Y.Lu, T.W., S.L., W.X., Q.H.).,Department of Pathology and Department of Respiratory and Critical Care Medicine, Union Hospital (J.Z., Y.S.)
| | - Yankai Lu
- From the Department of Pathophysiology, School of Basic Medicine (L.Z., R.X., X.Z., Y.L., F.L., Z.Y., S.L., Q.H.).,Key Laboratory of Pulmonary Diseases of Ministry of Health (L.Z., R.X., X.Z., Y.Lang, F.L., Z.Y., J.Z., Y.S., Y.Lu, T.W., S.L., W.X., Q.H.)
| | - Tao Wang
- Key Laboratory of Pulmonary Diseases of Ministry of Health (L.Z., R.X., X.Z., Y.Lang, F.L., Z.Y., J.Z., Y.S., Y.Lu, T.W., S.L., W.X., Q.H.).,Department of Pathology and Department of Respiratory and Critical Care Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (Y.L., T.W., W.X.)
| | - Shengquan Luo
- From the Department of Pathophysiology, School of Basic Medicine (L.Z., R.X., X.Z., Y.L., F.L., Z.Y., S.L., Q.H.).,Key Laboratory of Pulmonary Diseases of Ministry of Health (L.Z., R.X., X.Z., Y.Lang, F.L., Z.Y., J.Z., Y.S., Y.Lu, T.W., S.L., W.X., Q.H.)
| | - Jian Wang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, China (J.W.)
| | - Ming-Lin Liu
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia (M.-L.L.).,Philadelphia Veterans Administration Medical Center (M.-L.L.)
| | - Jocelyn Dupuis
- Montreal Heart Institute, Québec, Canada (J.D.).,Department of medicine, Université de Montréal, Québec, Canada (J.D.)
| | - Zhi-Cheng Jing
- State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (Z.-C.J.)
| | - Tong Li
- Department of Heart Centre and Artificial Cell Engineering Technology Research Center of Public Health Ministry, Third Central Clinical College, Tianjin Medical University, China (T.L.)
| | - Weining Xiong
- Key Laboratory of Pulmonary Diseases of Ministry of Health (L.Z., R.X., X.Z., Y.Lang, F.L., Z.Y., J.Z., Y.S., Y.Lu, T.W., S.L., W.X., Q.H.).,Department of Pathology and Department of Respiratory and Critical Care Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (Y.L., T.W., W.X.)
| | - Qinghua Hu
- From the Department of Pathophysiology, School of Basic Medicine (L.Z., R.X., X.Z., Y.L., F.L., Z.Y., S.L., Q.H.).,Key Laboratory of Pulmonary Diseases of Ministry of Health (L.Z., R.X., X.Z., Y.Lang, F.L., Z.Y., J.Z., Y.S., Y.Lu, T.W., S.L., W.X., Q.H.)
| |
Collapse
|
12
|
Calcium Signaling in Endothelial Colony Forming Cells in Health and Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1131:1013-1030. [PMID: 31646543 DOI: 10.1007/978-3-030-12457-1_40] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Endothelial colony forming cells (ECFCs) represent the only known truly endothelial precursors. ECFCs are released in peripheral circulation to restore the vascular networks dismantled by an ischemic insult or to sustain the early phases of the angiogenic switch in solid tumors. A growing number of studies demonstrated that intracellular Ca2+ signaling plays a crucial role in driving ECFC proliferation, migration, homing and neovessel formation. For instance, vascular endothelial growth factor (VEGF) triggers intracellular Ca2+ oscillations and stimulates angiogenesis in healthy ECFCs, whereas stromal derived factor-1α promotes ECFC migration through a biphasic Ca2+ signal. The Ca2+ toolkit endowed to circulating ECFCs is extremely plastic and shows striking differences depending on the physiological background of the donor. For instance, inositol-1,4,5-trisphosphate-induced Ca2+ release from the endoplasmic reticulum is downregulated in tumor-derived ECFCs, while agonists-induced store-operated Ca2+ entry is up-regulated in renal cellular carcinoma and is unaltered in breast cancer and reduced in infantile hemangioma. This remodeling of the Ca2+ toolkit prevents VEGF-induced pro-angiogenic Ca2+ oscillations in tumor-derived ECFCs. An emerging theme of research is the dysregulation of the Ca2+ toolkit in primary myelofibrosis-derived ECFCs, as this myeloproliferative disorder may depend on a driver mutation in the calreticulin gene. In this chapter, I provide a comprehensive, but succinct, description on the architecture and role of the intracellular Ca2+ signaling toolkit in ECFCs derived from umbilical cord blood and from peripheral blood of healthy donors, cancer patients and subjects affected by primary myelofibrosis.
Collapse
|
13
|
Modeling the role of endoplasmic reticulum-mitochondria microdomains in calcium dynamics. Sci Rep 2019; 9:17072. [PMID: 31745211 PMCID: PMC6864103 DOI: 10.1038/s41598-019-53440-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 10/31/2019] [Indexed: 12/12/2022] Open
Abstract
Upon inositol trisphosphate (IP3) stimulation of non-excitable cells, including vascular endothelial cells, calcium (Ca2+) shuttling between the endoplasmic reticulum (ER) and mitochondria, facilitated by complexes called Mitochondria-Associated ER Membranes (MAMs), is known to play an important role in the occurrence of cytosolic Ca2+ concentration ([Ca2+]Cyt) oscillations. A mathematical compartmental closed-cell model of Ca2+ dynamics was developed that accounts for ER-mitochondria Ca2+ microdomains as the µd compartment (besides the cytosol, ER and mitochondria), Ca2+ influx to/efflux from each compartment and Ca2+ buffering. Varying the distribution of functional receptors in MAMs vs. the rest of ER/mitochondrial membranes, a parameter called the channel connectivity coefficient (to the µd), allowed for generation of [Ca2+]Cytoscillations driven by distinct mechanisms at various levels of IP3 stimulation. Oscillations could be initiated by the transient opening of IP3 receptors facing either the cytosol or the µd, and subsequent refilling of the respective compartment by Ca2+ efflux from the ER and/or the mitochondria. Only under conditions where the µd became the oscillation-driving compartment, silencing the Mitochondrial Ca2+ Uniporter led to oscillation inhibition. Thus, the model predicts that alternative mechanisms can yield [Ca2+]Cyt oscillations in non-excitable cells, and, under certain conditions, the ER-mitochondria µd can play a regulatory role.
Collapse
|
14
|
Berra-Romani R, Faris P, Pellavio G, Orgiu M, Negri S, Forcaia G, Var-Gaz-Guadarrama V, Garcia-Carrasco M, Botta L, Sancini G, Laforenza U, Moccia F. Histamine induces intracellular Ca 2+ oscillations and nitric oxide release in endothelial cells from brain microvascular circulation. J Cell Physiol 2019; 235:1515-1530. [PMID: 31310018 DOI: 10.1002/jcp.29071] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 06/21/2019] [Indexed: 02/06/2023]
Abstract
The neuromodulator histamine is able to vasorelax in human cerebral, meningeal and temporal arteries via endothelial histamine 1 receptors (H1 Rs) which result in the downstream production of nitric oxide (NO), the most powerful vasodilator transmitter in the brain. Although endothelial Ca 2+ signals drive histamine-induced NO release throughout the peripheral circulation, the mechanism by which histamine evokes NO production in human cerebrovascular endothelial cells is still unknown. Herein, we exploited the human cerebral microvascular endothelial cell line, hCMEC/D3, to assess the role of intracellular Ca 2+ signaling in histamine-induced NO release. To achieve this goal, hCMEC/D3 cells were loaded with the Ca 2+ - and NO-sensitive dyes, Fura-2/AM and DAF-FM/AM, respectively. Histamine elicited repetitive oscillations in intracellular Ca 2+ concentration in hCMEC/D3 cells throughout a concentration range spanning from 1 pM up to 300 μM. The oscillatory Ca 2+ response was suppressed by the inhibition of H 1 Rs with pyrilamine, whereas H 1 R was abundantly expressed at the protein level. We further found that histamine-induced intracellular Ca 2+ oscillations were initiated by endogenous Ca 2+ mobilization through inositol-1,4,5-trisphosphate- and nicotinic acid dinucleotide phosphate-sensitive channels and maintained over time by store-operated Ca 2+ entry. In addition, histamine evoked robust NO release that was prevented by interfering with the accompanying intracellular Ca 2+ oscillations, thereby confirming that the endothelial NO synthase is recruited by Ca 2+ spikes also in hCMEC/D3 cells. These data provide the first evidence that histamine evokes NO production from human cerebrovascular endothelial cells through intracellular Ca 2+ oscillations, thereby shedding novel light on the mechanisms by which this neuromodulator controls cerebral blood flow.
