1
|
Idelman G, Rizza CF, Marella S, Sharma A, Chakraborty S, Tay HL, Tomar S, Ganesan V, Schuler CF, Baker JR, Hogan SP. Inducible pluripotent stem cells to study human mast cell trajectories. Mucosal Immunol 2024; 17:1029-1044. [PMID: 39038754 DOI: 10.1016/j.mucimm.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 07/09/2024] [Accepted: 07/15/2024] [Indexed: 07/24/2024]
Abstract
Mast cells (MCs) are derived from CD34+ hematopoietic progenitors, consist of different subtypes, and are involved in several inflammatory conditions. However, our understanding of human MC developmental trajectories and subtypes has been limited by a scarcity of suitable cellular model systems. Herein, we developed an in vitro model of human MC differentiation from induced pluripotent stem cells (iPSC) to study human MC differentiation trajectories. Flow cytometry characterization of hemopoietic cells derived from the myeloid cells-forming complex (MCFC) revealed an initial increase in Lin- CD34+ hematopoietic progenitors within Weeks 1-3, followed by an increase in CD34- CD45RA- SSClow and SSChigh hematopoietic cells. The Lin- CD34+ hematopoietic progenitors consisted of SSClow CD45RA- CD123± c-Kit+ FcεRI+ populations that were β7-integrinhigh CD203c+ and β7-integrinhigh CD203c- cells consistent with CMPFcεRI+ cells. Flow cytometry and cytologic analyses of the CD34- Lin- (SSClow) population revealed hypogranular cell populations, predominantly characterized by CD45RA- CD123± c-Kit+ FcεRI- β7-integrinlow and CD45RA- CD123± c-Kit- FcεRI+ β7-integrinMid cells. Analyses of hypergranular SSChigh cells identified Lin- CD34- CD45RA- c-Kit+ FcεRI- and Lin- CD34- CD45RA- c-Kit+ FcεRI+ cells. scRNA-seq analysis of the cells harvested at week 4 of the MCFC culture revealed the presence of monocyte and granulocyte progenitors (n = 547 cells, 26.7 %), Erythrocyte / unknown (n = 85, 4.1 %), neutrophils / myelocytes (n = 211 cells, 10.2 %), mast cell progenitor 1 (n = 599, 29.1 %), mast cell progenitor 2 (n = 152, 7.4 %), committed mast cell precursor (n = 113, 5.5 %), and MCs (n = 353, 17.1 %). In silico analyses of the MC precursor and mature MC populations revealed transcriptionally distinct MC precursor subtype and mature MC states (CMA1+ and CMA1- subtypes). Culturing MC precursor populations in MC maturation media (mast cell media II) led to homogenous mature MC populations as evidenced by high expression of high-affinity IgE receptor, metachromatic granules, presence of MC granule proteins (Tryptase and Chymase) and activation following substance P stimulation and FcεRI crosslinking. This human iPSC-based approach generates MC precursors and phenotypically mature and functional MC populations. This system will be a useful model to generate human MC populations and broaden our understanding of MC biology and transcriptional regulation of MC differentiation trajectories.
Collapse
Affiliation(s)
- Gila Idelman
- Mary H Weiser Food Allergy Center, Michigan Medicine, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, USA
| | - Christian F Rizza
- Department of Pathology, Michigan Medicine, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, USA
| | - Sahiti Marella
- Department of Pathology, Michigan Medicine, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, USA
| | - Ankit Sharma
- Mary H Weiser Food Allergy Center, Michigan Medicine, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, USA
| | - Somdutta Chakraborty
- Mary H Weiser Food Allergy Center, Michigan Medicine, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, USA
| | - Hock L Tay
- Mary H Weiser Food Allergy Center, Michigan Medicine, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, USA
| | - Sunil Tomar
- Mary H Weiser Food Allergy Center, Michigan Medicine, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, USA
| | - Varsha Ganesan
- Mary H Weiser Food Allergy Center, Michigan Medicine, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, USA
| | - Charles F Schuler
- Mary H Weiser Food Allergy Center, Michigan Medicine, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, USA; Division of Allergy and Clinical Immunology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - James R Baker
- Mary H Weiser Food Allergy Center, Michigan Medicine, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, USA; Division of Allergy and Clinical Immunology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Simon P Hogan
- Mary H Weiser Food Allergy Center, Michigan Medicine, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, USA; Department of Pathology, Michigan Medicine, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, USA.
