1
|
Bamra T, Shafi T, Das S, Kumar M, Das P. Leishmania donovani mevalonate kinase regulates host actin for inducing phagocytosis. Biochimie 2024; 220:31-38. [PMID: 38123120 DOI: 10.1016/j.biochi.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
Despite the well-established role of macrophages in phagocytosing Leishmania, the contribution of the parasite to this process is not well understood. Present study provides insights into the mechanism underlying the MVK-induced entry of L. donovani and improve our knowledge of host-pathogen interactions. We have discussed Mevalonate kinase (MVK)-induced actin reorganization, modulation of signaling pathways and host cell functions. Our results show that LdMVK gains access to macrophage cytosol and induces actin assembly modulation through the activation of actin-related proteins: VASP, Src and ERM. We have also demonstrated that LdMVK induces Ca2+ signaling and Akt pathway in macrophages, which are critical components of Leishmania survival and proliferation. Interestingly, we found that antibodies against LdMVK can kill Leishmania-infected macrophages in culture by forming extracellular traps, highlighting the potential of LdMVK in inhibiting parasite death. Overall, LdMVK is a virulent factor in Leishmania that mediates parasite internalization and host modulation by targeting host proteins phosphorylation and calcium homeostasis having significant implications in disease progression.
Collapse
Affiliation(s)
- Tanvir Bamra
- Department of Molecular Biology, ICMR- Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna, Bihar, 800 007, India.
| | - Taj Shafi
- Department of Molecular Biology, ICMR- Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna, Bihar, 800 007, India.
| | - Sushmita Das
- Department of Microbiology, All India Institute of Medical Sciences, Phulwarisharif, Patna, Bihar, 801 507, India.
| | - Manjay Kumar
- Department of Molecular Biology, ICMR- Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna, Bihar, 800 007, India.
| | - Pradeep Das
- Department of Molecular Biology, ICMR- Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna, Bihar, 800 007, India; Division of Parasitology, ICMR-National Institute of Cholera and Enteric Diseases, Beleghata, Kolkata, West Bengal, 700 010, India.
| |
Collapse
|
2
|
Vizcaíno-Castillo A, Kotila T, Kogan K, Yanase R, Como J, Antenucci L, Michelot A, Sunter JD, Lappalainen P. Leishmania profilin interacts with actin through an unusual structural mechanism to control cytoskeletal dynamics in parasites. J Biol Chem 2024; 300:105740. [PMID: 38340794 PMCID: PMC10907219 DOI: 10.1016/j.jbc.2024.105740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 02/12/2024] Open
Abstract
Diseases caused by Leishmania and Trypanosoma parasites are a major health problem in tropical countries. Because of their complex life cycle involving both vertebrate and insect hosts, and >1 billion years of evolutionarily distance, the cell biology of trypanosomatid parasites exhibits pronounced differences to animal cells. For example, the actin cytoskeleton of trypanosomatids is divergent when compared with other eukaryotes. To understand how actin dynamics are regulated in trypanosomatid parasites, we focused on a central actin-binding protein profilin. Co-crystal structure of Leishmania major actin in complex with L. major profilin revealed that, although the overall folds of actin and profilin are conserved in eukaryotes, Leishmania profilin contains a unique α-helical insertion, which interacts with the target binding cleft of actin monomer. This insertion is conserved across the Trypanosomatidae family and is similar to the structure of WASP homology-2 (WH2) domain, a small actin-binding motif found in many other cytoskeletal regulators. The WH2-like motif contributes to actin monomer binding and enhances the actin nucleotide exchange activity of Leishmania profilin. Moreover, Leishmania profilin inhibited formin-catalyzed actin filament assembly in a mechanism that is dependent on the presence of the WH2-like motif. By generating profilin knockout and knockin Leishmania mexicana strains, we show that profilin is important for efficient endocytic sorting in parasites, and that the ability to bind actin monomers and proline-rich proteins, and the presence of a functional WH2-like motif, are important for the in vivo function of Leishmania profilin. Collectively, this study uncovers molecular principles by which profilin regulates actin dynamics in trypanosomatids.
Collapse
Affiliation(s)
| | - Tommi Kotila
- HiLIFE Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Konstantin Kogan
- HiLIFE Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Ryuji Yanase
- Oxford Brookes University, Department of Biological and Medical Sciences, Oxford, UK
| | - Juna Como
- Aix Marseille University, CNRS, IBDM, Turing Centre for Living Systems, Marseille, France
| | - Lina Antenucci
- HiLIFE Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Alphee Michelot
- Aix Marseille University, CNRS, IBDM, Turing Centre for Living Systems, Marseille, France
| | - Jack D Sunter
- Oxford Brookes University, Department of Biological and Medical Sciences, Oxford, UK.
| | - Pekka Lappalainen
- HiLIFE Institute of Biotechnology, University of Helsinki, Helsinki, Finland; Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
3
|
Zhang X, Wang L, Feng R, Liang G, Hou W, Zhang Y, Li X, Zhang L, Zhang S. Functional characterization of CpADF, an actin depolymerizing factor protein in Cryptosporidium parvum. Parasitol Res 2023; 122:2621-2630. [PMID: 37676305 DOI: 10.1007/s00436-023-07960-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 08/29/2023] [Indexed: 09/08/2023]
Abstract
Cryptosporidium is a highly pathogenic water and food-borne zoonotic parasitic protozoan that causes severe diarrhea in humans and animals. Apicomplexan parasites invade host cells via a unique motility process called gliding, which relies on the parasite's microfilaments. Actin depolymerizing factor (ADF) is a fibrous-actin (F-actin) and globular actin (G-actin) binding protein essential for regulating the turnover of microfilaments. However, the role of ADF in Cryptosporidium parvum (C. parvum) remains unknown. In this study, we preliminarily characterized the biological functions of ADF in C. parvum (CpADF). The CpADF was a 135-aa protein encoded by cgd5_2800 gene containing an ADF-H domain. The expression of cgd5_2800 gene peaked at 12 h post-infection, and the CpADF was located in the cytoplasm of oocysts, middle region of sporozoites, and cytoplasm of merozoites. Neutralization efficiency of anti-CpADF serum was approximately 41.30%. Actin sedimentation assay revealed that CpADF depolymerized but did not undergo cosedimentation with F-actin and its ability of F-actin depolymerization was pH independent. These results provide a basis for further investigation of the roles of CpADF in the invasion of C. parvum.
Collapse
Affiliation(s)
- Xiaotian Zhang
- College of Veterinary Medicine, Henan Agricultural University, No. 15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, People's Republic of China
- International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, Henan, People's Republic of China
- Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs, Zhengzhou, Henan, People's Republic of China
| | - Luyang Wang
- College of Veterinary Medicine, Henan Agricultural University, No. 15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, People's Republic of China
- International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, Henan, People's Republic of China
- Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs, Zhengzhou, Henan, People's Republic of China
| | - Ruiying Feng
- College of Veterinary Medicine, Henan Agricultural University, No. 15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, People's Republic of China
- International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, Henan, People's Republic of China
- Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs, Zhengzhou, Henan, People's Republic of China
| | - Guanda Liang
- College of Veterinary Medicine, Henan Agricultural University, No. 15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, People's Republic of China
- International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, Henan, People's Republic of China
- Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs, Zhengzhou, Henan, People's Republic of China
| | - Wenyan Hou
- College of Veterinary Medicine, Henan Agricultural University, No. 15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, People's Republic of China
- International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, Henan, People's Republic of China
- Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs, Zhengzhou, Henan, People's Republic of China
| | - Yingying Zhang
- College of Veterinary Medicine, Henan Agricultural University, No. 15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, People's Republic of China
- International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, Henan, People's Republic of China
- Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs, Zhengzhou, Henan, People's Republic of China
| | - Xiaoying Li
- College of Veterinary Medicine, Henan Agricultural University, No. 15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, People's Republic of China
- International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, Henan, People's Republic of China
- Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs, Zhengzhou, Henan, People's Republic of China
| | - Longxian Zhang
- College of Veterinary Medicine, Henan Agricultural University, No. 15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, People's Republic of China.