Collapse
Affiliation(s)
- Roberto Berra-Romani
- Department of Biomedicine, Biomedicine School, Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
| | - Pawan Faris
- Laboratory of General Physiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy.,Research Center, Salahaddin University, Erbil, Kurdistan-Region of Iraq, Iraq
| | - Giorgia Pellavio
- Human Physiology Unit, Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Matteo Orgiu
- Laboratory of General Physiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Sharon Negri
- Laboratory of General Physiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Greta Forcaia
- Department of Experimental Medicine, University of Milano-Bicocca, Monza, Italy
| | | | - Mario Garcia-Carrasco
- Department of Biomedicine, Biomedicine School, Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
| | - Laura Botta
- Laboratory of General Physiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Giulio Sancini
- Department of Experimental Medicine, University of Milano-Bicocca, Monza, Italy
| | - Umberto Laforenza
- Human Physiology Unit, Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| |
Collapse
|
15
|
Verma A, Antony AN, Ogunnaike BA, Hoek JB, Vadigepalli R. Causality Analysis and Cell Network Modeling of Spatial Calcium Signaling Patterns in Liver Lobules. Front Physiol 2018; 9:1377. [PMID: 30337879 PMCID: PMC6180170 DOI: 10.3389/fphys.2018.01377] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 09/11/2018] [Indexed: 01/21/2023] Open
Abstract
Dynamics as well as localization of Ca2+ transients plays a vital role in liver function under homeostatic conditions, repair, and disease. In response to circulating hormonal stimuli, hepatocytes exhibit intracellular Ca2+ responses that propagate through liver lobules in a wave-like fashion. Although intracellular processes that control cell autonomous Ca2+ spiking behavior have been studied extensively, the intra- and inter-cellular signaling factors that regulate lobular scale spatial patterns and wave-like propagation of Ca2+ remain to be determined. To address this need, we acquired images of cytosolic Ca2+ transients in 1300 hepatocytes situated across several mouse liver lobules over a period of 1600 s. We analyzed this time series data using correlation network analysis, causal network analysis, and computational modeling, to characterize the spatial distribution of heterogeneity in intracellular Ca2+ signaling components as well as intercellular interactions that control lobular scale Ca2+ waves. Our causal network analysis revealed that hepatocytes are causally linked to multiple other co-localized hepatocytes, but these influences are not necessarily aligned uni-directionally along the sinusoids. Our computational model-based analysis showed that spatial gradients of intracellular Ca2+ signaling components as well as intercellular molecular exchange are required for lobular scale propagation of Ca2+ waves. Additionally, our analysis suggested that causal influences of hepatocytes on Ca2+ responses of multiple neighbors lead to robustness of Ca2+ wave propagation through liver lobules.
Collapse
Affiliation(s)
- Aalap Verma
- Department of Biomedical Engineering, University of Delaware, Newark, DE, United States.,Department of Pathology, Anatomy and Cell Biology, Daniel Baugh Institute for Functional Genomics and Computational Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Anil Noronha Antony
- Department of Pathology, Anatomy and Cell Biology, Daniel Baugh Institute for Functional Genomics and Computational Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Babatunde A Ogunnaike
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, United States
| | - Jan B Hoek
- Department of Pathology, Anatomy and Cell Biology, Daniel Baugh Institute for Functional Genomics and Computational Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Rajanikanth Vadigepalli
- Department of Pathology, Anatomy and Cell Biology, Daniel Baugh Institute for Functional Genomics and Computational Biology, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
16
|
Endothelial Ca 2+ Signaling and the Resistance to Anticancer Treatments: Partners in Crime. Int J Mol Sci 2018; 19:ijms19010217. [PMID: 29324706 PMCID: PMC5796166 DOI: 10.3390/ijms19010217] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/08/2018] [Accepted: 01/10/2018] [Indexed: 02/06/2023] Open
Abstract
Intracellular Ca2+ signaling drives angiogenesis and vasculogenesis by stimulating proliferation, migration, and tube formation in both vascular endothelial cells and endothelial colony forming cells (ECFCs), which represent the only endothelial precursor truly belonging to the endothelial phenotype. In addition, local Ca2+ signals at the endoplasmic reticulum (ER)-mitochondria interface regulate endothelial cell fate by stimulating survival or apoptosis depending on the extent of the mitochondrial Ca2+ increase. The present article aims at describing how remodeling of the endothelial Ca2+ toolkit contributes to establish intrinsic or acquired resistance to standard anti-cancer therapies. The endothelial Ca2+ toolkit undergoes a major alteration in tumor endothelial cells and tumor-associated ECFCs. These include changes in TRPV4 expression and increase in the expression of P2X7 receptors, Piezo2, Stim1, Orai1, TRPC1, TRPC5, Connexin 40 and dysregulation of the ER Ca2+ handling machinery. Additionally, remodeling of the endothelial Ca2+ toolkit could involve nicotinic acetylcholine receptors, gasotransmitters-gated channels, two-pore channels and Na⁺/H⁺ exchanger. Targeting the endothelial Ca2+ toolkit could represent an alternative adjuvant therapy to circumvent patients' resistance to current anti-cancer treatments.
Collapse
|
17
|
Moccia F, Lucariello A, Guerra G. TRPC3-mediated Ca 2+ signals as a promising strategy to boost therapeutic angiogenesis in failing hearts: The role of autologous endothelial colony forming cells. J Cell Physiol 2017; 233:3901-3917. [PMID: 28816358 DOI: 10.1002/jcp.26152] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 08/15/2017] [Indexed: 12/20/2022]
Abstract
Endothelial progenitor cells (EPCs) are a sub-population of bone marrow-derived mononuclear cells that are released in circulation to restore damaged endothelium during its physiological turnover or rescue blood perfusion after an ischemic insult. Additionally, they may be mobilized from perivascular niches located within larger arteries' wall in response to hypoxic conditions. For this reason, EPCs have been regarded as an effective tool to promote revascularization and functional recovery of ischemic hearts, but clinical application failed to exploit the full potential of patients-derived cells. Indeed, the frequency and biological activity of EPCs are compromised in aging individuals or in subjects suffering from severe cardiovascular risk factors. Rejuvenating the reparative phenotype of autologous EPCs through a gene transfer approach has, therefore, been put forward as an alternative approach to enhance their therapeutic potential in cardiovascular patients. An increase in intracellular Ca2+ concentration constitutes a pivotal signal for the activation of the so-called endothelial colony forming cells (ECFCs), the only known truly endothelial EPC subset. Studies from our group showed that the Ca2+ toolkit differs between peripheral blood- and umbilical cord blood (UCB)-derived ECFCs. In the present article, we first discuss how VEGF uses repetitive Ca2+ spikes to regulate angiogenesis in ECFCs and outline how VEGF-induced intracellular Ca2+ oscillations differ between the two ECFC subtypes. We then hypothesize about the possibility to rejuvenate the biological activity of autologous ECFCs by transfecting the cell with the Ca2+ -permeable channel Transient Receptor Potential Canonical 3, which selectively drives the Ca2+ response to VEGF in UCB-derived ECFCs.
Collapse
Affiliation(s)
- Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Angela Lucariello
- Department of Mental and Physical Health and Preventive Medicine, Section of Human Anatomy, Universy of Campania "L. Vanvitelli", Naples, Italy
| | - Germano Guerra
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso, Italy
| |
Collapse
|
18
|
Xia Y, Cai PC, Yu F, Xiong L, He XL, Rao SS, Chen F, Yang XP, Ma WL, Ye H. IL-4-induced caveolin-1-containing lipid rafts aggregation contributes to MUC5AC synthesis in bronchial epithelial cells. Respir Res 2017; 18:174. [PMID: 28931396 PMCID: PMC5607571 DOI: 10.1186/s12931-017-0657-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 09/13/2017] [Indexed: 11/10/2022] Open
Abstract
Background Mucus overproduction is an important feature of asthma. Interleukin (IL)-4 is required for allergen-induced airway inflammation and mucus production. MUC5AC gene expression is regulated by transcript factors NF-κB. The intracellular Ca2+ ([Ca2+]i) signal is required for activation of NF-κB. The transient receptor potential canonical 1 (TRPC1) channel has been shown to contribute for agonist-stimulated Ca2+ influx in some types of cells. However, the relationships among IL-4, TRPC1 and mucus overproduction in bronchial epithelial cells (BECs) in asthma are poorly understood. Methods BECs were isolated from large bronchial airway of rats and used as cell model. To present changes of lipid raft, caveolin-1 and TRPC1, immunofluorescence staining and sucrose gradient centrifugation were performed. [Ca2+]i was measured after loading with Fura-2. NF-κB activities were measured by an ELISA-based assay. MUC5AC mRNA and protein levels were detected by real-time quantitative RT-PCR, ELISA analysis and immunofluorescence staining respectively. Results IL-4 induced Ca2+ influx in BECs, and this was blocked by a Ca2+ influx inhibitor (2-APB). 2-APB also prevented MUC5AC protein synthesis induced by IL-4. Depletion of extracellular Ca2+ resulted in partial decrease in expression of MUC5AC in IL-4 treated cells. NF-κB rather than STAT6 activation mediated IL-4-induced MUC5AC protein synthesis. Then the mechanism of Ca2+ influx was investigated. Immunofluorescence staining and sucrose gradient centrifugation revealed that caveolin-1-containing lipid rafts aggregation was involved in TRPC1 activation and Ca2+ influx in BECs. Lastly, the data revealed that blocking lipid rafts aggregation exactly prevented Ca2+ influx, NF-κB activation and MUC5AC synthesis induced by IL-4. Conclusions Our results indicate that IL-4-induced caveolin-1-containing lipid rafts aggregation at least partly contributes to MUC5AC synthesis in BECs. Electronic supplementary material The online version of this article (10.1186/s12931-017-0657-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yu Xia
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Peng-Cheng Cai
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Fan Yu
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Liang Xiong
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xin-Liang He
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shan-Shan Rao
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Feng Chen
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiang-Ping Yang
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wan-Li Ma
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Key Laboratory of Pulmonary Diseases, Ministry of Health of China, Wuhan, Hubei, China
| | - Hong Ye
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China. .,Key Laboratory of Pulmonary Diseases, Ministry of Health of China, Wuhan, Hubei, China.
