1
|
Ma Z, Chawla S, Lan X, Zhou E, Mulet-Sierra A, Kunze M, Sommerfeldt M, Adesida AB. Functional heterogeneity of meniscal fibrochondrocytes and microtissue models is dependent on modality of fibrochondrocyte isolation. Cell Prolif 2024:e13735. [PMID: 39377189 DOI: 10.1111/cpr.13735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/13/2024] [Accepted: 08/05/2024] [Indexed: 10/09/2024] Open
Abstract
Collagenase digestion (d) and cellular outgrowth (og) are the current modalities of meniscus fibrochondrocytes (MFC) isolation for bioengineering and mechanobiology-related studies. However, the impact of these modalities on study outcomes is unknown. Here, we show that og- and d-isolated MFC have distinct proliferative capacities, transcriptomic profiles via RNA sequencing (RNAseq), extracellular matrix (ECM)-forming, and migratory capacities. Our data indicate that microtissue pellet models developed from og-isolated MFC display a contractile phenotype with higher expressions of alpha-smooth muscle actin (ACTA2) and transgelin (TAGLN) and are mechanically stiffer than their counterparts from d-MFC. Moreover, we introduce a novel method of MFC isolation designated digestion-after-outgrowth (dog). The transcriptomic profile of dog-MFC is distinct from d- and og-MFC, including a higher expression of mechanosensing caveolae-associated caveolin-1 (CAV1). Additionally, dog-MFC were superior chondrogenically and generated larger-size microtissue pellet models containing a higher frequency of smaller collagen fibre diameters. Thus, we demonstrate that the modalities of MFC isolation influence the downstream outcomes of bioengineering and mechanobiology-related studies.
Collapse
Affiliation(s)
- Zhiyao Ma
- Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Shikha Chawla
- Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Xiaoyi Lan
- Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Eva Zhou
- Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Aillette Mulet-Sierra
- Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Melanie Kunze
- Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Mark Sommerfeldt
- Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Adetola B Adesida
- Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Department of Biomedical Engineering, Faculty of Engineering, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
2
|
Wu K, Li Y, Ma K, Zhao W, Yao Z, Zheng Z, Sun F, Mu X, Liu Z, Zheng J. The microbiota and renal cell carcinoma. Cell Oncol (Dordr) 2024; 47:397-413. [PMID: 37878209 DOI: 10.1007/s13402-023-00876-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2023] [Indexed: 10/26/2023] Open
Abstract
Renal cell carcinoma (RCC) accounts for about 2% of cancer diagnoses and deaths worldwide. Recent studies emphasized the critical involvement of microbial populations in RCC from oncogenesis, tumor growth, and response to anticancer therapy. Microorganisms have been shown to be involved in various renal physiological and pathological processes by influencing the immune system function, metabolism of the host and pharmaceutical reactions. These findings have extended our understanding and provided more possibilities for the diagnostic or therapeutic development of microbiota, which could function as screening, prognostic, and predictive biomarkers, or be manipulated to prevent RCC progression, boost anticancer drug efficacy and lessen the side effects of therapy. This review aims to present an overview of the roles of microbiota in RCC, including pertinent mechanisms in microbiota-related carcinogenesis, the potential use of the microbiota as RCC biomarkers, and the possibility of modifying the microbiota for RCC prevention or treatment. According to these scientific findings, the clinical translation of microbiota is expected to improve the diagnosis and treatment of RCC.
Collapse
Affiliation(s)
- Ke Wu
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yaorong Li
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kangli Ma
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiguang Zhao
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhixian Yao
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhong Zheng
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feng Sun
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xingyu Mu
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhihong Liu
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Junhua Zheng
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
3
|
O'Brien S, Ubhi T, Wolf L, Gandhi K, Lin S, Chaudary N, Dhani NC, Milosevic M, Brown GW, Angers S. FBXW7-loss Sensitizes Cells to ATR Inhibition Through Induced Mitotic Catastrophe. CANCER RESEARCH COMMUNICATIONS 2023; 3:2596-2607. [PMID: 38032106 PMCID: PMC10734389 DOI: 10.1158/2767-9764.crc-23-0306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/27/2023] [Accepted: 11/28/2023] [Indexed: 12/01/2023]
Abstract
FBXW7 is a commonly mutated tumor suppressor gene that functions to regulate numerous oncogenes involved in cell-cycle regulation. Genome-wide CRISPR fitness screens identified a signature of DNA repair and DNA damage response genes as required for the growth of FBXW7-knockout cells. Guided by these findings, we show that FBXW7-mutant cells have high levels of replication stress, which results in a genotype-specific vulnerability to inhibition of the ATR signaling pathway, as these mutant cells become heavily reliant on a robust S-G2 checkpoint. ATR inhibition induces an accelerated S-phase, leading to mitotic catastrophe and cell death caused by the high replication stress present in FBXW7-/- cells. In addition, we provide evidence in cell and organoid studies, and mining of publicly available high-throughput drug screening efforts, that this genotype-specific vulnerability extends to multiple types of cancer, providing a rational means of identifying responsive patients for targeted therapy. SIGNIFICANCE We have elucidated the synthetic lethal interactions between FBXW7 mutation and DNA damage response genes, and highlighted the potential of ATR inhibitors as targeted therapies for cancers harboring FBXW7 alterations.
Collapse
Affiliation(s)
- Siobhan O'Brien
- Department of Biochemistry, University of Toronto, Ontario, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, Toronto, Ontario, Canada
| | - Tajinder Ubhi
- Department of Biochemistry, University of Toronto, Ontario, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, Toronto, Ontario, Canada
| | - Lucie Wolf
- Terrence Donnelly Centre for Cellular and Biomolecular Research, Toronto, Ontario, Canada
| | - Krishna Gandhi
- Terrence Donnelly Centre for Cellular and Biomolecular Research, Toronto, Ontario, Canada
| | - Sichun Lin
- Terrence Donnelly Centre for Cellular and Biomolecular Research, Toronto, Ontario, Canada
| | - Naz Chaudary
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
- Ontario Cancer Institute, Toronto, Ontario, Canada
| | | | - Michael Milosevic
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
- Department of Radiation Oncology, University of Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Ontario, Canada
| | - Grant W. Brown
- Department of Biochemistry, University of Toronto, Ontario, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, Toronto, Ontario, Canada
| | - Stephane Angers
- Department of Biochemistry, University of Toronto, Ontario, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, Toronto, Ontario, Canada
- Leslie Dan Faculty of Pharmacy, University of Toronto, Ontario, Canada
| |
Collapse
|
4
|
Knoblochova L, Duricek T, Vaskovicova M, Zorzompokou C, Rayova D, Ferencova I, Baran V, Schultz RM, Hoffmann ER, Drutovic D. CHK1-CDC25A-CDK1 regulate cell cycle progression and protect genome integrity in early mouse embryos. EMBO Rep 2023; 24:e56530. [PMID: 37694680 PMCID: PMC10561370 DOI: 10.15252/embr.202256530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 09/12/2023] Open
Abstract
After fertilization, remodeling of the oocyte and sperm genomes is essential to convert these highly differentiated and transcriptionally quiescent cells into early cleavage-stage blastomeres that are transcriptionally active and totipotent. This developmental transition is accompanied by cell cycle adaptation, such as lengthening or shortening of the gap phases G1 and G2. However, regulation of these cell cycle changes is poorly understood, especially in mammals. Checkpoint kinase 1 (CHK1) is a protein kinase that regulates cell cycle progression in somatic cells. Here, we show that CHK1 regulates cell cycle progression in early mouse embryos by restraining CDK1 kinase activity due to CDC25A phosphatase degradation. CHK1 kinase also ensures the long G2 phase needed for genome activation and reprogramming gene expression in two-cell stage mouse embryos. Finally, Chk1 depletion leads to DNA damage and chromosome segregation errors that result in aneuploidy and infertility.
Collapse
Affiliation(s)
- Lucie Knoblochova
- Institute of Animal Physiology and Genetics of the Czech Academy of SciencesLibechovCzech Republic
- Faculty of ScienceCharles UniversityPragueCzech Republic
| | - Tomas Duricek
- Institute of Animal Physiology and Genetics of the Czech Academy of SciencesLibechovCzech Republic
| | - Michaela Vaskovicova
- Institute of Animal Physiology and Genetics of the Czech Academy of SciencesLibechovCzech Republic
| | - Chrysoula Zorzompokou
- Institute of Animal Physiology and Genetics of the Czech Academy of SciencesLibechovCzech Republic
| | - Diana Rayova
- Institute of Animal Physiology and Genetics of the Czech Academy of SciencesLibechovCzech Republic
| | - Ivana Ferencova
- Institute of Animal Physiology and Genetics of the Czech Academy of SciencesLibechovCzech Republic
| | - Vladimir Baran
- Institute of Animal Physiology, Centre of Biosciences, Slovak Academy of SciencesKosiceSlovakia
| | - Richard M Schultz
- Department of BiologyUniversity of PennsylvaniaPhiladelphiaPAUSA
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary MedicineUniversity of CaliforniaDavisCAUSA
| | - Eva R Hoffmann
- DNRF Center for Chromosome Stability, Department of Cellular and Molecular Medicine, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - David Drutovic
- Institute of Animal Physiology and Genetics of the Czech Academy of SciencesLibechovCzech Republic
| |
Collapse
|
5
|
Saldanha J, Rageul J, Patel JA, Kim H. The Adaptive Mechanisms and Checkpoint Responses to a Stressed DNA Replication Fork. Int J Mol Sci 2023; 24:10488. [PMID: 37445667 PMCID: PMC10341514 DOI: 10.3390/ijms241310488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/13/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
DNA replication is a tightly controlled process that ensures the faithful duplication of the genome. However, DNA damage arising from both endogenous and exogenous assaults gives rise to DNA replication stress associated with replication fork slowing or stalling. Therefore, protecting the stressed fork while prompting its recovery to complete DNA replication is critical for safeguarding genomic integrity and cell survival. Specifically, the plasticity of the replication fork in engaging distinct DNA damage tolerance mechanisms, including fork reversal, repriming, and translesion DNA synthesis, enables cells to overcome a variety of replication obstacles. Furthermore, stretches of single-stranded DNA generated upon fork stalling trigger the activation of the ATR kinase, which coordinates the cellular responses to replication stress by stabilizing the replication fork, promoting DNA repair, and controlling cell cycle and replication origin firing. Deregulation of the ATR checkpoint and aberrant levels of chronic replication stress is a common characteristic of cancer and a point of vulnerability being exploited in cancer therapy. Here, we discuss the various adaptive responses of a replication fork to replication stress and the roles of ATR signaling that bring fork stabilization mechanisms together. We also review how this knowledge is being harnessed for the development of checkpoint inhibitors to trigger the replication catastrophe of cancer cells.