- International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, Henan, People's Republic of China.
- Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs, Zhengzhou, Henan, People's Republic of China.
| | - Sumei Zhang
- College of Veterinary Medicine, Henan Agricultural University, No. 15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, People's Republic of China.
- International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, Henan, People's Republic of China.
- Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs, Zhengzhou, Henan, People's Republic of China.
| |
Collapse
|
4
|
Tahtamouni L, Alzghoul A, Alderfer S, Sun J, Ahram M, Prasad A, Bamburg J. The role of activated androgen receptor in cofilin phospho-regulation depends on the molecular subtype of TNBC cell line and actin assembly dynamics. PLoS One 2022; 17:e0279746. [PMID: 36584207 PMCID: PMC9803305 DOI: 10.1371/journal.pone.0279746] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/13/2022] [Indexed: 12/31/2022] Open
Abstract
Triple negative breast cancer (TNBC) is highly metastatic and of poor prognosis. Metastasis involves coordinated actin filament dynamics mediated by cofilin and associated proteins. Activated androgen receptor (AR) is believed to contribute to TNBC tumorigenesis. Our current work studied roles of activated AR and cofilin phospho-regulation during migration of three AR+ TNBC cell lines to determine if altered cofilin regulation can explain their migratory differences. Untreated or AR agonist-treated BT549, MDA-MB-453, and SUM159PT cells were compared to cells silenced for cofilin (KD) or AR expression/function (bicalutamide). Cofilin-1 was found to be the only ADF/cofilin isoform expressed in each TNBC line. Despite a significant increase in cofilin kinase caused by androgens, the ratio of cofilin:p-cofilin (1:1) did not change in SUM159PT cells. BT549 and MDA-MB-453 cells contain high p-cofilin levels which underwent androgen-induced dephosphorylation through increased cofilin phosphatase expression, but surprisingly maintain a leading-edge with high p-cofilin/total cofilin not found in SUM159PT cells. Androgens enhanced cell polarization in all lines, stimulated wound healing and transwell migration rates and increased N/E-cadherin mRNA ratios while reducing cell adhesion in BT549 and MDA-MB-453 cells. Cofilin KD negated androgen effects in MDA-MB-453 except for cell adhesion, while in BT549 cells it abrogated androgen-reduced cell adhesion. In SUM159PT cells, cofilin KD with and without androgens had similar effects in almost all processes studied. AR dependency of the processes were confirmed. In conclusion, cofilin regulation downstream of active AR is dependent on which actin-mediated process is being examined in addition to being cell line-specific. Although MDA-MB-453 cells demonstrated some control of cofilin through an AR-dependent mechanism, other AR-dependent pathways need to be further studied. Non-cofilin-dependent mechanisms that modulate migration of SUM159PT cells need to be investigated. Categorizing TNBC behavior as AR responsive and/or cofilin dependent can inform on decisions for therapeutic treatment.
Collapse
Affiliation(s)
- Lubna Tahtamouni
- Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa, Jordan
- Department of Biochemistry and Molecular Biology, College of Natural Sciences, Colorado State University, Fort Collins, CO, United States of America
- * E-mail: ,
| | - Ahmad Alzghoul
- Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa, Jordan
| | - Sydney Alderfer
- Department of Chemical and Biological Engineering, School of Biomedical Engineering, Colorado State University, Fort Collins, CO, United States of America
| | - Jiangyu Sun
- Department of Biochemistry and Molecular Biology, College of Natural Sciences, Colorado State University, Fort Collins, CO, United States of America
| | - Mamoun Ahram
- Department of Physiology and Biochemistry, School of Medicine, The University of Jordan, Amman, Jordan
| | - Ashok Prasad
- Department of Chemical and Biological Engineering, School of Biomedical Engineering, Colorado State University, Fort Collins, CO, United States of America
| | - James Bamburg
- Department of Biochemistry and Molecular Biology, College of Natural Sciences, Colorado State University, Fort Collins, CO, United States of America
| |
Collapse
|
5
|
Kotila T, Wioland H, Selvaraj M, Kogan K, Antenucci L, Jégou A, Huiskonen JT, Romet-Lemonne G, Lappalainen P. Structural basis of rapid actin dynamics in the evolutionarily divergent Leishmania parasite. Nat Commun 2022; 13:3442. [PMID: 35705539 PMCID: PMC9200798 DOI: 10.1038/s41467-022-31068-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 06/01/2022] [Indexed: 11/08/2022] Open
Abstract
Actin polymerization generates forces for cellular processes throughout the eukaryotic kingdom, but our understanding of the 'ancient' actin turnover machineries is limited. We show that, despite > 1 billion years of evolution, pathogenic Leishmania major parasite and mammalian actins share the same overall fold and co-polymerize with each other. Interestingly, Leishmania harbors a simple actin-regulatory machinery that lacks cofilin 'cofactors', which accelerate filament disassembly in higher eukaryotes. By applying single-filament biochemistry we discovered that, compared to mammalian proteins, Leishmania actin filaments depolymerize more rapidly from both ends, and are severed > 100-fold more efficiently by cofilin. Our high-resolution cryo-EM structures of Leishmania ADP-, ADP-Pi- and cofilin-actin filaments identify specific features at actin subunit interfaces and cofilin-actin interactions that explain the unusually rapid dynamics of parasite actin filaments. Our findings reveal how divergent parasites achieve rapid actin dynamics using a remarkably simple set of actin-binding proteins, and elucidate evolution of the actin cytoskeleton.
Collapse
Affiliation(s)
- Tommi Kotila
- Institute of Biotechnology and Helsinki Institute of Life Science, University of Helsinki, P.O. Box 56, 00014, Helsinki, Finland
| | - Hugo Wioland
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013, Paris, France
| | - Muniyandi Selvaraj
- Institute of Biotechnology and Helsinki Institute of Life Science, University of Helsinki, P.O. Box 56, 00014, Helsinki, Finland
| | - Konstantin Kogan
- Institute of Biotechnology and Helsinki Institute of Life Science, University of Helsinki, P.O. Box 56, 00014, Helsinki, Finland
| | - Lina Antenucci
- Institute of Biotechnology and Helsinki Institute of Life Science, University of Helsinki, P.O. Box 56, 00014, Helsinki, Finland
| | - Antoine Jégou
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013, Paris, France
| | - Juha T Huiskonen
- Institute of Biotechnology and Helsinki Institute of Life Science, University of Helsinki, P.O. Box 56, 00014, Helsinki, Finland
| | | | - Pekka Lappalainen
- Institute of Biotechnology and Helsinki Institute of Life Science, University of Helsinki, P.O. Box 56, 00014, Helsinki, Finland.
| |
Collapse
|
6
|
Ambaru B, Gangadharan GM, Subramanya HS, Gupta CM. Profilin is involved in G1 to S phase progression and mitotic spindle orientation during Leishmania donovani cell division cycle. PLoS One 2022; 17:e0265692. [PMID: 35316283 PMCID: PMC8939790 DOI: 10.1371/journal.pone.0265692] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/04/2022] [Indexed: 11/27/2022] Open
Abstract
Profilin is a multi-ligand binding protein, which is a key regulator of actin dynamics and involved in regulating several cellular functions. It is present in all eukaryotes, including trypanosomatids such as Leishmania. However, not much is known about its functions in these organisms. Our earlier studies have shown that Leishmania parasites express a single homologue of profilin (LdPfn) that binds actin, phosphoinositides and poly- L- proline motives, and depletion of its intracellular pool to 50%of normal levels affects the cell growth and intracellular trafficking. Here, we show, employing affinity pull-down and mass spectroscopy, that LdPfn interacted with a large number of proteins, including those involved in mRNA processing and protein translation initiation, such as eIF4A1. Further, we reveal, using mRNA Seq analysis, that depletion of LdPfn in Leishmania cells (LdPfn+/-) resulted in significantly reduced expression of genes which encode proteins involved in cell cycle regulation, mRNA translation initiation, nucleosides and amino acids transport. In addition, we show that in LdPfn+/- cells, cellular levels of eIF4A1 protein were significantly decreased, and during their cell division cycle, G1-to-S phase progression was delayed and orientation of mitotic spindle altered. These changes were, however, reversed to normal by episomal expression of GFP-LdPfn in LdPfn+/- cells. Taken together, our results indicate that profilin is involved in regulation of G1-to-S phase progression and mitotic spindle orientation in Leishmania cell cycle, perhaps through its interaction with elF4A1 protein.
