1
|
Chu CMJ, Modi H, Ellis C, Krentz NAJ, Skovsø S, Zhao YB, Cen H, Noursadeghi N, Panzhinskiy E, Hu X, Dionne DA, Xia YH, Xuan S, Huising MO, Kieffer TJ, Lynn FC, Johnson JD. Dynamic Ins2 Gene Activity Defines β-Cell Maturity States. Diabetes 2022; 71:2612-2631. [PMID: 36170671 DOI: 10.2337/db21-1065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 09/20/2022] [Indexed: 01/11/2023]
Abstract
Transcriptional and functional cellular specialization has been described for insulin-secreting β-cells of the endocrine pancreas. However, it is not clear whether β-cell heterogeneity is stable or reflects dynamic cellular states. We investigated the temporal kinetics of endogenous insulin gene activity using live cell imaging, with complementary experiments using FACS and single-cell RNA sequencing, in β-cells from Ins2GFP knockin mice. In vivo staining and FACS analysis of islets from Ins2GFP mice confirmed that at a given moment, ∼25% of β-cells exhibited significantly higher activity at the evolutionarily conserved insulin gene, Ins2. Live cell imaging over days captured Ins2 gene activity dynamics in single β-cells. Autocorrelation analysis revealed a subset of oscillating cells, with mean oscillation periods of 17 h. Increased glucose concentrations stimulated more cells to oscillate and resulted in higher average Ins2 gene activity per cell. Single-cell RNA sequencing showed that Ins2(GFP)HIGH β-cells were enriched for markers of β-cell maturity. Ins2(GFP)HIGH β-cells were also significantly less viable at all glucose concentrations and in the context of endoplasmic reticulum stress. Collectively, our results demonstrate that the heterogeneity of insulin production, observed in mouse and human β-cells, can be accounted for by dynamic states of insulin gene activity.
Collapse
Affiliation(s)
- Chieh Min Jamie Chu
- Diabetes Focus Team, Life Sciences Institute, Departments of Cellular and Physiological Sciences and Surgery, University of British Columbia, Vancouver, Canada
| | - Honey Modi
- Diabetes Focus Team, Life Sciences Institute, Departments of Cellular and Physiological Sciences and Surgery, University of British Columbia, Vancouver, Canada
| | - Cara Ellis
- Diabetes Focus Team, Life Sciences Institute, Departments of Cellular and Physiological Sciences and Surgery, University of British Columbia, Vancouver, Canada
| | - Nicole A J Krentz
- BC Children's Hospital Research Institute, Department of Surgery, University of British Columbia, Vancouver, Canada
| | - Søs Skovsø
- Diabetes Focus Team, Life Sciences Institute, Departments of Cellular and Physiological Sciences and Surgery, University of British Columbia, Vancouver, Canada
| | - Yiwei Bernie Zhao
- Biomedical Research Centre, Departments of Cellular and Physiological Sciences and Surgery, University of British Columbia, Vancouver, Canada
| | - Haoning Cen
- Diabetes Focus Team, Life Sciences Institute, Departments of Cellular and Physiological Sciences and Surgery, University of British Columbia, Vancouver, Canada
| | - Nilou Noursadeghi
- Diabetes Focus Team, Life Sciences Institute, Departments of Cellular and Physiological Sciences and Surgery, University of British Columbia, Vancouver, Canada
| | - Evgeniy Panzhinskiy
- Diabetes Focus Team, Life Sciences Institute, Departments of Cellular and Physiological Sciences and Surgery, University of British Columbia, Vancouver, Canada
| | - Xiaoke Hu
- Diabetes Focus Team, Life Sciences Institute, Departments of Cellular and Physiological Sciences and Surgery, University of British Columbia, Vancouver, Canada
| | - Derek A Dionne
- Diabetes Focus Team, Life Sciences Institute, Departments of Cellular and Physiological Sciences and Surgery, University of British Columbia, Vancouver, Canada
| | - Yi Han Xia
- Diabetes Focus Team, Life Sciences Institute, Departments of Cellular and Physiological Sciences and Surgery, University of British Columbia, Vancouver, Canada
| | - Shouhong Xuan
- Division of Hematology/Oncology, Department of Medicine, Columbia University Medical Center, New York, NY
| | - Mark O Huising
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, CA
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA
| | - Timothy J Kieffer
- Diabetes Focus Team, Life Sciences Institute, Departments of Cellular and Physiological Sciences and Surgery, University of British Columbia, Vancouver, Canada
| | - Francis C Lynn
- BC Children's Hospital Research Institute, Department of Surgery, University of British Columbia, Vancouver, Canada
| | - James D Johnson
- Diabetes Focus Team, Life Sciences Institute, Departments of Cellular and Physiological Sciences and Surgery, University of British Columbia, Vancouver, Canada
| |
Collapse
|
2
|
Kovalev RA, Fedorova ND, Pantina RA, Semenova EV, Filatov MV, Varfolomeeva EY. Stochasticity of p53 Protein Expression in Cells of Primary and Transferable Human Lines. Biophysics (Nagoya-shi) 2022. [DOI: 10.1134/s0006350922030101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
3
|
Guérineau NC, Campos P, Le Tissier PR, Hodson DJ, Mollard P. Cell Networks in Endocrine/Neuroendocrine Gland Function. Compr Physiol 2022; 12:3371-3415. [PMID: 35578964 DOI: 10.1002/cphy.c210031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Reproduction, growth, stress, and metabolism are determined by endocrine/neuroendocrine systems that regulate circulating hormone concentrations. All these systems generate rhythms and changes in hormone pulsatility observed in a variety of pathophysiological states. Thus, the output of endocrine/neuroendocrine systems must be regulated within a narrow window of effective hormone concentrations but must also maintain a capacity for plasticity to respond to changing physiological demands. Remarkably most endocrinologists still have a "textbook" view of endocrine gland organization which has emanated from 20th century histological studies on thin 2D tissue sections. However, 21st -century technological advances, including in-depth 3D imaging of specific cell types have vastly changed our knowledge. We now know that various levels of multicellular organization can be found across different glands, that organizational motifs can vary between species and can be modified to enhance or decrease hormonal release. This article focuses on how the organization of cells regulates hormone output using three endocrine/neuroendocrine glands that present different levels of organization and complexity: the adrenal medulla, with a single neuroendocrine cell type; the anterior pituitary, with multiple intermingled cell types; and the pancreas with multiple intermingled cell types organized into distinct functional units. We give an overview of recent methodologies that allow the study of the different components within endocrine systems, particularly their temporal and spatial relationships. We believe the emerging findings about network organization, and its impact on hormone secretion, are crucial to understanding how homeostatic regulation of endocrine axes is carried out within endocrine organs themselves. © 2022 American Physiological Society. Compr Physiol 12:3371-3415, 2022.
Collapse
Affiliation(s)
| | - Pauline Campos
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, UK
| | - Paul R Le Tissier
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, Scotland, UK
| | - David J Hodson
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Edgbaston, UK.,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK.,COMPARE University of Birmingham and University of Nottingham Midlands, UK.,Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), NIHR Oxford Biomedical Research Centre, Churchill Hospital, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Patrice Mollard
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, France
| |
Collapse
|
4
|
McNamara AV, Awais R, Momiji H, Dunham L, Featherstone K, Harper CV, Adamson AA, Semprini S, Jones NA, Spiller DG, Mullins JJ, Finkenstädt BF, Rand D, White MRH, Davis JRE. Transcription Factor Pit-1 Affects Transcriptional Timing in the Dual-Promoter Human Prolactin Gene. Endocrinology 2021; 162:6060060. [PMID: 33388754 PMCID: PMC7871365 DOI: 10.1210/endocr/bqaa249] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Indexed: 12/31/2022]
Abstract
Gene transcription occurs in short bursts interspersed with silent periods, and these kinetics can be altered by promoter structure. The effect of alternate promoter architecture on transcription bursting is not known. We studied the human prolactin (hPRL) gene that contains 2 promoters, a pituitary-specific promoter that requires the transcription factor Pit-1 and displays dramatic transcriptional bursting activity and an alternate upstream promoter that is active in nonpituitary tissues. We studied large hPRL genomic fragments with luciferase reporters, and used bacterial artificial chromosome recombineering to manipulate critical promoter regions. Stochastic switch mathematical modelling of single-cell time-lapse luminescence image data revealed that the Pit-1-dependent promoter showed longer, higher-amplitude transcriptional bursts. Knockdown studies confirmed that the presence of Pit-1 stabilized and prolonged periods of active transcription. Pit-1 therefore plays an active role in establishing the timing of transcription cycles, in addition to its cell-specific functions.