| |
Collapse
|
2
|
De Bondt M, Renders J, Struyf S, Hellings N. Inhibitors of Bruton's tyrosine kinase as emerging therapeutic strategy in autoimmune diseases. Autoimmun Rev 2024; 23:103532. [PMID: 38521213 DOI: 10.1016/j.autrev.2024.103532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/20/2024] [Accepted: 03/20/2024] [Indexed: 03/25/2024]
Abstract
Bruton's tyrosine kinase (BTK) is a cytoplasmic, non-receptor signal transducer, initially identified as an essential signaling molecule for B cells, with genetic mutations resulting in a disorder characterized by disturbed B cell and antibody development. Subsequent research revealed the critical role of BTK in the functionality of monocytes, macrophages and neutrophils. Various immune cells, among which B cells and neutrophils, rely on BTK activity for diverse signaling pathways downstream of multiple receptors, which makes this kinase an ideal target to treat hematological malignancies and autoimmune diseases. First-generation BTK inhibitors are already on the market to treat hematological disorders. It has been demonstrated that B cells and myeloid cells play a significant role in the pathogenesis of different autoimmune diseases such as multiple sclerosis, rheumatoid arthritis, systemic lupus erythematosus and primary Sjögren's syndrome. Consequently, second-generation BTK inhibitors are currently being developed to treat these disorders. Despite the acknowledged involvement of BTK in various cell types, the focus on B cells often overshadows its impact on innate immune cells. Among these cell types, neutrophils are often underestimated in the pathogenesis of autoimmune diseases. In this narrative review, the function of BTK in different immune cell subsets is discussed, after which an overview is provided of different upcoming BTK inhibitors tested for treatment of autoimmune diseases. Special attention is paid to BTK inhibition and its effect on neutrophil biology.
Collapse
Affiliation(s)
- Mirre De Bondt
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Belgium, Herestraat 49, box 1042, 3000 Leuven; Neuro Immune Connections & Repair Lab, Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Agoralaan building C, 3095 Diepenbeek, Belgium
| | - Janne Renders
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Belgium, Herestraat 49, box 1042, 3000 Leuven
| | - Sofie Struyf
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Belgium, Herestraat 49, box 1042, 3000 Leuven
| | - Niels Hellings
- Neuro Immune Connections & Repair Lab, Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Agoralaan building C, 3095 Diepenbeek, Belgium.
| |
Collapse
|
3
|
Chen M, Du S, Cheng Y, Zhu X, Wang Y, Shu S, Men Y, He M, Wang H, He Z, Cai L, Zhu J, Wu Z, Li Y, Feng P. Safety, pharmacokinetics and pharmacodynamics of HWH486 capsules in healthy adults: A randomized, double-blind, placebo-controlled, phase I dose-escalation study. Int Immunopharmacol 2024; 126:111285. [PMID: 38061118 DOI: 10.1016/j.intimp.2023.111285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/28/2023]
Abstract
OBJECTIVES HWH486 inhibits Bruton's tyrosine kinase and therefore shows promise as a treatment against rheumatoid arthritis and chronic spontaneous urticaria. This phase I trial assessed tolerability, safety, pharmacokinetics and pharmacodynamics of a single oral dose of HWH486 capsules in healthy adults. METHODS A single-center, randomized, double-blind, placebo-controlled, dose-escalation study from 10 to 800 mg was conducted in 96 healthy Chinese adults, of whom 80 received HWH486 and 16 received placebo. RESULTS A total of 96 subjects were enrolled, and all completed the study. In the HWH486 group, mean Tmax ranged from 1.03 to 2.00 h, and mean T1/2 ranged from 0.85 to 8.67 h across the dose range from 10 to 800 mg. Mean Cmax increased linearly with dose, while mean AUC0-t increased non-linearly. Occupancy of Bruton's tyrosine kinase peaked within 0.50-4.00 h after administration across the dose groups, and the delay until peak occupancy decreased with increasing dose. Twenty-five subjects (31.25 %) in the HWH486 group experienced 35 treatment-emergent adverse events, while four subjects (25.00 %) in the placebo group experienced eight such events. CONCLUSIONS HWH486 is well tolerated and safe in healthy adults, in whom it can strongly bind Bruton's tyrosine kinase. These findings justify clinical studies of HWH486 efficacy against autoimmune diseases.
