1
|
Selarka K, Shravage BV. Illuminating intercellular autophagy: A comprehensive review of cell non-autonomous autophagy. Biochem Biophys Res Commun 2024; 716:150024. [PMID: 38701555 DOI: 10.1016/j.bbrc.2024.150024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 04/26/2024] [Indexed: 05/05/2024]
Abstract
Macro-autophagy (autophagy hereafter) is an evolutionarily conserved cellular process that has long been recognized as an intracellular mechanism for maintaining cellular homeostasis. It involves the formation of a membraned structure called the autophagosome, which carries cargo that includes toxic protein aggregates and dysfunctional organelles to the lysosome for degradation and recycling. Autophagy is primarily considered and studied as a cell-autonomous mechanism. However, recent studies have illuminated an underappreciated facet of autophagy, i.e., non-autonomously regulated autophagy. Non-autonomously regulated autophagy involves the degradation of autophagic components, including organelles, cargo, and signaling molecules, and is induced in neighboring cells by signals from primary adjacent or distant cells/tissues/organs. This review provides insight into the complex molecular mechanisms governing non-autonomously regulated autophagy, highlighting the dynamic interplay between cells within tissue/organ or distinct cell types in different tissues/organs. Emphasis is placed on modes of intercellular communication that include secreted molecules, including microRNAs, and their regulatory roles in orchestrating this phenomenon. Furthermore, we explore the multidimensional roles of non-autonomously regulated autophagy in various physiological contexts, spanning tissue development and aging, as well as its importance in diverse pathological conditions, including cancer and neurodegeneration. By studying the complexities of non-autonomously regulated autophagy, we hope to gain insights into the sophisticated intercellular dynamics within multicellular organisms, including mammals. These studies will uncover novel avenues for therapeutic intervention to modulate intercellular autophagic pathways in altered human physiology.
Collapse
Affiliation(s)
- Karan Selarka
- Developmental Biology Group, MACS-Agharkar Research Institute, Pune, India; Department of Biotechnology, Savitribai Phule Pune University, Pune, India
| | - Bhupendra V Shravage
- Developmental Biology Group, MACS-Agharkar Research Institute, Pune, India; Department of Biotechnology, Savitribai Phule Pune University, Pune, India; Department of Zoology, Savitribai Phule Pune University, Pune, India.
| |
Collapse
|
2
|
Banerjee S, Vernon S, Ruchti E, Limoni G, Jiao W, Asadzadeh J, Van Campenhoudt M, McCabe BD. Trio preserves motor synapses and prolongs motor ability during aging. Cell Rep 2024; 43:114256. [PMID: 38795343 DOI: 10.1016/j.celrep.2024.114256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 01/24/2024] [Accepted: 05/05/2024] [Indexed: 05/27/2024] Open
Abstract
The decline of motor ability is a hallmark feature of aging and is accompanied by degeneration of motor synaptic terminals. Consistent with this, Drosophila motor synapses undergo characteristic age-dependent structural fragmentation co-incident with diminishing motor ability. Here, we show that motor synapse levels of Trio, an evolutionarily conserved guanine nucleotide exchange factor (GEF), decline with age. We demonstrate that increasing Trio expression in adult Drosophila can abrogate age-dependent synaptic structural fragmentation, postpone the decline of motor ability, and maintain the capacity of motor synapses to sustain high-intensity neurotransmitter release. This preservative activity is conserved in transgenic human Trio, requires Trio Rac GEF function, and can also ameliorate synapse degeneration induced by depletion of miniature neurotransmission. Our results support a paradigm where the structural dissolution of motor synapses precedes and promotes motor behavioral diminishment and where intervening in this process can postpone the decline of motor function during aging.
Collapse
Affiliation(s)
- Soumya Banerjee
- Brain Mind Institute, EPFL - Swiss Federal Institute of Technology Lausanne, VD 1015 Lausanne, Switzerland
| | - Samuel Vernon
- Brain Mind Institute, EPFL - Swiss Federal Institute of Technology Lausanne, VD 1015 Lausanne, Switzerland
| | - Evelyne Ruchti
- Brain Mind Institute, EPFL - Swiss Federal Institute of Technology Lausanne, VD 1015 Lausanne, Switzerland
| | - Greta Limoni
- Brain Mind Institute, EPFL - Swiss Federal Institute of Technology Lausanne, VD 1015 Lausanne, Switzerland
| | - Wei Jiao
- Brain Mind Institute, EPFL - Swiss Federal Institute of Technology Lausanne, VD 1015 Lausanne, Switzerland
| | - Jamshid Asadzadeh
- Brain Mind Institute, EPFL - Swiss Federal Institute of Technology Lausanne, VD 1015 Lausanne, Switzerland
| | - Marine Van Campenhoudt
- Brain Mind Institute, EPFL - Swiss Federal Institute of Technology Lausanne, VD 1015 Lausanne, Switzerland
| | - Brian D McCabe
- Brain Mind Institute, EPFL - Swiss Federal Institute of Technology Lausanne, VD 1015 Lausanne, Switzerland.
| |
Collapse
|
3
|
Davis LA, Fogarty MJ, Brown A, Sieck GC. Structure and Function of the Mammalian Neuromuscular Junction. Compr Physiol 2022; 12:3731-3766. [PMID: 35950651 PMCID: PMC10461538 DOI: 10.1002/cphy.c210022] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The mammalian neuromuscular junction (NMJ) comprises a presynaptic terminal, a postsynaptic receptor region on the muscle fiber (endplate), and the perisynaptic (terminal) Schwann cell. As with any synapse, the purpose of the NMJ is to transmit signals from the nervous system to muscle fibers. This neural control of muscle fibers is organized as motor units, which display distinct structural and functional phenotypes including differences in pre- and postsynaptic elements of NMJs. Motor units vary considerably in the frequency of their activation (both motor neuron discharge rate and duration/duty cycle), force generation, and susceptibility to fatigue. For earlier and more frequently recruited motor units, the structure and function of the activated NMJs must have high fidelity to ensure consistent activation and continued contractile response to sustain vital motor behaviors (e.g., breathing and postural balance). Similarly, for higher force less frequent behaviors (e.g., coughing and jumping), the structure and function of recruited NMJs must ensure short-term reliable activation but not activation sustained for a prolonged period in which fatigue may occur. The NMJ is highly plastic, changing structurally and functionally throughout the life span from embryonic development to old age. The NMJ also changes under pathological conditions including acute and chronic disease. Such neuroplasticity often varies across motor unit types. © 2022 American Physiological Society. Compr Physiol 12:1-36, 2022.
Collapse
Affiliation(s)
- Leah A. Davis
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Matthew J. Fogarty
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Alyssa Brown
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Gary C. Sieck
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
4
|
Liprins in oncogenic signaling and cancer cell adhesion. Oncogene 2021; 40:6406-6416. [PMID: 34654889 PMCID: PMC8602034 DOI: 10.1038/s41388-021-02048-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/21/2021] [Accepted: 09/28/2021] [Indexed: 12/30/2022]
Abstract
Liprins are a multifunctional family of scaffold proteins, identified by their involvement in several important neuronal functions related to signaling and organization of synaptic structures. More recently, the knowledge on the liprin family has expanded from neuronal functions to processes relevant to cancer progression, including cell adhesion, cell motility, cancer cell invasion, and signaling. These proteins consist of regions, which by prediction are intrinsically disordered, and may be involved in the assembly of supramolecular structures relevant for their functions. This review summarizes the current understanding of the functions of liprins in different cellular processes, with special emphasis on liprins in tumor progression. The available data indicate that liprins may be potential biomarkers for cancer progression and may have therapeutic importance.
Collapse
|
5
|
Dong C, Li X, Yang J, Yuan D, Zhou Y, Zhang Y, Shi G, Zhang R, Liu J, Fu P, Sun M. PPFIBP1 induces glioma cell migration and invasion through FAK/Src/JNK signaling pathway. Cell Death Dis 2021; 12:827. [PMID: 34480020 PMCID: PMC8417031 DOI: 10.1038/s41419-021-04107-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 12/14/2022]
Abstract
Glioblastoma multiforme (GBM) is the most aggressive brain tumor, with a 5-year survival ratio <5%. Invasive growth is a major determinant of the poor prognosis in GBM. In this study, we demonstrate that high expression of PPFIA binding protein 1 (PPFIBP1) correlates with remarkable invasion and poor prognosis of GBM patients. Using scratch and transwell assay, we find that the invasion and migration of GBM cells are promoted by overexpression of PPFIBP1, while inhibited by knockdown of PPFIBP1. Then, we illustrate that overexpression of PPFIBP1 facilitates glioma cell infiltration and reduces survival in xenograft models. Next, RNA-Seq and GO enrichment analysis reveal that PPFIBP1 regulates differentially expressed gene clusters involved in the Wnt and adhesion-related signaling pathways. Furthermore, we demonstrate that PPFIBP1 activates focal adhesion kinase (FAK), Src, c-Jun N-terminal kinase (JNK), and c-Jun, thereby enhancing Matrix metalloproteinase (MMP)-2 expression probably through interacting with SRCIN1 (p140Cap). Finally, inhibition of phosphorylation of Src and FAK significantly reversed the augmentation of invasion and migration caused by PPFIBP1 overexpression in GBM cells. In conclusion, these findings uncover a novel mechanism of glioma invasion and identify PPFIBP1 as a potential therapeutic target of glioma.
Collapse
Affiliation(s)
- Caihua Dong
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
- Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Xinying Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Jiao Yang
- Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Detian Yuan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Yuanshuai Zhou
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
- Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Yina Zhang
- Neurological Department, Helios-Amper Clinic Dachau, Dachau, Germany
| | - Guohua Shi
- Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Ruobing Zhang
- Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Jianping Liu
- Integrated Cardio Metabolic Centre, Karolinska Institute, Huddinge, Sweden
| | - Peng Fu
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Minxuan Sun
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China.
- Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China.
| |
Collapse
|
6
|
Candalija A, Scior T, Rackwitz HR, Ruiz-Castelan JE, Martinez-Laguna Y, Aguilera J. Interaction between a Novel Oligopeptide Fragment of the Human Neurotrophin Receptor TrkB Ectodomain D5 and the C-Terminal Fragment of Tetanus Neurotoxin. Molecules 2021; 26:molecules26133988. [PMID: 34208805 PMCID: PMC8272241 DOI: 10.3390/molecules26133988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/20/2021] [Accepted: 05/26/2021] [Indexed: 11/16/2022] Open
Abstract
This article presents experimental evidence and computed molecular models of a potential interaction between receptor domain D5 of TrkB with the carboxyl-terminal domain of tetanus neurotoxin (Hc-TeNT). Computational simulations of a novel small cyclic oligopeptide are designed, synthesized, and tested for possible tetanus neurotoxin-D5 interaction. A hot spot of this protein-protein interaction is identified in analogy to the hitherto known crystal structures of the complex between neurotrophin and D5. Hc-TeNT activates the neurotrophin receptors, as well as its downstream signaling pathways, inducing neuroprotection in different stress cellular models. Based on these premises, we propose the Trk receptor family as potential proteic affinity receptors for TeNT. In vitro, Hc-TeNT binds to a synthetic TrkB-derived peptide and acts similar to an agonist ligand for TrkB, resulting in phosphorylation of the receptor. These properties are weakened by the mutagenesis of three residues of the predicted interaction region in Hc-TeNT. It also competes with Brain-derived neurotrophic factor, a native binder to human TrkB, for the binding to neural membranes, and for uptake in TrkB-positive vesicles. In addition, both molecules are located together in vivo at neuromuscular junctions and in motor neurons.