Collapse
Affiliation(s)
- Joanne Saldanha
- The Graduate Program in Genetics, Stony Brook University, Stony Brook, NY 11794, USA
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - Julie Rageul
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - Jinal A. Patel
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - Hyungjin Kim
- The Graduate Program in Genetics, Stony Brook University, Stony Brook, NY 11794, USA
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
- Stony Brook Cancer Center, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
6
|
Qin S, Kitty I, Hao Y, Zhao F, Kim W. Maintaining Genome Integrity: Protein Kinases and Phosphatases Orchestrate the Balancing Act of DNA Double-Strand Breaks Repair in Cancer. Int J Mol Sci 2023; 24:10212. [PMID: 37373360 DOI: 10.3390/ijms241210212] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
DNA double-strand breaks (DSBs) are the most lethal DNA damages which lead to severe genome instability. Phosphorylation is one of the most important protein post-translation modifications involved in DSBs repair regulation. Kinases and phosphatases play coordinating roles in DSB repair by phosphorylating and dephosphorylating various proteins. Recent research has shed light on the importance of maintaining a balance between kinase and phosphatase activities in DSB repair. The interplay between kinases and phosphatases plays an important role in regulating DNA-repair processes, and alterations in their activity can lead to genomic instability and disease. Therefore, study on the function of kinases and phosphatases in DSBs repair is essential for understanding their roles in cancer development and therapeutics. In this review, we summarize the current knowledge of kinases and phosphatases in DSBs repair regulation and highlight the advancements in the development of cancer therapies targeting kinases or phosphatases in DSBs repair pathways. In conclusion, understanding the balance of kinase and phosphatase activities in DSBs repair provides opportunities for the development of novel cancer therapeutics.
Collapse
Affiliation(s)
- Sisi Qin
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| | - Ichiwa Kitty
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan 31151, Chungcheongnam-do, Republic of Korea
| | - Yalan Hao
- Analytical Instrumentation Center, Hunan University, Changsha 410082, China
| | - Fei Zhao
- College of Biology, Hunan University, Changsha 410082, China
| | - Wootae Kim
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan 31151, Chungcheongnam-do, Republic of Korea
| |
Collapse
|
7
|
Ghelli Luserna di Rorà A, Jandoubi M, Martinelli G, Simonetti G. Targeting Proliferation Signals and the Cell Cycle Machinery in Acute Leukemias: Novel Molecules on the Horizon. Molecules 2023; 28:molecules28031224. [PMID: 36770891 PMCID: PMC9920029 DOI: 10.3390/molecules28031224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/04/2023] [Accepted: 01/24/2023] [Indexed: 01/28/2023] Open
Abstract
Uncontrolled proliferative signals and cell cycle dysregulation due to genomic or functional alterations are important drivers of the expansion of undifferentiated blast cells in acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL) cells. Therefore, they are largely studied as potential therapeutic targets in the field. We here present the most recent advancements in the evaluation of novel compounds targeting cell cycle proteins or oncogenic mechanisms, including those showing an antiproliferative effect in acute leukemia, independently of the identification of a specific target. Several new kinase inhibitors have been synthesized that showed effectiveness in a nanomolar to micromolar concentration range as inhibitors of FLT3 and its mutant forms, a highly attractive therapeutic target due to its driver role in a significant fraction of AML cases. Moreover, we introduce novel molecules functioning as microtubule-depolymerizing or P53-restoring agents, G-quadruplex-stabilizing molecules and CDK2, CHK1, PI3Kδ, STAT5, BRD4 and BRPF1 inhibitors. We here discuss their mechanisms of action, including the downstream intracellular changes induced by in vitro treatment, hematopoietic toxicity, in vivo bio-availability and efficacy in murine xenograft models. The promising activity profile demonstrated by some of these candidates deserves further development towards clinical investigation.
Collapse
Affiliation(s)
- Andrea Ghelli Luserna di Rorà
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Via Piero Maroncelli 40, 47014 Meldola, Italy
- Fondazione Pisana per Scienza ONLUS, 56017 San Giuliano Terme, Italy
| | - Mouna Jandoubi
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Via Piero Maroncelli 40, 47014 Meldola, Italy
| | - Giovanni Martinelli
- Scientific Directorate, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Via Piero Maroncelli 40, 47014 Meldola, Italy
- Correspondence:
| | - Giorgia Simonetti
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Via Piero Maroncelli 40, 47014 Meldola, Italy
| |
Collapse
|
8
|
Evaluation of central-metal effect on anticancer activity and mechanism of action of isostructural Cu(II) and Ni(II) complexes containing pyridine-2,6-dicarboxylate. Eur J Med Chem 2022; 245:114897. [DOI: 10.1016/j.ejmech.2022.114897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 10/23/2022] [Accepted: 10/29/2022] [Indexed: 11/05/2022]
|
9
|
Paul D, Kales SC, Cornwell JA, Afifi MM, Rai G, Zakharov A, Simeonov A, Cappell SD. Revealing β-TrCP activity dynamics in live cells with a genetically encoded biosensor. Nat Commun 2022; 13:6364. [PMID: 36289220 PMCID: PMC9606124 DOI: 10.1038/s41467-022-33762-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 09/30/2022] [Indexed: 12/25/2022] Open
Abstract
The F-box protein beta-transducin repeat containing protein (β-TrCP) acts as a substrate adapter for the SCF E3 ubiquitin ligase complex, plays a crucial role in cell physiology, and is often deregulated in many types of cancers. Here, we develop a fluorescent biosensor to quantitatively measure β-TrCP activity in live, single cells in real-time. We find β-TrCP remains constitutively active throughout the cell cycle and functions to maintain discreet steady-state levels of its substrates. We find no correlation between expression levels of β-TrCP and β-TrCP activity, indicating post-transcriptional regulation. A high throughput screen of small-molecules using our reporter identifies receptor-tyrosine kinase signaling as a key axis for regulating β-TrCP activity by inhibiting binding between β-TrCP and the core SCF complex. Our study introduces a method to monitor β-TrCP activity in live cells and identifies a key signaling network that regulates β-TrCP activity throughout the cell cycle.
Collapse
Affiliation(s)
- Debasish Paul
- grid.48336.3a0000 0004 1936 8075Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892 USA
| | - Stephen C. Kales
- grid.94365.3d0000 0001 2297 5165National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850 USA
| | - James A. Cornwell
- grid.48336.3a0000 0004 1936 8075Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892 USA
| | - Marwa M. Afifi
- grid.48336.3a0000 0004 1936 8075Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892 USA
| | - Ganesha Rai
- grid.94365.3d0000 0001 2297 5165National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850 USA
| | - Alexey Zakharov
- grid.94365.3d0000 0001 2297 5165National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850 USA
| | - Anton Simeonov
- grid.94365.3d0000 0001 2297 5165National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850 USA
| | - Steven D. Cappell
- grid.48336.3a0000 0004 1936 8075Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892 USA
| |
Collapse
|
10
|
Tabatabaei Dakhili SA, Pérez DJ, Gopal K, Haque M, Ussher JR, Kashfi K, Velázquez-Martínez CA. SP1-independent inhibition of FOXM1 by modified thiazolidinediones. Eur J Med Chem 2020; 209:112902. [PMID: 33069434 DOI: 10.1016/j.ejmech.2020.112902] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/16/2020] [Accepted: 09/28/2020] [Indexed: 11/25/2022]
Abstract
This research article describes an approach to modify the thiazolidinedione scaffold to produce test drugs capable of binding to, and inhibit, the in vitro transcriptional activity of the oncogenic protein FOXM1. This approach allowed us to obtain FOXM1 inhibitors that bind directly to the FOXM1-DNA binding domain without targeting the expression levels of Sp1, an upstream transcription factor protein known to activate the expression of FOXM1. Briefly, we modified the chemical structure of the thiazolidinedione scaffold present in anti-diabetic medications such as pioglitazone, rosiglitazone and the former anti-diabetic drug troglitazone, because these drugs have been reported to exert inhibition of FOXM1 but hit other targets as well. After the chemical synthesis of 11 derivatives possessing a modified thiazolidinedione moiety, we screened all test compounds using in vitro protocols to measure their ability to (a) dissociate a FOXM1-DNA complex (EMSA assay); (b) decrease the expression of FOXM1 in triple negative-breast cancer cells (WB assay); (c) downregulate the expression of FOXM1 downstream targets (luciferase reporter assays and qPCR); and inhibit the formation of colonies of MDA-MB-231 cancer cells (colony formation assay). We also identified a potential binding mode associated with these compounds in which compound TFI-10, one of the most active molecules, exerts binding interactions with Arg289, Trp308, and His287. Unlike the parent drug, troglitazone, compound TFI-10 does not target the in vitro expression of Sp1, suggesting that it is possible to design FOXM1 inhibitors with a better selectivity profile.
Collapse
Affiliation(s)
| | - David J Pérez
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada; Unidad Radiofarmacia-Ciclotrón, División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México, México City, Mexico
| | - Keshav Gopal
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Moinul Haque
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada; Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | - John R Ussher
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Khosrow Kashfi
- Department of Molecular, Cellular, & Biomedical Sciences, City University of New York School of Medicine, New York, USA; Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, USA
| | | |
Collapse
|
11
|
Neizer-Ashun F, Bhattacharya R. Reality CHEK: Understanding the biology and clinical potential of CHK1. Cancer Lett 2020; 497:202-211. [PMID: 32991949 DOI: 10.1016/j.canlet.2020.09.016] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/26/2020] [Accepted: 09/20/2020] [Indexed: 12/13/2022]
Abstract
The DNA damage response enables cells to cope with various stresses that threaten genomic integrity. A critical component of this response is the serine/threonine kinase CHK1 which is encoded by the CHEK1 gene. Originally identified as a regulator of the G2/M checkpoint, CHK1 has since been shown to play important roles in DNA replication, mitotic progression, DNA repair, and overall cell cycle regulation. However, the potential of CHK1 as a cancer therapy has not been realized clinically. Herein we expound our current understanding of the principal roles of CHK1 and highlight different avenues for CHK1 targeting in cancer therapy.