Collapse
Affiliation(s)
- Bindu Ambaru
- Institute of Bioinformatics and Applied Biotechnology, Bengaluru, Karnataka, India
- Manipal Academy of Higher Education, Manipal, Karnataka, India
| | | | | | - Chhitar M. Gupta
- Institute of Bioinformatics and Applied Biotechnology, Bengaluru, Karnataka, India
- * E-mail:
| |
Collapse
|
7
|
Howard J, Goh CY, Gorzel KW, Higgins M, McCann A. The potential role of cofilin-1 in promoting triple negative breast cancer (TNBC) metastasis via the extracellular vesicles (EVs). Transl Oncol 2022; 15:101247. [PMID: 34678587 PMCID: PMC8529549 DOI: 10.1016/j.tranon.2021.101247] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/25/2021] [Accepted: 10/12/2021] [Indexed: 02/09/2023] Open
Abstract
Triple negative breast cancer (TNBC) is an aggressive cancer, particularly prone to metastasis and is associated with poor survival outcomes. The key to unravelling the aggressiveness of TNBC lies in decoding the mechanism by which it metastasises. Cofilin-1 is a well-studied member of the cofilin family, involved in actin depolymerisation. Studies have described the diverse roles of cofilin-1 including cell motility, apoptosis and lipid metabolism. Levels of cofilin-1 have been shown to be increased in many different types of malignant cells, with increased cofilin-1 protein levels associated with poor prognosis in patients with TNBC. Extracellular vesicles (EVs) are microvesicles typically around 100 nm in size, found in all biological fluids examined to date (Lötvall et al., 2014). Proteomic studies on extracellular vesicles (EVs) have shown that cofilin-1 is amongst the most frequently detected. Moreover, decreased levels of cofilin-1 potentially inhibit the release of EVs from cells. Additionally, Cofilin-1 is essential for the maturation of EVs and may also play a key role in the establishment of the pre-metastatic niche, thus promoting tumour cell migration. Further work into the exact mechanism by which cofilin-1 advances TNBC metastasis, may potentially prevent disease progression and improve outcomes for patients with TNBC.
Collapse
Affiliation(s)
- Jane Howard
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland; UCD School of Medicine, College of Health and Agricultural Sciences (CHAS), University College Dublin, Belfield, Dublin 4, Ireland.
| | - Chia Yin Goh
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland; UCD School of Medicine, College of Health and Agricultural Sciences (CHAS), University College Dublin, Belfield, Dublin 4, Ireland
| | - Karolina Weiner Gorzel
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland; St Vincent's University Hospital (SVUH), Elm Park, Dublin 4, Ireland
| | - Michaela Higgins
- St Vincent's University Hospital (SVUH), Elm Park, Dublin 4, Ireland
| | - Amanda McCann
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland; UCD School of Medicine, College of Health and Agricultural Sciences (CHAS), University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
8
|
Gupta CM, Ambaru B, Bajaj R. Emerging Functions of Actins and Actin Binding Proteins in Trypanosomatids. Front Cell Dev Biol 2020; 8:587685. [PMID: 33163497 PMCID: PMC7581878 DOI: 10.3389/fcell.2020.587685] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/22/2020] [Indexed: 01/20/2023] Open
Abstract
Actin is the major protein constituent of the cytoskeleton that performs wide range of cellular functions. It exists in monomeric and filamentous forms, dynamics of which is regulated by a large repertoire of actin binding proteins. However, not much was known about existence of these proteins in trypanosomatids, till the genome sequence data of three important organisms of this class, viz. Trypanosoma brucei, Trypanosoma cruzi and Leishmania major, became available. Here, we have reviewed most of the findings reported to date on the intracellular distribution, structure and functions of these proteins and based on them, we have hypothesized some of their functions. The major findings are as follows: (1) All the three organisms encode at least a set of ten actin binding proteins (profilin, twinfilin, ADF/cofilin, CAP/srv2, CAPz, coronin, two myosins, two formins) and one isoform of actin, except that T. cruzi encodes for three formins and several myosins along with four actins. (2) Actin 1 and a few actin binding proteins (ADF/cofilin, profilin, twinfilin, coronin and myosin13 in L. donovani; ADF/cofilin, profilin and myosin1 in T. brucei; profilin and myosin-F in T.cruzi) have been identified and characterized. (3) In all the three organisms, actin cytoskeleton has been shown to regulate endocytosis and intracellular trafficking. (4) Leishmania actin1 has been the most characterized protein among trypanosomatid actins. (5) This protein is localized to the cytoplasm as well as in the flagellum, nucleus and kinetoplast, and in vitro, it binds to DNA and displays scDNA relaxing and kDNA nicking activities. (6) The pure protein prefers to form bundles instead of thin filaments, and does not bind DNase1 or phalloidin. (7) Myosin13, myosin1 and myosin-F regulate endocytosis and intracellular trafficking, respectively, in Leishmania, T. brucei and T. cruzi. (8) Actin-dependent myosin13 motor is involved in dynamics and assembly of Leishmania flagellum. (9) Leishmania twinfilin localizes mostly to the nucleolus and coordinates karyokinesis by effecting splindle elongation and DNA synthesis. (10) Leishmania coronin binds and promotes actin filament formation and exists in tetrameric form rather than trimeric form, like other coronins. (11) Trypanosomatid profilins are essential for survival of all the three parasites.