Collapse
Affiliation(s)
- Anne V McNamara
- Systems Microscopy Centre, Division of Molecular and Cellular Function, School of Biological Sciences, Faculty Biology, Medicine & Health, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
| | - Raheela Awais
- School of Life Sciences, University of Liverpool, Liverpool, UK
| | - Hiroshi Momiji
- Mathematics Institute & Zeeman Institute for Systems Biology, and Infectious Epidemiology Research, University of Warwick, Senate House Coventry, UK
| | - Lee Dunham
- Division of Diabetes, Endocrinology & Gastroenterology, School of Medical Sciences, Faculty of Biology, Medicine & Health, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
| | - Karen Featherstone
- Division of Diabetes, Endocrinology & Gastroenterology, School of Medical Sciences, Faculty of Biology, Medicine & Health, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
| | - Claire V Harper
- Department of Biology, Edge Hill University, Ormskirk, Lancashire, UK
| | - Antony A Adamson
- Genome Editing Unit, Faculty of Biology, Medicine & Health, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
| | - Sabrina Semprini
- University/BHF Centre for Cardiovascular Science, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Nicholas A Jones
- Systems Microscopy Centre, Division of Molecular and Cellular Function, School of Biological Sciences, Faculty Biology, Medicine & Health, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
| | - David G Spiller
- Systems Microscopy Centre, Division of Molecular and Cellular Function, School of Biological Sciences, Faculty Biology, Medicine & Health, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
| | - John J Mullins
- University/BHF Centre for Cardiovascular Science, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Bärbel F Finkenstädt
- Mathematics Institute & Zeeman Institute for Systems Biology, and Infectious Epidemiology Research, University of Warwick, Senate House Coventry, UK
| | - David Rand
- Mathematics Institute & Zeeman Institute for Systems Biology, and Infectious Epidemiology Research, University of Warwick, Senate House Coventry, UK
| | - Michael R H White
- Systems Microscopy Centre, Division of Molecular and Cellular Function, School of Biological Sciences, Faculty Biology, Medicine & Health, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
- Correspondence: Professor Michael R. H. White, Systems Microscopy Centre, Division of Molecular and Cellular Function, Faculty of Biology, Medicine & Health, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, M13 9PT, UK. E-mail: ; or Professor Julian R. E. Davis, Division of Diabetes, Endocrinology & Gastroenterology, Faculty of Biology, Medicine & Health, Manchester Academic Health Sciences Centre, University of Manchester, M13 9PT, UK. E-mail:
| | - Julian R E Davis
- Division of Diabetes, Endocrinology & Gastroenterology, School of Medical Sciences, Faculty of Biology, Medicine & Health, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
- Correspondence: Professor Michael R. H. White, Systems Microscopy Centre, Division of Molecular and Cellular Function, Faculty of Biology, Medicine & Health, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, M13 9PT, UK. E-mail: ; or Professor Julian R. E. Davis, Division of Diabetes, Endocrinology & Gastroenterology, Faculty of Biology, Medicine & Health, Manchester Academic Health Sciences Centre, University of Manchester, M13 9PT, UK. E-mail:
| |
Collapse
|
5
|
Harper CV, McNamara AV, Spiller DG, Charnock JC, White MRH, Davis JRE. Calcium dynamics and chromatin remodelling underlie heterogeneity in prolactin transcription. J Mol Endocrinol 2021; 66:59-69. [PMID: 33112804 PMCID: PMC7774774 DOI: 10.1530/jme-20-0223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 10/20/2020] [Indexed: 12/01/2022]
Abstract
Pituitary cells have been reported to show spontaneous calcium oscillations and dynamic transcription cycles. To study both processes in the same living cell in real time, we used rat pituitary GH3 cells stably expressing human prolactin-luciferase or prolactin-EGFP reporter gene constructs loaded with a fluorescent calcium indicator and measured activity using single-cell time-lapse microscopy. We observed heterogeneity between clonal cells in the calcium activity and prolactin transcription in unstimulated conditions. There was a significant correlation between cells displaying spontaneous calcium spikes and cells showing spontaneous bursts in prolactin expression. Notably, cells showing no basal calcium activity showed low prolactin expression but elicited a significantly greater transcriptional response to BayK8644 compared to cells showing basal calcium activity. This suggested the presence of two subsets of cells within the population at any one time. Fluorescence-activated cell sorting was used to sort cells into two populations based on the expression level of prolactin-EGFP however, the bimodal pattern of expression was restored within 26 h. Chromatin immunoprecipitation showed that these sorted populations were distinct due to the extent of histone acetylation. We suggest that maintenance of a heterogeneous bimodal population is a fundamental characteristic of this cell type and that calcium activation and histone acetylation, at least in part, drive prolactin transcriptional competence.
Collapse
Affiliation(s)
- Claire V Harper
- Department of Biology, Edge Hill University, Ormskirk, Lancashire, UK
- Correspondence should be addressed to C V Harper:
| | - Anne V McNamara
- Systems Microscopy Centre, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - David G Spiller
- Systems Microscopy Centre, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Jayne C Charnock
- Department of Biology, Edge Hill University, Ormskirk, Lancashire, UK
| | - Michael R H White
- Systems Microscopy Centre, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Julian R E Davis
- Endocrine Sciences Research Group, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
6
|
Phillipps HR, Yip SH, Grattan DR. Patterns of prolactin secretion. Mol Cell Endocrinol 2020; 502:110679. [PMID: 31843563 DOI: 10.1016/j.mce.2019.110679] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 12/06/2019] [Accepted: 12/06/2019] [Indexed: 12/11/2022]
Abstract
Prolactin is pleotropic in nature affecting multiple tissues throughout the body. As a consequence of the broad range of functions, regulation of anterior pituitary prolactin secretion is complex and atypical as compared to other pituitary hormones. Many studies have provided insight into the complex hypothalamic-pituitary networks controlling prolactin secretion patterns in different species using a range of techniques. Here, we review prolactin secretion in both males and females; and consider the different patterns of prolactin secretion across the reproductive cycle in representative female mammals with short versus long luteal phases and in seasonal breeders. Additionally, we highlight changes in the pattern of secretion during pregnancy and lactation, and discuss the wide range of adaptive functions that prolactin may have in these important physiological states.
Collapse
Affiliation(s)
- Hollian R Phillipps
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, 9016, New Zealand
| | - Siew H Yip
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, 9016, New Zealand
| | - David R Grattan
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, 9016, New Zealand.
| |
Collapse
|
7
|
Abstract
Numerous studies based on new single-cell and single-gene techniques show that individual genes can be transcribed in short bursts or pulses accompanied by changes in pulsing frequencies. Since so many examples of such discontinuous or fluctuating transcription have been found from prokaryotes to mammals, it now seems to be a common mode of gene expression. In this review we discuss the occurrence of the transcriptional fluctuations, the techniques used for their detection, their putative causes, kinetic characteristics, and probable physiological significance.
Collapse
Affiliation(s)
- Evgeny Smirnov
- a Institute of Biology and Medical Genetics , First Faculty of Medicine , Charles University and General University Hospital in Prague , Prague , Czech Republic
| | - Matúš Hornáček
- a Institute of Biology and Medical Genetics , First Faculty of Medicine , Charles University and General University Hospital in Prague , Prague , Czech Republic
| | - Tomáš Vacík
- a Institute of Biology and Medical Genetics , First Faculty of Medicine , Charles University and General University Hospital in Prague , Prague , Czech Republic
| | - Dušan Cmarko
- a Institute of Biology and Medical Genetics , First Faculty of Medicine , Charles University and General University Hospital in Prague , Prague , Czech Republic
| | - Ivan Raška
- a Institute of Biology and Medical Genetics , First Faculty of Medicine , Charles University and General University Hospital in Prague , Prague , Czech Republic
| |
Collapse
|
8
|
Momiji H, Hassall KL, Featherstone K, McNamara AV, Patist AL, Spiller DG, Christian HC, White MRH, Davis JRE, Finkenstädt BF, Rand DA. Disentangling juxtacrine from paracrine signalling in dynamic tissue. PLoS Comput Biol 2019; 15:e1007030. [PMID: 31194728 PMCID: PMC6592563 DOI: 10.1371/journal.pcbi.1007030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 06/25/2019] [Accepted: 04/15/2019] [Indexed: 11/18/2022] Open
Abstract
Prolactin is a major hormone product of the pituitary gland, the central endocrine regulator. Despite its physiological importance, the cell-level mechanisms of prolactin production are not well understood. Having significantly improved the resolution of real-time-single-cell-GFP-imaging, the authors recently revealed that prolactin gene transcription is highly dynamic and stochastic yet shows space-time coordination in an intact tissue slice. However, it still remains an open question as to what kind of cellular communication mediates the observed space-time organization. To determine the type of interaction between cells we developed a statistical model. The degree of similarity between two expression time series was studied in terms of two distance measures, Euclidean and geodesic, the latter being a network-theoretic distance defined to be the minimal number of edges between nodes, and this was used to discriminate between juxtacrine from paracrine signalling. The analysis presented here suggests that juxtacrine signalling dominates. To further determine whether the coupling is coordinating transcription or post-transcriptional activities we used stochastic switch modelling to infer the transcriptional profiles of cells and estimated their similarity measures to deduce that their spatial cellular coordination involves coupling of transcription via juxtacrine signalling. We developed a computational model that involves an inter-cell juxtacrine coupling, yielding simulation results that show space-time coordination in the transcription level that is in agreement with the above analysis. The developed model is expected to serve as the prototype for the further study of tissue-level organised gene expression for epigenetically regulated genes, such as prolactin.