Collapse
Affiliation(s)
- Man Chen
- Department of Pharmacy, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, Sichuan 610041, P.R. China; Clinical Trial Center and National Medical Products Administration Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, Sichuan 610041, P.R. China
| | - Shuangqing Du
- Department of Pharmacy, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, Sichuan 610041, P.R. China; Clinical Trial Center and National Medical Products Administration Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, Sichuan 610041, P.R. China
| | - Yue Cheng
- Department of Pharmacy, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, Sichuan 610041, P.R. China; Clinical Trial Center and National Medical Products Administration Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, Sichuan 610041, P.R. China
| | - Xiaohong Zhu
- Department of Pharmacy, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, Sichuan 610041, P.R. China; Clinical Trial Center and National Medical Products Administration Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, Sichuan 610041, P.R. China
| | - Ying Wang
- Department of Pharmacy, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, Sichuan 610041, P.R. China; Clinical Trial Center and National Medical Products Administration Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, Sichuan 610041, P.R. China
| | - Shiqing Shu
- Department of Pharmacy, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, Sichuan 610041, P.R. China; Clinical Trial Center and National Medical Products Administration Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, Sichuan 610041, P.R. China
| | - Yuchun Men
- Department of Pharmacy, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, Sichuan 610041, P.R. China; Clinical Trial Center and National Medical Products Administration Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, Sichuan 610041, P.R. China
| | - Miao He
- Department of Pharmacy, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, Sichuan 610041, P.R. China; Clinical Trial Center and National Medical Products Administration Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, Sichuan 610041, P.R. China
| | - Huifang Wang
- Department of Pharmacy, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, Sichuan 610041, P.R. China; Clinical Trial Center and National Medical Products Administration Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, Sichuan 610041, P.R. China
| | - Zhenyu He
- Clinical Research Center, Hubei Bio Pharmaceutical Industry Technology Institute Inc., No. 666, Gaoxin Avenue, Wuhan East Lake Hitech Zone, Wuhan, Hubei 430223, China
| | - Ling Cai
- Clinical Research Center, Hubei Bio Pharmaceutical Industry Technology Institute Inc., No. 666, Gaoxin Avenue, Wuhan East Lake Hitech Zone, Wuhan, Hubei 430223, China
| | - Jie Zhu
- Clinical Research Center, Hubei Bio Pharmaceutical Industry Technology Institute Inc., No. 666, Gaoxin Avenue, Wuhan East Lake Hitech Zone, Wuhan, Hubei 430223, China
| | - Zhe Wu
- Clinical Research Center, Hubei Bio Pharmaceutical Industry Technology Institute Inc., No. 666, Gaoxin Avenue, Wuhan East Lake Hitech Zone, Wuhan, Hubei 430223, China
| | - Yuqiong Li
- Clinical Research Center, Hubei Bio Pharmaceutical Industry Technology Institute Inc., No. 666, Gaoxin Avenue, Wuhan East Lake Hitech Zone, Wuhan, Hubei 430223, China
| | - Ping Feng
- Department of Pharmacy, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, Sichuan 610041, P.R. China; Clinical Trial Center and National Medical Products Administration Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, Sichuan 610041, P.R. China.