Collapse
Affiliation(s)
- Chhitar M Gupta
- Institute of Bioinformatics and Applied Biotechnology, Bengaluru, India
| | - Bindu Ambaru
- Institute of Bioinformatics and Applied Biotechnology, Bengaluru, India.,Manipal Academy of Higher Education, Manipal, India
| | - Rani Bajaj
- Institute of Bioinformatics and Applied Biotechnology, Bengaluru, India.,Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
9
|
Bajaj R, Ambaru B, Gupta CM. Deciphering the role of UBA-like domains in intraflagellar distribution and functions of myosin XXI in Leishmania. PLoS One 2020; 15:e0232116. [PMID: 32343719 PMCID: PMC7188243 DOI: 10.1371/journal.pone.0232116] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 04/07/2020] [Indexed: 11/19/2022] Open
Abstract
Myosin XXI (Myo21) is a novel class of myosin present in all kinetoplastid parasites, such as Trypanosoma and Leishmania. This protein in Leishmania promastigotes is predominantly localized to the proximal region of the flagellum, and is involved in the flagellum assembly, cell motility and intracellular vesicle transport. As Myo21 contains two ubiquitin associated (UBA)-like domains (UBLD) in its amino acid sequence, we considered it of interest to analyze the role of these domains in the intracellular distribution and functions of this protein in Leishmania cells. In this context, we created green fluorescent protein (GFP)-conjugates of Myo21 constructs lacking one of the two UBLDs at a time or both the UBLDs as well as GFP-conjugates of only the two UBLDs and Myo21 tail lacking the two UBLDs and separately expressed them in the Leishmania cells. Our results show that unlike Myo21-GFP, Myo21-GFP constructs lacking either one or both the UBLDs failed to concentrate and co-distribute with actin in the proximal region of the flagellum. Nevertheless, the GFP conjugate of only the two UBLDs was found to predominantly localize to the flagellum base. Additionally, the cells that expressed only one or both the UBLDs-deleted Myo21-GFP constructs possessed shorter flagellum and displayed slower motility, compared to Myo21-GFP expressing cells. Further, the intracellular vesicle transport and cell growth were severely impaired in the cells that expressed both the UBLDs deleted Myo21-GFP construct, but in contrast, virtually no effect was observed on the intracellular vesicle transport and growth in the cells that expressed single UBLD deleted mutant proteins. Moreover, the observed slower growth of both the UBLDs-deleted Myo21-GFP expressing cells was primarily due to delayed G2/M phase caused by aberrant nuclear and daughter cell segregation during their cell division process. These results taken together clearly reveal that the presence of UBLDs in Myo21 are essentially required for its predominant localization to the flagellum base, and perhaps also in its involvement in the flagellum assembly and cell division. Possible role of UBLDs in involvement of Myo21 during Leishmania flagellum assembly and cell cycle is discussed.
Collapse
Affiliation(s)
- Rani Bajaj
- Institute of Bioinformatics & Applied Biotechnology, Bengaluru, Karnataka, India
- Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Bindu Ambaru
- Institute of Bioinformatics & Applied Biotechnology, Bengaluru, Karnataka, India
- Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Chhitar M. Gupta
- Institute of Bioinformatics & Applied Biotechnology, Bengaluru, Karnataka, India
| |
Collapse
|
10
|
Vizcaíno-Castillo A, Osorio-Méndez JF, Ambrosio JR, Hernández R, Cevallos AM. The complexity and diversity of the actin cytoskeleton of trypanosomatids. Mol Biochem Parasitol 2020; 237:111278. [PMID: 32353561 DOI: 10.1016/j.molbiopara.2020.111278] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 03/24/2020] [Accepted: 04/07/2020] [Indexed: 10/24/2022]
Abstract
Trypanosomatids are a monophyletic group of parasitic flagellated protists belonging to the order Kinetoplastida. Their cytoskeleton is primarily made up of microtubules in which no actin microfilaments have been detected. Although all these parasites contain actin, it is widely thought that their actin cytoskeleton is reduced when compared to most eukaryotic organisms. However, there is increasing evidence that it is more complex than previously thought. As in other eukaryotic organisms, trypanosomatids encode for a conventional actin that is expected to form microfilament-like structures, and for members of three conserved actin-related proteins probably involved in microfilament nucleation (ARP2, ARP3) and in gene expression regulation (ARP6). In addition to these canonical proteins, also encode for an expanded set of actins and actin-like proteins that seem to be restricted to kinetoplastids. Analysis of their amino acid sequences demonstrated that, although very diverse in primary sequence when compared to actins of model organisms, modelling of their tertiary structure predicted the presence of the actin fold in all of them. Experimental characterization has been done for only a few of the trypanosomatid actins and actin-binding proteins. The most studied is the conventional actin of Leishmania donovani (LdAct), which unusually requires both ATP and Mg2+ for polymerization, unlike other conventional actins that do not require ATP. Additionally, polymerized LdAct tends to assemble in bundles rather than in single filaments. Regulation of actin polymerization depends on their interaction with actin-binding proteins. In trypanosomatids, there is a reduced but sufficient core of actin-binding proteins to promote microfilament nucleation, turnover and stabilization. There are also genes encoding for members of two families of myosin motor proteins, including one lineage-specific. Homologues to all identified actin-family proteins and actin-binding proteins of trypanosomatids are also present in Paratrypanosoma confusum (an early branching trypanosomatid) and in Bodo saltans (a closely related free-living organism belonging to the trypanosomatid sister order of Bodonida) suggesting they were all present in their common ancestor. Secondary losses of these genes may have occurred during speciation within the trypanosomatids, with salivarian trypanosomes having lost many of them and stercorarian trypanosomes retaining most.
Collapse
Affiliation(s)
- Andrea Vizcaíno-Castillo
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Av. Universidad 3000, Ciudad Universitaria, Coyoacán, 04510, Ciudad de México, Mexico
| | - Juan Felipe Osorio-Méndez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Av. Universidad 3000, Ciudad Universitaria, Coyoacán, 04510, Ciudad de México, Mexico; Laboratorio de Microbiología y Biología Molecular, Programa de Medicina, Corporación Universitaria Empresarial Alexander von Humboldt, Armenia, Colombia
| | - Javier R Ambrosio
- Departamento de Microbiología y Parasitología de la Facultad de Medicina, Universidad Nacional Autónoma de México, Apartado Postal, 4510, D.F., Mexico
| | - Roberto Hernández
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Av. Universidad 3000, Ciudad Universitaria, Coyoacán, 04510, Ciudad de México, Mexico
| | - Ana María Cevallos
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Av. Universidad 3000, Ciudad Universitaria, Coyoacán, 04510, Ciudad de México, Mexico.
| |
Collapse
|
11
|
Daryabari SS, Fathi M, Mahdavi M, Moaddab Y, Hosseinpour Feizi MA, Shokoohi B, Safaralizadeh R. Overexpression of CFL1 in gastric cancer and the effects of its silencing by siRNA with a nanoparticle delivery system in the gastric cancer cell line. J Cell Physiol 2020; 235:6660-6672. [PMID: 31990066 DOI: 10.1002/jcp.29562] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 01/13/2020] [Indexed: 12/21/2022]
Abstract
Gastric adenocarcinoma, like other cancers, is a multifactorial genetic disease, and metastasis of cancer cells is one of the main features of this illness. The expression levels of the CFL1 gene have been modulated in this pathway. Using small interfering RNA (siRNA) in the treatment of gastric cancer is considered a hopeful gene therapeutic approach. The present study reported the level of CFL1 genes between tumor and margin and healthy tissue of gastric cancer. Also, the features of a cationic nanoparticle with a polymer coating containing polyacrylic acid and polyethyleneimine that were used in the delivery of CFL1 siRNA, were shown. Then the cytotoxicity, cellular uptake, and gene silencing efficiency of this nanoparticle were evaluated with CFL1siRNA. METHOD In this study, the CFL1 gene expression was measured in 40 gastric adenocarcinoma, marginal and 15 healthy biopsy samples by a real-time polymerase chain reaction. Physicochemical characteristics, apoptosis, and inhibition of migration of the delivery of CFL1 siRNA by nanoparticle and lipofectamine were investigated in gastric cancer cells. RESULT The CFL1 expression was remarkably increased in gastric cancer tissues in comparison with the marginal samples and normal tissues (p < .05) and the biomarker index for CFL1 was obtained as 0.94, then this gene can be probably used as a biomarker for gastric cancer. After treatment of the AGS cell line by CFL1 siRNA, the CFL1 expression level of mRNA and migration in AGS cells were remarkably suppressed after transfection. Furthermore, the amount of apoptosis increased (p < .05). CONCLUSION Our results demonstrated that CFL1 downregulation in AGS cells can interdict cell migration. Finally, our outcomes propose that CFL1 can function as an oncogenic gene in gastric cancer and would be considered as a potential purpose of gene therapy for gastric cancer treatment.