| |
Collapse
|
19
|
Yildirim V, Bertram R. Calcium Oscillation Frequency-Sensitive Gene Regulation and Homeostatic Compensation in Pancreatic β-Cells. Bull Math Biol 2017; 79:1295-1324. [PMID: 28497293 DOI: 10.1007/s11538-017-0286-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 04/27/2017] [Indexed: 02/03/2023]
Abstract
Pancreatic islet [Formula: see text]-cells are electrically excitable cells that secrete insulin in an oscillatory fashion when the blood glucose concentration is at a stimulatory level. Insulin oscillations are the result of cytosolic [Formula: see text] oscillations that accompany bursting electrical activity of [Formula: see text]-cells and are physiologically important. ATP-sensitive [Formula: see text] channels (K(ATP) channels) play the key role in setting the overall activity of the cell and in driving bursting, by coupling cell metabolism to the membrane potential. In humans, when there is a defect in K(ATP) channel function, [Formula: see text]-cells fail to respond appropriately to changes in the blood glucose level, and electrical and [Formula: see text] oscillations are lost. However, mice compensate for K(ATP) channel defects in islet [Formula: see text]-cells by employing alternative mechanisms to maintain electrical and [Formula: see text] oscillations. In a recent study, we showed that in mice islets in which K(ATP) channels are genetically knocked out another [Formula: see text] current, provided by inward-rectifying [Formula: see text] channels, is increased. With mathematical modeling, we demonstrated that a sufficient upregulation in these channels can account for the paradoxical electrical bursting and [Formula: see text] oscillations observed in these [Formula: see text]-cells. However, the question of determining the correct level of upregulation that is necessary for this compensation remained unanswered, and this question motivates the current study. [Formula: see text] is a well-known regulator of gene expression, and several examples have been shown of genes that are sensitive to the frequency of the [Formula: see text] signal. In this mathematical modeling study, we demonstrate that a [Formula: see text] oscillation frequency-sensitive gene transcription network can adjust the gene expression level of a compensating [Formula: see text] channel so as to rescue electrical bursting and [Formula: see text] oscillations in a model [Formula: see text]-cell in which the key K(ATP) current is removed. This is done without the prescription of a target [Formula: see text] level, but evolves naturally as a consequence of the feedback between the [Formula: see text]-dependent enzymes and the cell's electrical activity. More generally, the study indicates how [Formula: see text] can provide the link between gene expression and cellular electrical activity that promotes wild-type behavior in a cell following gene knockout.
Collapse
Affiliation(s)
- Vehpi Yildirim
- Department of Mathematics, Florida State University, Tallahassee, FL, 32306, USA
| | - Richard Bertram
- Department of Mathematics and Programs in Molecular Biophysics and Neuroscience, Florida State University, Tallahassee, FL, 32306, USA.
| |
Collapse
|
20
|
Chen TX, Xu XY, Zhao Z, Zhao FY, Gao YM, Yan XH, Wan Y. Hydrogen peroxide is a critical regulator of the hypoxia-induced alterations of store-operated Ca2+ entry into rat pulmonary arterial smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 2017; 312:L477-L487. [DOI: 10.1152/ajplung.00138.2016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 01/23/2017] [Accepted: 01/23/2017] [Indexed: 12/28/2022] Open
Abstract
To investigate the association between store-operated Ca2+ entry (SOCE) and reactive oxygen species (ROS) during hypoxia, this study determined the changes of transient receptor potential canonical 1 (TRPC1) and Orai1, two candidate proteins for store-operated Ca2+ (SOC) channels and their gate regulator, stromal interaction molecule 1 (STIM1), in a hypoxic environment and their relationship with ROS in pulmonary arterial smooth muscle cells (PASMCs). Exposure to hypoxia caused a transient Ca2+ spike and subsequent Ca2+ plateau of SOCE to be intensified in PASMCs when TRPC1, STIM1, and Orai1 were upregulated. SOCE in cells transfected with specific short hairpin RNA (shRNA) constructs was almost completely eliminated by the knockdown of TRPC1, STIM1, or Orai1 alone and was no longer affected by hypoxia exposure. Hypoxia-induced SOCE enhancement was further strengthened by PEG-SOD but was attenuated by PEG-catalase, with correlated changes to intracellular hydrogen peroxide (H2O2) levels and protein levels of TRPC1, STIM1, and Orai1. Exogenous H2O2 could mimic alterations of the interactions of STIM1 with TRPC1 and Orai1 in hypoxic cells. These findings suggest that TRPC1, STIM1, and Orai1 are essential for the initiation of SOCE in PASMCs. Hypoxia-induced ROS promoted the expression and interaction of the SOC channel molecules and their gate regulator via their converted product, H2O2.
Collapse
Affiliation(s)
- Tao-Xiang Chen
- Department of Physiology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Xiao-Ya Xu
- Department of Physiology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Zhao Zhao
- Department of Physiology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Fang-Yu Zhao
- Department of Physiology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Yi-Mei Gao
- Department of Physiology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Xiao-Hong Yan
- Department of Physiology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Yu Wan
- Department of Physiology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
21
|
Wang J, Wang Y, Guo F, Feng Z, Wang X, Lu C. Nicotinic modulation of Ca2+ oscillations in rat cortical neurons in vitro. Am J Physiol Cell Physiol 2016; 310:C748-54. [DOI: 10.1152/ajpcell.00197.2015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 01/29/2016] [Indexed: 01/28/2023]
Abstract
The roles of nicotine on Ca2+ oscillations [intracellular Ca2+ ([Ca2+]i) oscillation] in rat primary cultured cortical neurons were studied. The spontaneous [Ca2+]i oscillations (SCO) were recorded in a portion of the neurons (65%) cultured for 7–10 days in vitro. Application of nicotine enhanced [Ca2+]i oscillation frequency and amplitude, which were reduced by the selective α4β2-nicotinic acetylcholine receptors (nAChRs) antagonist dihydro-β-erythroidine (DHβE) hydrobromide, and the selective α7-nAChRs antagonist methyllycaconitine citrate (MLA, 20 nM). DHβE reduced SCO frequency and prevented the nicotinic increase in the frequency. DHβE somewhat enhanced SCO amplitude and prevented nicotinic increase in the amplitude. MLA (20 nM) itself reduced SCO frequency without affecting the amplitude but blocked nicotinic increase in [Ca2+]i oscillation frequency and amplitude. Furthermore, coadministration of both α4β2- and α7-nAChRs antagonists completely prevented nicotinic increment in [Ca2+]i oscillation frequency and amplitude. Thus, our results indicate that both α4β2- and α7-nAChRs mediated nicotine-induced [Ca2+]i oscillations, and two nAChR subtypes differentially regulated SCO.
Collapse
Affiliation(s)
- JianGang Wang
- Henan Province Key Laboratory of Brain Research, Xinxiang Medical University, Xinxiang, Henan, Peoples Republic of China
- Department of Pathophysiology, Xinxiang Medical University, Xinxiang, Henan, Peoples Republic of China
| | - YaLi Wang
- Henan Province Key Laboratory of Brain Research, Xinxiang Medical University, Xinxiang, Henan, Peoples Republic of China
- Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, Henan, Peoples Republic of China; and
| | - FangLi Guo
- Henan Province Key Laboratory of Brain Research, Xinxiang Medical University, Xinxiang, Henan, Peoples Republic of China
- Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, Henan, Peoples Republic of China; and
| | - ZhiBo Feng
- Department of Anatomy, Xinxiang Medical University, Xinxiang, Henan, Peoples Republic of China
| | - XiangFang Wang
- Henan Province Key Laboratory of Brain Research, Xinxiang Medical University, Xinxiang, Henan, Peoples Republic of China
| | - ChengBiao Lu
- Henan Province Key Laboratory of Brain Research, Xinxiang Medical University, Xinxiang, Henan, Peoples Republic of China
- Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, Henan, Peoples Republic of China; and
| |
Collapse
|
22
|
Chen F, Zhu L, Cai L, Zhang J, Zeng X, Li J, Su Y, Hu Q. A stromal interaction molecule 1 variant up-regulates matrix metalloproteinase-2 expression by strengthening nucleoplasmic Ca2+ signaling. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:617-29. [PMID: 26775216 DOI: 10.1016/j.bbamcr.2016.01.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 01/02/2016] [Accepted: 01/11/2016] [Indexed: 10/22/2022]
Abstract
Very recent studies hold promise to reveal the role of stromal interaction molecule 1 (STIM1) in non-store-operated Ca2+ entry. Here we showed that in contrast to cytoplasmic membrane redistribution as previously noted, human umbilical vein endothelial STIM1 with a T-to-C nucleotide transition resulting in an amino acid substitution of leucine by proline in the signal peptide sequence translocated to perinuclear membrane upon intracellular Ca2+ depletion, amplified nucleoplasmic Ca2+ signaling through ryanodine receptor-dependent pathway, and enhanced the subsequent cAMP responsive element binding protein activity, matrix metalloproteinase-2 (MMP-2) gene expression, and endothelial tube forming. The abundance of mutated STIM1 and the MMP-2 expression were higher in native human umbilical vein endothelial cells of patients with gestational hypertension than controls and were significantly correlated with blood pressure. These findings broaden our understanding about structure-function bias of STIM1 and offer unique insights into its application in nucleoplasmic Ca2+, MMP-2 expression, endothelial dysfunction, and pathophysiological mechanism(s) of gestational hypertension.