| |
Collapse
|
4
|
Mok CC. Targeted Small Molecules for Systemic Lupus Erythematosus: Drugs in the Pipeline. Drugs 2023; 83:479-496. [PMID: 36972009 PMCID: PMC10042116 DOI: 10.1007/s40265-023-01856-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2023] [Indexed: 03/29/2023]
Abstract
Despite the uncertainty of the pathogenesis of systemic lupus erythematosus, novel small molecules targeting specific intracellular mechanisms of immune cells are being developed to reverse the pathophysiological processes. These targeted molecules have the advantages of convenient administration, lower production costs, and the lack of immunogenicity. The Janus kinases, Bruton's tyrosine kinases, and spleen tyrosine kinases are important enzymes for activating downstream signals from various receptors on immune cells that include cytokines, growth factor, hormones, Fc, CD40, and B-cell receptors. Suppression of these kinases impairs cellular activation, differentiation, and survival, leading to diminished cytokine actions and autoantibody secretion. Intracellular protein degradation by immunoproteasomes, levered by the cereblon E3 ubiquitin ligase complex, is an essential process for the regulation of cellular functions and survival. Modulation of the immunoproteasomes and cereblon leads to depletion of long-lived plasma cells, reduced plasmablast differentiation, and production of autoantibodies and interferon-α. The sphingosine 1-phosphate/sphingosine 1-phosphate receptor-1 pathway is responsible for lymphocyte trafficking, regulatory T-cell/Th17 cell homeostasis, and vascular permeability. Sphingosine 1-phosphate receptor-1 modulators limit the trafficking of autoreactive lymphocytes across the blood-brain barrier, increase regulatory T-cell function, and decrease production of autoantibodies and type I interferons. This article summarizes the development of these targeted small molecules in the treatment of systemic lupus erythematosus, and the future prospect for precision medicine.
Collapse
Affiliation(s)
- Chi Chiu Mok
- Department of Medicine, Tuen Mun Hospital, Tsing Chung Koon Road, New Territories, Hong Kong SAR, China.
| |
Collapse
|
5
|
Buske C, Jurczak W, Salem JE, Dimopoulos MA. Managing Waldenström's macroglobulinemia with BTK inhibitors. Leukemia 2023; 37:35-46. [PMID: 36402930 PMCID: PMC9883164 DOI: 10.1038/s41375-022-01732-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/09/2022] [Accepted: 10/13/2022] [Indexed: 11/21/2022]
Abstract
Bruton's tyrosine kinase (BTK) inhibition is one of the treatment standards for patients with relapsed/refractory Waldenström's macroglobulinemia (WM) and for patients with WM who are unsuitable for immunochemotherapy (ICT). It offers deep and durable responses with a manageable safety profile that is generally favorable compared with ICT regimens. However, the limitations of the first approved BTK inhibitor (BTKi), ibrutinib, include reduced efficacy in patients lacking the characteristic WM mutation (MYD88L265P) and toxicities related to off-target activity. The risk of atrial fibrillation (AF) and other cardiovascular side effects are a notable feature of ibrutinib therapy. Several next-generation covalent BTKis with greater selectivity for BTK are at various stages of development. In November 2021, zanubrutinib became the first of these agents to be approved by the European Medicines Agency for the treatment of WM. Head-to-head trial data indicate that it has comparable efficacy to ibrutinib for patients with WM overall, although it may be more effective in patients with CXCR4 mutations or wild-type MYD88. In the clinical trial setting, its greater selectivity translates into a reduced risk of cardiovascular side effects, including AF. Acalabrutinib, which is pre-approval in WM, appears to offer similar advantages over ibrutinib in terms of its safety profile. Beyond the next-generation covalent BTKis, non-covalent BTKis are an emerging class with the potential to provide a therapeutic option for patients who relapse on covalent BTKis. In the future, BTKis may be increasingly utilized within combination regimens. Several ongoing trials in WM are investigating the potential for BTKi use in combination with established and novel targeted agents.