Collapse
Affiliation(s)
| | - Marziyeh Fathi
- Research Center for Pharmaceuticals Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Mahdavi
- Department of Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | - Yaghoub Moaddab
- Liver and Gastroenterology Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Behrouz Shokoohi
- Pathology Department, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
12
|
Hammarton TC. Who Needs a Contractile Actomyosin Ring? The Plethora of Alternative Ways to Divide a Protozoan Parasite. Front Cell Infect Microbiol 2019; 9:397. [PMID: 31824870 PMCID: PMC6881465 DOI: 10.3389/fcimb.2019.00397] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 11/06/2019] [Indexed: 01/21/2023] Open
Abstract
Cytokinesis, or the division of the cytoplasm, following the end of mitosis or meiosis, is accomplished in animal cells, fungi, and amoebae, by the constriction of an actomyosin contractile ring, comprising filamentous actin, myosin II, and associated proteins. However, despite this being the best-studied mode of cytokinesis, it is restricted to the Opisthokonta and Amoebozoa, since members of other evolutionary supergroups lack myosin II and must, therefore, employ different mechanisms. In particular, parasitic protozoa, many of which cause significant morbidity and mortality in humans and animals as well as considerable economic losses, employ a wide diversity of mechanisms to divide, few, if any, of which involve myosin II. In some cases, cell division is not only myosin II-independent, but actin-independent too. Mechanisms employed range from primitive mechanical cell rupture (cytofission), to motility- and/or microtubule remodeling-dependent mechanisms, to budding involving the constriction of divergent contractile rings, to hijacking host cell division machinery, with some species able to utilize multiple mechanisms. Here, I review current knowledge of cytokinesis mechanisms and their molecular control in mammalian-infective parasitic protozoa from the Excavata, Alveolata, and Amoebozoa supergroups, highlighting their often-underappreciated diversity and complexity. Billions of people and animals across the world are at risk from these pathogens, for which vaccines and/or optimal treatments are often not available. Exploiting the divergent cell division machinery in these parasites may provide new avenues for the treatment of protozoal disease.
Collapse
Affiliation(s)
- Tansy C Hammarton
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
13
|
Maimaiti Y, Tan J, Liu Z, Guo Y, Yan Y, Nie X, Huang B, Zhou J, Huang T. Overexpression of cofilin correlates with poor survival in breast cancer: A tissue microarray analysis. Oncol Lett 2017; 14:2288-2294. [PMID: 28781665 PMCID: PMC5530183 DOI: 10.3892/ol.2017.6413] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Accepted: 04/28/2017] [Indexed: 12/20/2022] Open
Abstract
Cofilin, a key regulator of actin cytoskeleton dynamics, is considered to be involved in cellular migration, tumor invasion and mitosis, and its activity is increased in cancer cells. To address the association between cofilin and breast cancer prognosis, which is unclear at present, cofilin expression was analyzed in tissue microarrays of tumors from 310 patients with breast cancer via immunohistochemistry. In a multivariate Cox regression analysis, a high expression of cofilin in tumor cells correlated significantly with shorter overall survival (hazard ratio, 2.22; 95% confidence interval, 1.35–3.66, P=0.002, and with the Nottingham histologic grade, Ki-67 status and human epidermal growth factor receptor 2 status (P=0.031, 0.001, and 0.001, respectively). Cofilin expression was not observed as correlated with estrogen or progesterone receptor expression, tumor size or lymph node status. These data demonstrate that cofilin is associated with poor outcome, thereby suggesting that it is a potential prognostic factor in breast cancer.
Collapse
Affiliation(s)
- Yusufu Maimaiti
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China.,Department of General Surgery, Research Institute of Minimally Invasive, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang 830000, P.R. China
| | - Jie Tan
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Zeming Liu
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Yawen Guo
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Yu Yan
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Xiu Nie
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Bangxing Huang
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Jing Zhou
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Tao Huang
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
14
|
Kumar G, Kajuluri LP, Gupta CM, Sahasrabuddhe AA. A twinfilin-like protein coordinates karyokinesis by influencing mitotic spindle elongation and DNA replication in Leishmania. Mol Microbiol 2016; 100:173-87. [PMID: 26713845 DOI: 10.1111/mmi.13310] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2015] [Indexed: 11/30/2022]
Abstract
Twinfilin is an evolutionarily conserved actin-binding protein, which regulates actin-dynamics in eukaryotic cells. Homologs of this protein have been detected in the genome of various protozoan parasites causing diseases in human. However, very little is known about their core functions in these organisms. We show here that a twinfilin homolog in a human pathogen Leishmania, primarily localizes to the nucleolus and, to some extent, also in the basal body region. In the dividing cells, nucleolar twinfilin redistributes to the mitotic spindle and remains there partly associated with the spindle microtubules. We further show that approximately 50% depletion of this protein significantly retards the cell growth due to sluggish progression of S phase of the cell division cycle, owing to the delayed nuclear DNA synthesis. Interestingly, overexpression of this protein results in significantly increased length of the mitotic spindle in the dividing Leishmania cells, whereas, its depletion adversely affects spindle elongation and architecture. Our results indicate that twinfilin controls on one hand, the DNA synthesis and on the other, the mitotic spindle elongation, thus contributing to karyokinesis in Leishmania.
Collapse
Affiliation(s)
- Gaurav Kumar
- CSIR-Central Drug Research Institute, Jankipuram Extension-10, Sitapur Road, Lucknow, PIN-226 031, India
| | - Lova P Kajuluri
- CSIR-Central Drug Research Institute, Jankipuram Extension-10, Sitapur Road, Lucknow, PIN-226 031, India
| | - Chhitar M Gupta
- Department of Biosciences, Institute of Bioinformatics and Applied Biotechnology, Biotech Park, Electronics City, Phase-I, Bangaluru, PIN-560 100, India
| | - Amogh A Sahasrabuddhe
- CSIR-Central Drug Research Institute, Jankipuram Extension-10, Sitapur Road, Lucknow, PIN-226 031, India
| |
Collapse
|
15
|
Zheng Y, He R, He M, Gu X, Wang T, Lai W, Peng X, Yang G. Characterization of Sarcoptes scabiei cofilin gene and assessment of recombinant cofilin protein as an antigen in indirect-ELISA for diagnosis. BMC Infect Dis 2016; 16:21. [PMID: 26801761 PMCID: PMC4724102 DOI: 10.1186/s12879-016-1353-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 01/18/2016] [Indexed: 01/20/2023] Open
Abstract
Background Scabies impairs the health of humans and animals and causes heavy economic losses. Traditional diagnostic methods for scabies are inefficient and ineffective, and so far there is no commercial immunodiagnostic or molecular based test for scabies. Methods Here, we used recombinant Sarcoptes scabiei cofilin protein as an antigen to establish indirect ELISA. S. scabiei cofilin is highly homologous to Dermatophagoides farinae Der f 31 allergen (90 % identity). The S. scabiei cofilin gene was cloned and expressed in Escherichia coli to obtain recombinant protein. Western blotting and fluorescence immunohistochemistry were carried out, and we established an indirect ELISA method and detected 33 serum samples from scabies infected rabbits and 30 serum samples from naïve rabbits. Results Western blotting demonstrated that S. scabiei cofilin possessed good immunogenicity and fluorescence immunohistochemistry showed the S. scabiei cofilin is widespread in the splanchnic area of mites. In ELISA, a cut-off value of 0.188 was determined to judge experimental positive and negative serum values. Specificity and sensitivity of the ELISA were 87.9 and 83.33 %, respectively. Conclusions Recombinant S. scabiei cofilin showed potential value as a diagnostic antigen. The ELISA method established could be used in clinical diagnosis and provide experimental information in minimal or asymptomatic infection.