Collapse
Affiliation(s)
- Fiifi Neizer-Ashun
- Department of Cell Biology, University of Oklahoma Health Science Center, Oklahoma City, OK, 73104, United States
| | - Resham Bhattacharya
- Department of Cell Biology, University of Oklahoma Health Science Center, Oklahoma City, OK, 73104, United States; Department of Obstetrics and Gynecology, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, United States; Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Science Center, Oklahoma City, OK, 73104, United States.
| |
Collapse
|
12
|
Li Y, Liang Y, Ma T, Yang Q. Identification of DGUOK-AS1 as a Prognostic Factor in Breast Cancer by Bioinformatics Analysis. Front Oncol 2020; 10:1092. [PMID: 32766141 PMCID: PMC7379746 DOI: 10.3389/fonc.2020.01092] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/01/2020] [Indexed: 12/25/2022] Open
Abstract
Background: Significant developments have been made in breast cancer diagnosis and treatment, yet the prognosis remains unsatisfactory. Accumulating evidence indicates that long non-coding RNAs (lncRNAs) play pivotal roles in the development and progression of human tumors. However, the regulatory mechanisms and clinical significance of most lncRNAs in breast cancer remain poorly understood. Methods: The lncRNA, miRNA, and mRNA expression profiles were obtained from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases. A lncRNA-miRNA-mRNA regulatory network was constructed and visualized using Cytoscape. The protein-protein interaction (PPI) network was constructed using the STRING database and hub genes were extracted using the cytoHubba plugin. Gene Ontology and Kyoto Encyclopedia of Gene and Genomes analyses identified the functions and signaling pathways associated with these differentially expressed mRNAs (DEmRNAs). Expression of the key lncRNA and the relationship with prognosis of patients with breast cancer were evaluated. Results: Six differentially expressed lncRNAs (DElncRNAs), 29 differentially expressed miRNAs (DEmiRNAs), and 253 DEmRNAs were selected to construct the regulatory network. A PPI network was established and seven hub genes were identified. A lncRNA-miRNA-hub gene regulatory sub-network was established containing two DElncRNAs, five DEmiRNAs, and seven DEmRNAs. Hub genes were associated with breast cancer onset and progression. The upregulated DGUOK-AS1 was identified as the key lncRNA in breast cancer based on the competing endogenous RNA network. High DGUOK-AS1 expression was associated with adverse prognosis in patients with breast cancer and a prognostic nomogram built on Grade, LN status, and DGUOK-AS1 expression shows significant prognostic value. Conclusions: Our results reveal the significant roles of lncRNA/miRNA/mRNA regulatory networks in breast cancer and identified a novel prognosis predictor and promising therapeutic target for patients with breast cancer.
Collapse
Affiliation(s)
- Yalun Li
- Department of Breast Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Breast Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Yiran Liang
- Department of Breast Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Tingting Ma
- Department of Breast Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qifeng Yang
- Department of Breast Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Pathology Tissue Bank, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
13
|
Cell-type-specific role of CHK2 in mediating DNA damage-induced G2 cell cycle arrest. Oncogenesis 2020; 9:35. [PMID: 32170104 PMCID: PMC7070093 DOI: 10.1038/s41389-020-0219-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 02/27/2020] [Accepted: 02/27/2020] [Indexed: 11/17/2022] Open
Abstract
Cancer is a life-threatening disease that affects one in three people. Although most cases are sporadic, cancer risk can be increased by genetic factors. It remains unknown why certain genes predispose for specific forms of cancer only, such as checkpoint protein 2 (CHK2), in which gene mutations convey up to twofold higher risk for breast cancer but do not increase lung cancer risk. We have investigated the role of CHK2 and the related kinase checkpoint protein 1 (CHK1) in cell cycle regulation in primary breast and lung primary epithelial cells. At the molecular level, CHK1 activity was higher in lung cells, whereas CHK2 was more active in breast cells. Inhibition of CHK1 profoundly disrupted the cell cycle profile in both lung and breast cells, whereas breast cells were more sensitive toward inhibition of CHK2. Finally, we provide evidence that breast cells require CHK2 to induce a G2–M cell cycle arrest in response of DNA damage, whereas lung cells can partially compensate for the loss of CHK2. Our results provide an explanation as to why CHK2 germline mutations predispose for breast cancer but not for lung cancer.
Collapse
|
14
|
Lemmens B, Lindqvist A. DNA replication and mitotic entry: A brake model for cell cycle progression. J Cell Biol 2019; 218:3892-3902. [PMID: 31712253 PMCID: PMC6891093 DOI: 10.1083/jcb.201909032] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/31/2019] [Accepted: 10/31/2019] [Indexed: 12/22/2022] Open
Abstract
Lemmens and Lindqvist discuss how DNA replication and mitosis are coordinated and propose a cell cycle model controlled by brakes. The core function of the cell cycle is to duplicate the genome and divide the duplicated DNA into two daughter cells. These processes need to be carefully coordinated, as cell division before DNA replication is complete leads to genome instability and cell death. Recent observations show that DNA replication, far from being only a consequence of cell cycle progression, plays a key role in coordinating cell cycle activities. DNA replication, through checkpoint kinase signaling, restricts the activity of cyclin-dependent kinases (CDKs) that promote cell division. The S/G2 transition is therefore emerging as a crucial regulatory step to determine the timing of mitosis. Here we discuss recent observations that redefine the coupling between DNA replication and cell division and incorporate these insights into an updated cell cycle model for human cells. We propose a cell cycle model based on a single trigger and sequential releases of three molecular brakes that determine the kinetics of CDK activation.
Collapse
Affiliation(s)
- Bennie Lemmens
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet and Science for Life Laboratory, Stockholm, Sweden
| | - Arne Lindqvist
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
15
|
Crncec A, Hochegger H. Triggering mitosis. FEBS Lett 2019; 593:2868-2888. [PMID: 31602636 DOI: 10.1002/1873-3468.13635] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/07/2019] [Accepted: 10/07/2019] [Indexed: 12/28/2022]
Abstract
Entry into mitosis is triggered by the activation of cyclin-dependent kinase 1 (Cdk1). This simple reaction rapidly and irreversibly sets the cell up for division. Even though the core step in triggering mitosis is so simple, the regulation of this cellular switch is highly complex, involving a large number of interconnected signalling cascades. We do have a detailed knowledge of most of the components of this network, but only a poor understanding of how they work together to create a precise and robust system that ensures that mitosis is triggered at the right time and in an orderly fashion. In this review, we will give an overview of the literature that describes the Cdk1 activation network and then address questions relating to the systems biology of this switch. How is the timing of the trigger controlled? How is mitosis insulated from interphase? What determines the sequence of events, following the initial trigger of Cdk1 activation? Which elements ensure robustness in the timing and execution of the switch? How has this system been adapted to the high levels of replication stress in cancer cells?
Collapse
Affiliation(s)
- Adrijana Crncec
- Genome Damage and Stability Centre, University of Sussex, Brighton, UK
| | - Helfrid Hochegger
- Genome Damage and Stability Centre, University of Sussex, Brighton, UK
| |
Collapse
|
16
|
Michelena J, Gatti M, Teloni F, Imhof R, Altmeyer M. Basal CHK1 activity safeguards its stability to maintain intrinsic S-phase checkpoint functions. J Cell Biol 2019; 218:2865-2875. [PMID: 31366665 PMCID: PMC6719454 DOI: 10.1083/jcb.201902085] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 06/12/2019] [Accepted: 07/08/2019] [Indexed: 12/11/2022] Open
Abstract
The essential kinase CHK1 controls cell cycle checkpoint signaling and S-phase progression. Michelena et al. reveal that steady-state activity of CHK1 is required to sustain its own stability and that failure to do so results in CHK1 degradation and sensitizes cells to replication stress. The DNA replication machinery frequently encounters impediments that slow replication fork progression and threaten timely and error-free replication. The CHK1 protein kinase is essential to deal with replication stress (RS) and ensure genome integrity and cell survival, yet how basal levels and activity of CHK1 are maintained under physiological, unstressed conditions is not well understood. Here, we reveal that CHK1 stability is controlled by its steady-state activity during unchallenged cell proliferation. This autoactivatory mechanism, which depends on ATR and its coactivator ETAA1 and is tightly associated with CHK1 autophosphorylation at S296, counters CHK1 ubiquitylation and proteasomal degradation, thereby preventing attenuation of S-phase checkpoint functions and a compromised capacity to respond to RS. Based on these findings, we propose that steady-state CHK1 activity safeguards its stability to maintain intrinsic checkpoint functions and ensure genome integrity and cell survival.
Collapse
Affiliation(s)
- Jone Michelena
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| | - Marco Gatti
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| | - Federico Teloni
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland.,Molecular Life Sciences Program, Life Science Zurich Graduate School, Zurich, Switzerland
| | - Ralph Imhof
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| | - Matthias Altmeyer
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| |
Collapse
|
17
|
Shao G, Wang M, Fan X, Zhong L, Wang Z, Zhang P, Ji S. lncRNA CASC9 positively regulates CHK1 to promote breast cancer cell proliferation and survival through sponging the miR‑195/497 cluster. Int J Oncol 2019; 54:1665-1675. [PMID: 30816435 PMCID: PMC6438439 DOI: 10.3892/ijo.2019.4734] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 08/07/2018] [Indexed: 12/16/2022] Open
Abstract
Accumulating evidence has demonstrated that long non-coding RNAs (lncRNAs) play important roles in the pathogenesis and development of diverse types of human disorders. Cancer susceptibility candidate 9 (CASC9), a gene encoding a lncRNA, has frequently been reported to be dysregulated and has been implicated in multiple types of human malignancies. However, the biological role of lncRNA CASC9 in breast cancer (BC) remains largely unknown. The present study aimed to investigate the role of lncRNA CASC9 in BC and to elucidate the potential molecular mechanisms involved. In the present study, lncRNA CASC9 was found to be significantly upregulated in both BC tissues and cell lines. Furthermore, functional analyses revealed that lncRNA CASC9 accelerated BC cell proliferation, promoted cell cycle progression and suppressed cell apoptosis. Moreover, mechanical experiments demonstrated that lncRNA CASC9 positively regulated checkpoint kinase 1 (CHK1) by competitively binding to the miR-195/497 cluster in BC cells. Additionally, the knockdown of lncRNA CASC9 was observed to suppress breast tumor growth in vivo. Taken together, the results of this study indicate that lncRNA CASC9 plays an oncogenic role in BC through sponging the miR-195/497 cluster, and that lncRNA CASC9 may be used as a novel therapeutic target and as a potential diagnostic marker for BC.
Collapse
Affiliation(s)
- Guoli Shao
- Specialized Medical Service Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| | - Mengchuan Wang
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| | - Xulong Fan
- Maternity and Children's Healthcare Hospital of Foshan, Foshan, Guangdong 52800, P.R. China
| | - Lin Zhong
- Specialized Medical Service Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| | - Zixiang Wang
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| | - Pusheng Zhang
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| | - Shufeng Ji
- Specialized Medical Service Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| |
Collapse
|
18
|
Lafarga V, Sung HM, Haneke K, Roessig L, Pauleau AL, Bruer M, Rodriguez-Acebes S, Lopez-Contreras AJ, Gruss OJ, Erhardt S, Mendez J, Fernandez-Capetillo O, Stoecklin G. TIAR marks nuclear G2/M transition granules and restricts CDK1 activity under replication stress. EMBO Rep 2019; 20:e46224. [PMID: 30538118 PMCID: PMC6322364 DOI: 10.15252/embr.201846224] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 11/06/2018] [Accepted: 11/08/2018] [Indexed: 12/20/2022] Open
Abstract
The G2/M checkpoint coordinates DNA replication with mitosis and thereby prevents chromosome segregation in the presence of unreplicated or damaged DNA Here, we show that the RNA-binding protein TIAR is essential for the G2/M checkpoint and that TIAR accumulates in nuclear foci in late G2 and prophase in cells suffering from replication stress. These foci, which we named G2/M transition granules (GMGs), occur at low levels in normally cycling cells and are strongly induced by replication stress. In addition to replication stress response proteins, GMGs contain factors involved in RNA metabolism as well as CDK1. Depletion of TIAR accelerates mitotic entry and leads to chromosomal instability in response to replication stress, in a manner that can be alleviated by the concomitant depletion of Cdc25B or inhibition of CDK1. Since TIAR retains CDK1 in GMGs and attenuates CDK1 activity, we propose that the assembly of GMGs may represent a so far unrecognized mechanism that contributes to the activation of the G2/M checkpoint in mammalian cells.