Collapse
Affiliation(s)
- Hiroshi Momiji
- Zeeman Institute for Systems Biology & Infectious Disease Epidemiology Research, University of Warwick, Coventry, United Kingdom, Mathematics Institute, University of Warwick, Coventry, United Kingdom
- * E-mail: (HM); (MRHW); (JRED); (BFF); (DAR)
| | - Kirsty L. Hassall
- Department of Statistics, University of Warwick, Coventry, United Kingdom
| | - Karen Featherstone
- Faculty of Biology, Medicine & Health, University of Manchester, Manchester, United Kingdom
| | - Anne V. McNamara
- Systems Microscopy Centre, University of Manchester, Manchester, United Kingdom
| | - Amanda L. Patist
- Faculty of Biology, Medicine & Health, University of Manchester, Manchester, United Kingdom
| | - David G. Spiller
- Systems Microscopy Centre, University of Manchester, Manchester, United Kingdom
| | - Helen C. Christian
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Michael R. H. White
- Systems Microscopy Centre, University of Manchester, Manchester, United Kingdom
- * E-mail: (HM); (MRHW); (JRED); (BFF); (DAR)
| | - Julian R. E. Davis
- Faculty of Biology, Medicine & Health, University of Manchester, Manchester, United Kingdom
- * E-mail: (HM); (MRHW); (JRED); (BFF); (DAR)
| | - Bärbel F. Finkenstädt
- Department of Statistics, University of Warwick, Coventry, United Kingdom
- * E-mail: (HM); (MRHW); (JRED); (BFF); (DAR)
| | - David A. Rand
- Zeeman Institute for Systems Biology & Infectious Disease Epidemiology Research, University of Warwick, Coventry, United Kingdom, Mathematics Institute, University of Warwick, Coventry, United Kingdom
- * E-mail: (HM); (MRHW); (JRED); (BFF); (DAR)
| |
Collapse
|
9
|
Benninger RKP, Hodson DJ. New Understanding of β-Cell Heterogeneity and In Situ Islet Function. Diabetes 2018; 67:537-547. [PMID: 29559510 PMCID: PMC5860861 DOI: 10.2337/dbi17-0040] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 12/28/2017] [Indexed: 12/25/2022]
Abstract
Insulin-secreting β-cells are heterogeneous in their regulation of hormone release. While long known, recent technological advances and new markers have allowed the identification of novel subpopulations, improving our understanding of the molecular basis for heterogeneity. This includes specific subpopulations with distinct functional characteristics, developmental programs, abilities to proliferate in response to metabolic or developmental cues, and resistance to immune-mediated damage. Importantly, these subpopulations change in disease or aging, including in human disease. Although discovering new β-cell subpopulations has substantially advanced our understanding of islet biology, a point of caution is that these characteristics have often necessarily been identified in single β-cells dissociated from the islet. β-Cells in the islet show extensive communication with each other via gap junctions and with other cell types via diffusible chemical messengers. As such, how these different subpopulations contribute to in situ islet function, including during plasticity, is not well understood. We will discuss recent findings revealing functional β-cell subpopulations in the intact islet, the underlying basis for these identified subpopulations, and how these subpopulations may influence in situ islet function. Furthermore, we will discuss the outlook for emerging technologies to gain further insight into the role of subpopulations in in situ islet function.
Collapse
Affiliation(s)
- Richard K P Benninger
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, CO
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - David J Hodson
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, U.K.
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, U.K
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Birmingham, U.K
| |
Collapse
|
10
|
Dunham LSS, Momiji H, Harper CV, Downton PJ, Hey K, McNamara A, Featherstone K, Spiller DG, Rand DA, Finkenstädt B, White MRH, Davis JRE. Asymmetry between Activation and Deactivation during a Transcriptional Pulse. Cell Syst 2017; 5:646-653.e5. [PMID: 29153839 PMCID: PMC5747351 DOI: 10.1016/j.cels.2017.10.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 08/04/2017] [Accepted: 10/18/2017] [Indexed: 11/23/2022]
Abstract
Transcription in eukaryotic cells occurs in gene-specific bursts or pulses of activity. Recent studies identified a spectrum of transcriptionally active “on-states,” interspersed with periods of inactivity, but these “off-states” and the process of transcriptional deactivation are poorly understood. To examine what occurs during deactivation, we investigate the dynamics of switching between variable rates. We measured live single-cell expression of luciferase reporters from human growth hormone or human prolactin promoters in a pituitary cell line. Subsequently, we applied a statistical variable-rate model of transcription, validated by single-molecule FISH, to estimate switching between transcriptional rates. Under the assumption that transcription can switch to any rate at any time, we found that transcriptional activation occurs predominantly as a single switch, whereas deactivation occurs with graded, stepwise decreases in transcription rate. Experimentally altering cAMP signalling with forskolin or chromatin remodelling with histone deacetylase inhibitor modifies the duration of defined transcriptional states. Our findings reveal transcriptional activation and deactivation as mechanistically independent, asymmetrical processes. Gene transcription switches between variable rates Single-cell microscopy and mathematical modeling quantifies switch dynamics We observe an asymmetry in the activation/deactivation of transcriptional bursts
Collapse
Affiliation(s)
- Lee S S Dunham
- Division of Endocrinology, Diabetes and Gastroenterology, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, AV Hill Building, Manchester M13 9PT, UK
| | - Hiroshi Momiji
- Warwick Systems Biology Centre, University of Warwick, Coventry CV4, 7AL, UK
| | - Claire V Harper
- Division of Cellular and Molecular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, UK
| | - Polly J Downton
- Division of Cellular and Molecular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, UK
| | - Kirsty Hey
- Department of Statistics, University of Warwick, Coventry CV4 7AL, UK
| | - Anne McNamara
- Division of Cellular and Molecular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, UK
| | - Karen Featherstone
- Division of Endocrinology, Diabetes and Gastroenterology, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, AV Hill Building, Manchester M13 9PT, UK
| | - David G Spiller
- Division of Cellular and Molecular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, UK
| | - David A Rand
- Warwick Systems Biology Centre, University of Warwick, Coventry CV4, 7AL, UK
| | | | - Michael R H White
- Division of Cellular and Molecular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, UK.
| | - Julian R E Davis
- Division of Endocrinology, Diabetes and Gastroenterology, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, AV Hill Building, Manchester M13 9PT, UK.
| |
Collapse
|
11
|
Hornáček M, Kováčik L, Mazel T, Cmarko D, Bártová E, Raška I, Smirnov E. Fluctuations of pol I and fibrillarin contents of the nucleoli. Nucleus 2017. [PMID: 28622108 DOI: 10.1080/19491034.2017.1306160] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Nucleoli are formed on the basis of ribosomal DNA (rDNA) clusters called Nucleolus Organizer Regions (NORs). Each NOR contains multiple genes coding for RNAs of the ribosomal particles. The prominent components of the nucleolar ultrastructure, fibrillar centers (FC) and dense fibrillar components (DFC), together compose FC/DFC units. These units are centers of rDNA transcription by RNA polymerase I (pol I), as well as the early processing events, in which an essential role belongs to fibrillarin. Each FC/DFC unit probably corresponds to a single transcriptionally active gene. In this work, we transfected human-derived cells with GFP-RPA43 (subunit of pol I) and RFP-fibrillarin. Following changes of the fluorescent signals in individual FC/DFC units, we found two kinds of kinetics: 1) the rapid fluctuations with periods of 2-3 min, when the pol I and fibrillarin signals oscillated in anti-phase manner, and the intensities of pol I in the neighboring FC/DFC units did not correlate. 2) fluctuations with periods of 10 to 60 min, in which pol I and fibrillarin signals measured in the same unit did not correlate, but pol I signals in the units belonging to different nucleoli were synchronized. Our data indicate that a complex pulsing activity of transcription as well as early processing is common for ribosomal genes.