Collapse
Affiliation(s)
- Yu Zheng
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China.
| | - Ran He
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China.
| | - Manli He
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China.
| | - Xiaobin Gu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China.
| | - Tao Wang
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China.
| | - Weimin Lai
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China.
| | - Xuerong Peng
- Department of Chemistry, College of Life and Basic Science, Sichuan Agricultural University, Wenjiang, China.
| | - Guangyou Yang
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China.
| |
Collapse
|
16
|
Unconventional actins and actin-binding proteins in human protozoan parasites. Int J Parasitol 2015; 45:435-47. [DOI: 10.1016/j.ijpara.2015.01.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 12/19/2014] [Accepted: 01/27/2015] [Indexed: 12/11/2022]
|
17
|
Huang X, Sun D, Pan Q, Wen W, Chen Y, Xin X, Huang M, Ding J, Geng M. JG6, a novel marine-derived oligosaccharide, suppresses breast cancer metastasis via binding to cofilin. Oncotarget 2015; 5:3568-78. [PMID: 25003327 PMCID: PMC4116503 DOI: 10.18632/oncotarget.1959] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Cofilin, an actin-binding protein which disassembles actin filaments, plays an important role in invasion and metastasis. Here, we discover that JG6, an oligomannurarate sulfate, binds to cofilin, suppresses the migration of human breast cancer cells and cancer metastasis in breast cancer xenograft model. Mechanistically, JG6 occupies actin-binding sites of cofilin, thereby disrupting cofilin modulated actin turnover. Our results highlight the significance of cofilin in cancer and suggest JG6, a cofilin inhibitor, to treat metastatic cancer.
Collapse
Affiliation(s)
- Xun Huang
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P.R.China
| | | | | | | | | | | | | | - Jian Ding
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P.R.China
| | - Meiyu Geng
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P.R.China
| |
Collapse
|
18
|
Dey S, Mukherjee D, Chakraborty S, Mallick S, Dutta A, Ghosh J, Swapana N, Maiti S, Ghorai N, Singh CB, Pal C. Protective effect of Croton caudatus Geisel leaf extract against experimental visceral leishmaniasis induces proinflammatory cytokines in vitro and in vivo. Exp Parasitol 2015; 151-152:84-95. [PMID: 25655407 DOI: 10.1016/j.exppara.2015.01.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 01/24/2015] [Accepted: 01/27/2015] [Indexed: 02/02/2023]
Abstract
In the present state of overwhelming emergence of drug-unresponsive phenotypes of Leishmania donovani and persistent severe toxicity in conventional anti-leishmanial therapy, in search for novel leads, the aim of this study has been fixed to identify the active extract(s) of Croton caudatus Geisel. var. tomentosus Hook effective against the parasitic protozoans in vitro and in vivo. C. caudatus Geisel. is often used by Chakma and Hmar community, the local tribes of north-east India for medicinal and veterinary purposes. Among the five semi-purified extracts tested, C. caudatus leaves, extracted in hexane and subsequently semi-purified in a column packed with silica gel (70-130 µM; mesh size 60 A°) using ethyl acetate-hexane solvent (9:1), was found to be the most effective growth inhibitor (JDHex) against the Leishmania promastigotes and amastigotes. JDHex significantly altered the biochemical parameters (protein, lipid and carbohydrates) in promastigotes followed by the morphological changes, DNA condensation and subsequent apoptosis in L. donovani. In consequent steps, it has been also proved that JDHex reduced the replication of intracellular amastigotes with concomitant release of nitric oxide and pro-inflammatory cytokines, IL-12 and TNF-α in vitro. Significantly, the 50% inhibitory concentration of JDHex was estimated much lower against the intracellular amastigotes (2.5 µg/mL) in comparison to promastigotes (10 µg/mL). JDHex was also found efficient in reducing parasite burden in spleen and liver when treated in vivo and increased the intracellular IFN-γ and decreased the IL-10 in CD4+ T cells in splenocytes of orally treated animals. The results of this study support the importance in exploration of novel anti-leishmanial leads from C. caudatus Geisel. var. tomentosus Hook. against the L. donovani (MHOM/IN/83/AG83) infection. Partial chemical characterization of JDHex revealed the presence of terpenoids. However, the further chemical investigation of JDHex is warranted.
Collapse
Affiliation(s)
- Somaditya Dey
- Cellular Immunology and Experimental Therapeutics Laboratory, Department of Zoology, West Bengal State University, Barasat, West Bengal, India
| | - Debarati Mukherjee
- Cellular Immunology and Experimental Therapeutics Laboratory, Department of Zoology, West Bengal State University, Barasat, West Bengal, India
| | - Sondipon Chakraborty
- Wildlife Biology and Natural Product Research Laboratory, Department of Zoology, West Bengal State University, Barasat, West Bengal, India
| | - Suvadip Mallick
- Cellular Immunology and Experimental Therapeutics Laboratory, Department of Zoology, West Bengal State University, Barasat, West Bengal, India
| | - Aritri Dutta
- Cellular Immunology and Experimental Therapeutics Laboratory, Department of Zoology, West Bengal State University, Barasat, West Bengal, India
| | - Joydip Ghosh
- Cellular Immunology and Experimental Therapeutics Laboratory, Department of Zoology, West Bengal State University, Barasat, West Bengal, India
| | - Ningombam Swapana
- Department of Chemistry, Skula Womens' College, Namol, Manipur, India
| | - Swatilekha Maiti
- University of Calcutta 35, Ballygunge Circular Road, Kolkata, West Bengal, India
| | - Narayan Ghorai
- Wildlife Biology and Natural Product Research Laboratory, Department of Zoology, West Bengal State University, Barasat, West Bengal, India
| | | | - Chiranjib Pal
- Cellular Immunology and Experimental Therapeutics Laboratory, Department of Zoology, West Bengal State University, Barasat, West Bengal, India.
| |
Collapse
|
19
|
N-butyl-[1-(4-methoxy)phenyl-9H-β-carboline]-3-carboxamide prevents cytokinesis in Leishmania amazonensis. Antimicrob Agents Chemother 2014; 58:7112-20. [PMID: 25224005 DOI: 10.1128/aac.03340-14] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Leishmaniasis, a complex of diseases caused by protozoa of the genus Leishmania, is endemic in 98 countries, affecting approximately 12 million people worldwide. Current treatments for leishmaniasis have many disadvantages, such as toxicity, high costs, and prolonged treatment, making the development of new treatment alternatives highly relevant. Several studies have verified the antileishmanial activity of β-carboline compounds. In the present study, we investigated the in vitro antileishmanial activity of N-butyl-[1-(4-methoxy)phenyl-9H-β-carboline]-3-carboxamide (β-CB) against Leishmania amazonensis. The compound was active against promastigote, axenic amastigote, and intracellular amastigote forms of L. amazonensis, exhibiting high selectivity for the parasite. Moreover, β-CB did not exhibit hemolytic or mutagenic potential. Promastigotes treated with the alkaloid presented rounding of the body cell, cell membrane projections, an increase in the number of promastigotes presenting two flagella, and parasites of abnormal phenotype, with three or more flagella and/or nuclei. Furthermore, we observed an increase in the subpopulation of cells in the G2/M stage of the cell cycle. Altogether, these results suggest that β-CB likely prevents cytokinesis, although it does not interfere with the duplication of cell structures. We also verified an increase in O2(·-) production and the accumulation of lipid storage bodies. Cell membrane integrity was maintained, in addition to the absence of phosphatidylserine externalization, DNA fragmentation, and autophagosomes. Although the possibility of an apoptotic process cannot be discarded, β-CB likely exerts its antileishmanial activity through a cytostatic effect, thus preventing cellular proliferation.