Collapse
Affiliation(s)
- Ana Candalija
- Molecular Biology Department, Institut de Neruociènces and Biochemistry, Medicine Faculty, Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain; (A.C.); (J.A.)
| | - Thomas Scior
- Faculty of Chemical Sciences, BUAP, Puebla 72000, Mexico; (J.E.R.-C.); (Y.M.-L.)
- Correspondence: or ; Tel.: +52-222-229-5500 (ext. 7529)
| | - Hans-Richard Rackwitz
- Peptide Specialities Laboratory, Im Neuenheimer Feld, Univerisity Campus, 69120 Heidelberg, Germany;
| | | | | | - José Aguilera
- Molecular Biology Department, Institut de Neruociènces and Biochemistry, Medicine Faculty, Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain; (A.C.); (J.A.)
- Center for Biomedical Research Network on Neurodegenerative Diseases (CIBERNED), 08193 Cerdanyola del Vallès, Spain
| |
Collapse
|
7
|
Lehmkuhl EM, Loganathan S, Alsop E, Blythe AD, Kovalik T, Mortimore NP, Barrameda D, Kueth C, Eck RJ, Siddegowda BB, Joardar A, Ball H, Macias ME, Bowser R, Van Keuren-Jensen K, Zarnescu DC. TDP-43 proteinopathy alters the ribosome association of multiple mRNAs including the glypican Dally-like protein (Dlp)/GPC6. Acta Neuropathol Commun 2021; 9:52. [PMID: 33762006 PMCID: PMC7992842 DOI: 10.1186/s40478-021-01148-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/06/2021] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a genetically heterogeneous neurodegenerative disease in which 97% of patients exhibit cytoplasmic aggregates containing the RNA binding protein TDP-43. Using tagged ribosome affinity purifications in Drosophila models of TDP-43 proteinopathy, we identified TDP-43 dependent translational alterations in motor neurons impacting the spliceosome, pentose phosphate and oxidative phosphorylation pathways. A subset of the mRNAs with altered ribosome association are also enriched in TDP-43 complexes suggesting that they may be direct targets. Among these, dlp mRNA, which encodes the glypican Dally like protein (Dlp)/GPC6, a wingless (Wg/Wnt) signaling regulator is insolubilized both in flies and patient tissues with TDP-43 pathology. While Dlp/GPC6 forms puncta in the Drosophila neuropil and ALS spinal cords, it is reduced at the neuromuscular synapse in flies suggesting compartment specific effects of TDP-43 proteinopathy. These findings together with genetic interaction data show that Dlp/GPC6 is a novel, physiologically relevant target of TDP-43 proteinopathy.
Collapse
Affiliation(s)
- Erik M. Lehmkuhl
- Department of Cellular and Molecular Biology, University of Arizona, 1007 E. Lowell St, LSS RM 548A, Tucson, AZ 85721 USA
| | - Suvithanandhini Loganathan
- Department of Cellular and Molecular Biology, University of Arizona, 1007 E. Lowell St, LSS RM 548A, Tucson, AZ 85721 USA
| | - Eric Alsop
- Translational Genomics Research Institute, 445 N 5th St, Phoenix, AZ 85004 USA
| | - Alexander D. Blythe
- Department of Cellular and Molecular Biology, University of Arizona, 1007 E. Lowell St, LSS RM 548A, Tucson, AZ 85721 USA
| | - Tina Kovalik
- Department of Neurobiology, Barrow Neurological Institute, 350 W Thomas Rd, Phoenix, AZ 85013 USA
| | - Nicholas P. Mortimore
- Department of Cellular and Molecular Biology, University of Arizona, 1007 E. Lowell St, LSS RM 548A, Tucson, AZ 85721 USA
| | - Dianne Barrameda
- Department of Cellular and Molecular Biology, University of Arizona, 1007 E. Lowell St, LSS RM 548A, Tucson, AZ 85721 USA
| | - Chuol Kueth
- Department of Cellular and Molecular Biology, University of Arizona, 1007 E. Lowell St, LSS RM 548A, Tucson, AZ 85721 USA
| | - Randall J. Eck
- Department of Cellular and Molecular Biology, University of Arizona, 1007 E. Lowell St, LSS RM 548A, Tucson, AZ 85721 USA
| | - Bhavani B. Siddegowda
- Department of Cellular and Molecular Biology, University of Arizona, 1007 E. Lowell St, LSS RM 548A, Tucson, AZ 85721 USA
| | - Archi Joardar
- Department of Cellular and Molecular Biology, University of Arizona, 1007 E. Lowell St, LSS RM 548A, Tucson, AZ 85721 USA
| | - Hannah Ball
- Department of Cellular and Molecular Biology, University of Arizona, 1007 E. Lowell St, LSS RM 548A, Tucson, AZ 85721 USA
| | - Maria E. Macias
- Department of Cellular and Molecular Biology, University of Arizona, 1007 E. Lowell St, LSS RM 548A, Tucson, AZ 85721 USA
| | - Robert Bowser
- Department of Neurobiology, Barrow Neurological Institute, 350 W Thomas Rd, Phoenix, AZ 85013 USA
| | | | - Daniela C. Zarnescu
- Department of Cellular and Molecular Biology, University of Arizona, 1007 E. Lowell St, LSS RM 548A, Tucson, AZ 85721 USA
- Department of Neuroscience, University of Arizona, 1040 4th St, Tucson, AZ 85721 USA
- Department of Neurology, University of Arizona, 1501 N Campbell Ave, Tucson, AZ 85724 USA
| |
Collapse
|
8
|
Xie X, Liang M, Yu C, Wei Z. Liprin-α-Mediated Assemblies and Their Roles in Synapse Formation. Front Cell Dev Biol 2021; 9:653381. [PMID: 33869211 PMCID: PMC8044993 DOI: 10.3389/fcell.2021.653381] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 02/25/2021] [Indexed: 01/20/2023] Open
Abstract
Brain's functions, such as memory and learning, rely on synapses that are highly specialized cellular junctions connecting neurons. Functional synapses orchestrate the assembly of ion channels, receptors, enzymes, and scaffold proteins in both pre- and post-synapse. Liprin-α proteins are master scaffolds in synapses and coordinate various synaptic proteins to assemble large protein complexes. The functions of liprin-αs in synapse formation have been largely uncovered by genetic studies in diverse model systems. Recently, emerging structural and biochemical studies on liprin-α proteins and their binding partners begin to unveil the molecular basis of the synaptic assembly. This review summarizes the recent structural findings on liprin-αs, proposes the assembly mechanism of liprin-α-mediated complexes, and discusses the liprin-α-organized assemblies in the regulation of synapse formation and function.
Collapse
Affiliation(s)
- Xingqiao Xie
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, China
| | - Mingfu Liang
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Cong Yu
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Shenzhen, China
| | - Zhiyi Wei
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
- Brain Research Center, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
9
|
Liang M, Jin G, Xie X, Zhang W, Li K, Niu F, Yu C, Wei Z. Oligomerized liprin-α promotes phase separation of ELKS for compartmentalization of presynaptic active zone proteins. Cell Rep 2021; 34:108901. [PMID: 33761347 DOI: 10.1016/j.celrep.2021.108901] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 02/02/2021] [Accepted: 03/03/2021] [Indexed: 01/09/2023] Open
Abstract
Synaptic scaffold proteins (e.g., liprin-α, ELKS, RIM, and RIM-BP) orchestrate ion channels, receptors, and enzymes at presynaptic terminals to form active zones for neurotransmitter release. The underlying mechanism of the active zone assembly remains elusive. Here, we report that liprin-α proteins have the potential to oligomerize through the N-terminal coiled-coil region. Our structural and biochemical characterizations reveal that a gain-of-function mutation promotes the self-assembly of the coiled coils in liprin-α2 by disrupting intramolecular interactions and promoting intermolecular interactions. By enabling multivalent interactions with ELKS proteins, the oligomerized coiled-coil region of liprin-α2 enhances the phase separation of the ELKS N-terminal segment. We further show that liprin-α2, by regulating the interplay between two phase separations of ELKS and RIM/RIM-BP, controls the protein distributions. These results imply that the complicated protein-protein interactions allow liprin-α to function with the active zone scaffolds and compartmentalize protein assemblies to achieve comprehensive functions in the active zone.
Collapse
Affiliation(s)
- Mingfu Liang
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Gaowei Jin
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Xingqiao Xie
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China; Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Wenchao Zhang
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Kaiyue Li
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Fengfeng Niu
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China; Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Cong Yu
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China; Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, and Shenzhen Key Laboratory of Cell Microenvironment, Shenzhen, Guangdong 518055, China.
| | - Zhiyi Wei
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China; Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China; Brain Research Center, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
| |
Collapse
|
10
|
Paskus JD, Herring BE, Roche KW. Kalirin and Trio: RhoGEFs in Synaptic Transmission, Plasticity, and Complex Brain Disorders. Trends Neurosci 2020; 43:505-518. [PMID: 32513570 DOI: 10.1016/j.tins.2020.05.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/15/2020] [Accepted: 05/05/2020] [Indexed: 02/07/2023]
Abstract
Changes in the actin cytoskeleton are a primary mechanism mediating the morphological and functional plasticity that underlies learning and memory. The synaptic Ras homologous (Rho) guanine nucleotide exchange factors (GEFs) Kalirin and Trio have emerged as central regulators of actin dynamics at the synapse. The increased attention surrounding Kalirin and Trio stems from the growing evidence for their roles in the etiology of a wide range of neurodevelopmental and neurodegenerative disorders. In this Review, we discuss recent findings revealing the unique and diverse functions of these paralog proteins in neurodevelopment, excitatory synaptic transmission, and plasticity. We additionally survey the growing literature implicating these proteins in various neurological disorders.
Collapse
Affiliation(s)
- Jeremiah D Paskus
- Receptor Biology Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, USA.
| | - Bruce E Herring
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Katherine W Roche
- Receptor Biology Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, USA.
| |
Collapse
|
11
|
Xie X, Luo L, Liang M, Zhang W, Zhang T, Yu C, Wei Z. Structural basis of liprin-α-promoted LAR-RPTP clustering for modulation of phosphatase activity. Nat Commun 2020; 11:169. [PMID: 31924785 PMCID: PMC6954185 DOI: 10.1038/s41467-019-13949-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 12/10/2019] [Indexed: 02/08/2023] Open
Abstract
Leukocyte common antigen-related receptor protein tyrosine phosphatases (LAR-RPTPs) are cell adhesion molecules involved in mediating neuronal development. The binding of LAR-RPTPs to extracellular ligands induces local clustering of LAR-RPTPs to regulate axon growth and synaptogenesis. LAR-RPTPs interact with synaptic liprin-α proteins via the two cytoplasmic phosphatase domains, D1 and D2. Here we solve the crystal structure of LAR_D1D2 in complex with the SAM repeats of liprin-α3, uncovering a conserved two-site binding mode. Cellular analysis shows that liprin-αs robustly promote clustering of LAR in cells by both the liprin-α/LAR interaction and the oligomerization of liprin-α. Structural analysis reveals a unique homophilic interaction of LAR via the catalytically active D1 domains. Disruption of the D1/D1 interaction diminishes the liprin-α-promoted LAR clustering and increases tyrosine dephosphorylation, demonstrating that the phosphatase activity of LAR is negatively regulated by forming clusters. Additionally, we find that the binding of LAR to liprin-α allosterically regulates the liprin-α/liprin-β interaction. Leukocyte common antigen-related receptor protein tyrosine phosphatases (LAR-RPTPs) mediate guided axon growth and synapse formation and liprin-α proteins are their intracellular binding partners. Here the authors present the crystal structure of the phosphatase domains from the LAR-RPTP family member LAR bound to the SAM repeats of liprin-α3 and show that liprin-α binding enhances LAR cluster formation and reduces LAR phosphatase activity in cells.