Collapse
Affiliation(s)
- M Hornáček
- a Institute of Biology and Medical Genetics, First Faculty of Medicine , Charles University, and General University Hospital in Prague , Prague , Czech Republic
| | - L Kováčik
- a Institute of Biology and Medical Genetics, First Faculty of Medicine , Charles University, and General University Hospital in Prague , Prague , Czech Republic
| | - T Mazel
- a Institute of Biology and Medical Genetics, First Faculty of Medicine , Charles University, and General University Hospital in Prague , Prague , Czech Republic
| | - D Cmarko
- a Institute of Biology and Medical Genetics, First Faculty of Medicine , Charles University, and General University Hospital in Prague , Prague , Czech Republic
| | - E Bártová
- a Institute of Biology and Medical Genetics, First Faculty of Medicine , Charles University, and General University Hospital in Prague , Prague , Czech Republic.,b Institute of Biophysics of the CAS , Brno , Czech Republic
| | - I Raška
- a Institute of Biology and Medical Genetics, First Faculty of Medicine , Charles University, and General University Hospital in Prague , Prague , Czech Republic
| | - E Smirnov
- a Institute of Biology and Medical Genetics, First Faculty of Medicine , Charles University, and General University Hospital in Prague , Prague , Czech Republic
| |
Collapse
|
12
|
Le Tissier P, Campos P, Lafont C, Romanò N, Hodson DJ, Mollard P. An updated view of hypothalamic-vascular-pituitary unit function and plasticity. Nat Rev Endocrinol 2017; 13:257-267. [PMID: 27934864 DOI: 10.1038/nrendo.2016.193] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The discoveries of novel functional adaptations of the hypothalamus and anterior pituitary gland for physiological regulation have transformed our understanding of their interaction. The activity of a small proportion of hypothalamic neurons can control complex hormonal signalling, which is disconnected from a simple stimulus and the subsequent hormone secretion relationship and is dependent on physiological status. The interrelationship of the terminals of hypothalamic neurons and pituitary cells with the vasculature has an important role in determining the pattern of neurohormone exposure. Cells in the pituitary gland form networks with distinct organizational motifs that are related to the duration and pattern of output, and modifications of these networks occur in different physiological states, can persist after cessation of demand and result in enhanced function. Consequently, the hypothalamus and pituitary can no longer be considered as having a simple stratified relationship: with the vasculature they form a tripartite system, which must function in concert for appropriate hypothalamic regulation of physiological processes, such as reproduction. An improved understanding of the mechanisms underlying these regulatory features has implications for current and future therapies that correct defects in hypothalamic-pituitary axes. In addition, recapitulating proper network organization will be an important challenge for regenerative stem cell treatment.
Collapse
Affiliation(s)
- Paul Le Tissier
- Centre for Integrative Physiology, University of Edinburgh, George Square, Edinburgh, EH8 9XD, UK
| | - Pauline Campos
- Centre National de la Recherche Scientifique (CNRS), UMR-5203, Institut de Génomique Fonctionnelle, rue de la Cardonille, F-34000 Montpellier, France
- INSERM, U661, rue de la Cardonille, F-34000 Montpellier, France
- Université de Montpellier, rue de la Cardonille, UMR-5203, F-34000 Montpellier, France
| | - Chrystel Lafont
- Centre National de la Recherche Scientifique (CNRS), UMR-5203, Institut de Génomique Fonctionnelle, rue de la Cardonille, F-34000 Montpellier, France
- INSERM, U661, rue de la Cardonille, F-34000 Montpellier, France
- Université de Montpellier, rue de la Cardonille, UMR-5203, F-34000 Montpellier, France
| | - Nicola Romanò
- Centre for Integrative Physiology, University of Edinburgh, George Square, Edinburgh, EH8 9XD, UK
| | - David J Hodson
- Institute of Metabolism and Systems Research and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Edgbaston, B15 2TT, UK
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, B15 2TH, UK
| | - Patrice Mollard
- Centre National de la Recherche Scientifique (CNRS), UMR-5203, Institut de Génomique Fonctionnelle, rue de la Cardonille, F-34000 Montpellier, France
- INSERM, U661, rue de la Cardonille, F-34000 Montpellier, France
- Université de Montpellier, rue de la Cardonille, UMR-5203, F-34000 Montpellier, France
| |
Collapse
|
13
|
Koseska A, Bastiaens PI. Cell signaling as a cognitive process. EMBO J 2017; 36:568-582. [PMID: 28137748 PMCID: PMC5331751 DOI: 10.15252/embj.201695383] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 10/13/2016] [Accepted: 12/20/2016] [Indexed: 12/17/2022] Open
Abstract
Cellular identity as defined through morphology and function emerges from intracellular signaling networks that communicate between cells. Based on recursive interactions within and among these intracellular networks, dynamical solutions in terms of biochemical behavior are generated that can differ from those in isolated cells. In this way, cellular heterogeneity in tissues can be established, implying that cell identity is not intrinsically predetermined by the genetic code but is rather dynamically maintained in a cognitive manner. We address how to experimentally measure the flow of information in intracellular biochemical networks and demonstrate that even simple causality motifs can give rise to rich, context-dependent dynamic behavior. The concept how intercellular communication can result in novel dynamical solutions is applied to provide a contextual perspective on cell differentiation and tumorigenesis.
Collapse
Affiliation(s)
- Aneta Koseska
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Philippe Ih Bastiaens
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
- Faculty of Chemistry and Chemical Biology, TU Dortmund, Dortmund, Germany
| |
Collapse
|
14
|
Capp JP. Tissue disruption increases stochastic gene expression thus producing tumors: Cancer initiation without driver mutation. Int J Cancer 2017; 140:2408-2413. [DOI: 10.1002/ijc.30596] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 12/16/2016] [Accepted: 01/02/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Jean-Pascal Capp
- INSA/Université Fédérale de Toulouse, Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés, UMR CNRS 5504, UMR INRA 792; Toulouse 31077 France
| |
Collapse
|
15
|
Corrigan AM, Tunnacliffe E, Cannon D, Chubb JR. A continuum model of transcriptional bursting. eLife 2016; 5. [PMID: 26896676 PMCID: PMC4850746 DOI: 10.7554/elife.13051] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Accepted: 02/19/2016] [Indexed: 12/20/2022] Open
Abstract
Transcription occurs in stochastic bursts. Early models based upon RNA hybridisation studies suggest bursting dynamics arise from alternating inactive and permissive states. Here we investigate bursting mechanism in live cells by quantitative imaging of actin gene transcription, combined with molecular genetics, stochastic simulation and probabilistic modelling. In contrast to early models, our data indicate a continuum of transcriptional states, with a slowly fluctuating initiation rate converting the gene between different levels of activity, interspersed with extended periods of inactivity. We place an upper limit of 40 s on the lifetime of fluctuations in elongation rate, with initiation rate variations persisting an order of magnitude longer. TATA mutations reduce the accessibility of high activity states, leaving the lifetime of on- and off-states unchanged. A continuum or spectrum of gene states potentially enables a wide dynamic range for cell responses to stimuli. DOI:http://dx.doi.org/10.7554/eLife.13051.001 Understanding how gene activity is regulated relies on accurate measurements of the output of genes. Proteins are generated from genes via a multi-step process. In the first step, called transcription, the DNA of a gene is copied by complex cell machinery to create molecules of mRNA. Subsequently, these mRNA molecules are ‘translated’ into proteins. Previous studies have assayed gene transcription by measuring mRNA production in millions of cells at the same time. The resulting measurements give the impression that transcription occurs as a continuous, smooth process. However, when individual gene transcription is measured in single cells, mRNA production between cells is unexpectedly variable. This challenged the view that transcription is a continuous process. One idea that explains this variability – the "two-state" or "bursting" model – proposes that genes switch between "on" and "off" states with a certain probability. Thus, at any one time, a gene will be off in many cells and on in others. However, the methods used in these experiments measure mRNA in dead cells, and so the dynamic switching of genes between on and off states was presumed, but not accurately measured. Corrigan et al. have now imaged the transcription of a single gene – a gene for a protein called actin – in living cells of an amoeba called Dictyostelium. Genetic techniques and computational modeling were then used to explore what affects the variability in this gene’s activity. These approaches revealed that transcription occurs across a spectrum of activity, rather than in rigid on or off states. The transcription process itself may also contribute to where a gene’s activity sits on this spectrum. Furthermore, Corrigan et al. found that a specific DNA sequence found at the start of the actin gene, that is also found in many genes in complex life-forms, is required for the gene to reach the highest levels of activity on the spectrum. This spectrum of activity states could allow cells to finely tune their responses to the signals they receive. A future challenge will be to assess how the activity of other genes compare to the actin gene and to discover what underlies the variation in the timing of transcription’s different stages. DOI:http://dx.doi.org/10.7554/eLife.13051.002
Collapse
Affiliation(s)
- Adam M Corrigan
- Division of Cell and Developmental Biology, University College London, London, United Kingdom.,Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Edward Tunnacliffe
- Division of Cell and Developmental Biology, University College London, London, United Kingdom.,Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Danielle Cannon
- Division of Cell and Developmental Biology, University College London, London, United Kingdom.,Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Jonathan R Chubb
- Division of Cell and Developmental Biology, University College London, London, United Kingdom.,Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| |
Collapse
|
16
|
Featherstone K, Hey K, Momiji H, McNamara AV, Patist AL, Woodburn J, Spiller DG, Christian HC, McNeilly AS, Mullins JJ, Finkenstädt BF, Rand DA, White MRH, Davis JRE. Spatially coordinated dynamic gene transcription in living pituitary tissue. eLife 2016; 5:e08494. [PMID: 26828110 PMCID: PMC4749562 DOI: 10.7554/elife.08494] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 12/13/2015] [Indexed: 12/22/2022] Open
Abstract
Transcription at individual genes in single cells is often pulsatile and stochastic. A key question emerges regarding how this behaviour contributes to tissue phenotype, but it has been a challenge to quantitatively analyse this in living cells over time, as opposed to studying snap-shots of gene expression state. We have used imaging of reporter gene expression to track transcription in living pituitary tissue. We integrated live-cell imaging data with statistical modelling for quantitative real-time estimation of the timing of switching between transcriptional states across a whole tissue. Multiple levels of transcription rate were identified, indicating that gene expression is not a simple binary 'on-off' process. Immature tissue displayed shorter durations of high-expressing states than the adult. In adult pituitary tissue, direct cell contacts involving gap junctions allowed local spatial coordination of prolactin gene expression. Our findings identify how heterogeneous transcriptional dynamics of single cells may contribute to overall tissue behaviour.