Collapse
|
20
|
Singh K, Veluru NK, Trivedi V, Gupta CM, Sahasrabuddhe AA. An actin-like protein is involved in regulation of mitochondrial and flagellar functions as well as in intramacrophage survival of Leishmania donovani. Mol Microbiol 2014; 91:562-78. [PMID: 24354789 DOI: 10.1111/mmi.12477] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2013] [Indexed: 11/30/2022]
Abstract
Actin-related proteins are ubiquitous actin-like proteins that show high similarity with actin in terms of their amino acid sequence and three-dimensional structure. However, in lower eukaryotes, such as trypanosomatids, their functions have not yet been explored. Here, we show that a novel actin-related protein (ORF LmjF.13.0950) is localized mainly in the Leishmania mitochondrion. We further reveal that depletion of the intracellular levels of this protein leads to an appreciable decrease in the mitochondrial membrane potential as well as in the ATP production, which appears to be accompanied with impairment in the flagellum assembly and motility. Additionally, we report that the mutants so generated fail to survive inside the mouse peritoneal macrophages. These abnormalities are, however, reversed by the episomal gene complementation. Our results, for the first time indicate that apart from their classical roles in the cytoplasm and nucleus, actin-related proteins may also regulate the mitochondrial function, and in case of Leishmania donovani they may also serve as the essential factor for their survival in the host cells.
Collapse
Affiliation(s)
- Kuldeep Singh
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow, PIN-226031, Uttar Pradesh, India
| | | | | | | | | |
Collapse
|
21
|
Tahtamouni LH, Shaw AE, Hasan MH, Yasin SR, Bamburg JR. Non-overlapping activities of ADF and cofilin-1 during the migration of metastatic breast tumor cells. BMC Cell Biol 2013; 14:45. [PMID: 24093776 PMCID: PMC3850953 DOI: 10.1186/1471-2121-14-45] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 10/01/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND ADF/cofilin proteins are key modulators of actin dynamics in metastasis and invasion of cancer cells. Here we focused on the roles of ADF and cofilin-1 individually in the development of polarized migration of rat mammary adenocarcinoma (MTLn3) cells, which express nearly equal amounts of each protein. Small interference RNA (siRNA) technology was used to knockdown (KD) the expression of ADF and cofilin-1 independently. RESULTS Either ADF KD or cofilin KD caused cell elongation, a reduction in cell area, a decreased ability to form invadopodia, and a decreased percentage of polarized cells after 180 s of epidermal growth factor stimulation. Moreover, ADF KD or cofilin KD increased the rate of cell migration and the time of lamellipodia protrusion but through different mechanisms: lamellipodia protrude more frequently in ADF KD cells and are more persistent in cofilin KD cells. ADF KD cells showed a significant increase in F-actin aggregates, whereas cofilin KD cells showed a significant increase in prominent F-actin bundles and increased cell adhesion. Focal adhesion area and cell adhesion in cofilin KD cells were returned to control levels by expressing exogenous cofilin but not ADF. Return to control rates of cell migration in ADF KD cells was achieved by expression of exogenous ADF but not cofilin, whereas in cofilin KD cells, expression of cofilin efficiently rescued control migration rates. CONCLUSION Although ADF and cofilin have many redundant functions, each of these isoforms has functional differences that affect F-actin structures, cell adhesion and lamellipodial dynamics, all of which are important determinants of cell migration.
Collapse
Affiliation(s)
- Lubna H Tahtamouni
- Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa 13115, Jordan
| | - Alisa E Shaw
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Maram H Hasan
- Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa 13115, Jordan
| | - Salem R Yasin
- Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa 13115, Jordan
| | - James R Bamburg
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
22
|
Diniz MC, Pacheco ACL, Farias KM, de Oliveira DM. The eukaryotic flagellum makes the day: novel and unforeseen roles uncovered after post-genomics and proteomics data. Curr Protein Pept Sci 2013; 13:524-46. [PMID: 22708495 PMCID: PMC3499766 DOI: 10.2174/138920312803582951] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 05/22/2012] [Accepted: 05/23/2012] [Indexed: 12/21/2022]
Abstract
This review will summarize and discuss the current biological understanding of the motile eukaryotic flagellum,
as posed out by recent advances enabled by post-genomics and proteomics approaches. The organelle, which is crucial
for motility, survival, differentiation, reproduction, division and feeding, among other activities, of many eukaryotes,
is a great example of a natural nanomachine assembled mostly by proteins (around 350-650 of them) that have been conserved
throughout eukaryotic evolution. Flagellar proteins are discussed in terms of their arrangement on to the axoneme,
the canonical “9+2” microtubule pattern, and also motor and sensorial elements that have been detected by recent proteomic
analyses in organisms such as Chlamydomonas reinhardtii, sea urchin, and trypanosomatids. Such findings can be
remarkably matched up to important discoveries in vertebrate and mammalian types as diverse as sperm cells, ciliated
kidney epithelia, respiratory and oviductal cilia, and neuro-epithelia, among others. Here we will focus on some exciting
work regarding eukaryotic flagellar proteins, particularly using the flagellar proteome of C. reinhardtii as a reference map
for exploring motility in function, dysfunction and pathogenic flagellates. The reference map for the eukaryotic flagellar
proteome consists of 652 proteins that include known structural and intraflagellar transport (IFT) proteins, less well-characterized
signal transduction proteins and flagellar associated proteins (FAPs), besides almost two hundred unannotated
conserved proteins, which lately have been the subject of intense investigation and of our present examination.
Collapse
Affiliation(s)
- Michely C Diniz
- Programa de Pós-Graduação em Biotecnologia-RENORBIO-Rede Nordeste de Biotecnologia, Universidade Estadual do Ceará-UECE, Av. Paranjana, 1700, Campus do Itaperi, Fortaleza, CE 60740-000 Brasil
| | | | | | | |
Collapse
|
23
|
ATP-dependent regulation of actin monomer-filament equilibrium by cyclase-associated protein and ADF/cofilin. Biochem J 2013; 453:249-59. [PMID: 23672398 DOI: 10.1042/bj20130491] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
CAP (cyclase-associated protein) is a conserved regulator of actin filament dynamics. In the nematode Caenorhabditis elegans, CAS-1 is an isoform of CAP that is expressed in striated muscle and regulates sarcomeric actin assembly. In the present study, we report that CAS-2, a second CAP isoform in C. elegans, attenuates the actin-monomer-sequestering effect of ADF (actin depolymerizing factor)/cofilin to increase the steady-state levels of actin filaments in an ATP-dependent manner. CAS-2 binds to actin monomers without a strong preference for either ATP- or ADP-actin. CAS-2 strongly enhances the exchange of actin-bound nucleotides even in the presence of UNC-60A, a C. elegans ADF/cofilin that inhibits nucleotide exchange. UNC-60A induces the depolymerization of actin filaments and sequesters actin monomers, whereas CAS-2 reverses the monomer-sequestering effect of UNC-60A in the presence of ATP, but not in the presence of only ADP or the absence of ATP or ADP. A 1:100 molar ratio of CAS-2 to UNC-60A is sufficient to increase actin filaments. CAS-2 has two independent actin-binding sites in its N- and C-terminal halves, and the C-terminal half is necessary and sufficient for the observed activities of the full-length CAS-2. These results suggest that CAS-2 (CAP) and UNC-60A (ADF/cofilin) are important in the ATP-dependent regulation of the actin monomer-filament equilibrium.