Collapse
Affiliation(s)
- Xingqiao Xie
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China.,Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Ling Luo
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Mingfu Liang
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Wenchao Zhang
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Ting Zhang
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China.,Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Cong Yu
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China.,Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, and Shenzhen Key Laboratory of Cell Microenvironment, Shenzhen, Guangdong, 518055, China
| | - Zhiyi Wei
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China. .,Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China.
| |
Collapse
|
12
|
Moser T, Grabner CP, Schmitz F. Sensory Processing at Ribbon Synapses in the Retina and the Cochlea. Physiol Rev 2020; 100:103-144. [DOI: 10.1152/physrev.00026.2018] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In recent years, sensory neuroscientists have made major efforts to dissect the structure and function of ribbon synapses which process sensory information in the eye and ear. This review aims to summarize our current understanding of two key aspects of ribbon synapses: 1) their mechanisms of exocytosis and endocytosis and 2) their molecular anatomy and physiology. Our comparison of ribbon synapses in the cochlea and the retina reveals convergent signaling mechanisms, as well as divergent strategies in different sensory systems.
Collapse
Affiliation(s)
- Tobias Moser
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany; Auditory Neuroscience Group, Max Planck Institute for Experimental Medicine, Göttingen, Germany; Synaptic Nanophysiology Group, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany; and Institute for Anatomy and Cell Biology, Department of Neuroanatomy, Medical School, Saarland University, Homburg, Germany
| | - Chad P. Grabner
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany; Auditory Neuroscience Group, Max Planck Institute for Experimental Medicine, Göttingen, Germany; Synaptic Nanophysiology Group, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany; and Institute for Anatomy and Cell Biology, Department of Neuroanatomy, Medical School, Saarland University, Homburg, Germany
| | - Frank Schmitz
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany; Auditory Neuroscience Group, Max Planck Institute for Experimental Medicine, Göttingen, Germany; Synaptic Nanophysiology Group, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany; and Institute for Anatomy and Cell Biology, Department of Neuroanatomy, Medical School, Saarland University, Homburg, Germany
| |
Collapse
|
13
|
Sexually dimorphic behavior, neuronal activity, and gene expression in Chd8-mutant mice. Nat Neurosci 2018; 21:1218-1228. [DOI: 10.1038/s41593-018-0208-z] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 06/21/2018] [Indexed: 12/31/2022]
|
14
|
Liprin-α1 modulates cancer cell signaling by transmembrane protein CD82 in adhesive membrane domains linked to cytoskeleton. Cell Commun Signal 2018; 16:41. [PMID: 30005669 PMCID: PMC6045882 DOI: 10.1186/s12964-018-0253-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 07/10/2018] [Indexed: 12/26/2022] Open
Abstract
Background PPFIA1 is located at the 11q13 region commonly amplified in cancer. The protein liprin-α1 encoded by PPF1A1 contributes to the adhesive and invasive structures of cytoskeletal elements and is located at the invadosomes in cancer cells. However, the precise mechanism of liprin-α1 function in cancer progression has remained elusive. Methods Invasion regulating activity of liprin-α1 was examined by analyzing the functions of squamous cell carcinoma of head and neck (HNSCC) cell lines in three-dimensional collagen I after RNAi mediated gene knockdown. Transcriptome profiling and Gene Set Enrichment Analysis from HNSCC and breast cancer cells were used to identify expression changes relevant to specific cellular localizations, biological processes and signaling pathways after PPFIA1 knockdown. The significance of the results was assessed by relevant statistical methods (Wald and Benjamini-Hochberg). Localization of proteins associated to liprin-α1 was studied by immunofluorescence in 2D and 3D conditions. The association of PPFIA1 amplification to HNSCC patient survival was explored using The Cancer Genome Atlas data. Results In this study, we show that liprin-α1 regulates biological processes related to membrane microdomains in breast carcinoma, as well as protein trafficking, cell-cell and cell-substrate contacts in HNSCC cell lines cultured in three-dimensional matrix. Importantly, we show that in all these cancer cells liprin-α1 knockdown leads to the upregulation of transmembrane protein CD82, which is a suppressor of metastasis in several solid tumors. Conclusions Our results provide novel information regarding the function of liprin-α1 in biological processes essential in cancer progression. The results reveal liprin-α1 as a novel regulator of CD82, linking liprin-α1 to the cancer cell invasion and metastasis pathways. Electronic supplementary material The online version of this article (10.1186/s12964-018-0253-y) contains supplementary material, which is available to authorized users.
Collapse
|
15
|
Maurizy C, Quinternet M, Abel Y, Verheggen C, Santo PE, Bourguet M, C F Paiva A, Bragantini B, Chagot ME, Robert MC, Abeza C, Fabre P, Fort P, Vandermoere F, M F Sousa P, Rain JC, Charpentier B, Cianférani S, Bandeiras TM, Pradet-Balade B, Manival X, Bertrand E. The RPAP3-Cterminal domain identifies R2TP-like quaternary chaperones. Nat Commun 2018; 9:2093. [PMID: 29844425 PMCID: PMC5974087 DOI: 10.1038/s41467-018-04431-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Accepted: 04/19/2018] [Indexed: 12/22/2022] Open
Abstract
R2TP is an HSP90 co-chaperone that assembles important macro-molecular machineries. It is composed of an RPAP3-PIH1D1 heterodimer, which binds the two essential AAA+ATPases RUVBL1/RUVBL2. Here, we resolve the structure of the conserved C-terminal domain of RPAP3, and we show that it directly binds RUVBL1/RUVBL2 hexamers. The human genome encodes two other proteins bearing RPAP3-C-terminal-like domains and three containing PIH-like domains. Systematic interaction analyses show that one RPAP3-like protein, SPAG1, binds PIH1D2 and RUVBL1/2 to form an R2TP-like complex termed R2SP. This co-chaperone is enriched in testis and among 68 of the potential clients identified, some are expressed in testis and others are ubiquitous. One substrate is liprin-α2, which organizes large signaling complexes. Remarkably, R2SP is required for liprin-α2 expression and for the assembly of liprin-α2 complexes, indicating that R2SP functions in quaternary protein folding. Effects are stronger at 32 °C, suggesting that R2SP could help compensating the lower temperate of testis. R2TP is an HSP90 co-chaperone composed of an RPAP3-PIH1D1 heterodimer, which binds two essential AAA+ ATPases RUVBL1/RUVBL2. Here authors use a structural approach to study RPAP3 and find an RPAP3-like protein (SPAG1) which also forms a co-chaperone complex with PIH1D2 and RUVBL1/2 enriched in testis.
Collapse
Affiliation(s)
- Chloé Maurizy
- IGMM, CNRS, Université de Montpellier, Montpellier, 34293, France.,Equipe labélisée Ligue Nationale Contre le Cancer, 34293, Montpellier, France
| | - Marc Quinternet
- CNRS, INSERM, IBSLOR, Université de Lorraine, Nancy, F-54000, France
| | - Yoann Abel
- IGMM, CNRS, Université de Montpellier, Montpellier, 34293, France.,Equipe labélisée Ligue Nationale Contre le Cancer, 34293, Montpellier, France
| | - Céline Verheggen
- IGMM, CNRS, Université de Montpellier, Montpellier, 34293, France.,Equipe labélisée Ligue Nationale Contre le Cancer, 34293, Montpellier, France
| | - Paulo E Santo
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, Oeiras, 2781-901, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, 2780-157, Portugal
| | - Maxime Bourguet
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg, 67000, France
| | - Ana C F Paiva
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, Oeiras, 2781-901, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, 2780-157, Portugal
| | | | | | - Marie-Cécile Robert
- IGMM, CNRS, Université de Montpellier, Montpellier, 34293, France.,Equipe labélisée Ligue Nationale Contre le Cancer, 34293, Montpellier, France
| | - Claire Abeza
- IGMM, CNRS, Université de Montpellier, Montpellier, 34293, France.,Equipe labélisée Ligue Nationale Contre le Cancer, 34293, Montpellier, France
| | - Philippe Fabre
- CNRS, IMoPA, Université de Lorraine, Nancy, F-54000, France
| | - Philippe Fort
- CRBM, University of Montpellier, CNRS, 1919 Route de Mende, Montpellier, 34090, France
| | | | - Pedro M F Sousa
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, Oeiras, 2781-901, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, 2780-157, Portugal
| | | | | | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg, 67000, France
| | - Tiago M Bandeiras
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, Oeiras, 2781-901, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, 2780-157, Portugal
| | | | - Xavier Manival
- CNRS, IMoPA, Université de Lorraine, Nancy, F-54000, France.
| | - Edouard Bertrand
- IGMM, CNRS, Université de Montpellier, Montpellier, 34293, France. .,Equipe labélisée Ligue Nationale Contre le Cancer, 34293, Montpellier, France.
| |
Collapse
|
16
|
Lie E, Li Y, Kim R, Kim E. SALM/Lrfn Family Synaptic Adhesion Molecules. Front Mol Neurosci 2018; 11:105. [PMID: 29674953 PMCID: PMC5895706 DOI: 10.3389/fnmol.2018.00105] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 03/19/2018] [Indexed: 12/31/2022] Open
Abstract
Synaptic adhesion-like molecules (SALMs) are a family of cell adhesion molecules involved in regulating neuronal and synapse development that have also been implicated in diverse brain dysfunctions, including autism spectrum disorders (ASDs). SALMs, also known as leucine-rich repeat (LRR) and fibronectin III domain-containing (LRFN) proteins, were originally identified as a group of novel adhesion-like molecules that contain LRRs in the extracellular region as well as a PDZ domain-binding tail that couples to PSD-95, an abundant excitatory postsynaptic scaffolding protein. While studies over the last decade have steadily explored the basic properties and synaptic and neuronal functions of SALMs, a number of recent studies have provided novel insights into molecular, structural, functional and clinical aspects of SALMs. Here we summarize these findings and discuss how SALMs act in concert with other synaptic proteins to regulate synapse development and function.