Collapse
Affiliation(s)
- Fengrong Chen
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong Science and Technology University (HUST), Wuhan 430030, People's Republic of China; Key Laboratory of Pulmonary Diseases of Ministry of Health of China, Tongji Medical College, Huazhong Science and Technology University (HUST), Wuhan 430030, People's Republic of China
| | - Liping Zhu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong Science and Technology University (HUST), Wuhan 430030, People's Republic of China; Key Laboratory of Pulmonary Diseases of Ministry of Health of China, Tongji Medical College, Huazhong Science and Technology University (HUST), Wuhan 430030, People's Republic of China
| | - Lei Cai
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong Science and Technology University (HUST), Wuhan 430030, People's Republic of China; Key Laboratory of Pulmonary Diseases of Ministry of Health of China, Tongji Medical College, Huazhong Science and Technology University (HUST), Wuhan 430030, People's Republic of China
| | - Jiwei Zhang
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong Science and Technology University (HUST), Wuhan 430030, People's Republic of China; Key Laboratory of Pulmonary Diseases of Ministry of Health of China, Tongji Medical College, Huazhong Science and Technology University (HUST), Wuhan 430030, People's Republic of China
| | - Xianqin Zeng
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong Science and Technology University (HUST), Wuhan 430030, People's Republic of China; Key Laboratory of Pulmonary Diseases of Ministry of Health of China, Tongji Medical College, Huazhong Science and Technology University (HUST), Wuhan 430030, People's Republic of China
| | - Jiansha Li
- Key Laboratory of Pulmonary Diseases of Ministry of Health of China, Tongji Medical College, Huazhong Science and Technology University (HUST), Wuhan 430030, People's Republic of China; Department of Pathology, Tongji Hospital, Tongji Medical College, Huazhong Science and Technology University (HUST), Wuhan 430030, People's Republic of China
| | - Yuan Su
- Key Laboratory of Pulmonary Diseases of Ministry of Health of China, Tongji Medical College, Huazhong Science and Technology University (HUST), Wuhan 430030, People's Republic of China; Department of Respiratory Medicine, Union Hospital, Tongji Medical College, Huazhong Science and Technology University (HUST), Wuhan 430030, People's Republic of China
| | - Qinghua Hu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong Science and Technology University (HUST), Wuhan 430030, People's Republic of China; Key Laboratory of Pulmonary Diseases of Ministry of Health of China, Tongji Medical College, Huazhong Science and Technology University (HUST), Wuhan 430030, People's Republic of China; Key Laboratory of Molecular Biophysics of the Ministry of Education, Huazhong Science and Technology University (HUST), Wuhan 430030, People's Republic of China.
| |
Collapse
|
23
|
Scheitlin CG, Julian JA, Shanmughapriya S, Madesh M, Tsoukias NM, Alevriadou BR. Endothelial mitochondria regulate the intracellular Ca2+ response to fluid shear stress. Am J Physiol Cell Physiol 2016; 310:C479-90. [PMID: 26739489 DOI: 10.1152/ajpcell.00171.2015] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 01/04/2016] [Indexed: 02/04/2023]
Abstract
Shear stress is known to stimulate an intracellular free calcium concentration ([Ca(2+)]i) response in vascular endothelial cells (ECs). [Ca(2+)]i is a key second messenger for signaling that leads to vasodilation and EC survival. Although it is accepted that the shear-induced [Ca(2+)]i response is, in part, due to Ca(2+) release from the endoplasmic reticulum (ER), the role of mitochondria (second largest Ca(2+) store) is unknown. We hypothesized that the mitochondria play a role in regulating [Ca(2+)]i in sheared ECs. Cultured ECs, loaded with a Ca(2+)-sensitive fluorophore, were exposed to physiological levels of shear stress. Shear stress elicited [Ca(2+)]i transients in a percentage of cells with a fraction of them displaying oscillations. Peak magnitudes, percentage of oscillating ECs, and oscillation frequencies depended on the shear level. [Ca(2+)]i transients/oscillations were present when experiments were conducted in Ca(2+)-free solution (plus lanthanum) but absent when ECs were treated with a phospholipase C inhibitor, suggesting that the ER inositol 1,4,5-trisphosphate receptor is responsible for the [Ca(2+)]i response. Either a mitochondrial uncoupler or an electron transport chain inhibitor, but not a mitochondrial ATP synthase inhibitor, prevented the occurrence of transients and especially inhibited the oscillations. Knockdown of the mitochondrial Ca(2+) uniporter also inhibited the shear-induced [Ca(2+)]i transients/oscillations compared with controls. Hence, EC mitochondria, through Ca(2+) uptake/release, regulate the temporal profile of shear-induced ER Ca(2+) release. [Ca(2+)]i oscillation frequencies detected were within the range for activation of mechanoresponsive kinases and transcription factors, suggesting that dysfunctional EC mitochondria may contribute to cardiovascular disease by deregulating the shear-induced [Ca(2+)]i response.
Collapse
Affiliation(s)
- Christopher G Scheitlin
- Departments of Biomedical Engineering and Internal Medicine, Division of Cardiovascular Medicine, and Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio
| | - Justin A Julian
- Departments of Biomedical Engineering and Internal Medicine, Division of Cardiovascular Medicine, and Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio
| | - Santhanam Shanmughapriya
- Department of Medical Genetics and Molecular Biochemistry and Center for Translational Medicine, Temple University, Philadelphia, Pennsylvania; and
| | - Muniswamy Madesh
- Department of Medical Genetics and Molecular Biochemistry and Center for Translational Medicine, Temple University, Philadelphia, Pennsylvania; and
| | - Nikolaos M Tsoukias
- Department of Biomedical Engineering, Florida International University, Miami, Florida
| | - B Rita Alevriadou
- Departments of Biomedical Engineering and Internal Medicine, Division of Cardiovascular Medicine, and Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio;
| |
Collapse
|
24
|
The Importance of Caveolin-1 as Key-Regulator of Three-Dimensional Growth in Thyroid Cancer Cells Cultured under Real and Simulated Microgravity Conditions. Int J Mol Sci 2015; 16:28296-310. [PMID: 26633361 PMCID: PMC4691055 DOI: 10.3390/ijms161226108] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 11/12/2015] [Accepted: 11/20/2015] [Indexed: 12/20/2022] Open
Abstract
We recently demonstrated that the CAV1 gene was down-regulated, when poorly differentiated thyroid FTC-133 cancer cells formed spheroids under simulated microgravity conditions. Here, we present evidence that the caveolin-1 protein is involved in the inhibition of spheroid formation, when confluent monolayers are exposed to microgravity. The evidence is based on proteins detected in cells and their supernatants of the recent spaceflight experiment: "NanoRacks-CellBox-Thyroid Cancer". The culture supernatant had been collected in a special container adjacent to the flight hardware incubation chamber and stored at low temperature until it was analyzed by Multi-Analyte Profiling (MAP) technology, while the cells remaining in the incubation chamber were fixed by RNAlater and examined by mass spectrometry. The soluble proteins identified by MAP were investigated in regard to their mutual interactions and their influence on proteins, which were associated with the cells secreting the soluble proteins and had been identified in a preceding study. A Pathway Studio v.11 analysis of the soluble and cell-associated proteins together with protein kinase C alpha (PRKCA) suggests that caveolin-1 is involved, when plasminogen enriched in the extracellular space is not activated and the vascular cellular adhesion molecule (VCAM-1) mediated cell-cell adhesion is simultaneously strengthened and activated PRKCA is recruited in caveolae, while the thyroid cancer cells do not form spheroids.
Collapse
|
25
|
Moccia F, Guerra G. Ca2+Signalling in Endothelial Progenitor Cells: Friend or Foe? J Cell Physiol 2015; 231:314-27. [DOI: 10.1002/jcp.25126] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 08/04/2015] [Indexed: 01/06/2023]
Affiliation(s)
- Francesco Moccia
- Laboratory of General Physiology; Department of Biology and Biotechnology “Lazzaro Spallanzani”; University of Pavia; Pavia Italy
| | - Germano Guerra
- Department of Medicine and Health Sciences “Vincenzo Tiberio”; University of Molise; Campobasso Italy
| |
Collapse
|
26
|
Sun R, Xu F, Wang C, Dong E. NSFC spurs significant basic research progress of respiratory medicine in China. CLINICAL RESPIRATORY JOURNAL 2015; 11:271-284. [PMID: 26176299 PMCID: PMC7159156 DOI: 10.1111/crj.12351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 07/10/2015] [Accepted: 07/13/2015] [Indexed: 12/24/2022]
Abstract
Over the years, research in respiratory medicine has progressed rapidly in China. This commentary narrates the role of the National Natural Science Foundation of China (NSFC) in supporting the basic research of respiratory medicine, summarizes the major progress of respiratory medicine in China, and addresses the main future research directions sponsored by the NSFC.
Collapse
Affiliation(s)
- Ruijuan Sun
- Department of Health Sciences, National Natural Science Foundation of China, Beijing, China
| | - Feng Xu
- Department of Health Sciences, National Natural Science Foundation of China, Beijing, China.,Department of Infectious Diseases, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chen Wang
- Department of Respiratory and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Erdan Dong
- Department of Health Sciences, National Natural Science Foundation of China, Beijing, China
| |
Collapse
|
27
|
ZHOU XIANGYU, YANG ZHENDONG, HAN LI, LI XIAOYONG, FENG MEINA, ZHANG TENG, LUO HONGBIN, ZHU LIPING, ZHANG JIWEI, ZHANG QI, HU QINGHUA. Raloxifene neutralizes the adverse effects of glutamate on cultured neurons by regulation of calcium oscillations. Mol Med Rep 2015; 12:6207-14. [DOI: 10.3892/mmr.2015.4191] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 06/23/2015] [Indexed: 11/06/2022] Open
|
28
|
Endothelial progenitor cells support tumour growth and metastatisation: implications for the resistance to anti-angiogenic therapy. Tumour Biol 2015; 36:6603-14. [DOI: 10.1007/s13277-015-3823-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 07/20/2015] [Indexed: 12/15/2022] Open
|
29
|
Scrutinizing calcium flux oscillations in T lymphocytes to deduce the strength of stimulus. Sci Rep 2015; 5:7760. [PMID: 25585590 PMCID: PMC4293621 DOI: 10.1038/srep07760] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 12/11/2014] [Indexed: 01/13/2023] Open
Abstract
The capture and activation of individual T cells on functionalised surfaces enables real-time analyses of the magnitude and rhythm of intracellular calcium release. Application of Haarlet transformations generate a calcium flux ‘threshold’, with the frequency of the ‘threshold crossings’ correlating with the strength of the original T cell stimulus. These findings represent a new method to evaluate graduations in T cell activation in real time, and at a single-cell level.