Collapse
|
24
|
Molecular characterization of an actin depolymerizing factor from Cryptocaryon irritans. Parasitology 2013; 140:561-8. [DOI: 10.1017/s0031182012001977] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
SUMMARYActin depolymerizing factors regulate actin dynamics involved in cellular processes such as morphogenesis, motility, development and infection. Here, a novel actin depolymerizing factor gene (CiADF2) was cloned from the cDNA library of Cryptocaryon irritans, a parasitic ciliate causing cryptocaryonosis. The full-length cDNA of CiADF2 was 531 bp. Its open reading frame (ORF) was 417 bp, encoding a polypeptide of 138 aa with typical features of the ADF/cofilin family. Reverse transcription-PCR suggested that CiADF2 is expressed in all stages of the life cycle. After site-directed mutagenesis of a non-universal genetic code, the ORF was subcloned in Escherichia coli. The bacteria were induced with the addition of isopropylthio-β-D-galactoside to express a fusion protein of recombinant CiADF2 (rCiADF2) with glutathione S transferase. Sodium dodecyl sulfate polyacrylamide gel electrophoresis and Western blot confirmed the predicted molecular mass of rCiADF2 of 16·2 kDa. A mouse antibody against rCiADF2 recognized native CiADF2, and rCiADF2 reacted with mouse antisera against C. irritans trophonts. CiADF2 was abundant in the plasma around cytostomes, suggesting that CiADF2 is involved in ciliate movement. Moreover, rCiADF2 showed F-actin binding and depolymerizing activity. This study will help to clarify the pathogenic biology of the parasite and develop effective control measures for cryptocaryonosis.
Collapse
|
25
|
Wen F, Wang J, Xing D. A protein phosphatase 2A catalytic subunit modulates blue light-induced chloroplast avoidance movements through regulating actin cytoskeleton in Arabidopsis. PLANT & CELL PHYSIOLOGY 2012; 53:1366-1379. [PMID: 22642987 DOI: 10.1093/pcp/pcs081] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Chloroplast avoidance movements mediated by phototropin 2 (phot2) are one of most important physiological events in the response to high-fluence blue light (BL), which reduces damage to the photosynthetic machinery under excess light. Protein phosphatase 2A-2 (PP2A-2) is an isoform of the catalytic subunit of PP2A, which regulates a number of developmental processes. To investigate whether PP2A-2 was involved in high-fluence BL-induced chloroplast avoidance movements, we first analyzed chloroplast migration in the leaves of the pp2a-2 mutant in response to BL. The data showed that PP2A-2 might act as a positive regulator in phot2-mediated chloroplast avoidance movements, but not in phot1-mediated chloroplast accumulation movements. Then, the effect of okadaic acid (OA) and cantharidin (selective PP2A inhibitors) on high-fluence BL response was further investigated in Arabidopsis thaliana mesophyll cells. Within a certain concentration range, exogenously applied OA or cantharidin inhibited the high-fluence BL-induced chloroplast movements in a concentration-dependent manner. Actin depolymerizing factor (ADF)/cofilin phosphorylation assays demonstrated that PP2A-2 can activate/dephosphorylate ADF/cofilin, an actin-binding protein, in Arabidopsis mesophyll cells. Consistent with this observation, the experiments showed that OA could inhibit ADF1 binding to the actin and suppress the reorganization of the actin cytoskeleton after high-fluence BL irradiation. The adf1 and adf3 mutants also exhibited reduced high-fluence BL-induced chloroplast avoidance movements. In conclusion, we identified that PP2A-2 regulated the activation of ADF/cofilin, which, in turn, regulated actin cytoskeleton remodeling and was involved in phot2-mediated chloroplast avoidance movements.
Collapse
Affiliation(s)
- Feng Wen
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | | | | |
Collapse
|
26
|
Overexpression of S4D mutant of Leishmania donovani ADF/cofilin impairs flagellum assembly by affecting actin dynamics. EUKARYOTIC CELL 2012; 11:752-60. [PMID: 22492507 DOI: 10.1128/ec.00013-12] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Leishmania, like other eukaryotes, contains large amounts of actin and a number of actin-related and actin binding proteins. Our earlier studies have shown that deletion of the gene corresponding to Leishmania actin-depolymerizing protein (ADF/cofilin) adversely affects flagellum assembly, intracellular trafficking, and cell division. To further analyze this, we have now created ADF/cofilin site-specific point mutants and then examined (i) the actin-depolymerizing, G-actin binding, and actin-bound nucleotide exchange activities of the mutant proteins and (ii) the effect of overexpression of these proteins in wild-type cells. Here we show that S4D mutant protein failed to depolymerize F-actin but weakly bound G-actin and inhibited the exchange of G-actin-bound nucleotide. We further observed that overexpression of this protein impaired flagellum assembly and consequently cell motility by severely impairing the assembly of the paraflagellar rod, without significantly affecting vesicular trafficking or cell growth. Taken together, these results indicate that dynamic actin is essentially required in assembly of the eukaryotic flagellum.
Collapse
|
27
|
Zauli RC, Yokoyama-Yasunaka JK, Miguel DC, Moura AS, Pereira LI, da Silva IA, Lemes LG, Dorta ML, de Oliveira MA, Pitaluga AN, Ishikawa EA, Rodrigues JC, Traub-Cseko YM, Bijovsky AT, Ribeiro-Dias F, Uliana SR. A dysflagellar mutant of Leishmania (Viannia) braziliensis isolated from a cutaneous leishmaniasis patient. Parasit Vectors 2012; 5:11. [PMID: 22236464 PMCID: PMC3271977 DOI: 10.1186/1756-3305-5-11] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 01/11/2012] [Indexed: 11/24/2022] Open
Abstract
Background Parasites of the Leishmania genus alternate between the flagellated extracellular promastigote stage and intracellular amastigotes. Here we report the characterization of a Leishmania isolate, obtained from a cutaneous leishmaniasis patient, which presents peculiar morphological features. Methods The parasite was cultured in vitro and characterized morphologically using optical and electron microscopy. Identification was performed based on monoclonal antibodies and internal ribosomal spacer typing. In vitro macrophage cultures, murine experimental models and sand fly infections were used to evaluate infectivity in vitro and in vivo. Results The isolate was identified as Leishmania (Viannia) braziliensis. In the atypical promastigotes grown in culture, a short flagellum surrounded or interrupted by a protuberance of disorganized material was observed. A normal axoneme was present close to the basal body but without elongation much further outside the flagellar pocket. A disorganized swelling at the precocious end of the axoneme coincided with the lack of a paraflagellar rod structure. The isolate was able to infect macrophages in vitro, induce lesions in BALB/c mice and infect Lutzomyia longipalpis. Conclusions Notwithstanding the lack of an extracellular flagellum, this isolate infects macrophages in vitro and produces lesions when inoculated into mice. Moreover, it is able to colonize phlebotomine sand flies. Considering the importance attributed to the flagellum in the successful infection and survival of Leishmania in the insect midgut and in the invasion of macrophages, these findings may bring new light into the infectious mechanisms of L. (V.) braziliensis.
Collapse
Affiliation(s)
- Rogéria C Zauli
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brasil
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Morphological events during the cell cycle of Leishmania major. EUKARYOTIC CELL 2011; 10:1429-38. [PMID: 21926331 DOI: 10.1128/ec.05118-11] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The morphological events involved in the Leishmania major promastigote cell cycle have been investigated in order to provide a detailed description of the chronological processes by which the parasite replicates its set of single-copy organelles and generates a daughter cell. Immunofluorescence labeling of β-tubulin was used to follow the dynamics of the subcellular cytoskeleton and to monitor the division of the nucleus via visualization of the mitotic spindle, while RAB11 was found to be a useful marker to track flagellar pocket division and to follow mitochondrial DNA (kinetoplast) segregation. Classification and quantification of these morphological events were used to determine the durations of phases of the cell cycle. Our results demonstrate that in L. major promastigotes, the extrusion of the daughter flagellum precedes the onset of mitosis, which in turn ends after kinetoplast segregation, and that significant remodelling of cell shape accompanies mitosis and cytokinesis. These findings contribute to a more complete foundation for future studies of cell cycle control in Leishmania.
Collapse
|