Collapse
Affiliation(s)
- Karen Featherstone
- Centre for Endocrinology and Diabetes, University of Manchester, Manchester, United Kingdom
| | - Kirsty Hey
- Department of Statistics, University of Warwick, Coventry, United Kingdom
| | - Hiroshi Momiji
- Warwick Systems Biology, University of Warwick, Coventry, United Kingdom
| | - Anne V McNamara
- Systems Biology Centre, University of Manchester, Manchester, United Kingdom
| | - Amanda L Patist
- Centre for Endocrinology and Diabetes, University of Manchester, Manchester, United Kingdom
| | - Joanna Woodburn
- Centre for Endocrinology and Diabetes, University of Manchester, Manchester, United Kingdom
| | - David G Spiller
- Systems Biology Centre, University of Manchester, Manchester, United Kingdom
| | - Helen C Christian
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Alan S McNeilly
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - John J Mullins
- The Molecular Physiology Group, Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | | | - David A Rand
- Warwick Systems Biology, University of Warwick, Coventry, United Kingdom
| | - Michael RH White
- Systems Biology Centre, University of Manchester, Manchester, United Kingdom
| | - Julian RE Davis
- Centre for Endocrinology and Diabetes, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
17
|
McNamara AV, Adamson AD, Dunham LSS, Semprini S, Spiller DG, McNeilly AS, Mullins JJ, Davis JRE, White MRH. Role of Estrogen Response Element in the Human Prolactin Gene: Transcriptional Response and Timing. Mol Endocrinol 2015; 30:189-200. [PMID: 26691151 PMCID: PMC4792233 DOI: 10.1210/me.2015-1186] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The use of bacterial artificial chromosome (BAC) reporter constructs in molecular physiology enables the inclusion of large sections of flanking DNA, likely to contain regulatory elements and enhancers regions that contribute to the transcriptional output of a gene. Using BAC recombineering, we have manipulated a 160-kb human prolactin luciferase (hPRL-Luc) BAC construct and mutated the previously defined proximal estrogen response element (ERE) located -1189 bp relative to the transcription start site, to assess its involvement in the estrogen responsiveness of the entire hPRL locus. We found that GH3 cell lines stably expressing Luc under control of the ERE-mutated hPRL promoter (ERE-Mut) displayed a dramatically reduced transcriptional response to 17β-estradiol (E2) treatment compared with cells expressing Luc from the wild-type (WT) ERE hPRL-Luc promoter (ERE-WT). The -1189 ERE controls not only the response to E2 treatment but also the acute transcriptional response to TNFα, which was abolished in ERE-Mut cells. ERE-WT cells displayed a biphasic transcriptional response after TNFα treatment, the acute phase of which was blocked after treatment with the estrogen receptor antagonist 4-hydroxy-tamoxifen. Unexpectedly, we show the oscillatory characteristics of hPRL promoter activity in individual living cells were unaffected by disruption of this crucial response element, real-time bioluminescence imaging showed that transcription cycles were maintained, with similar cycle lengths, in ERE-WT and ERE-Mut cells. These data suggest the -1189 ERE is the dominant response element involved in the hPRL transcriptional response to both E2 and TNFα and, crucially, that cycles of hPRL promoter activity are independent of estrogen receptor binding.
Collapse
Affiliation(s)
- Anne V McNamara
- Systems Microscopy Centre (A.V.M., A.D.A., D.G.S., M.R.H.W.), Faculty of Life Sciences, and Faculty of Medical and Human Sciences (L.S.S.D., J.R.E.D.), Centre for Endocrinology and Diabetes, Institute of Human Development, University of Manchester, Manchester M13 9PT, United Kingdom; and The Molecular Physiology Group (S.S., J.J.M.), Centre for Cardiovascular Science, and Medical Research Council Human Reproductive Sciences Unit (A.S.M.), Centre for Reproductive Biology, Queen's Medical Research Institute, Edinburgh EH16 4TJ, United Kingdom
| | - Antony D Adamson
- Systems Microscopy Centre (A.V.M., A.D.A., D.G.S., M.R.H.W.), Faculty of Life Sciences, and Faculty of Medical and Human Sciences (L.S.S.D., J.R.E.D.), Centre for Endocrinology and Diabetes, Institute of Human Development, University of Manchester, Manchester M13 9PT, United Kingdom; and The Molecular Physiology Group (S.S., J.J.M.), Centre for Cardiovascular Science, and Medical Research Council Human Reproductive Sciences Unit (A.S.M.), Centre for Reproductive Biology, Queen's Medical Research Institute, Edinburgh EH16 4TJ, United Kingdom
| | - Lee S S Dunham
- Systems Microscopy Centre (A.V.M., A.D.A., D.G.S., M.R.H.W.), Faculty of Life Sciences, and Faculty of Medical and Human Sciences (L.S.S.D., J.R.E.D.), Centre for Endocrinology and Diabetes, Institute of Human Development, University of Manchester, Manchester M13 9PT, United Kingdom; and The Molecular Physiology Group (S.S., J.J.M.), Centre for Cardiovascular Science, and Medical Research Council Human Reproductive Sciences Unit (A.S.M.), Centre for Reproductive Biology, Queen's Medical Research Institute, Edinburgh EH16 4TJ, United Kingdom
| | - Sabrina Semprini
- Systems Microscopy Centre (A.V.M., A.D.A., D.G.S., M.R.H.W.), Faculty of Life Sciences, and Faculty of Medical and Human Sciences (L.S.S.D., J.R.E.D.), Centre for Endocrinology and Diabetes, Institute of Human Development, University of Manchester, Manchester M13 9PT, United Kingdom; and The Molecular Physiology Group (S.S., J.J.M.), Centre for Cardiovascular Science, and Medical Research Council Human Reproductive Sciences Unit (A.S.M.), Centre for Reproductive Biology, Queen's Medical Research Institute, Edinburgh EH16 4TJ, United Kingdom
| | - David G Spiller
- Systems Microscopy Centre (A.V.M., A.D.A., D.G.S., M.R.H.W.), Faculty of Life Sciences, and Faculty of Medical and Human Sciences (L.S.S.D., J.R.E.D.), Centre for Endocrinology and Diabetes, Institute of Human Development, University of Manchester, Manchester M13 9PT, United Kingdom; and The Molecular Physiology Group (S.S., J.J.M.), Centre for Cardiovascular Science, and Medical Research Council Human Reproductive Sciences Unit (A.S.M.), Centre for Reproductive Biology, Queen's Medical Research Institute, Edinburgh EH16 4TJ, United Kingdom
| | - Alan S McNeilly
- Systems Microscopy Centre (A.V.M., A.D.A., D.G.S., M.R.H.W.), Faculty of Life Sciences, and Faculty of Medical and Human Sciences (L.S.S.D., J.R.E.D.), Centre for Endocrinology and Diabetes, Institute of Human Development, University of Manchester, Manchester M13 9PT, United Kingdom; and The Molecular Physiology Group (S.S., J.J.M.), Centre for Cardiovascular Science, and Medical Research Council Human Reproductive Sciences Unit (A.S.M.), Centre for Reproductive Biology, Queen's Medical Research Institute, Edinburgh EH16 4TJ, United Kingdom
| | - John J Mullins
- Systems Microscopy Centre (A.V.M., A.D.A., D.G.S., M.R.H.W.), Faculty of Life Sciences, and Faculty of Medical and Human Sciences (L.S.S.D., J.R.E.D.), Centre for Endocrinology and Diabetes, Institute of Human Development, University of Manchester, Manchester M13 9PT, United Kingdom; and The Molecular Physiology Group (S.S., J.J.M.), Centre for Cardiovascular Science, and Medical Research Council Human Reproductive Sciences Unit (A.S.M.), Centre for Reproductive Biology, Queen's Medical Research Institute, Edinburgh EH16 4TJ, United Kingdom
| | - Julian R E Davis
- Systems Microscopy Centre (A.V.M., A.D.A., D.G.S., M.R.H.W.), Faculty of Life Sciences, and Faculty of Medical and Human Sciences (L.S.S.D., J.R.E.D.), Centre for Endocrinology and Diabetes, Institute of Human Development, University of Manchester, Manchester M13 9PT, United Kingdom; and The Molecular Physiology Group (S.S., J.J.M.), Centre for Cardiovascular Science, and Medical Research Council Human Reproductive Sciences Unit (A.S.M.), Centre for Reproductive Biology, Queen's Medical Research Institute, Edinburgh EH16 4TJ, United Kingdom
| | - Michael R H White
- Systems Microscopy Centre (A.V.M., A.D.A., D.G.S., M.R.H.W.), Faculty of Life Sciences, and Faculty of Medical and Human Sciences (L.S.S.D., J.R.E.D.), Centre for Endocrinology and Diabetes, Institute of Human Development, University of Manchester, Manchester M13 9PT, United Kingdom; and The Molecular Physiology Group (S.S., J.J.M.), Centre for Cardiovascular Science, and Medical Research Council Human Reproductive Sciences Unit (A.S.M.), Centre for Reproductive Biology, Queen's Medical Research Institute, Edinburgh EH16 4TJ, United Kingdom
| |
Collapse
|
18
|
Hey KL, Momiji H, Featherstone K, Davis JRE, White MRH, Rand DA, Finkenstädt B. A stochastic transcriptional switch model for single cell imaging data. Biostatistics 2015; 16:655-69. [PMID: 25819987 PMCID: PMC4570576 DOI: 10.1093/biostatistics/kxv010] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 02/21/2015] [Indexed: 12/03/2022] Open
Abstract
Gene expression is made up of inherently stochastic processes within single cells and can be modeled through stochastic reaction networks (SRNs). In particular, SRNs capture the features of intrinsic variability arising from intracellular biochemical processes. We extend current models for gene expression to allow the transcriptional process within an SRN to follow a random step or switch function which may be estimated using reversible jump Markov chain Monte Carlo (MCMC). This stochastic switch model provides a generic framework to capture many different dynamic features observed in single cell gene expression. Inference for such SRNs is challenging due to the intractability of the transition densities. We derive a model-specific birth–death approximation and study its use for inference in comparison with the linear noise approximation where both approximations are considered within the unifying framework of state-space models. The methodology is applied to synthetic as well as experimental single cell imaging data measuring expression of the human prolactin gene in pituitary cells.