Collapse
Affiliation(s)
- Vanesa Lafarga
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
- Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Hsu-Min Sung
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
- Division of Biochemistry, Center for Biomedicine and Medical Technology Mannheim (CBTM), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Katharina Haneke
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
- Division of Biochemistry, Center for Biomedicine and Medical Technology Mannheim (CBTM), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Lea Roessig
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Anne-Laure Pauleau
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
- Department of Cellular and Molecular Medicine, Center for Chromosome Stability and Center for Healthy Aging University of Copenhagen, Copenhagen, Denmark
| | - Marius Bruer
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
- Division of Biochemistry, Center for Biomedicine and Medical Technology Mannheim (CBTM), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | | | - Andres J Lopez-Contreras
- Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- CellNetworks Excellence Cluster, Heidelberg University, Heidelberg, Germany
| | - Oliver J Gruss
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Sylvia Erhardt
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
- Department of Cellular and Molecular Medicine, Center for Chromosome Stability and Center for Healthy Aging University of Copenhagen, Copenhagen, Denmark
| | - Juan Mendez
- Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Oscar Fernandez-Capetillo
- Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Georg Stoecklin
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
- Division of Biochemistry, Center for Biomedicine and Medical Technology Mannheim (CBTM), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
19
|
Targeting acute myeloid leukemia CD34 + stem/progenitor cells with small molecule inhibitor MK-8776. Leuk Res 2018; 72:71-73. [PMID: 30103203 DOI: 10.1016/j.leukres.2018.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 08/04/2018] [Accepted: 08/06/2018] [Indexed: 01/21/2023]
|
20
|
Fong-Ngern K, Ausakunpipat N, Singhto N, Sueksakit K, Thongboonkerd V. Prolonged K + deficiency increases intracellular ATP, cell cycle arrest and cell death in renal tubular cells. Metabolism 2017; 74:47-61. [PMID: 28095989 DOI: 10.1016/j.metabol.2016.12.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 12/02/2016] [Accepted: 12/28/2016] [Indexed: 12/14/2022]
Abstract
BACKGROUND Chronic potassium (K+) deficiency can cause renal damage namely hypokalemic nephropathy with unclear pathogenic mechanisms. In the present study, we investigated expression and functional alterations in renal tubular cells induced by prolonged K+ deficiency. METHODS MDCK cells were maintained in normal-K+ (CNK) (K+=5.3mmol/L), low-K+ (CLK) (K+=2.5mmol/L), or K+-depleted (CKD) (K+=0mmol/L) medium for 10days (n=5 independent cultures/condition). Differentially expressed proteins were identified by a proteomics approach followed by various functional assays. RESULTS Proteomic analysis revealed 46 proteins whose levels significantly differed among groups. The proteomic data were confirmed by Western blotting. Gene Ontology (GO) classification and protein network analysis revealed that majority of the altered proteins participated in metabolic process, whereas the rest involved in cellular component organization/biogenesis, cellular process (e.g., cell cycle, regulation of cell death), response to stress, and signal transduction. Interestingly, ATP measurement revealed that intracellular ATP production was increased in CLK and maximum in CKD. Flow cytometry showed cell cycle arrest at S-phase and G2/M-phase in CLK and CKD, respectively, consistent with cell proliferation and growth assays, which showed modest and marked degrees of delayed growth and prolonged doubling time in CLK and CKD, respectively. Cell death quantification also revealed modest and marked degrees of increased cell death in CLK and CKD, respectively. CONCLUSIONS In conclusion, prolonged K+ deficiency increased intracellular ATP, cell cycle arrest and cell death in renal tubular cells, which might be responsible for mechanisms underlying the development of hypokalemic nephropathy.
Collapse
Affiliation(s)
- Kedsarin Fong-Ngern
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, and Center for Research in Complex Systems Science, Mahidol University, Bangkok, Thailand
| | - Nardtaya Ausakunpipat
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, and Center for Research in Complex Systems Science, Mahidol University, Bangkok, Thailand
| | - Nilubon Singhto
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, and Center for Research in Complex Systems Science, Mahidol University, Bangkok, Thailand
| | - Kanyarat Sueksakit
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, and Center for Research in Complex Systems Science, Mahidol University, Bangkok, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, and Center for Research in Complex Systems Science, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
21
|
Ghelli Luserna di Rora’ A, Iacobucci I, Martinelli G. The cell cycle checkpoint inhibitors in the treatment of leukemias. J Hematol Oncol 2017; 10:77. [PMID: 28356161 PMCID: PMC5371185 DOI: 10.1186/s13045-017-0443-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 03/15/2017] [Indexed: 01/25/2023] Open
Abstract
The inhibition of the DNA damage response (DDR) pathway in the treatment of cancers has recently reached an exciting stage with several cell cycle checkpoint inhibitors that are now being tested in several clinical trials in cancer patients. Although the great amount of pre-clinical and clinical data are from the solid tumor experience, only few studies have been done on leukemias using specific cell cycle checkpoint inhibitors. This review aims to summarize the most recent data found on the biological mechanisms of the response to DNA damages highlighting the role of the different elements of the DDR pathway in normal and cancer cells and focusing on the main genetic alteration or aberrant gene expression that has been found on acute and chronic leukemias. This review, for the first time, outlines the most important pre-clinical and clinical data available on the efficacy of cell cycle checkpoint inhibitors in single agent and in combination with different agents normally used for the treatment of acute and chronic leukemias.
Collapse
Affiliation(s)
| | - I. Iacobucci
- Department of Hematology and Medical Sciences “L. and A. Seràgnoli”, Bologna University, Bologna, Italy
- Present: Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN USA
| | - G. Martinelli
- Department of Hematology and Medical Sciences “L. and A. Seràgnoli”, Bologna University, Bologna, Italy
| |
Collapse
|
22
|
Cui C, Zang T, Cao Y, Qin X, Zhang X. CDC25B is involved in the centrosomal microtubule nucleation in two-cell stage mouse embryos. Dev Growth Differ 2016; 58:714-726. [PMID: 27885657 DOI: 10.1111/dgd.12328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 10/27/2016] [Accepted: 10/27/2016] [Indexed: 01/21/2023]
Abstract
CDC25B has been demonstrated to activate the complex of CDK1/Cyclin B and trigger mitosis. We have recently demonstrated that p-CDC25B-Ser351 is located at the centrosomes of mouse oocytes and contributes to the release of mouse oocytes from prophase I arrest. But much less is known about CDC25B function at the centrosome in two-cell stage mouse embryos. Here we investigate the effect of CDC25B regulating the microtubules nucleation. Microinjection of anti-CDC25B antibody caused aberrant microtubule nucleation. In addition, embryos injected with anti-CDC25B antibody showed the marked absence of microtubule repolymerization and Nek2 foci after nocodazole washout. CDC25B overexpression caused microtubule-organizing center (MTOC) overduplication. Moreover, overexpression of CDC25B-▵65 mutant resulted in the loss of CDC25B localization in the perinuclear region and made CDC25B less efficient in inducing mitosis. We additionally identified that CDC25B is responsible for the pericentrin localization to the MTOC. Our data suggest an important role of CDC25B for microtubule nucleation and organization. N-terminal of CDC25B is required for regulating the microtubule dynamics and mitotic function.
Collapse
Affiliation(s)
- Cheng Cui
- Department of Physiology, College of Basic Medical Science, China Medical University, Shenyang, 110122, Liaoning, China
| | - Tianxia Zang
- Department of Endocrinology, The Second Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, 110034, Liaoning, China
| | - Yu Cao
- Department of Physiology, College of Basic Medical Science, China Medical University, Shenyang, 110122, Liaoning, China
| | - Xin Qin
- Department of Physiology, College of Basic Medical Science, China Medical University, Shenyang, 110122, Liaoning, China
| | - Xuewei Zhang
- Department of Physiology, College of Basic Medical Science, China Medical University, Shenyang, 110122, Liaoning, China
| |
Collapse
|
23
|
Phosphatases and kinases regulating CDC25 activity in the cell cycle: clinical implications of CDC25 overexpression and potential treatment strategies. Mol Cell Biochem 2016; 416:33-46. [PMID: 27038604 DOI: 10.1007/s11010-016-2693-2] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Accepted: 03/24/2016] [Indexed: 10/22/2022]
Abstract
Alterations in the cell-cycle regulatory genes result in uncontrolled cell proliferation leading to several disease conditions. Cyclin-dependent kinases (CDK) and their regulatory subunit, cyclins, are essential proteins in cell-cycle progression. The activity of CDK is regulated by a series of phosphorylation and dephosphorylation at different amino acid residues. Cell Division Cycle-25 (CDC25) plays an important role in transitions between cell-cycle phases by dephosphorylating and activating CDKs. CDC25B and CDC25C play a major role in G2/M progression, whereas CDC25A assists in G1/S transition. Different isomers of CDC25 expressions are upregulated in various clinicopathological situations. Overexpression of CDC25A deregulates G1/S and G2/M events, including the G2 checkpoint. CDC25B has oncogenic properties. Binding to the 14-3-3 proteins regulates the activity and localization of CDC25B. CDC25C is predominantly a nuclear protein in mammalian cells. At the G2/M transition, mitotic activation of CDC25C protein occurs by its dissociation from 14-3-3 proteins along with its phosphorylation at multiple sites within its N-terminal domain. In this article, we critically reviewed the biology of the activation/deactivation of CDC25 by kinases/phosphatases to maintain the level of CDK-cyclin activities and thus the genomic stability, clinical implications due to dysregulation of CDC25, and potential role of CDC25 inhibitors in diseases.