Collapse
|
30
|
May the remodeling of the Ca²⁺ toolkit in endothelial progenitor cells derived from cancer patients suggest alternative targets for anti-angiogenic treatment? BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1853:1958-73. [PMID: 25447551 DOI: 10.1016/j.bbamcr.2014.10.024] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 10/16/2014] [Accepted: 10/28/2014] [Indexed: 01/10/2023]
Abstract
Endothelial progenitor cells (EPCs) may be recruited from bone marrow to sustain the metastatic switch in a number of solid cancers, including breast cancer (BC) and renal cellular carcinoma (RCC). Preventing EPC mobilization causes tumor shrinkage. Novel anti-angiogenic treatments have been introduced in therapy to inhibit VEGFR-2 signaling; unfortunately, these drugs blocked tumor angiogenesis in pre-clinical murine models, but resulted far less effective in human patients. Understanding the molecular mechanisms driving EPC proliferation and tubulogenesis in cancer patients could outline novel targets for alternative anti-angiogenic treatments. Store-operated Ca²⁺ entry (SOCE) regulates the growth of human EPCs, and it is mediated by the interaction between the endoplasmic reticulum Ca²⁺-sensor, Stim1, and the plasmalemmal Ca²⁺ channels, Orai1 and TRPC1. EPCs do not belong to the neoplastic clone: thus, unlike tumor endothelium and neoplastic cells, they should not remodel their Ca²⁺ toolkit in response to tumor microenvironment. However, our recent work demonstrated that EPCs isolated from naïve RCC patients (RCC-EPCs) undergo a dramatic remodeling of their Ca²⁺ toolkit by displaying a remarkable drop in the endoplasmic reticulum Ca²⁺ content, by down-regulating the expression of inositol-1,4,5-receptors (InsP3Rs), and by up-regulating Stim1, Orai1 and TRPC1. Moreover, EPCs are dramatically less sensitive to VEGF stimulation both in terms of Ca²⁺ signaling and of gene expression when isolated from tumor patients. Conversely, the pharmacological abolition of SOCE suppresses proliferation in these cells. These results question the suitability of VEGFR-2 as a therapeutically relevant target for anti-angiogenic treatments and hint at Orai1 and TRPC1 as more promising alternatives. This article is part of a Special Issue entitled: 13th European Symposium on Calcium.
Collapse
|
31
|
Mitochondrial matrix Ca²⁺ accumulation regulates cytosolic NAD⁺/NADH metabolism, protein acetylation, and sirtuin expression. Mol Cell Biol 2014; 34:2890-902. [PMID: 24865966 DOI: 10.1128/mcb.00068-14] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Mitochondrial calcium uptake stimulates bioenergetics and drives energy production in metabolic tissue. It is unknown how a calcium-mediated acceleration in matrix bioenergetics would influence cellular metabolism in glycolytic cells that do not require mitochondria for ATP production. Using primary human endothelial cells (ECs), we discovered that repetitive cytosolic calcium signals (oscillations) chronically loaded into the mitochondrial matrix. Mitochondrial calcium loading in turn stimulated bioenergetics and a persistent elevation in NADH. Rather than serving as an impetus for mitochondrial ATP generation, matrix NADH rapidly transmitted to the cytosol to influence the activity and expression of cytosolic sirtuins, resulting in global changes in protein acetylation. In endothelial cells, the mitochondrion-driven reduction in both the cytosolic and mitochondrial NAD(+)/NADH ratio stimulated a compensatory increase in SIRT1 protein levels that had an anti-inflammatory effect. Our studies reveal the physiologic importance of mitochondrial bioenergetics in the metabolic regulation of sirtuins and cytosolic signaling cascades.
Collapse
|
32
|
Du Y, Zhao J, Li X, Jin S, Ma WL, Mu Q, Xu S, Yang J, Rao S, Zhu L, Xin J, Cai PC, Su Y, Ye H. Dissociation of FK506-binding protein 12.6 kD from ryanodine receptor in bronchial smooth muscle cells in airway hyperresponsiveness in asthma. Am J Respir Cell Mol Biol 2014; 50:398-408. [PMID: 24053175 DOI: 10.1165/rcmb.2013-0222oc] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Airway hyperresponsiveness (AHR) in asthma is predominantly caused by increased sensitivity of bronchial smooth muscle cells (BSMCs) to stimuli. The sarcoplasmic reticulum (SR)-Ca(2+) release channel, known as ryanodine receptor (RyR), mediates the contractive response of BSMCs to stimuli. FK506-binding protein 12.6 kD (FKBP12.6) stabilizes the RyR2 channel in a closed state. However, the interaction of FKBP12.6 with RyR2 in AHR remains unknown. This study examined the interaction of FKBP12.6 with RyR2 in BSMCs in AHR of asthma. The interaction of FKBP12.6 with RyR2 and FKBP12.6 expression was determined in a rat asthma model and in BSMCs treated with inflammatory cytokines. The calcium responses to contractile agonists were determined in BSMCs with overexpression and knockdown of FKBP12.6. Asthmatic serum, IL-5, IL-13, and TNF-α enhance the calcium response of BSMCs to contractile agonists and cause dissociation of FKBP12.6 from RyR2 and a decrease in FKBP12.6 gene expression in BSMCs in culture and in ovalbumin (OVA)-sensitized and -challenged rats. Knockdown of FKBP12.6 in BSMCs causes a decrease in the association of RyR2 with FKBP12.6 and an increase in the calcium response of BSMCs. Overexpression of FKBP12.6 increases the association of FKBP12.6 with RyR2, decreases the calcium response of BSMCs, and normalizes airway responsiveness in OVA-sensitized and -challenged rats. Dissociation of FKBP12.6 from RyR2 in BSMCs is responsible for the increased calcium response contributing to AHR in asthma. Manipulating the interaction of FKBP12.6 with RyR2 might be a novel and useful treatment for asthma.
Collapse
Affiliation(s)
- Ying Du
- 1 Department of Pathophysiology
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Frequency decoding of calcium oscillations. Biochim Biophys Acta Gen Subj 2014; 1840:964-9. [DOI: 10.1016/j.bbagen.2013.11.015] [Citation(s) in RCA: 179] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 09/27/2013] [Accepted: 11/15/2013] [Indexed: 01/14/2023]
|
34
|
Tan R, Li J, Peng X, Zhu L, Cai L, Wang T, Su Y, Irani K, Hu Q. GAPDH is critical for superior efficacy of female bone marrow-derived mesenchymal stem cells on pulmonary hypertension. Cardiovasc Res 2013; 100:19-27. [DOI: 10.1093/cvr/cvt165] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
|
35
|
De Bock M, Wang N, Decrock E, Bol M, Gadicherla AK, Culot M, Cecchelli R, Bultynck G, Leybaert L. Endothelial calcium dynamics, connexin channels and blood-brain barrier function. Prog Neurobiol 2013; 108:1-20. [PMID: 23851106 DOI: 10.1016/j.pneurobio.2013.06.001] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 06/12/2013] [Accepted: 06/18/2013] [Indexed: 01/11/2023]
Abstract
Situated between the circulation and the brain, the blood-brain barrier (BBB) protects the brain from circulating toxins while securing a specialized environment for neuro-glial signaling. BBB capillary endothelial cells exhibit low transcytotic activity and a tight, junctional network that, aided by the cytoskeleton, restricts paracellular permeability. The latter is subject of extensive research as it relates to neuropathology, edema and inflammation. A key determinant in regulating paracellular permeability is the endothelial cytoplasmic Ca(2+) concentration ([Ca(2+)]i) that affects junctional and cytoskeletal proteins. Ca(2+) signals are not one-time events restricted to a single cell but often appear as oscillatory [Ca(2+)]i changes that may propagate between cells as intercellular Ca(2+) waves. The effect of Ca(2+) oscillations/waves on BBB function is largely unknown and we here review current evidence on how [Ca(2+)]i dynamics influence BBB permeability.