Collapse
Affiliation(s)
- Kirsty L Hey
- Department of Statistics, University of Warwick, Coventry CV4 7AL, UK
| | - Hiroshi Momiji
- Warwick Systems Biology, University of Warwick, Coventry CV4 7AL, UK
| | - Karen Featherstone
- Centre for Endocrinology and Diabetes, University of Manchester, Manchester M13 9PT, UK
| | - Julian R E Davis
- Centre for Endocrinology and Diabetes, University of Manchester, Manchester M13 9PT, UK
| | - Michael R H White
- Systems Biology Centre, University of Manchester, Manchester M13 9PL, UK
| | - David A Rand
- Warwick Systems Biology, University of Warwick, Coventry CV4 7AL, UK
| | | |
Collapse
|
19
|
A portable low-cost long-term live-cell imaging platform for biomedical research and education. Biosens Bioelectron 2015; 64:639-49. [DOI: 10.1016/j.bios.2014.09.061] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 09/18/2014] [Accepted: 09/22/2014] [Indexed: 11/22/2022]
|
20
|
Le Tissier PR, Hodson DJ, Lafont C, Fontanaud P, Schaeffer M, Mollard P. Anterior pituitary cell networks. Front Neuroendocrinol 2012; 33:252-66. [PMID: 22981652 DOI: 10.1016/j.yfrne.2012.08.002] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 08/17/2012] [Accepted: 08/18/2012] [Indexed: 12/17/2022]
Abstract
Both endocrine and non-endocrine cells of the pituitary gland are organized into structural and functional networks which are formed during embryonic development but which may be modified throughout life. Structural mapping of the various endocrine cell types has highlighted the existence of distinct network motifs and relationships with the vasculature which may relate to temporal differences in their output. Functional characterization of the network activity of growth hormone and prolactin cells has revealed a role for cell organization in gene regulation, the plasticity of pituitary hormone output and remarkably the ability to memorize altered demand. As such, the description of these endocrine cell networks alters the concept of the pituitary from a gland which simply responds to external regulation to that of an oscillator which may memorize information and constantly adapt its coordinated networks' responses to the flow of hypothalamic inputs.
Collapse
Affiliation(s)
- P R Le Tissier
- Division of Molecular Neuroendocrinology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, United Kingdom;
| | | | | | | | | | | |
Collapse
|
21
|
Moss BL, Elhammali A, Fowlkes T, Gross S, Vinjamoori A, Contag CH, Piwnica-Worms D. Interrogation of inhibitor of nuclear factor κB α/nuclear factor κB (IκBα/NF-κB) negative feedback loop dynamics: from single cells to live animals in vivo. J Biol Chem 2012; 287:31359-70. [PMID: 22807442 DOI: 10.1074/jbc.m112.364018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Full understanding of the biological significance of negative feedback processes requires interrogation at multiple scales as follows: in single cells, cell populations, and live animals in vivo. The transcriptionally coupled IκBα/NF-κB negative feedback loop, a pivotal regulatory node of innate immunity and inflammation, represents a model system for multiscalar reporters. Using a κB(5)→IκBα-FLuc bioluminescent reporter, we rigorously evaluated the dynamics of ΙκBα degradation and subsequent NF-κB transcriptional activity in response to diverse modes of TNFα stimulation. Modulating TNFα concentration or pulse duration yielded complex, reproducible, and differential ΙκBα dynamics in both cell populations and live single cells. Tremendous heterogeneity in the transcriptional amplitudes of individual responding cells was observed, which was greater than the heterogeneity in the transcriptional kinetics of responsive cells. Furthermore, administration of various TNFα doses in vivo generated ΙκBα dynamic profiles in the liver resembling those observed in single cells and populations of cells stimulated with TNFα pulses. This suggested that dose modulation of circulating TNFα was perceived by hepatocytes in vivo as pulses of increasing duration. Thus, a robust bioluminescent reporter strategy enabled rigorous quantitation of NF-κB/ΙκBα dynamics in both live single cells and cell populations and furthermore, revealed reproducible behaviors that informed interpretation of in vivo studies.
Collapse
Affiliation(s)
- Britney L Moss
- Molecular Imaging Center, Mallinckrodt Institute of Radiology, Department of Cell Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Featherstone K, White MRH, Davis JRE. The prolactin gene: a paradigm of tissue-specific gene regulation with complex temporal transcription dynamics. J Neuroendocrinol 2012; 24:977-90. [PMID: 22420298 PMCID: PMC3505372 DOI: 10.1111/j.1365-2826.2012.02310.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Transcription of numerous mammalian genes is highly pulsatile, with bursts of expression occurring with variable duration and frequency. The presence of this stochastic or 'noisy' expression pattern has been relatively unexplored in tissue systems. The prolactin gene provides a model of tissue-specific gene regulation resulting in pulsatile transcription dynamics in both cell lines and endocrine tissues. In most cell culture models, prolactin transcription appears to be highly variable between cells, with differences in transcription pulse duration and frequency. This apparently stochastic transcription is constrained by a transcriptional refractory period, which may be related to cycles of chromatin remodelling. We propose that prolactin transcription dynamics result from the summation of oscillatory cellular inputs and by regulation through chromatin remodelling cycles. Observations of transcription dynamics in cells within pituitary tissue show reduced transcriptional heterogeneity and can be grouped into a small number of distinct patterns. Thus, it appears that the tissue environment is able to reduce transcriptional noise to enable coordinated tissue responses to environmental change. We review the current knowledge on the complex tissue-specific regulation of the prolactin gene in pituitary and extra-pituitary sites, highlighting differences between humans and rodent experimental animal models. Within this context, we describe the transcription dynamics of prolactin gene expression and how this may relate to specific processes occurring within the cell.
Collapse
Affiliation(s)
- K Featherstone
- Developmental Biomedicine Research Group, Faculty of Medical and Human Sciences, University of Manchester, Manchester, UK.
| | | | | |
Collapse
|
23
|
Mollard P, Hodson DJ, Lafont C, Rizzoti K, Drouin J. A tridimensional view of pituitary development and function. Trends Endocrinol Metab 2012; 23:261-9. [PMID: 22436593 DOI: 10.1016/j.tem.2012.02.004] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 02/10/2012] [Accepted: 02/13/2012] [Indexed: 01/05/2023]
Abstract
Recent advances in tridimensional (3D) tissue imaging have considerably enriched our view of the pituitary gland and its development. Whereas traditional histology of the pituitary anterior lobe portrayed this tissue as a patchwork of cells, 3D imaging revealed that cells of each lineage form extensive and structured homotypic networks. In the adult gland these networks contribute to the robustness and coordination of the cell response to secretagogs. In addition, the network organization adapts to changes in endocrine environment, as revealed by the sexually dimorphic growth hormone (GH) cell network. Further work is required to establish better the molecular basis for homotypic and heterotypic interactions in the pituitary as well as the implications of these interactions for pituitary function and dysfunction in humans.