Collapse
|
24
|
Lats1 suppresses centrosome overduplication by modulating the stability of Cdc25B. Sci Rep 2015; 5:16173. [PMID: 26530630 PMCID: PMC4632022 DOI: 10.1038/srep16173] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 10/06/2015] [Indexed: 12/11/2022] Open
Abstract
Numerical aberration of the centrosome results in chromosome missegregation, eventually leading to chromosomal instability, a hallmark of human tumor malignancy. Large tumor suppressors 1 and 2 (Lats1 and Lats2) are central kinases in the Hippo pathway and regulate development and tumorigenesis by coordinating the balance between cell proliferation and apoptosis. Importantly, Lats1 and Lats2 also play pivotal roles in cell cycle checkpoint and mitosis. The Lats proteins localize at centrosomes, but their centrosomal functions remain elusive. Here, we generated Lats1-null knockout (Lats1−/−) mice and established Lats1-null mouse embryonic fibroblasts (MEFs). In Lats1−/− MEFs, centrosomes were markedly overduplicated, leading to severe mitotic defects such as chromosome missegregation and cytokinesis failure. We also found that Lats1 physically interacts with Cdc25B phosphatase that localizes both at the centrosome and in the nucleus and regulates the linkage between the centrosome cycle and mitotic progression. Although Lats1 did not phosphorylate Cdc25B, loss of Lats1 in MEFs caused abnormal accumulation of Cdc25B protein and hyperactivation of Cdk2 toward nucleophosmin (NPM/B23), one of the licensing factors involved in centriole duplication. Taken together, these data suggest that Lats1 regulates Cdc25B protein level and subsequent Cdk2 activity, thereby suppressing centrosome overduplication during interphase.
Collapse
|
25
|
Mitotic phosphorylation of Bloom helicase at Thr182 is required for its proteasomal degradation and maintenance of chromosomal stability. Oncogene 2015; 35:1025-38. [DOI: 10.1038/onc.2015.157] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 03/15/2015] [Accepted: 03/30/2015] [Indexed: 12/12/2022]
|
26
|
Brenner AK, Reikvam H, Lavecchia A, Bruserud Ø. Therapeutic targeting the cell division cycle 25 (CDC25) phosphatases in human acute myeloid leukemia--the possibility to target several kinases through inhibition of the various CDC25 isoforms. Molecules 2014; 19:18414-47. [PMID: 25397735 PMCID: PMC6270710 DOI: 10.3390/molecules191118414] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 10/28/2014] [Accepted: 11/02/2014] [Indexed: 01/26/2023] Open
Abstract
The cell division cycle 25 (CDC25) phosphatases include CDC25A, CDC25B and CDC25C. These three molecules are important regulators of several steps in the cell cycle, including the activation of various cyclin-dependent kinases (CDKs). CDC25s seem to have a role in the development of several human malignancies, including acute myeloid leukemia (AML); and CDC25 inhibition is therefore considered as a possible anticancer strategy. Firstly, upregulation of CDC25A can enhance cell proliferation and the expression seems to be controlled through PI3K-Akt-mTOR signaling, a pathway possibly mediating chemoresistance in human AML. Loss of CDC25A is also important for the cell cycle arrest caused by differentiation induction of malignant hematopoietic cells. Secondly, high CDC25B expression is associated with resistance against the antiproliferative effect of PI3K-Akt-mTOR inhibitors in primary human AML cells, and inhibition of this isoform seems to reduce AML cell line proliferation through effects on NFκB and p300. Finally, CDC25C seems important for the phenotype of AML cells at least for a subset of patients. Many of the identified CDC25 inhibitors show cross-reactivity among the three CDC25 isoforms. Thus, by using such cross-reactive inhibitors it may become possible to inhibit several molecular events in the regulation of cell cycle progression and even cytoplasmic signaling, including activation of several CDKs, through the use of a single drug. Such combined strategies will probably be an advantage in human cancer treatment.
Collapse
Affiliation(s)
- Annette K Brenner
- Section for Hematology, Institute of Clinical Science, Faculty of Medicine and Dentistry, University of Bergen, Bergen, 5021, Norway
| | - Håkon Reikvam
- Section for Hematology, Institute of Clinical Science, Faculty of Medicine and Dentistry, University of Bergen, Bergen, 5021, Norway
| | - Antonio Lavecchia
- "Drug Discovery" Laboratory, Department of Pharmacy, University of Naples Federico II, Naples 80131, Italy
| | - Øystein Bruserud
- Section for Hematology, Institute of Clinical Science, Faculty of Medicine and Dentistry, University of Bergen, Bergen, 5021, Norway.
| |
Collapse
|
27
|
McNeely S, Beckmann R, Bence Lin AK. CHEK again: revisiting the development of CHK1 inhibitors for cancer therapy. Pharmacol Ther 2013; 142:1-10. [PMID: 24140082 DOI: 10.1016/j.pharmthera.2013.10.005] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 10/05/2013] [Indexed: 02/06/2023]
Abstract
CHEK1 encodes the serine/threonine kinase CHK1, a central component of the DNA damage response. CHK1 regulates cell cycle checkpoints following genotoxic stress to prevent the entry of cells with damaged DNA into mitosis and coordinates various aspects of DNA repair. Accordingly, CHK1 has become a target of considerable interest in oncology. CHK1 inhibitors potentiate the efficacy of DNA-damaging chemotherapeutics by abrogating CHK1-mediated cell cycle arrest and preventing repair of damaged DNA. In addition, CHK1 inhibitors interfere with the biological role of CHK1 as a principal regulator of the cell cycle that controls the initiation of DNA replication, stabilizes replication forks, and coordinates mitosis. Since these functions of CHK1 facilitate progression through an unperturbed cell cycle, CHK1 inhibitors are being developed not only as chemopotentiators, but also as single-agent therapies. This review is intended to provide information on the current progress of CHK1 inhibitors in pre-clinical and clinical development and will focus on mechanisms of single-agent activity and potential strategies for patient tailoring and combinations with non-genotoxic agents.
Collapse
Affiliation(s)
- S McNeely
- Eli Lilly and Company, Indianapolis, IN, United States.
| | - R Beckmann
- Eli Lilly and Company, Indianapolis, IN, United States
| | - A K Bence Lin
- Eli Lilly and Company, Indianapolis, IN, United States
| |
Collapse
|
28
|
Boutros R, Mondesert O, Lorenzo C, Astuti P, McArthur G, Chircop M, Ducommun B, Gabrielli B. CDC25B overexpression stabilises centrin 2 and promotes the formation of excess centriolar foci. PLoS One 2013; 8:e67822. [PMID: 23840880 PMCID: PMC3698172 DOI: 10.1371/journal.pone.0067822] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 05/21/2013] [Indexed: 12/23/2022] Open
Abstract
CDK-cyclin complexes regulate centriole duplication and microtubule nucleation at specific cell cycle stages, although their exact roles in these processes remain unclear. As the activities of CDK-cyclins are themselves positively regulated by CDC25 phosphatases, we investigated the role of centrosomal CDC25B during interphase. We report that overexpression of CDC25B, as is commonly found in human cancer, results in a significant increase in centrin 2 at the centrosomes of interphase cells. Conversely, CDC25B depletion causes a loss of centrin 2 from the centrosome, which can be rescued by treatment with the proteasome inhibitor MG132. CDC25B overexpression also promotes the formation of excess centrin 2 "foci". These foci can accumulate other centrosome proteins, including γ-tubulin and PCM-1, and can function as microtubule organising centres, indicating that these represent functional centrosomes. Formation of centrin 2 foci can be blocked by specific inhibition of CDK2 but not CDK1. CDK2-mediated phosphorylation of Monopolar spindle 1 (Mps1) at the G1/S transition is essential for the initiation of centrosome duplication, and Mps1 is reported to phosphorylate centrin 2. Overexpression of wild-type or non-degradable Mps1 exacerbated the formation of excess centrin 2 foci induced by CDC25B overexpression, while kinase-dead Mps1 has a protective effect. Together, our data suggest that CDC25B, through activation of a centrosomal pool of CDK2, stabilises the local pool of Mps1 which in turn regulates the level of centrin 2 at the centrosome. Overexpression of CDC25B may therefore contribute to tumourigenesis by perturbing the natural turnover of centrosome proteins such as Mps1 and centrin 2, thus resulting in the de novo assembly of extra-numerary centrosomes and potentiating chromosome instability.
Collapse
Affiliation(s)
- Rose Boutros
- Princess Alexandra Hospital, The University of Queensland Diamantina Institute, Brisbane, Queensland, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Zhang Y, Hunter T. Roles of Chk1 in cell biology and cancer therapy. Int J Cancer 2013; 134:1013-23. [PMID: 23613359 DOI: 10.1002/ijc.28226] [Citation(s) in RCA: 302] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 04/11/2013] [Indexed: 01/05/2023]
Abstract
The evolutionally conserved DNA damage response (DDR) and cell cycle checkpoints preserve genome integrity. Central to these genome surveillance pathways is a protein kinase, Chk1. DNA damage induces activation of Chk1, which then transduces the checkpoint signal and facilitates cell cycle arrest and DNA damage repair. Significant progress has been made recently toward our understanding of Chk1 regulation and its implications in cancer etiology and therapy. Specifically, a model that involves both spatiotemporal and conformational changes of proteins has been proposed for Chk1 activation. Further, emerging evidence suggests that Chk1 does not appear to be a tumor suppressor; instead, it promotes tumor growth and may contribute to anticancer therapy resistance. Recent data from our laboratory suggest that activating, but not inhibiting, Chk1 in the absence of chemotherapy might represent an innovative approach to suppress tumor growth. These findings suggest unique regulation of Chk1 in cell biology and cancer etiology, pointing to novel strategies for targeting Chk1 in cancer therapy.
Collapse
Affiliation(s)
- Youwei Zhang
- Department of Pharmacology, Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH
| | | |
Collapse
|
30
|
Chouinard G, Clément I, Lafontaine J, Rodier F, Schmitt E. Cell cycle-dependent localization of CHK2 at centrosomes during mitosis. Cell Div 2013; 8:7. [PMID: 23680298 PMCID: PMC3668180 DOI: 10.1186/1747-1028-8-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 05/09/2013] [Indexed: 01/26/2023] Open
Abstract
Background Centrosomes function primarily as microtubule-organizing centres and play a crucial role during mitosis by organizing the bipolar spindle. In addition to this function, centrosomes act as reaction centers where numerous key regulators meet to control cell cycle progression. One of these factors involved in genome stability, the checkpoint kinase CHK2, was shown to localize at centrosomes throughout the cell cycle. Results Here, we show that CHK2 only localizes to centrosomes during mitosis. Using wild-type and CHK2−/− HCT116 human colon cancer cells and human osteosarcoma U2OS cells depleted for CHK2 with small hairpin RNAs we show that several CHK2 antibodies are non-specific and cross-react with an unknown centrosomal protein(s) by immunofluorescence. To characterize the localization of CHK2, we generated cells expressing inducible GFP-CHK2 and Flag-CHK2 fusion proteins. We show that CHK2 localizes to the nucleus in interphase cells but that a fraction of CHK2 associates with the centrosomes in a Polo-like kinase 1-dependent manner during mitosis, from early mitotic stages until cytokinesis. Conclusion Our findings demonstrate that a subpopulation of CHK2 localizes at the centrosomes in mitotic cells but not in interphase. These results are consistent with previous reports supporting a role for CHK2 in the bipolar spindle formation and the timely progression of mitosis.