Collapse
Affiliation(s)
- Eunkyung Lie
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, South Korea
| | - Yan Li
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, South Korea
| | - Ryunhee Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Eunjoon Kim
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, South Korea.,Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| |
Collapse
|
17
|
Hamada S, Ohtsuka T. CAST: Its molecular structure and phosphorylation-dependent regulation of presynaptic plasticity. Neurosci Res 2018; 127:25-32. [DOI: 10.1016/j.neures.2017.12.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 12/05/2017] [Accepted: 12/06/2017] [Indexed: 11/16/2022]
|
18
|
Deguchi Y, Harada M, Shinohara R, Lazarus M, Cherasse Y, Urade Y, Yamada D, Sekiguchi M, Watanabe D, Furuyashiki T, Narumiya S. mDia and ROCK Mediate Actin-Dependent Presynaptic Remodeling Regulating Synaptic Efficacy and Anxiety. Cell Rep 2017; 17:2405-2417. [PMID: 27880913 DOI: 10.1016/j.celrep.2016.10.088] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 09/26/2016] [Accepted: 10/28/2016] [Indexed: 01/02/2023] Open
Abstract
Here, we show neuronal inactivation-induced presynaptic remodeling and involvement of the mammalian homolog of Diaphanous (mDia) and Rho-associated coiled-coil-containing kinase (ROCK), Rho-regulated modulators of actin and myosin, in this process. We find that social isolation induces inactivation of nucleus accumbens (NAc) neurons associated with elevated anxiety-like behavior, and that mDia in NAc neurons is essential in this process. Upon inactivation of cultured neurons, mDia induces circumferential actin filaments around the edge of the synaptic cleft, which contract the presynaptic terminals in a ROCK-dependent manner. Social isolation induces similar mDia-dependent presynaptic contraction at GABAergic synapses from NAc neurons in the ventral tegmental area (VTA) associated with reduced synaptic efficacy. Optogenetic stimulation of NAc neurons rescues the anxiety phenotype, and injection of a specific ROCK inhibitor, Y-27632, into the VTA reverses both presynaptic contraction and the behavioral phenotype. mDia-ROCK signaling thus mediates actin-dependent presynaptic remodeling in inactivated NAc neurons, which underlies synaptic plasticity in emotional behavioral responses.
Collapse
Affiliation(s)
- Yuichi Deguchi
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan.
| | - Masaya Harada
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Ryota Shinohara
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Michael Lazarus
- International Institute for Integrative Sleep Medicine, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Yoan Cherasse
- International Institute for Integrative Sleep Medicine, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Yoshihiro Urade
- International Institute for Integrative Sleep Medicine, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Daisuke Yamada
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo 187-8502, Japan
| | - Masayuki Sekiguchi
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo 187-8502, Japan
| | - Dai Watanabe
- Department of Biological Sciences, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| | - Tomoyuki Furuyashiki
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Shuh Narumiya
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan.
| |
Collapse
|
19
|
Reynolds-Peterson CE, Zhao N, Xu J, Serman TM, Xu J, Selleck SB. Heparan sulfate proteoglycans regulate autophagy in Drosophila. Autophagy 2017; 13:1262-1279. [PMID: 28402693 PMCID: PMC5584867 DOI: 10.1080/15548627.2017.1304867] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 02/22/2017] [Accepted: 03/06/2017] [Indexed: 12/12/2022] Open
Abstract
Heparan sulfate-modified proteoglycans (HSPGs) are important regulators of signaling and molecular recognition at the cell surface and in the extracellular space. Disruption of HSPG core proteins, HS-synthesis, or HS-degradation can have profound effects on growth, patterning, and cell survival. The Drosophila neuromuscular junction provides a tractable model for understanding the activities of HSPGs at a synapse that displays developmental and activity-dependent plasticity. Muscle cell-specific knockdown of HS biosynthesis disrupted the organization of a specialized postsynaptic membrane, the subsynaptic reticulum (SSR), and affected the number and morphology of mitochondria. We provide evidence that these changes result from a dysregulation of macroautophagy (hereafter referred to as autophagy). Cellular and molecular markers of autophagy are all consistent with an increase in the levels of autophagy in the absence of normal HS-chain biosynthesis and modification. HS production is also required for normal levels of autophagy in the fat body, the central energy storage and nutritional sensing organ in Drosophila. Genetic mosaic analysis indicates that HS-dependent regulation of autophagy occurs non-cell autonomously, consistent with HSPGs influencing this cellular process via signaling in the extracellular space. These findings demonstrate that HS biosynthesis has important regulatory effects on autophagy and that autophagy is critical for normal assembly of postsynaptic membrane specializations.
Collapse
Affiliation(s)
- Claire E. Reynolds-Peterson
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - Na Zhao
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - Jie Xu
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - Taryn M. Serman
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - Jielin Xu
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - Scott B. Selleck
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
20
|
Chen H, Li H, Wang D. Graphene Oxide Dysregulates Neuroligin/NLG-1-Mediated Molecular Signaling in Interneurons in Caenorhabditis elegans. Sci Rep 2017; 7:41655. [PMID: 28128356 PMCID: PMC5269675 DOI: 10.1038/srep41655] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 12/22/2016] [Indexed: 12/03/2022] Open
Abstract
Graphene oxide (GO) can be potentially used in many medical and industrial fields. Using assay system of Caenorhabditis elegans, we identified the NLG-1/Neuroligin-mediated neuronal signaling dysregulated by GO exposure. In nematodes, GO exposure significantly decreased the expression of NLG-1, a postsynaptic cell adhesion protein. Loss-of-function mutation of nlg-1 gene resulted in a susceptible property of nematodes to GO toxicity. Rescue experiments suggested that NLG-1 could act in AIY interneurons to regulate the response to GO exposure. In the AIY interneurons, PKC-1, a serine/threonine protein kinase C (PKC) protein, was identified as the downstream target for NLG-1 in the regulation of response to GO exposure. LIN-45, a Raf protein in ERK signaling pathway, was further identified as the downstream target for PKC-1 in the regulation of response to GO exposure. Therefore, GO may dysregulate NLG-1-mediated molecular signaling in the interneurons, and a neuronal signaling cascade of NLG-1-PKC-1-LIN-45 was raised to be required for the control of response to GO exposure. More importantly, intestinal RNAi knockdown of daf-16 gene encoding a FOXO transcriptional factor in insulin signaling pathway suppressed the resistant property of nematodes overexpressing NLG-1 to GO toxicity, suggesting the possible link between neuronal NLG-1 signaling and intestinal insulin signaling in the regulation of response to GO exposure.
Collapse
Affiliation(s)
- He Chen
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
| | - Huirong Li
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
| | - Dayong Wang
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
| |
Collapse
|
21
|
Oliva C, Hassan BA. Receptor Tyrosine Kinases and Phosphatases in Neuronal Wiring: Insights From Drosophila. Curr Top Dev Biol 2016; 123:399-432. [PMID: 28236973 DOI: 10.1016/bs.ctdb.2016.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Tyrosine phosphorylation is at the crossroads of many signaling pathways. Brain wiring is not an exception, and several receptor tyrosine kinases (RTKs) and tyrosine receptor phosphates (RPTPs) have been involved in this process. Considerable work has been done on RTKs, and for many of them, detailed molecular mechanisms and functions in several systems have been characterized. In contrast, RPTPs have been studied considerably less and little is known about their ligands and substrates. In both families, we find redundancy between different members to accomplish particular wiring patterns. Strikingly, some RTKs and RPTPs have lost their catalytic activity during evolution, but not their importance in biological processes. In this regard, we have to keep in mind that these proteins have multiple domains and some of their functions are independent of tyrosine phosphorylation/dephosphorylation. Since RTKs and RPTPs are enzymes involved not only in early stages of axon and dendrite pathfinding but also in synapse formation and physiology, they have a potential as drug targets. Drosophila has been a key model organism in the search of a better understanding of brain wiring, and its sophisticated toolbox is very suitable for studying the function of genes with pleiotropic functions such as RTKs and RPTPs, from wiring to synaptic formation and function. In these review, we mainly cover findings from this model organism and complement them with discoveries in vertebrate systems.
Collapse
Affiliation(s)
- Carlos Oliva
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad of Chile, Santiago, Chile.
| | - Bassem A Hassan
- Sorbonne Universités, UPMC Univ Paris 06, Inserm, CNRS, AP-HP, Institut du Cerveau et la Moelle (ICM)-Hôpital Pitié-Salpêtrière, Boulevard de l'Hôpital, Paris, France.
| |
Collapse
|
22
|
Naito Y, Lee AK, Takahashi H. Emerging roles of the neurotrophin receptor TrkC in synapse organization. Neurosci Res 2016; 116:10-17. [PMID: 27697534 DOI: 10.1016/j.neures.2016.09.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 09/18/2016] [Accepted: 09/20/2016] [Indexed: 10/20/2022]
Abstract
Tropomyosin-receptor-kinase (Trk) receptors have been extensively studied for their roles in kinase-dependent signaling cascades in nervous system development. Synapse organization is coordinated by trans-synaptic interactions of various cell adhesion proteins, a representative example of which is the neurexin-neuroligin complex. Recently, a novel role for TrkC as a synapse organizing protein has been established. Post-synaptic TrkC binds to pre-synaptic type-IIa receptor-type protein tyrosine phosphatase sigma (PTPσ). TrkC-PTPσ specifically induces excitatory synapses in a kinase domain-independent manner. TrkC has distinct extracellular domains for PTPσ- and NT-3-binding and thus may bind both ligands simultaneously. Indeed, NT-3 enhances the TrkC-PTPσ interaction, thus facilitating synapse induction at the pre-synaptic side and increasing pre-synaptic vesicle recycling in a kinase-independent fashion. A crystal structure study has revealed the detailed structure of the TrkC-PTPσ complex as well as competitive modulation of TrkC-mediated synaptogenesis by heparan sulfate proteoglycans (HSPGs), which bind the same domain of TrkC as PTPσ. Thus, there is strong evidence supporting a role for the TrkC-PTPσ complex in mechanisms underlying the fine turning of neural connectivity. Furthermore, disruption of the TrkC-PTPσ complex may be the underlying cause of certain psychiatric disorders caused by mutations in the gene encoding TrkC (NTRK3), supporting its role in cognitive functions.
Collapse
Affiliation(s)
- Yusuke Naito
- Synapse Development and Plasticity, Institut de Recherches Cliniques de Montréal (IRCM), Montreal, Quebec H2W 1R7, Canada; Integrated Program in Neuroscience, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Alfred Kihoon Lee
- Synapse Development and Plasticity, Institut de Recherches Cliniques de Montréal (IRCM), Montreal, Quebec H2W 1R7, Canada; Integrated Program in Neuroscience, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Hideto Takahashi
- Synapse Development and Plasticity, Institut de Recherches Cliniques de Montréal (IRCM), Montreal, Quebec H2W 1R7, Canada; Integrated Program in Neuroscience, McGill University, Montreal, Quebec H3A 2B4, Canada; Department of Medicine, Université de Montréal, Montreal, Quebec H3T 1J4, Canada; Division of Experimental Medicine, McGill University, Montreal, Quebec H3A 1A3, Canada.
| |
Collapse
|
23
|
Choi Y, Nam J, Whitcomb DJ, Song YS, Kim D, Jeon S, Um JW, Lee SG, Woo J, Kwon SK, Li Y, Mah W, Kim HM, Ko J, Cho K, Kim E. SALM5 trans-synaptically interacts with LAR-RPTPs in a splicing-dependent manner to regulate synapse development. Sci Rep 2016; 6:26676. [PMID: 27225731 PMCID: PMC4881023 DOI: 10.1038/srep26676] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 05/04/2016] [Indexed: 11/08/2022] Open
Abstract
Synaptogenic adhesion molecules play critical roles in synapse formation. SALM5/Lrfn5, a SALM/Lrfn family adhesion molecule implicated in autism spectrum disorders (ASDs) and schizophrenia, induces presynaptic differentiation in contacting axons, but its presynaptic ligand remains unknown. We found that SALM5 interacts with the Ig domains of LAR family receptor protein tyrosine phosphatases (LAR-RPTPs; LAR, PTPδ, and PTPσ). These interactions are strongly inhibited by the splice insert B in the Ig domain region of LAR-RPTPs, and mediate SALM5-dependent presynaptic differentiation in contacting axons. In addition, SALM5 regulates AMPA receptor-mediated synaptic transmission through mechanisms involving the interaction of postsynaptic SALM5 with presynaptic LAR-RPTPs. These results suggest that postsynaptic SALM5 promotes synapse development by trans-synaptically interacting with presynaptic LAR-RPTPs and is important for the regulation of excitatory synaptic strength.