Collapse
Affiliation(s)
- Patrice Mollard
- Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 5203, Institut de Génomique Fonctionnelle, 34000 Montpellier, France.
| | | | | | | | | |
Collapse
|
24
|
Saunter CD, Semprini S, Buckley C, Mullins J, Girkin JM. Micro-endoscope for in vivo widefield high spatial resolution fluorescent imaging. BIOMEDICAL OPTICS EXPRESS 2012; 3:1274-8. [PMID: 22741074 PMCID: PMC3370968 DOI: 10.1364/boe.3.001274] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 04/27/2012] [Accepted: 04/30/2012] [Indexed: 05/21/2023]
Abstract
In this paper we report the design, testing and use of a scannerless probe specifically for minimally invasive imaging of deep tissue in vivo with an epi-fluorescence modality. The probe images a 500 μm diameter field of view through a 710 μm outer diameter probe with a maximum tissue penetration depth of 15 mm specifically configured for eGFP imaging. Example results are given from imaging the pituitary gland of rats and zebrafish hearts with lateral resolution of 2.5 μm.
Collapse
Affiliation(s)
- C D Saunter
- Department of Physics, Durham University, South Road, Durham, DH1 3LE, UK
| | - S. Semprini
- Molecular Physiology, University of Edinburgh/BHF Centre for Cardiovascular Science, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - C. Buckley
- Department of Physics, Durham University, South Road, Durham, DH1 3LE, UK
- Molecular Physiology, University of Edinburgh/BHF Centre for Cardiovascular Science, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - J Mullins
- Molecular Physiology, University of Edinburgh/BHF Centre for Cardiovascular Science, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - J M Girkin
- Department of Physics, Durham University, South Road, Durham, DH1 3LE, UK
| |
Collapse
|
25
|
Semprini S, McNamara AV, Awais R, Featherstone K, Harper CV, McNeilly JR, Patist A, Rossi AG, Dransfield I, McNeilly AS, Davis JRE, White MRH, Mullins JJ. Peritonitis activates transcription of the human prolactin locus in myeloid cells in a humanized transgenic rat model. Endocrinology 2012; 153:2724-34. [PMID: 22495675 DOI: 10.1210/en.2011-1926] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Prolactin (PRL) is mainly expressed in the pituitary in rodents, whereas in humans, expression is observed in many extrapituitary sites, including lymphocytes. Due to the lack of adequate experimental models, the function of locally produced PRL in the immune system is largely unknown. Using transgenic rats that express luciferase under the control of extensive human PRL regulatory regions, we characterized immune cell responses to thioglycollate (TG)-induced peritonitis. Resident populations of myeloid cells in the peritoneal cavity of untreated rats expressed barely detectable levels of luciferase. In contrast, during TG-induced peritonitis, cell-specific expression in both neutrophils and monocytes/macrophages in peritoneal exudates increased dramatically. Elevated luciferase expression was also detectable in peripheral blood and bone marrow CD11b(+) cells. Ex vivo stimulation of primary myeloid cells showed activation of the human extrapituitary promoter by TNF-α, lipopolysaccharide, or TG. These findings were confirmed in human peripheral blood monocytes, showing that the transgenic rat provided a faithful model for the human gene. Thus, the resolution of an inflammatory response is associated with dramatic activation of the PRL gene promoter in the myeloid lineage.
Collapse
Affiliation(s)
- Sabrina Semprini
- University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Live imaging of nascent RNA dynamics reveals distinct types of transcriptional pulse regulation. Proc Natl Acad Sci U S A 2012; 109:7350-5. [PMID: 22529358 DOI: 10.1073/pnas.1117603109] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Transcription of genes can be discontinuous, occurring in pulses or bursts. It is not clear how properties of transcriptional pulses vary between different genes. We compared the pulsing of five housekeeping and five developmentally induced genes by direct imaging of single gene transcriptional events in individual living Dictyostelium cells. Each gene displayed its own transcriptional signature, differing in probability of firing and pulse duration, frequency, and intensity. In contrast to the prevailing view from both prokaryotes and eukaryotes that transcription displays binary behavior, strongly expressed housekeeping genes altered the magnitude of their transcriptional pulses during development. These nonbinary "tunable" responses may be better suited than stochastic switch behavior for housekeeping functions. Analysis of RNA synthesis kinetics using fluorescence recovery after photobleaching implied modulation of housekeeping-gene pulse strength occurs at the level of transcription initiation rather than elongation. In addition, disparities between single cell and population measures of transcript production suggested differences in RNA stability between gene classes. Analysis of stability using RNAseq revealed no major global differences in stability between developmental and housekeeping transcripts, although strongly induced RNAs showed unusually rapid decay, indicating tight regulation of expression.
Collapse
|
27
|
Bakstad D, Adamson A, Spiller DG, White MRH. Quantitative measurement of single cell dynamics. Curr Opin Biotechnol 2012; 23:103-9. [PMID: 22137453 DOI: 10.1016/j.copbio.2011.11.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 11/04/2011] [Accepted: 11/07/2011] [Indexed: 01/24/2023]
Abstract
Over the past 20 years luminescent and fluorescent imaging assays have been developed to report on the dynamics of transcription and protein translocation in single cells. The combination of these measurements with mathematical analysis is having an increasingly significant impact on cell biology. There is an urgent need to translate these assays to the study of cells and tissues in vivo, which requires new tools and technologies. Emergence of these new tools and techniques will further the understanding of the role of signalling and transcriptional dynamics in the generation of cellular heterogeneity and the control of cell fate.
Collapse
|
28
|
Capp JP. Stochastic gene expression stabilization as a new therapeutic strategy for cancer. Bioessays 2012; 34:170-3. [DOI: 10.1002/bies.201100149] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
29
|
Davis JRE. Imaging of endocrine gene expression in a humanized transgenic rat. Ann N Y Acad Sci 2012; 1245:38-9. [PMID: 22211975 DOI: 10.1111/j.1749-6632.2011.06341.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Reporter gene imaging has revealed cyclical patterns of gene expression in living cells. Transgenic animal studies show that these patterns are modified by tissue architecture.
Collapse
|
30
|
Abstract
Reconstructing the lineage of cells is central to understanding development and is now also an important issue in stem cell research. Technological advances in genetically engineered permanent cell labeling, together with a multiplicity of fluorescent markers and sophisticated imaging, open new possibilities for prospective and retrospective clonal analysis.
Collapse
Affiliation(s)
- Margaret E Buckingham
- Molecular Genetics of Development Unit, CNRS URA 2578, Department of Developmental Biology, Institut Pasteur, Paris, France.
| | | |
Collapse
|
31
|
Featherstone K, Harper CV, McNamara A, Semprini S, Spiller DG, McNeilly J, McNeilly AS, Mullins JJ, White MRH, Davis JRE. Pulsatile patterns of pituitary hormone gene expression change during development. J Cell Sci 2011; 124:3484-91. [PMID: 21984812 DOI: 10.1242/jcs.088500] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Important questions in biology have emerged recently concerning the timing of transcription in living cells. Studies on clonal cell lines have shown that transcription is often pulsatile and stochastic, with implications for cellular differentiation. Currently, information regarding transcriptional activity at cellular resolution within a physiological context remains limited. To investigate single-cell transcriptional activity in real-time in living tissue we used bioluminescence imaging of pituitary tissue from transgenic rats in which luciferase gene expression is driven by a pituitary hormone gene promoter. We studied fetal and neonatal pituitary tissue to assess whether dynamic patterns of transcription change during tissue development. We show that gene expression in single cells is highly pulsatile at the time endocrine cells first appear but becomes stabilised as the tissue develops in early neonatal life. This stabilised transcription pattern might depend upon tissue architecture or paracrine signalling, as isolated cells, generated from enzymatic dispersion of the tissue, display pulsatile luminescence. Nascent cells in embryonic tissue also showed coordinated transcription activity over short distances further indicating that cellular context is important for transcription activity. Overall, our data show that cells alter their patterns of gene expression according to their context and developmental stage, with important implications for cellular differentiation.
Collapse
Affiliation(s)
- Karen Featherstone
- Developmental Biomedicine Research Group, Faculty of Medical and Human Sciences, AV Hill Building, University of Manchester, Manchester M13 9PT, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Stochastic gene expression is the driving force of cancer. Bioessays 2011; 33:781-2. [DOI: 10.1002/bies.201100092] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 07/04/2011] [Indexed: 12/28/2022]
|
33
|
Molecular morphology of pituitary cells, from conventional immunohistochemistry to fluorescein imaging. Molecules 2011; 16:3618-35. [PMID: 21540793 PMCID: PMC6263291 DOI: 10.3390/molecules16053618] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Revised: 04/25/2011] [Accepted: 04/26/2011] [Indexed: 11/16/2022] Open
Abstract
In situ hybridization (ISH) at the electron microscopic (EM) level is essential for elucidating the intracellular distribution and role of mRNA in protein synthesis. EM-ISH is considered to be an important tool for clarifying the intracellular localization of mRNA and the exact site of pituitary hormone synthesis on the rough endoplasmic reticulum. A combined ISH and immunohistochemistry (IHC) under EM (EM-ISH&IHC) approach has sufficient ultrastructural resolution, and provides two-dimensional images of the subcellular localization of pituitary hormone and its mRNA in a pituitary cell. The advantages of semiconductor nanocrystals (quantum dots, Qdots) and confocal laser scanning microscopy (CLSM) enable us to obtain three-dimensional images of the subcellular localization of pituitary hormone and its mRNA. Both EM-ISH&IHC and ISH & IHC using Qdots and CLSM are useful for understanding the relationships between protein and mRNA simultaneously in two or three dimensions. CLSM observation of rab3B and SNARE proteins such as SNAP-25 and syntaxin has revealed that both rab3B and SNARE system proteins play important roles and work together as the exocytotic machinery in anterior pituitary cells. Another important issue is the intracellular transport and secretion of pituitary hormone. We have developed an experimental pituitary cell line, GH3 cell, which has growth hormone (GH) linked to enhanced yellow fluorescein protein (EYFP). This stable GH3 cell secretes GH linked to EYFP upon stimulation by Ca2+ influx or Ca2+ release from storage. This GH3 cell line is useful for the real-time visualization of the intracellular transport and secretion of GH. These three methods from conventional immunohistochemistry and fluorescein imaging allow us to consecutively visualize the process of transcription, translation, transport and secretion of anterior pituitary hormone.