Collapse
Affiliation(s)
- Christian Buske
- Institute of Experimental Cancer Research, Comprehensive Cancer Center, University Hospital of Ulm, Ulm, Germany.
| | - Wojciech Jurczak
- Department of Clinical Oncology, Maria Skłodowska-Curie National Research Institute of Oncology, Kraków, Poland
| | - Joe-Elie Salem
- Sorbonne University, AP-HP, INSERM CIC-1901, Paris, France
| | - Meletios A Dimopoulos
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
6
|
Wang G, Yang TX, Li JM, Huang ZY, Yang WB, Li P, He DL. Bruton tyrosine kinase (BTK) may be a potential therapeutic target for interstitial cystitis/bladder pain syndrome. Aging (Albany NY) 2022; 14:7052-7064. [PMID: 36069808 PMCID: PMC9512503 DOI: 10.18632/aging.204271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/24/2022] [Indexed: 11/25/2022]
Abstract
AIMS To determine the potential diagnostic and therapeutic targets of Interstitial Cystitis/Bladder Pain Syndrome (IC/BPS). METHODS We selected the GSE11783, GSE57560 and GSE621 datasets from the GEO database and merged them. R software was used to screen differentially expressed genes (DEGs) between IC/BPS and normal bladder tissues. The "String" online tool is used to analyze DEGs interaction and functional protein enrichment. CIBERSORT online tool was used to analyze the infiltration of immune cells. In addition, we verified the function of BTK in IC/BPS at the clinical samples and cells level. RESULTS Bioinformatics analysis revealed that 5 genes were significantly overexpressed in IC/BPS, and the protein-protein interaction diagram showed that BTK was a critical link between these five proteins. At the same time, functional enrichment showed that they were significantly related to innate immunity. Immunoinfiltration showed that mast cell resting in IC/BPS was significantly higher. IHC staining of clinical samples showed that the mast cell markers Tryptase and BTK were highly expressed in IC/BPS tissues. At the cell level, knockdown of BTK inhibited proliferation, migration, invasion, and degranulation of mast cells. CONCLUSIONS This study provides a new perspective for understanding the molecular mechanisms involved in IC/BPS and suggests that BTK may be a target for treating IC/BPS.
Collapse
Affiliation(s)
- Guang Wang
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shanxi, China
| | - Tong-Xin Yang
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, Yunnan, China
| | - Jiong-Ming Li
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, Yunnan, China
| | - Zi-Ye Huang
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, Yunnan, China
| | - Wen-Bo Yang
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shanxi, China
| | - Pei Li
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, Yunnan, China
| | - Da-Lin He
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shanxi, China
| |
Collapse
|
7
|
Wen PW, Tu ZC, Hu YM, Wang H. Effects of Superheated Steam Treatment on the Allergenicity and Structure of Chicken Egg Ovomucoid. Foods 2022; 11:foods11020238. [PMID: 35053970 PMCID: PMC8774878 DOI: 10.3390/foods11020238] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/07/2022] [Accepted: 01/12/2022] [Indexed: 02/01/2023] Open
Abstract
The aim of this study was to explore the effects of an emerging and efficient heating technology, superheated steam (SS), on the allergenicity and molecular structure of ovomucoid (OVM). OVM was treated with 120–200 °C of SS for 2 to 10 min. The allergenicity (IgG/IgE binding abilities and cell degranulation assay) and molecular structure (main functional groups and amino acids modification) changes were investigated. The IgG-binding ability of OVM decreased and the releases of β-hex and TNF-γ were inhibited after SS treatment, indicating that the protein allergenicity was reduced. Significant increases in oxidation degree, free SH content and surface hydrophobicity were observed in SS-treated OVM. The protein dimer and trimer appeared after SS treatment. Meanwhile, obvious changes occurred in the primary structure. Specifically, serine can be readily modified by obtaining functional groups from other modification sites during SS treatment. Moreover, the natural OVM structure which showed resistance to trypsin digestion was disrupted, leading to increased protein digestibility. In conclusion, SS-induced OVM aggregation, functional groups and amino acids modifications as well as protein structure alteration led to reduced allergenicity and increased digestibility.