Collapse
Affiliation(s)
- Yeonsoo Choi
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon 305-701, Korea
| | - Jungyong Nam
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon 305-701, Korea
| | - Daniel J. Whitcomb
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, School of Clinical Sciences, Faculty of Health Sciences, University of Bristol, Whitson Street, Bristol BS1 3NY, United Kingdom
| | - Yoo Sung Song
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Gyeonggi-do, 463–707, Korea
| | - Doyoun Kim
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon 305-701, Korea
| | - Sangmin Jeon
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Korea
| | - Ji Won Um
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Korea
- Department of Physiology and BK21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Seong-Gyu Lee
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon 305-701, Korea
| | - Jooyeon Woo
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon 305-701, Korea
| | - Seok-Kyu Kwon
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon 305-701, Korea
| | - Yan Li
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon 305-701, Korea
| | - Won Mah
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, Korea
| | - Ho Min Kim
- Graduate School of Medical Science and Engineering, KAIST, Daejeon 305-701, Korea
| | - Jaewon Ko
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Korea
| | - Kwangwook Cho
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, School of Clinical Sciences, Faculty of Health Sciences, University of Bristol, Whitson Street, Bristol BS1 3NY, United Kingdom
- Centre for Synaptic Plasticity, University of Bristol, Bristol BS1 3NY, United Kingdom
| | - Eunjoon Kim
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon 305-701, Korea
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon 305-701, Korea
| |
Collapse
|
24
|
Liprin-α1 is a regulator of vimentin intermediate filament network in the cancer cell adhesion machinery. Sci Rep 2016; 6:24486. [PMID: 27075696 PMCID: PMC4830931 DOI: 10.1038/srep24486] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 03/30/2016] [Indexed: 12/13/2022] Open
Abstract
PPFIA1 is located at the 11q13 region, which is one of the most commonly amplified regions in several epithelial cancers including head and neck squamous cell carcinoma and breast carcinoma. Considering the location of PPFIA1 in this amplicon, we examined whether protein encoded by PPFIA1, liprin-α1, possesses oncogenic properties in relevant carcinoma cell lines. Our results indicate that liprin-α1 localizes to different adhesion and cytoskeletal structures to regulate vimentin intermediate filament network, thereby altering the invasion and growth properties of the cancer cells. In non-invasive cells liprin-α1 promotes expansive growth behavior with limited invasive capacity, whereas in invasive cells liprin-α1 has significant impact on mesenchymal cancer cell invasion in three-dimensional collagen. Current results identify liprin-α1 as a novel regulator of the tumor cell intermediate filaments with differential oncogenic properties in actively proliferating or motile cells.
Collapse
|
25
|
Rummel A. Two Feet on the Membrane: Uptake of Clostridial Neurotoxins. Curr Top Microbiol Immunol 2016; 406:1-37. [PMID: 27921176 DOI: 10.1007/82_2016_48] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
The extraordinary potency of botulinum neurotoxins (BoNT) and tetanus neurotoxin (TeNT) is mediated by their high neurospecificity, targeting peripheral cholinergic motoneurons leading to flaccid and spastic paralysis, respectively, and successive respiratory failure. Complex polysialo gangliosides accumulate BoNT and TeNT on the plasma membrane. The ganglioside binding in BoNT/A, B, E, F, G, and TeNT occurs via a conserved ganglioside-binding pocket within the most carboxyl-terminal 25 kDa domain HCC, whereas BoNT/C, DC, and D display here two different ganglioside binding sites. This enrichment step facilitates subsequent binding of BoNT/A, B, DC, D, E, F, and G to the intraluminal domains of the synaptic vesicle glycoprotein 2 (SV2) isoforms A-C and synaptotagmin-I/-II, respectively. Whereas an induced α-helical 20-mer Syt peptide binds via side chain interactions to the tip of the HCC domain of BoNT/B, DC and G, the preexisting, quadrilateral β-sheet helix of SV2C-LD4 binds the clinically most relevant serotype BoNT/A mainly through backbone-backbone interactions at the interface of HCC and HCN. In addition, the conserved, complex N559-glycan branch of SV2C establishes extensive interactions with BoNT/A resulting in delayed dissociation providing BoNT/A more time for endocytosis into synaptic vesicles. An analogous interaction occurs between SV2A/B and BoNT/E. Altogether, the nature of BoNT-SV2 recognition clearly differs from BoNT-Syt. Subsequently, the synaptic vesicle is recycled and the bound neurotoxin is endocytosed. Acidification of the vesicle lumen triggers membrane insertion of the translocation domain, pore formation, and finally translocation of the enzymatically active light chain into the neuronal cytosol to halt release of neurotransmitters.
Collapse
Affiliation(s)
- Andreas Rummel
- Institut Für Toxikologie, Medizinische Hochschule Hannover, 30623, Hannover, Germany.
| |
Collapse
|
26
|
Splicing-Dependent Trans-synaptic SALM3-LAR-RPTP Interactions Regulate Excitatory Synapse Development and Locomotion. Cell Rep 2015; 12:1618-30. [PMID: 26321637 PMCID: PMC4578660 DOI: 10.1016/j.celrep.2015.08.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 06/10/2015] [Accepted: 07/31/2015] [Indexed: 12/02/2022] Open
Abstract
Synaptic adhesion molecules regulate diverse aspects of synapse development and plasticity. SALM3 is a PSD-95-interacting synaptic adhesion molecule known to induce presynaptic differentiation in contacting axons, but little is known about its presynaptic receptors and in vivo functions. Here, we identify an interaction between SALM3 and LAR family receptor protein tyrosine phosphatases (LAR-RPTPs) that requires the mini-exon B splice insert in LAR-RPTPs. In addition, SALM3-dependent presynaptic differentiation requires all three types of LAR-RPTPs. SALM3 mutant (Salm3−/−) mice display markedly reduced excitatory synapse number but normal synaptic plasticity in the hippocampal CA1 region. Salm3−/− mice exhibit hypoactivity in both novel and familiar environments but perform normally in learning and memory tests administered. These results suggest that SALM3 regulates excitatory synapse development and locomotion behavior.
Collapse
|
27
|
Siebert M, Böhme MA, Driller JH, Babikir H, Mampell MM, Rey U, Ramesh N, Matkovic T, Holton N, Reddy-Alla S, Göttfert F, Kamin D, Quentin C, Klinedinst S, Andlauer TF, Hell SW, Collins CA, Wahl MC, Loll B, Sigrist SJ. A high affinity RIM-binding protein/Aplip1 interaction prevents the formation of ectopic axonal active zones. eLife 2015; 4. [PMID: 26274777 PMCID: PMC4536467 DOI: 10.7554/elife.06935] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 07/24/2015] [Indexed: 12/17/2022] Open
Abstract
Synaptic vesicles (SVs) fuse at active zones (AZs) covered by a protein scaffold, at Drosophila synapses comprised of ELKS family member Bruchpilot (BRP) and RIM-binding protein (RBP). We here demonstrate axonal co-transport of BRP and RBP using intravital live imaging, with both proteins co-accumulating in axonal aggregates of several transport mutants. RBP, via its C-terminal Src-homology 3 (SH3) domains, binds Aplip1/JIP1, a transport adaptor involved in kinesin-dependent SV transport. We show in atomic detail that RBP C-terminal SH3 domains bind a proline-rich (PxxP) motif of Aplip1/JIP1 with submicromolar affinity. Pointmutating this PxxP motif provoked formation of ectopic AZ-like structures at axonal membranes. Direct interactions between AZ proteins and transport adaptors seem to provide complex avidity and shield synaptic interaction surfaces of pre-assembled scaffold protein transport complexes, thus, favouring physiological synaptic AZ assembly over premature assembly at axonal membranes. DOI:http://dx.doi.org/10.7554/eLife.06935.001 To pass on information, the neurons that make up the nervous system connect at structures known as synapses. Chemical messengers called neurotransmitters are released from one neuron, and travel across the synapse to trigger a response in the neighbouring cell. The formation of new synapses plays an important role in learning and memory, but many aspects of this process are not well understood. In a specific region of the synapse called the active zone, a scaffold of proteins helps to release the neurotransmitters. These proteins are made in the cell body of the neuron, and are then transported to the end of the long, thin axons that protrude from the cell body. This presents a challenge for the cell, because the components of the active zone scaffold must be correctly targeted to the synapse at the end of the axon, ensuring the active zone scaffold assembles only at its proper location. Siebert, Böhme et al. studied how some of the proteins that are found in the active zone scaffold of the fruit fly Drosophila are transported along axons. Labelling the proteins with fluorescent markers allowed their movement to be examined under a microscope in living Drosophila larvae. The results showed that two of the proteins—known as BRP and RBP—are transported along the axons together. Further investigation revealed that a transport adaptor protein called Aplip1, which binds to RBP, is required for this movement. Siebert, Böhme et al. established the structure of the part of RBP where this interaction occurs, and found that mutating this region causes premature active zone scaffold assembly in the axonal part of the neuron. The interaction between RBP and Aplip1 is very strong, and this helps to prevent the scaffold assembling before it has reached the correct part of the neuron. Exactly how the transport adaptor and active zone protein are separated once they reach their final destination (the synapse) remains to be discovered. DOI:http://dx.doi.org/10.7554/eLife.06935.002
Collapse
Affiliation(s)
- Matthias Siebert
- Institute for Biology/Genetics, Freie Universität Berlin, Berlin, Germany
| | - Mathias A Böhme
- Institute for Biology/Genetics, Freie Universität Berlin, Berlin, Germany
| | - Jan H Driller
- Institute of Chemistry and Biochemisty/Structural Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Husam Babikir
- Institute for Biology/Genetics, Freie Universität Berlin, Berlin, Germany
| | - Malou M Mampell
- Institute for Biology/Genetics, Freie Universität Berlin, Berlin, Germany
| | - Ulises Rey
- Institute for Biology/Genetics, Freie Universität Berlin, Berlin, Germany
| | - Niraja Ramesh
- Institute for Biology/Genetics, Freie Universität Berlin, Berlin, Germany
| | - Tanja Matkovic
- Institute for Biology/Genetics, Freie Universität Berlin, Berlin, Germany
| | - Nicole Holton
- Institute of Chemistry and Biochemisty/Structural Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Suneel Reddy-Alla
- Institute for Biology/Genetics, Freie Universität Berlin, Berlin, Germany
| | - Fabian Göttfert
- Department of Nanobiophotonics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Dirk Kamin
- Department of Nanobiophotonics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Christine Quentin
- Institute for Biology/Genetics, Freie Universität Berlin, Berlin, Germany
| | - Susan Klinedinst
- Department of Molecular Cellular and Developmental Biology, University of Michigan, Ann Arbor, United States
| | - Till Fm Andlauer
- Institute for Biology/Genetics, Freie Universität Berlin, Berlin, Germany
| | - Stefan W Hell
- Department of Nanobiophotonics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Catherine A Collins
- Department of Molecular Cellular and Developmental Biology, University of Michigan, Ann Arbor, United States
| | - Markus C Wahl
- Institute of Chemistry and Biochemisty/Structural Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Bernhard Loll
- Institute of Chemistry and Biochemisty/Structural Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Stephan J Sigrist
- Institute for Biology/Genetics, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
28
|
Coles CH, Jones EY, Aricescu AR. Extracellular regulation of type IIa receptor protein tyrosine phosphatases: mechanistic insights from structural analyses. Semin Cell Dev Biol 2015; 37:98-107. [PMID: 25234613 PMCID: PMC4765084 DOI: 10.1016/j.semcdb.2014.09.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 09/02/2014] [Accepted: 09/05/2014] [Indexed: 01/06/2023]
Abstract
The receptor protein tyrosine phosphatases (RPTPs) exhibit a wide repertoire of cellular signalling functions. In particular, type IIa RPTP family members have recently been highlighted as hubs for extracellular interactions in neurons, regulating neuronal extension and guidance, as well as synaptic organisation. In this review, we will discuss the recent progress of structural biology investigations into the architecture of type IIa RPTP ectodomains and their interactions with extracellular ligands. Structural insights, in combination with biophysical and cellular studies, allow us to begin to piece together molecular mechanisms for the transduction and integration of type IIa RPTP signals and to propose hypotheses for future experimental validation.