Collapse
|
34
|
Harper CV, Finkenstädt B, Woodcock DJ, Friedrichsen S, Semprini S, Ashall L, Spiller DG, Mullins JJ, Rand DA, Davis JRE, White MRH. Dynamic analysis of stochastic transcription cycles. PLoS Biol 2011; 9:e1000607. [PMID: 21532732 PMCID: PMC3075210 DOI: 10.1371/journal.pbio.1000607] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Accepted: 02/24/2011] [Indexed: 01/13/2023] Open
Abstract
In individual mammalian cells the expression of some genes such as prolactin is highly variable over time and has been suggested to occur in stochastic pulses. To investigate the origins of this behavior and to understand its functional relevance, we quantitatively analyzed this variability using new mathematical tools that allowed us to reconstruct dynamic transcription rates of different reporter genes controlled by identical promoters in the same living cell. Quantitative microscopic analysis of two reporter genes, firefly luciferase and destabilized EGFP, was used to analyze the dynamics of prolactin promoter-directed gene expression in living individual clonal and primary pituitary cells over periods of up to 25 h. We quantified the time-dependence and cyclicity of the transcription pulses and estimated the length and variation of active and inactive transcription phases. We showed an average cycle period of approximately 11 h and demonstrated that while the measured time distribution of active phases agreed with commonly accepted models of transcription, the inactive phases were differently distributed and showed strong memory, with a refractory period of transcriptional inactivation close to 3 h. Cycles in transcription occurred at two distinct prolactin-promoter controlled reporter genes in the same individual clonal or primary cells. However, the timing of the cycles was independent and out-of-phase. For the first time, we have analyzed transcription dynamics from two equivalent loci in real-time in single cells. In unstimulated conditions, cells showed independent transcription dynamics at each locus. A key result from these analyses was the evidence for a minimum refractory period in the inactive-phase of transcription. The response to acute signals and the result of manipulation of histone acetylation was consistent with the hypothesis that this refractory period corresponded to a phase of chromatin remodeling which significantly increased the cyclicity. Stochastically timed bursts of transcription in an apparently random subset of cells in a tissue may thus produce an overall coordinated but heterogeneous phenotype capable of acute responses to stimuli.
Collapse
Affiliation(s)
- Claire V. Harper
- Centre for Cell Imaging, School of Biological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Bärbel Finkenstädt
- Department of Statistics, University of Warwick, Coventry, United Kingdom
| | - Dan J. Woodcock
- Warwick Systems Biology Centre, University of Warwick, United Kingdom
| | - Sönke Friedrichsen
- Endocrinology Group, School of Biomedicine, University of Manchester, Manchester, United Kingdom
| | - Sabrina Semprini
- Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Louise Ashall
- Centre for Cell Imaging, School of Biological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - David G. Spiller
- Centre for Cell Imaging, School of Biological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - John J. Mullins
- Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - David A. Rand
- Warwick Systems Biology Centre, University of Warwick, United Kingdom
- * E-mail: (DAR); (JRED); (MRHW)
| | - Julian R. E. Davis
- Endocrinology Group, School of Biomedicine, University of Manchester, Manchester, United Kingdom
- * E-mail: (DAR); (JRED); (MRHW)
| | - Michael R. H. White
- Centre for Cell Imaging, School of Biological Sciences, University of Liverpool, Liverpool, United Kingdom
- * E-mail: (DAR); (JRED); (MRHW)
| |
Collapse
|
35
|
Rajan S, Djambazian H, Dang HCP, Sladek R, Hudson TJ. The living microarray: a high-throughput platform for measuring transcription dynamics in single cells. BMC Genomics 2011; 12:115. [PMID: 21324195 PMCID: PMC3050818 DOI: 10.1186/1471-2164-12-115] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Accepted: 02/16/2011] [Indexed: 12/15/2022] Open
Abstract
Background Current methods of measuring transcription in high-throughput have led to significant improvements in our knowledge of transcriptional regulation and Systems Biology. However, endpoint measurements obtained from methods that pool populations of cells are not amenable to studying time-dependent processes that show cell heterogeneity. Results Here we describe a high-throughput platform for measuring transcriptional changes in real time in single mammalian cells. By using reverse transfection microarrays we are able to transfect fluorescent reporter plasmids into 600 independent clusters of cells plated on a single microscope slide and image these clusters every 20 minutes. We use a fast-maturing, destabilized and nuclear-localized reporter that is suitable for automated segmentation to accurately measure promoter activity in single cells. We tested this platform with synthetic drug-inducible promoters that showed robust induction over 24 hours. Automated segmentation and tracking of over 11 million cell images during this period revealed that cells display substantial heterogeneity in their responses to the applied treatment, including a large proportion of transfected cells that do not respond at all. Conclusions The results from our single-cell analysis suggest that methods that measure average cellular responses, such as DNA microarrays, RT-PCR and chromatin immunoprecipitation, characterize a response skewed by a subset of cells in the population. Our method is scalable and readily adaptable to studying complex systems, including cell proliferation, differentiation and apoptosis.
Collapse
Affiliation(s)
- Saravanan Rajan
- Department of Human Genetics, McGill University, Montréal, Québec, Canada
| | | | | | | | | |
Collapse
|
36
|
Paszek P, Jackson DA, White MR. Oscillatory control of signalling molecules. Curr Opin Genet Dev 2010; 20:670-6. [PMID: 20850963 DOI: 10.1016/j.gde.2010.08.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Revised: 07/23/2010] [Accepted: 08/19/2010] [Indexed: 10/19/2022]
Abstract
The emergence of biological function from the dynamic control of cellular signalling molecules is a fundamental process in biology. Key questions include: How do cells decipher noisy environmental cues, encode these signals to control fate decisions and propagate information through tissues? Recent advances in systems biology, and molecular and cellular biology, exemplified by analyses of signalling via the transcription factor Nuclear Factor kappaB (NF-κB), reveal a critical role of oscillatory control in the regulation of these biological functions. The emerging view is that the oscillatory dynamics of signalling molecules and the epigenetically regulated specificity for target genes contribute to robust regulation of biological function at different levels of cellular organisation through frequency-dependent information encoding.
Collapse
Affiliation(s)
- Pawel Paszek
- Centre for Cell Imaging, School of Biological Sciences, The Biosciences Building, University of Liverpool, Crown St., Liverpool L69 7ZB, UK.
| | | | | |
Collapse
|
37
|
Noise-driven heterogeneity in the rate of genetic-variant generation as a basis for evolvability. Genetics 2010; 185:395-404. [PMID: 20606014 DOI: 10.1534/genetics.110.118190] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Molecular biologists have long searched for molecular mechanisms responsible for tuning the rate of genetic-variant generation (RGVG) in fluctuating environments. In spite of several bacterial examples, no regulated variation in the RGVG has been identified in eukaryotic systems. Based notably on the example of industrial and pathogenic yeasts, this article proposes a nonregulated molecular evolutionary mechanism for the appearance of the transient increase of the RGVG in eukaryotic cell populations facing challenging environments. The stochastic nature of gene expression allows a model in which the RGVG in the population can be rapidly tuned as a result of a simple Darwinian process acting on noise-driven heterogeneity in the RGVG from cell to cell. The high flexibility conferred through this model could resolve paradoxical situations, especially concerning the mutator phenotype in cancer cells.
Collapse
|
38
|
Abstract
Populations of cells are almost always heterogeneous in function and fate. To understand the plasticity of cells, it is vital to measure quantitatively and dynamically the molecular processes that underlie cell-fate decisions in single cells. Early events in cell signalling often occur within seconds of the stimulus, whereas intracellular signalling processes and transcriptional changes can take minutes or hours. By contrast, cell-fate decisions, such as whether a cell divides, differentiates or dies, can take many hours or days. Multiparameter experimental and computational methods that integrate quantitative measurement and mathematical simulation of these noisy and complex processes are required to understand the highly dynamic mechanisms that control cell plasticity and fate.
Collapse
Affiliation(s)
- David G Spiller
- Centre for Cell Imaging, School of Biological Sciences, Bioscience Research Building, Crown Street, Liverpool L69 7ZB, UK
| | | | | | | |
Collapse
|