Collapse
Affiliation(s)
- Ping-Wei Wen
- National R&D Branch Center for Conventional Freshwater Fish Processing, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China;
- Engineering Research Center of Freshwater Fish High-Value Utilization of Jiangxi Province, Jiangxi Normal University, Nanchang 330022, China
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (Y.-M.H.); (H.W.)
| | - Zong-Cai Tu
- National R&D Branch Center for Conventional Freshwater Fish Processing, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China;
- Engineering Research Center of Freshwater Fish High-Value Utilization of Jiangxi Province, Jiangxi Normal University, Nanchang 330022, China
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (Y.-M.H.); (H.W.)
- Correspondence: ; Tel.: +86-791-8812-1868; Fax: +86-791-8830-5938
| | - Yue-Ming Hu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (Y.-M.H.); (H.W.)
| | - Hui Wang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (Y.-M.H.); (H.W.)
| |
Collapse
|
8
|
Lv L, Ahmed I, Qu X, Ju G, Yang N, Guo Y, Li Z. Effect of the structure and potential allergenicity of glycated tropomyosin, the shrimp allergen. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Liangtao Lv
- Food Safety Laboratory College of Food Science and Engineering Ocean University of China Qingdao 266003 China
| | - Ishfaq Ahmed
- Food Safety Laboratory College of Food Science and Engineering Ocean University of China Qingdao 266003 China
| | - Xin Qu
- Qingdao Municipal Center for Disease Control and Prevention 175 Shandong Road, Shibei District Qingdao Shandong Province 266033 China
| | - Guangxiu Ju
- Qingdao Municipal Center for Disease Control and Prevention 175 Shandong Road, Shibei District Qingdao Shandong Province 266033 China
| | - Ni Yang
- General Surgery Ward 1 Qingdao Eighth People's Hospital 84 Fengshan Road, Licang District Qingdao Shandong Province 266100 China
| | - Yuman Guo
- Food Safety Laboratory College of Food Science and Engineering Ocean University of China Qingdao 266003 China
| | - Zhenxing Li
- Food Safety Laboratory College of Food Science and Engineering Ocean University of China Qingdao 266003 China
| |
Collapse
|
9
|
Shao YH, Zhang Y, Zhang L, Liu J, Tu ZC. Mechanism of Reduction in Allergenicity and Altered Human Intestinal Microbiota of Digested β-Lactoglobulin Modified by Ultrasonic Pretreatment Combined with Glycation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:14004-14012. [PMID: 34761930 DOI: 10.1021/acs.jafc.1c03501] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The effects of ultrasound combined with glycation (UCG) on the allergenicity and human microbial community of β-Lg during in vitro digestion were studied by ELISA, cell experiments, and 16S rRNA high-throughput sequencing. UCG modification and subsequent digestion significantly reduced allergenicity. The decrease in the allergenicity of β-Lg depended not only on the low digestibility of glycated β-Lg, which led to the decrease of some peptides with complete immunogenicity, but also the masking effect of glycation on allergen epitopes of β-Lg. Meanwhile, UCG modification and subsequent digestion could alter the structures of intestinal microbiota and the community abundance at phylum, family, and genus levels, such as Bacteroidota, Fusobacteriota, Enterobacteriaceae, Bacteroidaceae, Ruminococcaceae, Bacteroides, and Faecalibacterium. These results show that simulated in vitro digestion of modified β-Lg reduces allergenicity and alters human intestinal microbiota, which could provide a theoretical basis for studying the relationship between intestinal dysbiosis and cow's milk allergy.