Collapse
Affiliation(s)
- Charlotte H Coles
- Laboratory for Axon Growth and Regeneration, German Center for Neurodegenerative Diseases (DZNE), Ludwig-Erhard-Allee 2, 53175 Bonn, Germany.
| | - E Yvonne Jones
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK.
| | - A Radu Aricescu
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK.
| |
Collapse
|
29
|
Liu YC, Couzens AL, Deshwar AR, B McBroom-Cerajewski LD, Zhang X, Puviindran V, Scott IC, Gingras AC, Hui CC, Angers S. The PPFIA1-PP2A protein complex promotes trafficking of Kif7 to the ciliary tip and Hedgehog signaling. Sci Signal 2014; 7:ra117. [PMID: 25492966 DOI: 10.1126/scisignal.2005608] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The primary cilium is required for Hedgehog (Hh) signaling in vertebrates. Hh leads to ciliary accumulation and activation of the transmembrane protein Smoothened (Smo) and affects the localization of several pathway components, including the Gli family of transcriptional regulators, within different regions of primary cilia. Genetic analysis indicates that the kinesin protein Kif7 both promotes and inhibits mouse Hh signaling. Using mass spectrometry, we identified liprin-α1 (PPFIA1) and the protein phosphatase PP2A as Kif7-interacting proteins, and we showed that they were important for the trafficking of Kif7 and Gli proteins to the tips of cilia and for the transcriptional output of Hh signaling. Our results suggested that PPFIA1 functioned with PP2A to promote the dephosphorylation of Kif7, triggering Kif7 localization to the tips of primary cilia and promoting Gli transcriptional activity.
Collapse
Affiliation(s)
- Yulu C Liu
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Amber L Couzens
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | - Ashish R Deshwar
- Department of Molecular Genetics, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | | - Xiaoyun Zhang
- Department of Molecular Genetics, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Vijitha Puviindran
- Department of Molecular Genetics, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Ian C Scott
- Department of Molecular Genetics, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada. Program in Developmental and Stem Cell Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada. Department of Molecular Genetics, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Chi-Chung Hui
- Department of Molecular Genetics, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada. Program in Developmental and Stem Cell Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Stephane Angers
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada. Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada.
| |
Collapse
|
30
|
Bercsenyi K, Schmieg N, Bryson JB, Wallace M, Caccin P, Golding M, Zanotti G, Greensmith L, Nischt R, Schiavo G. Nidogens are therapeutic targets for the prevention of tetanus. Science 2014; 346:1118-23. [DOI: 10.1126/science.1258138] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Tetanus neurotoxin (TeNT) is among the most poisonous substances on Earth and a major cause of neonatal death in nonvaccinated areas. TeNT targets the neuromuscular junction (NMJ) with high affinity, yet the nature of the TeNT receptor complex remains unknown. Here, we show that the presence of nidogens (also known as entactins) at the NMJ is the main determinant for TeNT binding. Inhibition of the TeNT-nidogen interaction by using small nidogen-derived peptides or genetic ablation of nidogens prevented the binding of TeNT to neurons and protected mice from TeNT-induced spastic paralysis. Our findings demonstrate the direct involvement of an extracellular matrix protein as a receptor for TeNT at the NMJ, paving the way for the development of therapeutics for the prevention of tetanus by targeting this protein-protein interaction.
Collapse
|
31
|
Anjum R, Ayoubian H, Schmitz F. Differential synaptic distribution of the scaffold proteins Cask and Caskin1 in the bovine retina. Mol Cell Neurosci 2014; 62:19-29. [DOI: 10.1016/j.mcn.2014.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 07/24/2014] [Accepted: 08/10/2014] [Indexed: 11/26/2022] Open
|
32
|
Astro V, Chiaretti S, Magistrati E, Fivaz M, de Curtis I. Liprin-α1, ERC1 and LL5 identify a polarized, dynamic compartment implicated in cell migration. J Cell Sci 2014; 127:3862-76. [DOI: 10.1242/jcs.155663] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cell migration during development and metastatic invasion requires the coordination of actin and adhesion dynamics to promote the protrusive activity at the cell front. The knowledge of the molecular mechanisms required to achieve such coordination is fragmentary. Here we identify a new functional complex that drives cell motility. The adaptor proteins ERC1a and LL5 are required with liprin-α1 for effective migration and tumor cell invasion, and do so by stabilizing the protrusive activity at the cell front. Depletion of either protein negatively affects invasion, migration on extracellular matrix, lamellipodial persistence, as well as the internalization of active integrin β1 receptors needed for adhesion turnover at the cell front. Liprin-α1, ERC1a and LL5 also define new highly polarized and dynamic cytoplasmic structures uniquely localized near the protruding cell edge. Our results indicate that the functional complex and the associated structures described here represent an important mechanism to drive tumor cell migration.
Collapse
|
33
|
Visual circuit assembly requires fine tuning of the novel Ig transmembrane protein Borderless. J Neurosci 2013; 33:17413-21. [PMID: 24174674 DOI: 10.1523/jneurosci.1878-13.2013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Establishment of synaptic connections in the neuropils of the developing nervous system requires the coordination of specific neurite-neurite interactions (i.e., axon-axon, dendrite-dendrite and axon-dendrite interactions). The molecular mechanisms underlying coordination of neurite-neurite interactions for circuit assembly are incompletely understood. In this report, we identify a novel Ig superfamily transmembrane protein that we named Borderless (Bdl), as a novel regulator of neurite-neurite interactions in Drosophila. Bdl induces homotypic cell-cell adhesion in vitro and mediates neurite-neurite interactions in the developing visual system. Bdl interacts physically and genetically with the Ig transmembrane protein Turtle, a key regulator of axonal tiling. Our results also show that the receptor tyrosine phosphatase leukocyte common antigen-related protein (LAR) negatively regulates Bdl to control synaptic-layer selection. We propose that precise regulation of Bdl action coordinates neurite-neurite interactions for circuit formation in Drosophila.
Collapse
|
34
|
Lee H, Lee EJ, Song YS, Kim E. Long-term depression-inducing stimuli promote cleavage of the synaptic adhesion molecule NGL-3 through NMDA receptors, matrix metalloproteinases and presenilin/γ-secretase. Philos Trans R Soc Lond B Biol Sci 2013; 369:20130158. [PMID: 24298159 PMCID: PMC3843889 DOI: 10.1098/rstb.2013.0158] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Long-term depression (LTD) reduces the functional strength of excitatory synapses through mechanisms that include the removal of AMPA glutamate receptors from the postsynaptic membrane. LTD induction is also known to result in structural changes at excitatory synapses, including the shrinkage of dendritic spines. Synaptic adhesion molecules are thought to contribute to the development, function and plasticity of neuronal synapses largely through their trans-synaptic adhesions. However, little is known about how synaptic adhesion molecules are altered during LTD. We report here that NGL-3 (netrin-G ligand-3), a postsynaptic adhesion molecule that trans-synaptically interacts with the LAR family of receptor tyrosine phosphatases and intracellularly with the postsynaptic scaffolding protein PSD-95, undergoes a proteolytic cleavage process. NGL-3 cleavage is induced by NMDA treatment in cultured neurons and low-frequency stimulation in brain slices and requires the activities of NMDA glutamate receptors, matrix metalloproteinases (MMPs) and presenilin/γ-secretase. These results suggest that NGL-3 is a novel substrate of MMPs and γ-secretase and that NGL-3 cleavage may regulate synaptic adhesion during LTD.
Collapse
Affiliation(s)
- Hyejin Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), , Daejeon 305-701, Korea
| | | | | | | |
Collapse
|
35
|
van der Vaart B, van Riel W, Doodhi H, Kevenaar J, Katrukha E, Gumy L, Bouchet B, Grigoriev I, Spangler S, Yu K, Wulf P, Wu J, Lansbergen G, van Battum E, Pasterkamp R, Mimori-Kiyosue Y, Demmers J, Olieric N, Maly I, Hoogenraad C, Akhmanova A. CFEOM1-Associated Kinesin KIF21A Is a Cortical Microtubule Growth Inhibitor. Dev Cell 2013; 27:145-160. [DOI: 10.1016/j.devcel.2013.09.010] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 05/21/2013] [Accepted: 09/12/2013] [Indexed: 12/20/2022]
|
36
|
Gysi S, Rhiner C, Flibotte S, Moerman DG, Hengartner MO. A network of HSPG core proteins and HS modifying enzymes regulates netrin-dependent guidance of D-type motor neurons in Caenorhabditis elegans. PLoS One 2013; 8:e74908. [PMID: 24066155 PMCID: PMC3774775 DOI: 10.1371/journal.pone.0074908] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 08/07/2013] [Indexed: 11/18/2022] Open
Abstract
Heparan sulfate proteoglycans (HSPGs) are proteins with long covalently attached sugar side chains of the heparan sulfate (HS) type. Depending on the cellular context HS chains carry multiple structural modifications such as sulfate residues or epimerized sugars allowing them to bind to a wide range of molecules. HSPGs have been found to play extremely diverse roles in animal development and were shown to interact with certain axon guidance molecules. In this study we describe the role of the Caenorhabditis elegans HSPG core proteins Syndecan (SDN-1) and Glypican (LON-2) and the HS modifying enzymes in the dorsal guidance of D-type motor axons, a process controlled mainly by the conserved axon guidance molecule UNC-6/Netrin. Our genetic analysis established the specific HS code relevant for this axon guidance event. Using two sensitized genetic backgrounds, we isolated novel components influencing D-type motor axon guidance with a link to HSPGs, as well as new alleles of several previously characterized axon guidance genes. Interestingly, the dorsal axon guidance defects induced by mutations in zfp-1 or lin-35 depended on the transgene oxIs12 used to visualize the D-type motor neurons. oxIs12 is a large multi-copy transgene that enlarges the X chromosome by approximately 20%. In a search for genes with a comparable phenotype we found that a mutation in the known dosage compensation gene dpy-21 showed similar axon guidance defects as zfp-1 or lin-35 mutants. Thus, derepression of genes on X, where many genes relevant for HS dependent axon guidance are located, might also influence axon guidance of D-type motor neurons.