Collapse
Affiliation(s)
- Marijke De Bock
- Dept. of Basic Medical Sciences, Ghent University, Ghent, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Sphingosine kinase-1 inhibition protects primary rat hepatocytes against bile salt-induced apoptosis. Biochim Biophys Acta Mol Basis Dis 2013; 1832:1922-9. [PMID: 23816565 DOI: 10.1016/j.bbadis.2013.06.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 05/10/2013] [Accepted: 06/19/2013] [Indexed: 01/22/2023]
Abstract
Sphingosine kinases (SphKs) and their product sphingosine-1-phosphate (S1P) have been reported to regulate apoptosis and survival of liver cells. Cholestatic liver diseases are characterized by cytotoxic levels of bile salts inducing liver injury. It is unknown whether SphKs and/or S1P play a role in this pathogenic process. Here, we investigated the putative involvement of SphK1 and S1P in bile salt-induced cell death in hepatocytes. Primary rat hepatocytes were exposed to glycochenodeoxycholic acid (GCDCA) to induce apoptosis. GCDCA-exposed hepatocytes were co-treated with S1P, the SphK1 inhibitor Ski-II and/or specific antagonists of S1P receptors (S1PR1 and S1PR2). Apoptosis and necrosis were quantified. Ski-II significantly reduced GCDCA-induced apoptosis in hepatocytes (-70%, P<0.05) without inducing necrosis. GCDCA increased the S1P levels in hepatocytes (P<0.05). GCDCA induced [Ca(2+)] oscillations in hepatocytes and co-treatment with the [Ca(2+)] chelator BAPTA repressed GCDCA-induced apoptosis. Ski-II inhibited the GCDCA-induced intracellular [Ca(2+)] oscillations. Transcripts of all five S1P receptors were detected in hepatocytes, of which S1PR1 and S1PR2 appear most dominant. Inhibition of S1PR1, but not S1PR2, reduced GCDCA-induced apoptosis by 20%. Exogenous S1P also significantly reduced GCDCA-induced apoptosis (-50%, P<0.05), however, in contrast to the GCDCA-induced (intracellular) SphK1 pathway, this was dependent on S1PR2 and not S1PR1. Our results indicate that SphK1 plays a pivotal role in mediating bile salt-induced apoptosis in hepatocytes in part by interfering with intracellular [Ca(2+)] signaling and activation of S1PR1.
Collapse
|
37
|
Feng Y, Xia Y, Yu G, Shu X, Ge H, Zeng K, Wang J, Wang X. Cleavage of GSK-3β by calpain counteracts the inhibitory effect of Ser9 phosphorylation on GSK-3β activity induced by H2
O2. J Neurochem 2013; 126:234-42. [DOI: 10.1111/jnc.12285] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 04/03/2013] [Accepted: 04/30/2013] [Indexed: 11/27/2022]
Affiliation(s)
- Ye Feng
- Department of Pathophysiology; Key Laboratory of Neurological Disease of National Education Ministry; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
| | - Yiyuan Xia
- Department of Pathophysiology; Key Laboratory of Neurological Disease of National Education Ministry; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
| | - Guang Yu
- Department of Pathophysiology; Key Laboratory of Neurological Disease of National Education Ministry; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
| | - Xiji Shu
- Department of Pathology & Pathophysiology; School of Medicine; Jianghan University; Wuhan China
| | - Haoliang Ge
- Department of Pathophysiology; Key Laboratory of Neurological Disease of National Education Ministry; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
| | - Kuan Zeng
- Department of Pathophysiology; Key Laboratory of Neurological Disease of National Education Ministry; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
| | - Jianzhi Wang
- Department of Pathophysiology; Key Laboratory of Neurological Disease of National Education Ministry; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
| | - Xiaochuan Wang
- Department of Pathophysiology; Key Laboratory of Neurological Disease of National Education Ministry; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
| |
Collapse
|
38
|
Gandhirajan RK, Meng S, Chandramoorthy HC, Mallilankaraman K, Mancarella S, Gao H, Razmpour R, Yang XF, Houser SR, Chen J, Koch WJ, Wang H, Soboloff J, Gill DL, Madesh M. Blockade of NOX2 and STIM1 signaling limits lipopolysaccharide-induced vascular inflammation. J Clin Invest 2013; 123:887-902. [PMID: 23348743 DOI: 10.1172/jci65647] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 11/30/2012] [Indexed: 12/27/2022] Open
Abstract
During sepsis, acute lung injury (ALI) results from activation of innate immune cells and endothelial cells by endotoxins, leading to systemic inflammation through proinflammatory cytokine overproduction, oxidative stress, and intracellular Ca2+ overload. Despite considerable investigation, the underlying molecular mechanism(s) leading to LPS-induced ALI remain elusive. To determine whether stromal interaction molecule 1-dependent (STIM1-dependent) signaling drives endothelial dysfunction in response to LPS, we investigated oxidative and STIM1 signaling of EC-specific Stim1-knockout mice. Here we report that LPS-mediated Ca2+ oscillations are ablated in ECs deficient in Nox2, Stim1, and type II inositol triphosphate receptor (Itpr2). LPS-induced nuclear factor of activated T cells (NFAT) nuclear accumulation was abrogated by either antioxidant supplementation or Ca2+ chelation. Moreover, ECs lacking either Nox2 or Stim1 failed to trigger store-operated Ca2+ entry (SOCe) and NFAT nuclear accumulation. LPS-induced vascular permeability changes were reduced in EC-specific Stim1-/- mice, despite elevation of systemic cytokine levels. Additionally, inhibition of STIM1 signaling prevented receptor-interacting protein 3-dependent (RIP3-dependent) EC death. Remarkably, BTP2, a small-molecule calcium release-activated calcium (CRAC) channel blocker administered after insult, halted LPS-induced vascular leakage and pulmonary edema. These results indicate that ROS-driven Ca2+ signaling promotes vascular barrier dysfunction and that the SOCe machinery may provide crucial therapeutic targets to limit sepsis-induced ALI.
Collapse
|
39
|
Song S, Li J, Zhu L, Cai L, Xu Q, Ling C, Su Y, Hu Q. Irregular Ca(2+) oscillations regulate transcription via cumulative spike duration and spike amplitude. J Biol Chem 2012; 287:40246-55. [PMID: 23071118 DOI: 10.1074/jbc.m112.417154] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND [Ca(2+)](i) oscillations are irregular and heterogeneous. RESULTS The correlations between NFκB/STAT3-GFP transcription and [Ca(2+)](i) spike amplitude/cumulative spike duration are revealed by simultaneous monitoring in single cells and validated in cell population. CONCLUSION [Ca(2+)](i) oscillations regulate transcription through [Ca(2+)](i) spike amplitude and cumulative spike duration. SIGNIFICANCE How irregular [Ca(2+)](i) oscillations control transcription is crucial for understanding biological [Ca(2+)](i) signal-regulated events. Agonist-stimulated [Ca(2+)](i) oscillations are universally irregular in their kinetics. How irregular [Ca(2+)](i) oscillations dynamically regulate agonist-stimulated downstream events has not been studied. To overcome the obstacles of irregularity and heterogeneity of [Ca(2+)](i) oscillations, agonist-stimulated [Ca(2+)](i) signaling and NFκB/STAT3-GFP nuclear translocation were simultaneously monitored in each single cell examined. The cause-effect relationship between [Ca(2+)](i) oscillation parameters and transcriptional activities was validated in cell populations through irregular [Ca(2+)](i) oscillations with varied parameters. The time duration of cumulative [Ca(2+)](i) elevations reaching the threshold [Ca(2+)](i) level for a transcriptional factor activation and [Ca(2+)](i) spike amplitude was found to control agonist-stimulated transcription and gene expression.
Collapse
Affiliation(s)
- Shanshan Song
- Department of Pathophysiology, School of Public Health, Tongji Medical College, Huazhong Science and Technology University, Wuhan 430030, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Zhang J, Zhou J, Cai L, Lu Y, Wang T, Zhu L, Hu Q. Extracellular calcium-sensing receptor is critical in hypoxic pulmonary vasoconstriction. Antioxid Redox Signal 2012; 17:471-84. [PMID: 22098336 DOI: 10.1089/ars.2011.4168] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
AIMS The initiation of hypoxic pulmonary vasoconstriction (HPV) involves an increase in cytosolic calcium ([Ca(2+)](i)) in pulmonary artery (PA) smooth muscle cells (PASMCs). Both the processes depend on extracellular Ca(2+). Extracellular Ca(2+) can be sensed by extracellular calcium-sensing receptor (CaSR). This study aims at determining whether CaSR is pivotal in the initiation of HPV. RESULTS Experiments were performed in cultured PASMCs, isolated PAs, and rats including CaSR knockdown preparations. Both hypoxia and H(2)O(2) equivalent to the level achieved by hypoxia increased [Ca(2+)](i) in an extracellular Ca(2+)-dependent manner in PASMCs, and this was inhibited by CaSR knockdown or its negative allosteric modulator, Calhex231. Hypoxia-increased H(2)O(2) generation was diminished by mitochondria depletion. Mitochondria depletion abolished hypoxia-induced [Ca(2+)](i) increase (HICI), which was reversed by H(2)O(2) repletion. CaSR knockdown or Calhex231, however, prevented the reversible effect of H(2)O(2). HICI was abolished by catalase-polyethylene glycol (PEG-Catalase), not superoxide dismutase-polyethylene glycol (PEG-SOD) pretreatment, attenuated by ryanodine receptor3-knockdown or inhibition of store-operated Ca(2+) entry. HPV in vitro and in vivo was inhibited by Calhex231 and by CaSR knockdown. INNOVATION A novel mechanism underlying HPV is revealed by the role of CaSR in orchestrating reactive oxygen species and [Ca(2+)](i) signaling. CONCLUSIONS The activation of mitochondrial H(2)O(2)-sensitized CaSR by extracellular Ca(2+) mediates HICI in PASMCs and, thus, initiates HPV.