Collapse
Affiliation(s)
- Guillaume Chouinard
- Centre de recherche, Centre hospitalier de l'Université de Montréal (CRCHUM), Hôpital Notre-Dame et Institut du cancer de Montréal, Montréal, Québec, Canada.
| | | | | | | | | |
Collapse
|
31
|
Wang Y, Dantas TJ, Lalor P, Dockery P, Morrison CG. Promoter hijack reveals pericentrin functions in mitosis and the DNA damage response. Cell Cycle 2013; 12:635-46. [PMID: 23324397 DOI: 10.4161/cc.23516] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Centrosomes, the principal microtubule-organizing centers of animal somatic cells, consist of two centrioles embedded in the pericentriolar material (PCM). Pericentrin is a large PCM protein that is required for normal PCM assembly. Mutations in PCNT cause primordial dwarfism. Pericentrin has also been implicated in the control of DNA damage responses. To test how pericentrin is involved in cell cycle control after genotoxic stress, we disrupted the Pcnt locus in chicken DT40 cells. Pericentrin-deficient cells proceeded through mitosis more slowly, with a high level of monopolar spindles, and were more sensitive to spindle poisons than controls. Centriole structures appeared normal by light and electron microscopy, but the PCM did not recruit γ-tubulin efficiently. Cell cycle delays after ionizing radiation (IR) treatment were normal in pericentrin-deficient cells. However, pericentrin disruption in Mcph1-/- cells abrogated centrosome hyperamplification after IR. We conclude that pericentrin controls genomic stability by both ensuring appropriate mitotic spindle activity and centrosome regulation.
Collapse
Affiliation(s)
- Yifan Wang
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | | | | | | | | |
Collapse
|
32
|
Llopis A, Salvador N, Ercilla A, Guaita-Esteruelas S, Barrantes IDB, Gupta J, Gaestel M, Davis RJ, Nebreda AR, Agell N. The stress-activated protein kinases p38α/β and JNK1/2 cooperate with Chk1 to inhibit mitotic entry upon DNA replication arrest. Cell Cycle 2012; 11:3627-37. [PMID: 22935704 DOI: 10.4161/cc.21917] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Accurate DNA replication is crucial for the maintenance of genome integrity. To this aim, cells have evolved complex surveillance mechanisms to prevent mitotic entry in the presence of partially replicated DNA. ATR and Chk1 are key elements in the signal transduction pathways of DNA replication checkpoint; however, other kinases also make significant contributions. We show here that the stress kinases p38 and JNK are activated when DNA replication is blocked, and that their activity allows S/M, but not G 2/M, checkpoint maintenance when Chk1 is inhibited. Activation of both kinases by DNA replication inhibition is not mediated by the caffeine-sensitive kinases ATR or ATM. Phosphorylation of MKK3/6 and MKK4, p38 and JNK upstream kinases was also observed upon DNA replication inhibition. Using a genetic approach, we dissected the p38 pathway and showed that both p38α and p38β isoforms collaborate to inhibit mitotic entry. We further defined MKK3/6 and MK2/3 as the key upstream and downstream elements in the p38 signaling cascade after replication arrest. Accordingly, we found that the stress signaling pathways collaborate with Chk1 to keep cyclin B1/Cdk1 complexes inactive when DNA replication is inhibited, thereby preventing cell cycle progression when DNA replication is stalled. Our results show a complex response to replication stress, where multiple pathways are activated and fulfill overlapping roles to prevent mitotic entry with unreplicated DNA.
Collapse
Affiliation(s)
- Alba Llopis
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Frazer C, Young PG. Carboxy-terminal phosphorylation sites in Cdc25 contribute to enforcement of the DNA damage and replication checkpoints in fission yeast. Curr Genet 2012; 58:217-34. [PMID: 22806395 DOI: 10.1007/s00294-012-0379-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 06/14/2012] [Accepted: 07/06/2012] [Indexed: 11/27/2022]
Abstract
In fission yeast and vertebrate cells, Cdc25 phosphatase is the target of checkpoint-mediated response to DNA replication blocks, DNA damage, and extracellular stress. As such, it is a key regulator of cell cycle progress and genomic stability. In fission yeast, phosphorylation of Cdc25 by the checkpoint kinases Cds1 and Chk1 and also Srk1 during stress creates a binding site for the 14-3-3 homolog Rad24; the complex is then exported from the nucleus. Cdc25 contains 12 potential serine/threonine phosphorylation sites that are phosphorylated in vitro by Cds1; 9 reside in the amino terminal half of the protein with the remaining sites are located in the extreme C-terminus. We have previously shown that deletion of the nine amino terminal sites results in degradation of the mutant protein while the checkpoint is enforced by the Mik1 kinase acting on Cdc2 tyrosine-15. Here, we examine the influence of the three C-terminal sites on the negative regulation of Cdc25. These sites are conserved in vertebrates and have been shown to be phosphorylated following DNA damage and replication blocks. We show that these three sites have a role in the negative regulation of Cdc25 following replication arrest, but perhaps more importantly they appear to particularly contribute to regulating the duration, and thus the effectiveness of the arrested state.
Collapse
Affiliation(s)
- Corey Frazer
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, K7L 3N6, Canada
| | | |
Collapse
|
34
|
Goto H, Izawa I, Li P, Inagaki M. Novel regulation of checkpoint kinase 1: Is checkpoint kinase 1 a good candidate for anti-cancer therapy? Cancer Sci 2012; 103:1195-200. [PMID: 22435685 DOI: 10.1111/j.1349-7006.2012.02280.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 03/14/2012] [Accepted: 03/16/2012] [Indexed: 12/28/2022] Open
Abstract
DNA-damaging strategies, such as radiotherapy and the majority of chemotherapeutic therapies, are the most frequently used non-surgical anti-cancer therapies for human cancers. These therapies activate DNA damage/replication checkpoints, which induce cell-cycle arrest to provide the time needed to repair DNA damage. Due to genetic defect(s) in the ATM (ataxia-telangiectasia mutated)-Chk2-p53 pathway, an ATR (ATM- and Rad3-related)-Chk1-Cdc25 route is the sole checkpoint pathway in a majority of cancer cells. Chk1 inhibitors are expected to selectively induce the mitotic cell death (mitotic catastrophe) of cancer cells. However, recent new findings have pointed out that Chk1 is essential for the maintenance of genome integrity even during unperturbed cell-cycle progression, which is controlled by a variety of protein kinases. These observations have raised concerns about a possible risk of Chk1 inhibitors on the clinics. In this review, we summarize recent advances in Chk1 regulation by phosphorylation, and discuss Chk1 as a molecular target for cancer therapeutics.
Collapse
Affiliation(s)
- Hidemasa Goto
- Division of Biochemistry, Aichi Cancer left Research Institute, Nagoya, Japan
| | | | | | | |
Collapse
|
35
|
Aarts M, Sharpe R, Garcia-Murillas I, Gevensleben H, Hurd MS, Shumway SD, Toniatti C, Ashworth A, Turner NC. Forced mitotic entry of S-phase cells as a therapeutic strategy induced by inhibition of WEE1. Cancer Discov 2012; 2:524-39. [PMID: 22628408 DOI: 10.1158/2159-8290.cd-11-0320] [Citation(s) in RCA: 236] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Inhibition of the protein kinase WEE1 synergizes with chemotherapy in preclinical models and WEE1 inhibitors are being explored as potential cancer therapies. Here, we investigate the mechanism that underlies this synergy. We show that WEE1 inhibition forces S-phase-arrested cells directly into mitosis without completing DNA synthesis, resulting in highly abnormal mitoses characterized by dispersed chromosomes and disorganized bipolar spindles, ultimately resulting in mitotic exit with gross micronuclei formation and apoptosis. This mechanism of cell death is shared by CHK1 inhibitors, and combined WEE1 and CHK1 inhibition forces mitotic entry from S-phase in the absence of chemotherapy. We show that p53/p21 inactivation combined with high expression of mitotic cyclins and EZH2 predispose to mitotic entry during S-phase with cells reliant on WEE1 to prevent premature cyclin-dependent kinase (CDK)1 activation. These features are characteristic of aggressive breast, and other, cancers for which WEE1 inhibitor combinations represent a promising targeted therapy.
Collapse
Affiliation(s)
- Marieke Aarts
- The Breakthrough Breast Cancer Research Centre, Institute of Cancer Research; Breast Unit, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Liu N, Matsumoto M, Kitagawa K, Kotake Y, Suzuki S, Shirasawa S, Nakayama KI, Nakanishi M, Niida H, Kitagawa M. Chk1 phosphorylates the tumour suppressor Mig-6, regulating the activation of EGF signalling. EMBO J 2012; 31:2365-77. [PMID: 22505024 DOI: 10.1038/emboj.2012.88] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 03/15/2012] [Indexed: 12/16/2022] Open
Abstract
The tumour suppressor gene product Mig-6 acts as an inhibitor of epidermal growth factor (EGF) signalling. However, its posttranslational modifications and regulatory mechanisms have not been elucidated. Here, we investigated the phosphorylation of human Mig-6 and found that Chk1 phosphorylated Mig-6 in vivo as well as in vitro. Moreover, EGF stimulation promoted phosphorylation of Mig-6 without DNA damage and the phosphorylation was inhibited by depletion of Chk1. EGF also increased Ser280-phosphorylated Chk1, a cytoplasmic-tethering form, via PI3K pathway. Mass spectrometric analyses suggested that Ser 251 of Mig-6 was a major phosphorylation site by Chk1 in vitro and in vivo. Substitution of Ser 251 to alanine increased inhibitory activity of Mig-6 against EGF receptor (EGFR) activation. Moreover, EGF-dependent activation of EGFR and cell growth were inhibited by Chk1 depletion, and were rescued by co-depletion of Mig-6. Our results suggest that Chk1 phosphorylates Mig-6 on Ser 251, resulting in the inhibition of Mig-6, and that Chk1 acts as a positive regulator of EGF signalling. This is a novel function of Chk1.
Collapse
Affiliation(s)
- Ning Liu
- Department of Molecular Biology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Wang J, Beauchemin M, Bertrand R. Bcl-xL phosphorylation at Ser49 by polo kinase 3 during cell cycle progression and checkpoints. Cell Signal 2011; 23:2030-8. [PMID: 21840391 PMCID: PMC3708862 DOI: 10.1016/j.cellsig.2011.07.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 07/14/2011] [Accepted: 07/27/2011] [Indexed: 11/20/2022]
Abstract
Functional analysis of a Bcl-xL phosphorylation mutant series has revealed that cells expressing Bcl-xL(Ser49Ala) mutant are less stable at G2 checkpoint after DNA damage and enter cytokinesis more slowly after microtubule poisoning, than cells expressing wild-type Bcl-xL. These effects of Bcl-xL(Ser49Ala) mutant seem to be separable from Bcl-xL function in apoptosis. Bcl-xL(Ser49) phosphorylation is cell cycle-dependent. In synchronized cells, phospho-Bcl-xL(Ser49) appears during the S phase and G2, whereas it disappears rapidly in early mitosis during prometaphase, metaphase and early anaphase, and re-appears during telophase and cytokinesis. During DNA damage-induced G2 arrest, an important pool of phospho-Bcl-xL(Ser49) accumulates in centrosomes which act as essential decision centers for progression from G2 to mitosis. During telophase/cytokinesis, phospho-Bcl-xL(Ser49) is found with dynein motor protein. In a series of in vitro kinase assays, specific small interfering RNA and pharmacological inhibition experiments, polo kinase 3 (PLK3) was implicated in Bcl-xL(Ser49) phosphorylation. These data indicate that, during G2 checkpoint, phospho-Bcl-xL(Ser49) is another downstream target of PLK3, acting to stabilize G2 arrest. Bcl-xL phosphorylation at Ser49 also correlates with essential PLK3 activity and function, enabling cytokinesis and mitotic exit.