Collapse
Affiliation(s)
- Stephan Gysi
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
| | - Christa Rhiner
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Stephane Flibotte
- Department of Zoology, University of British Columbia, Vancouver, Canada
| | - Donald G. Moerman
- Department of Zoology, University of British Columbia, Vancouver, Canada
| | - Michael O. Hengartner
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
37
|
Nunes-Xavier CE, Martín-Pérez J, Elson A, Pulido R. Protein tyrosine phosphatases as novel targets in breast cancer therapy. Biochim Biophys Acta Rev Cancer 2013; 1836:211-26. [PMID: 23756181 DOI: 10.1016/j.bbcan.2013.06.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Accepted: 06/01/2013] [Indexed: 02/07/2023]
Abstract
Breast cancer is linked to hyperactivation of protein tyrosine kinases (PTKs), and recent studies have unveiled that selective tyrosine dephosphorylation by protein tyrosine phosphatases (PTPs) of specific substrates, including PTKs, may activate or inactivate oncogenic pathways in human breast cancer cell growth-related processes. Here, we review the current knowledge on the involvement of PTPs in breast cancer, as major regulators of breast cancer therapy-targeted PTKs, such as HER1/EGFR, HER2/Neu, and Src. The functional interplay between PTKs and PTK-activating or -inactivating PTPs, and its implications in novel breast cancer therapies based on targeting of specific PTPs, are discussed.
Collapse
Affiliation(s)
- Caroline E Nunes-Xavier
- BioCruces Health Research Institute, Hospital de Cruces, Plaza Cruces s/n, 48903 Barakaldo, Spain
| | | | | | | |
Collapse
|
38
|
Chia PH, Patel MR, Wagner OI, Klopfenstein DR, Shen K. Intramolecular regulation of presynaptic scaffold protein SYD-2/liprin-α. Mol Cell Neurosci 2013; 56:76-84. [PMID: 23541703 PMCID: PMC3930023 DOI: 10.1016/j.mcn.2013.03.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 03/15/2013] [Accepted: 03/19/2013] [Indexed: 11/27/2022] Open
Abstract
SYD-2/liprin-α is a multi-domain protein that associates with and recruits multiple active zone molecules to form presynaptic specializations. Given SYD-2's critical role in synapse formation, its synaptogenic ability is likely tightly regulated. However, mechanisms that regulate SYD-2 function are poorly understood. In this study, we provide evidence that SYD-2's function may be regulated by interactions between its coiled-coil (CC) domains and sterile α-motif (SAM) domains. We show that the N-terminal CC domains are necessary and sufficient to assemble functional synapses while C-terminal SAM domains are not, suggesting that the CC domains are responsible for the synaptogenic activity of SYD-2. Surprisingly, syd-2 alleles with single amino acid mutations in the SAM domain show strong loss of function phenotypes, suggesting that SAM domains also play an important role in SYD-2's function. A previously characterized syd-2 gain-of-function mutation within the CC domains is epistatic to the loss-of-function mutations in the SAM domain. In addition, yeast two-hybrid analysis showed interactions between the CC and SAM domains. Thus, the data is consistent with a model where the SAM domains regulate the CC domain-dependent synaptogenic activity of SYD-2. Taken together, our study provides new mechanistic insights into how SYD-2's activity may be modulated to regulate synapse formation during development.
Collapse
Affiliation(s)
- Poh Hui Chia
- Howard Hughes Medical Institute, Department of Biology, Stanford University, 385 Serra Mall, Stanford, CA 94305, United States; Neurosciences Program, Stanford University, 385 Serra Mall, Stanford, CA 94305, United States
| | | | | | | | | |
Collapse
|
39
|
Abstract
Genetic analyses in both worm and fly have identified the RhoGAP-like protein Syd-1 as a key positive regulator of presynaptic assembly. In worm, loss of syd-1 can be fully rescued by overexpressing wild-type Liprin-α, suggesting that the primary function of Syd-1 in this process is to recruit Liprin-α. We show that loss of syd-1 from Drosophila R7 photoreceptors causes two morphological defects that occur at distinct developmental time points. First, syd-1 mutant R7 axons often fail to form terminal boutons in their normal M6 target layer. Later, those mutant axons that do contact M6 often project thin extensions beyond it. We find that the earlier defect coincides with a failure to localize synaptic vesicles, suggesting that it reflects a failure in presynaptic assembly. We then analyze the relationship between syd-1 and Liprin-α in R7s. We find that loss of Liprin-α causes a stronger early R7 defect and provide a possible explanation for this disparity: we show that Liprin-α promotes Kinesin-3/Unc-104/Imac-mediated axon transport independently of Syd-1 and that Kinesin-3/Unc-104/Imac is required for normal R7 bouton formation. Unlike loss of syd-1, loss of Liprin-α does not cause late R7 extensions. We show that overexpressing Liprin-α partly rescues the early but not the late syd-1 mutant R7 defect. We therefore conclude that the two defects are caused by distinct molecular mechanisms. We find that Trio overexpression rescues both syd-1 defects and that trio and syd-1 have similar loss- and gain-of-function phenotypes, suggesting that the primary function of Syd-1 in R7s may be to promote Trio activity.
Collapse
|
40
|
Menon KP, Carrillo RA, Zinn K. Development and plasticity of the Drosophila larval neuromuscular junction. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2013; 2:647-70. [PMID: 24014452 DOI: 10.1002/wdev.108] [Citation(s) in RCA: 163] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The Drosophila larval neuromuscular system is relatively simple, containing only 32 motor neurons in each abdominal hemisegment, and its neuromuscular junctions (NMJs) have been studied extensively. NMJ synapses exhibit developmental and functional plasticity while displaying stereotyped connectivity. Drosophila Type I NMJ synapses are glutamatergic, while the vertebrate NMJ uses acetylcholine as its primary neurotransmitter. The larval NMJ synapses use ionotropic glutamate receptors (GluRs) that are homologous to AMPA-type GluRs in the mammalian brain, and they have postsynaptic scaffolds that resemble those found in mammalian postsynaptic densities. These features make the Drosophila neuromuscular system an excellent genetic model for the study of excitatory synapses in the mammalian central nervous system. The first section of the review presents an overview of NMJ development. The second section describes genes that regulate NMJ development, including: (1) genes that positively and negatively regulate growth of the NMJ, (2) genes required for maintenance of NMJ bouton structure, (3) genes that modulate neuronal activity and alter NMJ growth, (4) genes involved in transsynaptic signaling at the NMJ. The third section describes genes that regulate acute plasticity, focusing on translational regulatory mechanisms. As this review is intended for a developmental biology audience, it does not cover NMJ electrophysiology in detail, and does not review genes for which mutations produce only electrophysiological but no structural phenotypes.
Collapse
Affiliation(s)
- Kaushiki P Menon
- Broad Center, Division of Biology, California Institute of Technology, Pasadena, CA, USA
| | | | | |
Collapse
|
41
|
Paschou M, Paraskevopoulou MD, Vlachos IS, Koukouraki P, Hatzigeorgiou AG, Doxakis E. miRNA regulons associated with synaptic function. PLoS One 2012; 7:e46189. [PMID: 23071543 PMCID: PMC3468272 DOI: 10.1371/journal.pone.0046189] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 08/28/2012] [Indexed: 11/19/2022] Open
Abstract
Differential RNA localization and local protein synthesis regulate synapse function and plasticity in neurons. MicroRNAs are a conserved class of regulatory RNAs that control mRNA stability and translation in tissues. They are abundant in the brain but the extent into which they are involved in synaptic mRNA regulation is poorly known. Herein, a computational analysis of the coding and 3′UTR regions of 242 presynaptic and 304 postsynaptic proteins revealed that 91% of them are predicted to be microRNA targets. Analysis of the longest 3′UTR isoform of synaptic transcripts showed that presynaptic mRNAs have significantly longer 3′UTR than control and postsynaptic mRNAs. In contrast, the shortest 3′UTR isoform of postsynaptic mRNAs is significantly shorter than control and presynaptic mRNAs, indicating they avert microRNA regulation under specific conditions. Examination of microRNA binding site density of synaptic 3′UTRs revealed that they are twice as dense as the rest of protein-coding transcripts and that approximately 50% of synaptic transcripts are predicted to have more than five different microRNA sites. An interaction map exploring the association of microRNAs and their targets revealed that a small set of ten microRNAs is predicted to regulate 77% and 80% of presynaptic and postsynaptic transcripts, respectively. Intriguingly, many of these microRNAs have yet to be identified outside primate mammals, implicating them in cognition differences observed between high-level primates and non-primate mammals. Importantly, the identified miRNAs have been previously associated with psychotic disorders that are characterized by neural circuitry dysfunction, such as schizophrenia. Finally, molecular dissection of their KEGG pathways showed enrichment for neuronal and synaptic processes. Adding on current knowledge, this investigation revealed the extent of miRNA regulation at the synapse and predicted critical microRNAs that would aid future research on the control of neuronal plasticity and etiology of psychiatric diseases.
Collapse
Affiliation(s)
- Maria Paschou
- Basic Neurosciences Division, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Maria D. Paraskevopoulou
- Institute of Molecular Oncology, Biomedical Sciences Research Center “Alexander Fleming” Vari, Greece
| | - Ioannis S. Vlachos
- Institute of Molecular Oncology, Biomedical Sciences Research Center “Alexander Fleming” Vari, Greece
| | - Pelagia Koukouraki
- Basic Neurosciences Division, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Artemis G. Hatzigeorgiou
- Institute of Molecular Oncology, Biomedical Sciences Research Center “Alexander Fleming” Vari, Greece
- Department of Computer and Communication Engineering, University of Thessaly, Volos, Greece
| | - Epaminondas Doxakis
- Basic Neurosciences Division, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
- * E-mail:
| |
Collapse
|
42
|
Hendriks WJAJ, Elson A, Harroch S, Pulido R, Stoker A, den Hertog J. Protein tyrosine phosphatases in health and disease. FEBS J 2012; 280:708-30. [DOI: 10.1111/febs.12000] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 08/17/2012] [Accepted: 08/28/2012] [Indexed: 01/06/2023]
Affiliation(s)
| | - Ari Elson
- Department of Molecular Genetics; The Weizmann Institute of Science; Rehovot; Israel
| | - Sheila Harroch
- Department of Neuroscience; Institut Pasteur; Paris; France
| | - Rafael Pulido
- Centro de Investigación Príncipe Felipe; Valencia; Spain
| | - Andrew Stoker
- Neural Development Unit; Institute of Child Health; University College London; UK
| | | |
Collapse
|
43
|
Horn KE, Xu B, Gobert D, Hamam BN, Thompson KM, Wu CL, Bouchard JF, Uetani N, Racine RJ, Tremblay ML, Ruthazer ES, Chapman CA, Kennedy TE. Receptor protein tyrosine phosphatase sigma regulates synapse structure, function and plasticity. J Neurochem 2012; 122:147-61. [PMID: 22519304 DOI: 10.1111/j.1471-4159.2012.07762.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The mechanisms that regulate synapse formation and maintenance are incompletely understood. In particular, relatively few inhibitors of synapse formation have been identified. Receptor protein tyrosine phosphatase σ (RPTPσ), a transmembrane tyrosine phosphatase, is widely expressed by neurons in developing and mature mammalian brain, and functions as a receptor for chondroitin sulfate proteoglycans that inhibits axon regeneration following injury. In this study, we address RPTPσ function in the mature brain. We demonstrate increased axon collateral branching in the hippocampus of RPTPσ null mice during normal aging or following chemically induced seizure, indicating that RPTPσ maintains neural circuitry by inhibiting axonal branching. Previous studies demonstrated a role for pre-synaptic RPTPσ promoting synaptic differentiation during development; however, subcellular fractionation revealed enrichment of RPTPσ in post-synaptic densities. We report that neurons lacking RPTPσ have an increased density of pre-synaptic varicosities in vitro and increased dendritic spine density and length in vivo. RPTPσ knockouts exhibit an increased frequency of miniature excitatory post-synaptic currents, and greater paired-pulse facilitation, consistent with increased synapse density but reduced synaptic efficiency. Furthermore, RPTPσ nulls exhibit reduced long-term potentiation and enhanced novel object recognition memory. We conclude that RPTPσ limits synapse number and regulates synapse structure and function in the mature CNS.