Collapse
Affiliation(s)
- Yan-Hong Shao
- National R&D Center for Freshwater Fish Processing, and Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi Province, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Yao Zhang
- National R&D Center for Freshwater Fish Processing, and Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi Province, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Lu Zhang
- National R&D Center for Freshwater Fish Processing, and Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi Province, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Jun Liu
- National R&D Center for Freshwater Fish Processing, and Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi Province, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Zong-Cai Tu
- National R&D Center for Freshwater Fish Processing, and Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi Province, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China
| |
Collapse
|
10
|
Ringheim GE, Wampole M, Oberoi K. Bruton's Tyrosine Kinase (BTK) Inhibitors and Autoimmune Diseases: Making Sense of BTK Inhibitor Specificity Profiles and Recent Clinical Trial Successes and Failures. Front Immunol 2021; 12:662223. [PMID: 34803999 PMCID: PMC8595937 DOI: 10.3389/fimmu.2021.662223] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 10/11/2021] [Indexed: 11/13/2022] Open
Abstract
Clinical development of BTK kinase inhibitors for treating autoimmune diseases has lagged behind development of these drugs for treating cancers, due in part from concerns over the lack of selectivity and associated toxicity profiles of first generation drug candidates when used in the long term treatment of immune mediated diseases. Second generation BTK inhibitors have made great strides in limiting off-target activities for distantly related kinases, though they have had variable success at limiting cross-reactivity within the more closely related TEC family of kinases. We investigated the BTK specificity and toxicity profiles, drug properties, disease associated signaling pathways, clinical indications, and trial successes and failures for the 13 BTK inhibitor drug candidates tested in phase 2 or higher clinical trials representing 7 autoimmune and 2 inflammatory immune-mediated diseases. We focused on rheumatoid arthritis (RA), multiple sclerosis (MS), and systemic lupus erythematosus (SLE) where the majority of BTK nonclinical and clinical studies have been reported, with additional information for pemphigus vulgaris (PV), Sjogren’s disease (SJ), chronic spontaneous urticaria (CSU), graft versus host disease (GVHD), and asthma included where available. While improved BTK selectivity versus kinases outside the TEC family improved clinical toxicity profiles, less profile distinction was evident within the TEC family. Analysis of genetic associations of RA, MS, and SLE biomarkers with TEC family members revealed that BTK and TEC family members may not be drivers of disease. They are, however, mediators of signaling pathways associated with the pathophysiology of autoimmune diseases. BTK in particular may be associated with B cell and myeloid differentiation as well as autoantibody development implicated in immune mediated diseases. Successes in the clinic for treating RA, MS, PV, ITP, and GVHD, but not for SLE and SJ support the concept that BTK plays an important role in mediating pathogenic processes amenable to therapeutic intervention, depending on the disease. Based on the data collected in this study, we propose that current compound characteristics of BTK inhibitor drug candidates for the treatment of autoimmune diseases have achieved the selectivity, safety, and coverage requirements necessary to deliver therapeutic benefit.
Collapse
Affiliation(s)
- Garth E Ringheim
- Clinical Pharmacology and Translational Medicine, Eisai Inc, Woodcliff Lake, NJ, United States
| | | | - Kinsi Oberoi
- Science Group, Clarivate, Philadelphia, PA, United States
| |
Collapse
|
11
|
McCarty MF, Lerner A, DiNicolantonio JJ, Benzvi C. Nutraceutical Aid for Allergies - Strategies for Down-Regulating Mast Cell Degranulation. J Asthma Allergy 2021; 14:1257-1266. [PMID: 34737578 PMCID: PMC8558634 DOI: 10.2147/jaa.s332307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/24/2021] [Indexed: 11/23/2022] Open
Abstract
Interactions of antigens with the mast cell FcεRI-IgE receptor complex induce degranulation and boost synthesis of pro-inflammatory lipid mediators and cytokines. Activation of spleen tyrosine kinase (Syk) functions as a central hub in this signaling. The tyrosine phosphatase SHP-1 opposes Syk activity; stimulation of NADPH oxidase by FcεRI activation results in the production of oxidants that reversibly inhibit SHP-1, up-regulating the signal from Syk. Activated AMPK can suppress Syk activation by the FcεRI receptor, possibly reflecting its ability to phosphorylate the FcεRI beta subunit. Cyclic GMP, via protein kinase G II, enhances the activity of SHP-1 by phosphorylating its C-terminal region; this may explain its inhibitory impact on mast cell activation. Hydrogen sulfide (H2S) likewise opposes mast cell activation; H2S can boost AMPK activity, up-regulate cGMP production, and trigger Nrf2-mediated induction of Phase 2 enzymes - including heme oxygenase-1, whose generation of bilirubin suppresses NADPH oxidase activity. Phycocyanobilin (PCB), a chemical relative of bilirubin, shares its inhibitory impact on NADPH oxidase, rationalizing reported anti-allergic effects of PCB-rich spirulina ingestion. Phase 2 inducer nutraceuticals can likewise oppose the up-regulatory impact of NADPH oxidase on FcεRI signaling. AMPK can be activated with the nutraceutical berberine. High-dose biotin can boost cGMP levels in mast cells via direct stimulation of soluble guanylate cyclase. Endogenous generation of H2S in mast cells can be promoted by administering N-acetylcysteine and likely by taurine, which increases the expression of H2S-producing enzymes in the vascular system. Mast cell stabilization by benifuuki green tea catechins may reflect the decreased surface expression of FcεRI.