Collapse
Affiliation(s)
- Jianfang Wang
- Centre de recherche, Centre hospitalier de l’Université de Montréal (CRCHUM), Hôpital Notre-Dame and Institut du cancer de Montréal, Montréal, Québec, Canada
| | - Myriam Beauchemin
- Centre de recherche, Centre hospitalier de l’Université de Montréal (CRCHUM), Hôpital Notre-Dame and Institut du cancer de Montréal, Montréal, Québec, Canada
| | - Richard Bertrand
- Centre de recherche, Centre hospitalier de l’Université de Montréal (CRCHUM), Hôpital Notre-Dame and Institut du cancer de Montréal, Montréal, Québec, Canada
- Département de médecine, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
38
|
Medová M, Aebersold DM, Blank-Liss W, Streit B, Medo M, Aebi S, Zimmer Y. MET Inhibition Results in DNA Breaks and Synergistically Sensitizes Tumor Cells to DNA-Damaging Agents Potentially by Breaching a Damage-Induced Checkpoint Arrest. Genes Cancer 2011; 1:1053-62. [PMID: 21779429 DOI: 10.1177/1947601910388030] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 09/21/2010] [Accepted: 09/26/2010] [Indexed: 12/19/2022] Open
Abstract
While recent studies implicate that signaling through the receptor tyrosine kinase MET protects cancer cells from DNA damage, molecular events linking MET to the DNA damage response machinery are largely unknown. Here, we studied the impact of MET inhibition by the small molecule PHA665752 on cytotoxicity induced by DNA-damaging agents. We demonstrate that PHA665752 reduces clonogenic survival of tumor cells with MET overexpression when combined with ionizing radiation and synergistically cooperates with ionizing radiation or adriamycin to induce apoptosis. In search of mechanisms underlying the observed synergism, we show that PHA665752 alone considerably increases γH2AX levels, indicating the accumulation of double-strand DNA breaks. In addition, PHA665752 treatment results in sustained high levels of γH2AX and phosphorylated ATM postirradiation, strengthening the assumption that MET inhibition attenuates postdamage DNA repair. PHA665752, alone or in combination with irradiation, leads also to a massive increase of γH2AX tyrosine phosphorylation and its subsequent interaction with the proapoptotic kinase JNK1. Finally, MET inhibition reduces activation of ATR, CHK1, and CDC25B and abrogates an associated DNA damage-induced S phase arrest. This indicates that MET inhibition compromises a critical damage-dependent checkpoint that may enable DNA-damaged cells to exit cell cycle arrest before repair is completed.
Collapse
Affiliation(s)
- Michaela Medová
- Department of Radiation Oncology, Inselspital, Berne, Switzerland
| | | | | | | | | | | | | |
Collapse
|
39
|
Coulonval K, Kooken H, Roger PP. Coupling of T161 and T14 phosphorylations protects cyclin B-CDK1 from premature activation. Mol Biol Cell 2011; 22:3971-85. [PMID: 21900495 PMCID: PMC3204060 DOI: 10.1091/mbc.e11-02-0136] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 08/19/2011] [Accepted: 09/01/2011] [Indexed: 01/26/2023] Open
Abstract
Mitosis is triggered by the abrupt dephosphorylation of inhibitory Y15 and T14 residues of cyclin B1-bound cyclin-dependent kinase (CDK)1 that is also phosphorylated at T161 in its activation loop. The sequence of events leading to the accumulation of fully phosphorylated cyclin B1-CDK1 complexes remains unclear. Two-dimensional gel electrophoresis allowed us to determine whether T14, Y15, and T161 phosphorylations occur on same CDK1 molecules and to characterize the physiological occurrence of their seven phosphorylation combinations. Intriguingly, in cyclin B1-CDK1, the activating T161 phosphorylation never occurred without the T14 phosphorylation. This strict association could not be uncoupled by a substantial reduction of T14 phosphorylation in response to Myt1 knockdown, suggesting some causal relationship. However, T14 phosphorylation was not directly required for T161 phosphorylation, because Myt1 knockdown did uncouple these phosphorylations when leptomycin B prevented cyclin B1-CDK1 complexes from accumulating in cytoplasm. The coupling mechanism therefore depended on unperturbed cyclin B1-CDK1 traffic. The unexpected observation that the activating phosphorylation of cyclin B1-CDK1 was tightly coupled to its T14 phosphorylation, but not Y15 phosphorylation, suggests a mechanism that prevents premature activation by constitutively active CDK-activating kinase. This explained the opposite effects of reduced expression of Myt1 and Wee1, with only the latter inducing catastrophic mitoses.
Collapse
Affiliation(s)
- Katia Coulonval
- Institute of Interdisciplinary Research (IRIBHM), Université Libre de Bruxelles, Campus Erasme, B-1070 Brussels, Belgium
| | - Hugues Kooken
- Institute of Interdisciplinary Research (IRIBHM), Université Libre de Bruxelles, Campus Erasme, B-1070 Brussels, Belgium
| | - Pierre P. Roger
- Institute of Interdisciplinary Research (IRIBHM), Université Libre de Bruxelles, Campus Erasme, B-1070 Brussels, Belgium
- WELBIO
| |
Collapse
|
40
|
Sørensen CS, Syljuåsen RG. Safeguarding genome integrity: the checkpoint kinases ATR, CHK1 and WEE1 restrain CDK activity during normal DNA replication. Nucleic Acids Res 2011; 40:477-86. [PMID: 21937510 PMCID: PMC3258124 DOI: 10.1093/nar/gkr697] [Citation(s) in RCA: 225] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Mechanisms that preserve genome integrity are highly important during the normal life cycle of human cells. Loss of genome protective mechanisms can lead to the development of diseases such as cancer. Checkpoint kinases function in the cellular surveillance pathways that help cells to cope with DNA damage. Importantly, the checkpoint kinases ATR, CHK1 and WEE1 are not only activated in response to exogenous DNA damaging agents, but are active during normal S phase progression. Here, we review recent evidence that these checkpoint kinases are critical to avoid deleterious DNA breakage during DNA replication in normal, unperturbed cell cycle. Possible mechanisms how loss of these checkpoint kinases may cause DNA damage in S phase are discussed. We propose that the majority of DNA damage is induced as a consequence of deregulated CDK activity that forces unscheduled initiation of DNA replication. This could generate structures that are cleaved by DNA endonucleases leading to the formation of DNA double-strand breaks. Finally, we discuss how these S phase effects may impact on our understanding of cancer development following disruption of these checkpoint kinases, as well as on the potential of these kinases as targets for cancer treatment.
Collapse
Affiliation(s)
- Claus Storgaard Sørensen
- Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark.
| | | |
Collapse
|
41
|
Lobjois V, Froment C, Braud E, Grimal F, Burlet-Schiltz O, Ducommun B, Bouche JP. Study of the docking-dependent PLK1 phosphorylation of the CDC25B phosphatase. Biochem Biophys Res Commun 2011; 410:87-90. [PMID: 21640712 DOI: 10.1016/j.bbrc.2011.05.110] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Accepted: 05/18/2011] [Indexed: 10/18/2022]
Abstract
CDC25 (A, B and C) phosphatases control cell cycle progression through the timely dephosphorylation and activation of cyclin-dependent kinases (CDK). At mitosis the CDC25B phosphatase activity is dependent on its phosphorylation by multiple kinases impinging on its localisation, stability and catalytic activity. Here we report that prior phosphorylation of CDC25B by CDK1 enhances its substrate properties for PLK1 in vitro, and we also show that phosphorylated S50 serves as a docking site for PLK1. Using a sophisticated strategy based on the sequential phosphorylation of CDC25B with (16)O and (18)O ATP prior to nanoLC-MS/MS analysis we identified 13 sites phosphorylated by PLK1. This study illustrates the complexity of the phosphorylation pattern and of the subsequent regulation of CDC25B activity.
Collapse
|
42
|
Golan A, Pick E, Tsvetkov L, Nadler Y, Kluger H, Stern DF. Centrosomal Chk2 in DNA damage responses and cell cycle progression. Cell Cycle 2011; 9:2647-56. [PMID: 20581449 DOI: 10.4161/cc.9.13.12121] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Two major control systems regulate early stages of mitosis: activation of Cdk1 and anaphase control through assembly and disassembly of the mitotic spindle. In parallel to cell cycle progression, centrosomal duplication is regulated through proteins including Nek2. Recent studies suggest that centrosome-localized Chk1 forestalls premature activation of centrosomal Cdc25b and Cdk1 for mitotic entry, whereas Chk2 binds centrosomes and arrests mitosis only after activation by ATM and ATR in response to DNA damage. Here, we show that Chk2 centrosomal binding does not require DNA damage, but varies according to cell cycle progression. These and other data suggest a model in which binding of Chk2 to the centrosome at multiple cell cycle junctures controls co-localization of Chk2 with other cell cycle and centrosomal regulators.
Collapse
Affiliation(s)
- Amnon Golan
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | | | | | | | | | | |
Collapse
|
43
|
Abstract
Mitosis is associated with profound changes in cell physiology and a spectacular surge in protein phosphorylation. To accomplish these, a remarkably large portion of the kinome is involved in the process. In the present review, we will focus on classic mitotic kinases, such as cyclin-dependent kinases, Polo-like kinases and Aurora kinases, as well as more recently characterized players such as NIMA (never in mitosis in Aspergillus nidulans)-related kinases, Greatwall and Haspin. Together, these kinases co-ordinate the proper timing and fidelity of processes including centrosomal functions, spindle assembly and microtubule-kinetochore attachment, as well as sister chromatid separation and cytokinesis. A recurrent theme of the mitotic kinase network is the prevalence of elaborated feedback loops that ensure bistable conditions. Sequential phosphorylation and priming phosphorylation on substrates are also frequently employed. Another important concept is the role of scaffolds, such as centrosomes for protein kinases during mitosis. Elucidating the entire repertoire of mitotic kinases, their functions, regulation and interactions is critical for our understanding of normal cell growth and in diseases such as cancers.