Collapse
Affiliation(s)
- Katherine E Horn
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Both insect and vertebrate visual circuits are organized into orderly arrays of columnar and layered synaptic units that correspond to the array of photoreceptors in the eye. Recent genetic studies in Drosophila have yielded insights into the molecular and cellular mechanisms that pattern the layers and columns and establish specific connections within the synaptic units. A sequence of inductive events and complex cellular interactions coordinates the assembly of visual circuits. Photoreceptor-derived ligands, such as hedgehog and Jelly-Belly, induce target development and expression of specific adhesion molecules, which in turn serve as guidance cues for photoreceptor axons. Afferents are directed to specific layers by adhesive afferent-target interactions mediated by leucine-rich repeat proteins and cadherins, which are restricted spatially and/or modulated dynamically. Afferents are restricted to their topographically appropriate columns by repulsive interactions between afferents and by autocrine activin signaling. Finally, Dscam-mediated repulsive interactions between target neuron dendrites ensure appropriate combinations of postsynaptic elements at synapses. Essentially, all these Drosophila molecules have vertebrate homologs, some of which are known to carry out analogous functions. Thus, the studies of Drosophila visual circuit development would shed light on neural circuit assembly in general.
Collapse
Affiliation(s)
- Krishna V Melnattur
- Section on Neuronal Connectivity, Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
45
|
Clarke GL, Chen J, Nishimune H. Presynaptic Active Zone Density during Development and Synaptic Plasticity. Front Mol Neurosci 2012; 5:12. [PMID: 22438837 PMCID: PMC3305919 DOI: 10.3389/fnmol.2012.00012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 01/30/2012] [Indexed: 12/13/2022] Open
Abstract
Neural circuits transmit information through synapses, and the efficiency of synaptic transmission is closely related to the density of presynaptic active zones, where synaptic vesicles are released. The goal of this review is to highlight recent insights into the molecular mechanisms that control the number of active zones per presynaptic terminal (active zone density) during developmental and stimulus-dependent changes in synaptic efficacy. At the neuromuscular junctions (NMJs), the active zone density is preserved across species, remains constant during development, and is the same between synapses with different activities. However, the NMJ active zones are not always stable, as exemplified by the change in active zone density during acute experimental manipulation or as a result of aging. Therefore, a mechanism must exist to maintain its density. In the central nervous system (CNS), active zones have restricted maximal size, exist in multiple numbers in larger presynaptic terminals, and maintain a constant density during development. These findings suggest that active zone density in the CNS is also controlled. However, in contrast to the NMJ, active zone density in the CNS can also be increased, as observed in hippocampal synapses in response to synaptic plasticity. Although the numbers of known active zone proteins and protein interactions have increased, less is known about the mechanism that controls the number or spacing of active zones. The following molecules are known to control active zone density and will be discussed herein: extracellular matrix laminins and voltage-dependent calcium channels, amyloid precursor proteins, the small GTPase Rab3, an endocytosis mechanism including synaptojanin, cytoskeleton protein spectrins and β-adducin, and a presynaptic web including spectrins. The molecular mechanisms that organize the active zone density are just beginning to be elucidated.
Collapse
Affiliation(s)
- Gwenaëlle L Clarke
- Department of Anatomy and Cell Biology, University of Kansas Medical School Kansas City, KS, USA
| | | | | |
Collapse
|
46
|
Jablonka W, Senna R, Nahu T, Ventura G, Menezes L, Silva-Neto MAC. A transient increase in total head phosphotyrosine levels is observed upon the emergence of Aedes aegypti from the pupal stage. Mem Inst Oswaldo Cruz 2012; 106:546-52. [PMID: 21894374 DOI: 10.1590/s0074-02762011000500005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Accepted: 07/14/2011] [Indexed: 11/22/2022] Open
Abstract
Phosphorylation and dephosphorylation of protein tyrosine residues constitutes a major biochemical regulatory mechanism for the cell. We report a transient increase in the total tyrosine phosphorylation of the Aedes aegypti head during the first days after emergence from the pupal stage. This correlates with an initial reduction in total head protein tyrosine phosphatase (PTP) activity. Similarly, phosphotyrosine (pTyr)-containing bands are seen in extracts prepared from both male and female heads and are spread among a variety of structures including the antennae, proboscis and the maxillary palps combined with the proboscis. Also, mosquitoes treated with sodium orthovanadate, a classical PTP inhibitor, show reduced blood-feeding activity and higher head tyrosine phosphorylation levels. These results suggest that pTyr-mediated signalling pathways may play a role in the initial days following the emergence of the adult mosquito from the pupal stage.
Collapse
Affiliation(s)
- Willy Jablonka
- Programa de Biologia Molecular e Biotecnologia, Laboratório de Sinalização Celular, Instituto de Bioquímica Médica, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Av. Mal. Trompowski s/n, Bl. D, Sala 5, 21949-902, Rio de Janeiro, RJ, Brasil
| | | | | | | | | | | |
Collapse
|
47
|
von Thun A, Birtwistle M, Kalna G, Grindlay J, Strachan D, Kolch W, von Kriegsheim A, Norman JC. ERK2 drives tumour cell migration in 3D microenvironments by suppressing expression of Rab17 and Liprin-β2. J Cell Sci 2012; 125:1465-77. [DOI: 10.1242/jcs.092916] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Upregulation of the extracellular signal-regulated kinase (ERK) pathway has been shown to contribute to tumour invasion and progression. Since the two predominant ERK isoforms (ERK1 and ERK2) are highly homologous and have indistinguishable kinase activities in vitro, both enzymes were believed to be redundant and interchangeable. To challenge this view, here we show that ERK2 silencing inhibits invasive migration of MDA-MB-231 cells, and re-expression of ERK2 but not ERK1 restores the normal invasive phenotype. A detailed quantitative analysis of cell movement on 3D matrices indicates that ERK2 knockdown impairs cellular motility by decreasing the migration velocity as well as increasing the time that cells spend not moving. We used gene expression arrays to identify rab17 and liprin-β2 as genes whose expression was increased by knockdown of ERK2 and restored to normal levels following re-expression of ERK2, but not ERK1. Both Rab17 and Liprin-β2 play inhibitory roles in the invasive behaviour of three independent cancer cell lines. Importantly, knockdown of either Rab17 or Liprin-β2 restores invasiveness of ERK2-depleted cells, indicating that ERK2 drives invasion of MDA-MB-231 cells by suppressing expression of these genes.
Collapse
|
48
|
Nishimune H. Molecular mechanism of active zone organization at vertebrate neuromuscular junctions. Mol Neurobiol 2011; 45:1-16. [PMID: 22135013 DOI: 10.1007/s12035-011-8216-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 10/24/2011] [Indexed: 02/08/2023]
Abstract
Organization of presynaptic active zones is essential for development, plasticity, and pathology of the nervous system. Recent studies indicate a trans-synaptic molecular mechanism that organizes the active zones by connecting the pre- and the postsynaptic specialization. The presynaptic component of this trans-synaptic mechanism is comprised of cytosolic active zone proteins bound to the cytosolic domains of voltage-dependent calcium channels (P/Q-, N-, and L-type) on the presynaptic membrane. The postsynaptic component of this mechanism is the synapse organizer (laminin β2) that is expressed by the postsynaptic cell and accumulates specifically on top of the postsynaptic specialization. The pre- and the postsynaptic components interact directly between the extracellular domains of calcium channels and laminin β2 to anchor the presynaptic protein complex in front of the postsynaptic specialization. Hence, the presynaptic calcium channel functions as a scaffolding protein for active zone organization and as an ion-conducting channel for synaptic transmission. In contrast to the requirement of calcium influx for synaptic transmission, the formation of the active zone does not require the calcium influx through the calcium channels. Importantly, the active zones of adult synapses are not stable structures and require maintenance for their integrity. Furthermore, aging or diseases of the central and peripheral nervous system impair the active zones. This review will focus on the molecular mechanisms that organize the presynaptic active zones and summarize recent findings at the neuromuscular junctions and other synapses.
Collapse
Affiliation(s)
- Hiroshi Nishimune
- Department of Anatomy and Cell Biology, and Kansas Intellectual and Developmental Disabilities Research Center, University of Kansas Medical School, 3901 Rainbow Blvd., MS 3051, HLSIC Rm. 2073, Kansas City, KS 66160, USA.
| |
Collapse
|
49
|
Gundelfinger ED, Fejtova A. Molecular organization and plasticity of the cytomatrix at the active zone. Curr Opin Neurobiol 2011; 22:423-30. [PMID: 22030346 DOI: 10.1016/j.conb.2011.10.005] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Revised: 09/25/2011] [Accepted: 10/06/2011] [Indexed: 02/06/2023]
Abstract
Regulated neurotransmitter release from presynaptic boutons is crucial for the functioning of chemical synapses, what in turn governs the functional performance of the nervous system. Release occurs at the active zone (AZ), a specialized region of the presynaptic plasma membrane that is defined by a unique and complex meshwork of proteins--the cytomatrix at the AZ (CAZ). Important functions of CAZ proteins include recruitment, docking and priming of synaptic vesicles as well as appropriate localization of voltage-gated calcium channels near vesicle docking sites. We will discuss recent progress in the understanding of the topological localization and the molecular functions of characteristic CAZ proteins as well as emerging molecular mechanisms underlying presynaptic plasticity that involve significant structural CAZ remodeling.
Collapse
Affiliation(s)
- Eckart D Gundelfinger
- Leibniz Institute for Neurobiology (LIN), Brenneckestr. 6, 39118 Magdeburg, Germany.
| | | |
Collapse
|
50
|
Nomura H, Tadokoro S, Hirashima N. Liprin-α is involved in exocytosis and cell spreading in mast cells. Immunol Lett 2011; 139:110-6. [DOI: 10.1016/j.imlet.2011.05.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2010] [Revised: 05/14/2011] [Accepted: 05/23/2011] [Indexed: 11/28/2022]
|