Collapse
Affiliation(s)
- Jiwei Zhang
- Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
41
|
Moccia F, Berra-Romani R, Tanzi F. Update on vascular endothelial Ca 2+ signalling: A tale of ion channels, pumps and transporters. World J Biol Chem 2012; 3:127-58. [PMID: 22905291 PMCID: PMC3421132 DOI: 10.4331/wjbc.v3.i7.127] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 07/04/2012] [Accepted: 07/11/2012] [Indexed: 02/05/2023] Open
Abstract
A monolayer of endothelial cells (ECs) lines the lumen of blood vessels and forms a multifunctional transducing organ that mediates a plethora of cardiovascular processes. The activation of ECs from as state of quiescence is, therefore, regarded among the early events leading to the onset and progression of potentially lethal diseases, such as hypertension, myocardial infarction, brain stroke, and tumor. Intracellular Ca2+ signals have long been know to play a central role in the complex network of signaling pathways regulating the endothelial functions. Notably, recent work has outlined how any change in the pattern of expression of endothelial channels, transporters and pumps involved in the modulation of intracellular Ca2+ levels may dramatically affect whole body homeostasis. Vascular ECs may react to both mechanical and chemical stimuli by generating a variety of intracellular Ca2+ signals, ranging from brief, localized Ca2+ pulses to prolonged Ca2+ oscillations engulfing the whole cytoplasm. The well-defined spatiotemporal profile of the subcellular Ca2+ signals elicited in ECs by specific extracellular inputs depends on the interaction between Ca2+ releasing channels, which are located both on the plasma membrane and in a number of intracellular organelles, and Ca2+ removing systems. The present article aims to summarize both the past and recent literature in the field to provide a clear-cut picture of our current knowledge on the molecular nature and the role played by the components of the Ca2+ machinery in vascular ECs under both physiological and pathological conditions.
Collapse
Affiliation(s)
- Francesco Moccia
- Francesco Moccia, Franco Tanzi, Department of Biology and Biotechnologies "Lazzaro Spallanzani", Laboratory of Physiology, University of Pavia, Via Forlanini 6, 27100 Pavia, Italy
| | | | | |
Collapse
|
42
|
Dragoni S, Laforenza U, Bonetti E, Lodola F, Bottino C, Berra-Romani R, Carlo Bongio G, Cinelli MP, Guerra G, Pedrazzoli P, Rosti V, Tanzi F, Moccia F. Vascular endothelial growth factor stimulates endothelial colony forming cells proliferation and tubulogenesis by inducing oscillations in intracellular Ca2+ concentration. Stem Cells 2012; 29:1898-907. [PMID: 21905169 DOI: 10.1002/stem.734] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Endothelial progenitor cells (EPCs) home from the bone marrow to the site of tissue regeneration and sustain neovascularization after acute vascular injury and upon the angiogenic switch in solid tumors. Therefore, they represent a suitable tool for cell-based therapy (CBT) in regenerative medicine and provide a novel promising target in the fight against cancer. Intracellular Ca(2+) signals regulate numerous endothelial functions, such as proliferation and tubulogenesis. The growth of endothelial colony forming cells (ECFCs), which are EPCs capable of acquiring a mature endothelial phenotype, is governed by store-dependent Ca(2+) entry (SOCE). This study aimed at investigating the nature and the role of VEGF-elicited Ca(2+) signals in ECFCs. VEGF induced asynchronous Ca(2+) oscillations, whose latency, amplitude, and frequency were correlated to the growth factor dose. Removal of external Ca(2+) (0Ca(2+)) and SOCE inhibition with N-(4-[3,5-bis(trifluoromethyl)-1H-pyrazol-1-yl]phenyl)-4-methyl-1,2,3-thiadiazole-5-carboxamide (BTP-2) reduced the duration of the oscillatory signal. Blockade of phospholipase C-γ with U73122, emptying the inositol-1,4,5-trisphosphate (InsP(3))-sensitive Ca(2+) pools with cyclopiazonic acid (CPA), and inhibition of InsP(3) receptors with 2-APB prevented the Ca(2+) response to VEGF. VEGF-induced ECFC proliferation and tubulogenesis were inhibited by the Ca(2+)-chelant, BAPTA, and BTP-2. NF-κB activation by VEGF was impaired by BAPTA, BTP-2, and its selective blocker, thymoquinone. Thymoquinone, in turn, suppressed VEGF-dependent ECFC proliferation and tubulogenesis. These data indicate that VEGF-induced Ca(2+) oscillations require the interplay between InsP(3)-dependent Ca(2+) release and SOCE, and promote ECFC growth and tubulogenesis by engaging NF-κB. This novel signaling pathway might be exploited to enhance the outcome of CBT and chemotherapy.
Collapse
Affiliation(s)
- Silvia Dragoni
- Department of Physiology, University of Pavia, Pavia, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Kvietys PR, Granger DN. Role of reactive oxygen and nitrogen species in the vascular responses to inflammation. Free Radic Biol Med 2012; 52:556-592. [PMID: 22154653 PMCID: PMC3348846 DOI: 10.1016/j.freeradbiomed.2011.11.002] [Citation(s) in RCA: 219] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Revised: 11/04/2011] [Accepted: 11/04/2011] [Indexed: 12/23/2022]
Abstract
Inflammation is a complex and potentially life-threatening condition that involves the participation of a variety of chemical mediators, signaling pathways, and cell types. The microcirculation, which is critical for the initiation and perpetuation of an inflammatory response, exhibits several characteristic functional and structural changes in response to inflammation. These include vasomotor dysfunction (impaired vessel dilation and constriction), the adhesion and transendothelial migration of leukocytes, endothelial barrier dysfunction (increased vascular permeability), blood vessel proliferation (angiogenesis), and enhanced thrombus formation. These diverse responses of the microvasculature largely reflect the endothelial cell dysfunction that accompanies inflammation and the central role of these cells in modulating processes as varied as blood flow regulation, angiogenesis, and thrombogenesis. The importance of endothelial cells in inflammation-induced vascular dysfunction is also predicated on the ability of these cells to produce and respond to reactive oxygen and nitrogen species. Inflammation seems to upset the balance between nitric oxide and superoxide within (and surrounding) endothelial cells, which is necessary for normal vessel function. This review is focused on defining the molecular targets in the vessel wall that interact with reactive oxygen species and nitric oxide to produce the characteristic functional and structural changes that occur in response to inflammation. This analysis of the literature is consistent with the view that reactive oxygen and nitrogen species contribute significantly to the diverse vascular responses in inflammation and supports efforts that are directed at targeting these highly reactive species to maintain normal vascular health in pathological conditions that are associated with acute or chronic inflammation.
Collapse
Affiliation(s)
- Peter R Kvietys
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - D Neil Granger
- Department of Molecular & Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA 71130-3932, USA.
| |
Collapse
|
44
|
Zhu L, Song S, Pi Y, Yu Y, She W, Ye H, Su Y, Hu Q. Cumulated Ca2+ spike duration underlies Ca2+ oscillation frequency-regulated NFκB transcriptional activity. J Cell Sci 2011; 124:2591-601. [DOI: 10.1242/jcs.082727] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
[Ca2+]i oscillations drive downstream events, like transcription, in a frequency-dependent manner. Why [Ca2+]i oscillation frequency regulates transcription has not been clearly revealed. A variation in [Ca2+]i oscillation frequency apparently leads to a variation in the time duration of cumulated [Ca2+]i elevations or cumulated [Ca2+]i spike duration. By manipulating [Ca2+]i spike duration, we generated a series of [Ca2+]i oscillations with the same frequency but different cumulated [Ca2+]i spike durations, as well as [Ca2+]i oscillations with the different frequencies but the same cumulated [Ca2+]i spike duration. Molecular assays demonstrated that, when generated in ‘artificial’ models alone, under physiologically simulated conditions or repetitive pulses of agonist exposure, [Ca2+]i oscillation regulates NFκB transcriptional activity, phosphorylation of IκBα and Ca2+-dependent gene expression all in a way actually dependent on cumulated [Ca2+]i spike duration whether or not frequency varies. This study underlines that [Ca2+]i oscillation frequency regulates NFκB transcriptional activity through cumulated [Ca2+]i spike-duration-mediated IκBα phosphorylation.