Collapse
|
44
|
CDC25B associates with a centrin 2-containing complex and is involved in maintaining centrosome integrity. Biol Cell 2011; 103:55-68. [PMID: 21091437 PMCID: PMC3025493 DOI: 10.1042/bc20100111] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background information. CDC25 (cell division cycle 25) phosphatases function as activators of CDK (cyclin-dependent kinase)–cyclin complexes to regulate progression through the CDC. We have recently identified a pool of CDC25B at the centrosome of interphase cells that plays a role in regulating centrosome numbers. Results. In the present study, we demonstrate that CDC25B forms a close association with Ctn (centrin) proteins at the centrosome. This interaction involves both N- and C-terminal regions of CDC25B and requires CDC25B binding to its CDK–cyclin substrates. However, the interaction is not dependent on the enzyme activity of CDC25B. Although CDC25B appears to bind indirectly to Ctn2, this association is pertinent to CDC25B localization at the centrosome. We further demonstrate that CDC25B plays a role in maintaining the overall integrity of the centrosome, by regulating the centrosome levels of multiple centrosome proteins, including that of Ctn2. Conclusions. Our results therefore suggest that CDC25B associates with a Ctn2-containing multiprotein complex in the cytoplasm, which targets it to the centrosome, where it plays a role in maintaining the centrosome levels of Ctn2 and a number of other centrosome components.
Collapse
|
45
|
Jullien D, Bugler B, Dozier C, Cazales M, Ducommun B. Identification of N-terminally truncated stable nuclear isoforms of CDC25B that are specifically involved in G2/M checkpoint recovery. Cancer Res 2011; 71:1968-77. [PMID: 21363925 DOI: 10.1158/0008-5472.can-10-2453] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
CDC25B phosphatases must activate cyclin B-CDK1 complexes to restart the cell cycle after an arrest in G2 phase caused by DNA damage. However, little is known about the precise mechanisms involved in this process, which may exert considerable impact on cancer susceptibility and therapeutic responses. Here we report the discovery of novel N-terminally truncated CDC25B isoforms, referred to as ΔN-CDC25B, with an exclusively nuclear and nonredundant function in cell cycle re-initiation after DNA damage. ΔN-CDC25B isoforms are expressed from a distinct promoter not involved in expression of canonical full-length isoforms. Remarkably, in contrast to the high lability and spatial dynamism of the full-length isoforms, ΔN-CDC25B isoforms are highly stable and exclusively nuclear, strongly suggesting the existence of two pools of CDC25B phosphatases in the cell that have functionally distinct properties. Using isoform-specific siRNA, we found that depleting full-length isoforms, but not ΔN-CDC25B isoforms, delays entry into mitosis. Thus, in an unperturbed cell cycle, the full-length isoforms are exclusively responsible for activating cyclin B-CDK1. Strikingly, in the late response to DNA damage, we found a CHK1-dependent shift in accumulation of CDC25B isoforms toward the ΔN-CDC25B species. Under this physiological stress condition, the ΔN-CDC25B isoform was found to play a crucial, nonredundant function in restarting the cell cycle after DNA damage-induced G2 phase arrest. Our findings reveal the existence of a previously unrecognized CDC25B isoform that operates specifically in the nucleus to reinitiate G2/M transition after DNA damage.
Collapse
|
46
|
Premature chromosome condensation induced by caffeine, 2-aminopurine, staurosporine and sodium metavanadate in S-phase arrested HeLa cells is associated with a decrease in Chk1 phosphorylation, formation of phospho-H2AX and minor cytoskeletal rearrangements. Histochem Cell Biol 2011; 135:263-80. [PMID: 21347609 PMCID: PMC3052479 DOI: 10.1007/s00418-011-0793-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2011] [Indexed: 10/25/2022]
Abstract
Here, we demonstrate that in HeLa cells, Ser317 of Chk1 undergoes phosphorylation in response to replication stress induced by hydroxyurea. We also demonstrate the existence of constitutive (interphase and mitotic) Chk1 kinase phosphorylation, the translocation of its phosphorylated form from the nucleus to cytoplasm in prometaphase as well as strong labeling of apoptotic nuclei with α-Chk1(S317) antibodies. Additionally, we show that caffeine, 2-aminopurine, staurosporine and sodium metavanadate can induce premature chromosome condensation (PCC) by the abrogation of the S-M checkpoint. Staurosporine appeared to be the most effective PCC inductor, and as in the case of the remaining inductors, the addition of hydroxyurea each time brought about an increase in the number of cells showing PCC symptoms (synergic effect). The forced premature mitosis was accompanied by an increasing index of double-strand breaks marked by the phosphorylation of histone H2AX on Ser139. Moreover, we found that the chemicals used brought about minor actin and tubulin network rearrangements that occurred following either replication stress or drug-induced cell cycle delay. At the same time, it was found that the extent of the cytoskeleton rearrangement did not hinder PCC in all its subperiods, i.e., from PCC-type prophase to PCC-type telophase.
Collapse
|
47
|
Astuti P, Boutros R, Ducommun B, Gabrielli B. Mitotic phosphorylation of Cdc25B Ser321 disrupts 14-3-3 binding to the high affinity Ser323 site. J Biol Chem 2010; 285:34364-70. [PMID: 20801879 DOI: 10.1074/jbc.m110.138412] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cdc25B is a key regulator of entry into mitosis, and its activity and localization are regulated by binding of the 14-3-3 dimer. There are three 14-3-3 binding sites on Cdc25B, with Ser(323) being the highest affinity binding and is highly homologous to the Ser(216) 14-3-3 binding site on Cdc25C. Loss of 14-3-3 binding to Ser(323) increases cyclin/Cdk substrate access to the catalytic site, thereby increasing its activity. It also affects the localization of Cdc25B. Thus, phosphorylation and 14-3-3 binding to this site is essential for down-regulating Cdc25B activity, blocking its mitosis promoting function. The question of how this inhibitory signal is relieved to allow Cdc25B activation and entry into mitosis is yet to be resolved. Here, we show that Ser(323) phosphorylation is maintained into mitosis, but phosphorylation of Ser(321) disrupts 14-3-3 binding to Ser(323), mimicking the effect of inhibiting Ser(323) phosphorylation on both Cdc25B activity and localization. The unphosphorylated Ser(321) appears to have a role in stabilizing 14-3-3 binding to Ser(323), and loss of the Ser hydroxyl group appears to be sufficient to significantly reduce 14-3-3 binding. A consequence of loss of 14-3-3 binding is dephosphorylation of Ser(323). Ser(321) is phosphorylated in mitosis by Cdk1. The mitotic phosphorylation of Ser(321) acts to maintain full activation of Cdc25B by disrupting 14-3-3 binding to Ser(323) and enhancing the dephosphorylation of Ser(323) to block 14-3-3 binding to this site.
Collapse
Affiliation(s)
- Puji Astuti
- University of Queensland Diamantina Institute, Princess Alexandra Hospital, Brisbane, Queensland 4102, Australia
| | | | | | | |
Collapse
|
48
|
Kaur S, Modi P, Srivastava V, Mudgal R, Tikoo S, Arora P, Mohanty D, Sengupta S. Chk1-dependent constitutive phosphorylation of BLM helicase at serine 646 decreases after DNA damage. Mol Cancer Res 2010; 8:1234-47. [PMID: 20719863 DOI: 10.1158/1541-7786.mcr-10-0233] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BLM helicase, the protein mutated in Bloom syndrome, is involved in signal transduction cascades after DNA damage. BLM is phosphorylated on multiple residues by different kinases either after stress induction or during mitosis. Here, we have provided evidence that both Chk1 and Chk2 phosphorylated the NH(2)-terminal 660 amino acids of BLM. An internal region within the DExH motif of BLM negatively regulated the Chk1/Chk2-dependent NH(2)-terminal phosphorylation event. Using in silico analysis involving the Chk1 structure and its known substrate specificity, we predicted that Chk1 should preferentially phosphorylate BLM on serine 646 (Ser(646)). The prediction was validated in vitro by phosphopeptide analysis on BLM mutants and in vivo by usage of a newly generated phosphospecific polyclonal antibody. We showed that the phosphorylation at Ser(646) on BLM was constitutive and decreased rapidly after exposure to DNA damage. This resulted in the diminished interaction of BLM with nucleolin and PML isoforms, and consequently decreased BLM accumulation in the nucleolus and PML nuclear bodies. Instead, BLM relocalized to the sites of DNA damage and bound with the damage sensor protein, Nbs1. Mutant analysis confirmed that the binding to nucleolin and PML isoforms required Ser(646) phosphorylation. These results indicated that Chk1-mediated phosphorylation on BLM at Ser(646) might be a determinant for regulating subnuclear localization and could act as a marker for the activation status of BLM in response to DNA damage.
Collapse
Affiliation(s)
- Sarabpreet Kaur
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Kasahara K, Goto H, Enomoto M, Tomono Y, Kiyono T, Inagaki M. 14-3-3gamma mediates Cdc25A proteolysis to block premature mitotic entry after DNA damage. EMBO J 2010; 29:2802-12. [PMID: 20639859 DOI: 10.1038/emboj.2010.157] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Accepted: 06/21/2010] [Indexed: 11/09/2022] Open
Abstract
14-3-3 proteins control various cellular processes, including cell cycle progression and DNA damage checkpoint. At the DNA damage checkpoint, some subtypes of 14-3-3 (beta and zeta isoforms in mammalian cells and Rad24 in fission yeast) bind to Ser345-phosphorylated Chk1 and promote its nuclear retention. Here, we report that 14-3-3gamma forms a complex with Chk1 phosphorylated at Ser296, but not at ATR sites (Ser317 and Ser345). Ser296 phosphorylation is catalysed by Chk1 itself after Chk1 phosphorylation by ATR, and then ATR sites are rapidly dephosphorylated on Ser296-phosphorylated Chk1. Although Ser345 phosphorylation is observed at nuclear DNA damage foci, it occurs more diffusely in the nucleus. The replacement of endogenous Chk1 with Chk1 mutated at Ser296 to Ala induces premature mitotic entry after ultraviolet irradiation, suggesting the importance of Ser296 phosphorylation in the DNA damage response. Although Ser296 phosphorylation induces the only marginal change in Chk1 catalytic activity, 14-3-3gamma mediates the interaction between Chk1 and Cdc25A. This ternary complex formation has an essential function in Cdc25A phosphorylation and degradation to block premature mitotic entry after DNA damage.
Collapse
Affiliation(s)
- Kousuke Kasahara
- Division of Biochemistry, Aichi Cancer Center Research Institute, Nagoya, Aichi, Japan
| | | | | | | | | | | |
Collapse
|
50
|
Lemaire M, Ducommun B, Nebreda AR. UV-induced downregulation of the CDC25B protein in human cells. FEBS Lett 2010; 584:1199-204. [DOI: 10.1016/j.febslet.2010.02.043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Revised: 02/11/2010] [Accepted: 02/17/2010] [Indexed: 10/19/2022]
|