Collapse
Affiliation(s)
- Liping Zhu
- Department of Pathophysiology, Tongji Medical College, Huazhong Science and Technology University, Wuhan 430030, People's Republic of China
- Key Laboratory of Pulmonary Diseases of Ministry of Health of China, Tongji Medical College, Huazhong Science and Technology University, Wuhan 430030, People's Republic of China
| | - Shanshan Song
- Department of Pathophysiology, Tongji Medical College, Huazhong Science and Technology University, Wuhan 430030, People's Republic of China
- Key Laboratory of Pulmonary Diseases of Ministry of Health of China, Tongji Medical College, Huazhong Science and Technology University, Wuhan 430030, People's Republic of China
| | - Yubo Pi
- Department of Pathophysiology, Tongji Medical College, Huazhong Science and Technology University, Wuhan 430030, People's Republic of China
- Key Laboratory of Pulmonary Diseases of Ministry of Health of China, Tongji Medical College, Huazhong Science and Technology University, Wuhan 430030, People's Republic of China
| | - Yang Yu
- Department of Pathophysiology, Tongji Medical College, Huazhong Science and Technology University, Wuhan 430030, People's Republic of China
- Key Laboratory of Pulmonary Diseases of Ministry of Health of China, Tongji Medical College, Huazhong Science and Technology University, Wuhan 430030, People's Republic of China
| | - Weibin She
- Department of Pathophysiology, Tongji Medical College, Huazhong Science and Technology University, Wuhan 430030, People's Republic of China
- Key Laboratory of Pulmonary Diseases of Ministry of Health of China, Tongji Medical College, Huazhong Science and Technology University, Wuhan 430030, People's Republic of China
| | - Hong Ye
- Department of Pathophysiology, Tongji Medical College, Huazhong Science and Technology University, Wuhan 430030, People's Republic of China
- Key Laboratory of Pulmonary Diseases of Ministry of Health of China, Tongji Medical College, Huazhong Science and Technology University, Wuhan 430030, People's Republic of China
| | - Yuan Su
- Key Laboratory of Pulmonary Diseases of Ministry of Health of China, Tongji Medical College, Huazhong Science and Technology University, Wuhan 430030, People's Republic of China
- Department of Respiratory Medicine, Union Hospital, Tongji Medical College, Huazhong Science and Technology University, Wuhan 430030, People's Republic of China
| | - Qinghua Hu
- Department of Pathophysiology, Tongji Medical College, Huazhong Science and Technology University, Wuhan 430030, People's Republic of China
- Key Laboratory of Pulmonary Diseases of Ministry of Health of China, Tongji Medical College, Huazhong Science and Technology University, Wuhan 430030, People's Republic of China
- The MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong Science and Technology University, Wuhan 430030, People's Republic of China
| |
Collapse
|
45
|
Morabito C, Bosco G, Pilla R, Corona C, Mancinelli R, Yang Z, Camporesi EM, Fanò G, Mariggiò MA. Effect of pre-breathing oxygen at different depth on oxidative status and calcium concentration in lymphocytes of scuba divers. Acta Physiol (Oxf) 2011; 202:69-78. [PMID: 21199400 DOI: 10.1111/j.1748-1716.2010.02247.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
AIM In-water pre-breathing oxygen at various depths reduces decompression-induced bubble formation and platelet activation, but it could induce side effects such as oxidative stress. The aim of this study was to investigate the effect of in-water pre-breathing oxygen, at different depths, on the oxidative status and intracellular calcium ([Ca(2+) ]i) of peripheral blood lymphocytes isolated from six divers. They participated in a 4-diving protocol. Two week recovery time was allowed between successive dives. Before diving, all divers, for 20 min, breathed normally at sea level (dive 1), 100% oxygen at sea level (dive 2), 100% oxygen at 6 msw (dive 3), 100% oxygen at 12 msw (dive 4). Then they dived to 30 msw for 20 min with air tank. METHODS Blood samples were collected before and after each dive. Hydrogen peroxide (H(2) O(2) ) levels, catalase (CAT) activity, mRNA expression of CAT, glutathione peroxidase (GPx) and superoxide dismutase (SOD), and the [Ca(2+) ]i in lymphocytes were measured. RESULTS The dives slightly decreased lymphocyte number and significantly reduced lymphocyte H(2) O(2) levels. CAT activity was higher after scuba diving and, dive 3 enhanced mRNA gene expression of CAT, GPx and SOD. The [Ca(2+) ]i was higher after dive 1 and 2 than pre-diving, while was maintained at pre-diving value after dive 3 and 4. CONCLUSION Our results suggest that pre-breathing oxygen, in particular at 12 msw, may enhance lymphocyte antioxidant activity and reduce reactive oxygen species levels. Pre-breathing oxygen in water may also preserve calcium homeostasis, suggesting a protective role in the physiological lymphocyte cell functions.
Collapse
Affiliation(s)
- C Morabito
- Department of Neuroscience and Imaging, Aging Research Center, Ce.S.I., 'G. d'Annunzio' University of Chieti-Pescara, Chieti, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Rational method in the repetitive calcium oscillation measurement in wild type human epithelial kidney cells. Cytotechnology 2011; 63:81-8. [PMID: 21221778 DOI: 10.1007/s10616-010-9332-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Accepted: 12/27/2010] [Indexed: 10/18/2022] Open
Abstract
Cells stimulated with physiological stimuli usually exhibit oscillations in cytosolic Ca(2+) concentration ([Ca(2+)](i)), a signal playing central roles in regulation of various cellular processes. For explicating their unknown mechanisms, studies are commonly conducted in single cells from several cell lines, in particular the human epithelial kidney (HEK293) cell line. However, [Ca(2+)](i) oscillating responses to agonists in vitro are found difficult to be induced and varied with different types of cells and agonists. This study shows that treatment of the wild type HEK293 cells with low concentrations of carbachol (1-10 μM), an agonist of the muscarinic receptor, resulted in non-oscillated but sustained [Ca(2+)](i) increase by loading the cells with 1 μM fura2/AM. However, repetitive and long lasting [Ca(2+)](i) oscillations could be induced in 31.1% of the tested cells loaded with 0.1 μM fura2/AM. Additionally, the occurrence of the typical Ca(2+) spikes further increased to 47.2% and 60.7% when the Ca(2+) concentration in the bathing medium was decreased from 1.8 mM to 1.5 mM and the medium temperature was set to 35 ± 1°C from 22 ± 2°C. Therefore, this study provides a useful approach for measuring [Ca(2+)](i) oscillatory response to relevant physiological stimulation in a wild type cell line through the adjustments of the concentrations adopted for the Ca(2+) indicator and extracellular medium Ca(2+) and of the temperature set for the experiment.
Collapse
|
47
|
Shankaran H, Chrisler WB, Sontag RL, Weber TJ. Inhibition of ERK oscillations by ionizing radiation and reactive oxygen species. Mol Carcinog 2010; 50:424-32. [PMID: 21557328 DOI: 10.1002/mc.20724] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 11/01/2010] [Accepted: 11/19/2010] [Indexed: 01/12/2023]
Abstract
The shuttling of activated protein kinases between the cytoplasm and nucleus is an essential feature of normal growth factor signaling cascades. Here we demonstrate that transforming growth factor alpha (TGFα) induces oscillations in extracellular signal regulated kinase (ERK) cytoplasmic-nuclear translocations in human keratinocytes. TGFα-dependent ERK oscillations mediated through the epidermal growth factor receptor (EGFR) are inhibited by low dose X-irradiation (10 cGy) and low concentrations of hydrogen peroxide (0.32-3.26 µM H(2)O(2)) used as a model reactive oxygen species (ROS). A fluorescent indicator dye (H2-DCFDA) was used to measure cellular ROS levels following X-irradiation, 12-O-tetradecanoyl phorbol-13-acetate (TPA) and H(2)O(2). X-irradiation did not generate significant ROS production while 0.32 µM H(2)O(2) and TPA induced significant increases in ROS levels with H(2)O(2) > TPA. TPA alone induced transactivation of the EGFR but did not induce ERK oscillations. TPA as a cotreatment did not inhibit TGFα-stimulated ERK oscillations but qualitatively altered TGFα-dependent ERK oscillation characteristics (amplitude, time-period). Collectively, these observations demonstrate that TGFα-induced ERK oscillations are inhibited by ionizing radiation/ROS and perturbed by epigenetic carcinogen in human keratinocytes.
Collapse
Affiliation(s)
- Harish Shankaran
- Computational Biology and Bioinformatics, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | | | | | | |
Collapse
|
48
|
Derivation of Ca2+ signals from puff properties reveals that pathway function is robust against cell variability but sensitive for control. Proc Natl Acad Sci U S A 2010; 108:427-32. [PMID: 21173273 DOI: 10.1073/pnas.1008435108] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ca(2+) is a universal second messenger in eukaryotic cells transmitting information through sequences of concentration spikes. A prominent mechanism to generate these spikes involves Ca(2+) release from the endoplasmic reticulum Ca(2+) store via inositol 1,4,5-trisphosphate (IP(3))-sensitive channels. Puffs are elemental events of IP(3)-induced Ca(2+) release through single clusters of channels. Intracellular Ca(2+) dynamics are a stochastic system, but a complete stochastic theory has not been developed yet. We formulate the theory in terms of interpuff interval and puff duration distributions because, unlike the properties of individual channels, they can be measured in vivo. Our theory reproduces the typical spectrum of Ca(2+) signals like puffs, spiking, and bursting in analytically treatable test cases as well as in more realistic simulations. We find conditions for spiking and calculate interspike interval (ISI) distributions. Signal form, average ISI and ISI distributions depend sensitively on the details of cluster properties and their spatial arrangement. In contrast to that, the relation between the average and the standard deviation of ISIs does not depend on cluster properties and cluster arrangement and is robust with respect to cell variability. It is controlled by the global feedback processes in the Ca(2+) signaling pathway (e.g., via IP(3)-3-kinase or endoplasmic reticulum depletion). That relation is essential for pathway function because it ensures frequency encoding despite the randomness of ISIs and determines the maximal spike train information content. Hence, we find a division of tasks between global feedbacks and local cluster properties that guarantees robustness of function while maintaining sensitivity of control of the average ISI.
Collapse
|
49
|
Modeling oscillatory control in NF-κB, p53 and Wnt signaling. Curr Opin Genet Dev 2010; 20:656-64. [PMID: 20934871 DOI: 10.1016/j.gde.2010.08.008] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 08/11/2010] [Accepted: 08/31/2010] [Indexed: 01/22/2023]
Abstract
Oscillations are commonly observed in cellular behavior and span a wide range of timescales, from seconds in calcium signaling to 24 hours in circadian rhythms. In between lie oscillations with time periods of 1-5 hours seen in NF-κB, p53 and Wnt signaling, which play key roles in the immune system, cell growth/death and embryo development, respectively. In the first part of this article, we provide a brief overview of simple deterministic models of oscillations. In particular, we explain the mechanism of saturated degradation that has been used to model oscillations in the NF-κB, p53 and Wnt systems. The second part deals with the potential physiological role of oscillations. We use the simple models described earlier to explore whether oscillatory signals can encode more information than steady-state signals. We then discuss a few simple genetic circuits that could decode information stored in the average, amplitude or frequency of oscillations. The presence of frequency-detector circuit downstream of NF-κB or p53 would be a strong clue that oscillations are important for the physiological response of these signaling systems.
Collapse
|
50
|
Morita M, Kudo Y. Growth factors upregulate astrocyte [Ca2+]i oscillation by increasing SERCA2b expression. Glia 2010; 58:1988-95. [DOI: 10.1002/glia.21067] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|