Collapse
Affiliation(s)
| | - Aaron Lerner
- Chaim Sheba Medical Center, The Zabludowicz Research Center for Autoimmune Diseases, Tel Hashomer, Israel
| | - James J DiNicolantonio
- Saint Luke’s Mid America Heart Institute, Kansas City, MO, USA
- Advanced Ingredients for Dietary Products, AIDP, City of Industry, CA, USA
| | - Carina Benzvi
- Chaim Sheba Medical Center, The Zabludowicz Research Center for Autoimmune Diseases, Tel Hashomer, Israel
| |
Collapse
|
12
|
Cytoskeleton Response to Ionizing Radiation: A Brief Review on Adhesion and Migration Effects. Biomedicines 2021; 9:biomedicines9091102. [PMID: 34572287 PMCID: PMC8465203 DOI: 10.3390/biomedicines9091102] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/18/2021] [Accepted: 08/24/2021] [Indexed: 12/27/2022] Open
Abstract
The cytoskeleton is involved in several biological processes, including adhesion, motility, and intracellular transport. Alterations in the cytoskeletal components (actin filaments, intermediate filaments, and microtubules) are strictly correlated to several diseases, such as cancer. Furthermore, alterations in the cytoskeletal structure can lead to anomalies in cells’ properties and increase their invasiveness. This review aims to analyse several studies which have examined the alteration of the cell cytoskeleton induced by ionizing radiations. In particular, the radiation effects on the actin cytoskeleton, cell adhesion, and migration have been considered to gain a deeper knowledge of the biophysical properties of the cell. In fact, the results found in the analysed works can not only aid in developing new diagnostic tools but also improve the current cancer treatments.
Collapse
|
13
|
Wu Y, Lin H, Lu Y, Huang Y, Dasanayaka BP, Ahmed I, Chen G, Chen Y, Li Z. Allergenicity determination of Turbot parvalbumin for safety of fish allergy via dendritic cells, RBL‐2H3 cell and mouse model. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-021-03763-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
14
|
Shah SA, Kanabar V, Riffo-Vasquez Y, Mohamed Z, Cleary SJ, Corrigan C, James AL, Elliot JG, Shute JK, Page CP, Pitchford SC. Platelets Independently Recruit into Asthmatic Lungs and Models of Allergic Inflammation via CCR3. Am J Respir Cell Mol Biol 2021; 64:557-568. [PMID: 33556295 PMCID: PMC8086046 DOI: 10.1165/rcmb.2020-0425oc] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Platelet activation and pulmonary recruitment occur in patients with asthma and in animal models of allergic asthma, in which leukocyte infiltration, airway remodeling, and hyperresponsiveness are suppressed by experimental platelet depletion. These observations suggest the importance of platelets to various characteristics of allergic disease, but the mechanisms of platelet migration and location are not understood. The aim of this study was to assess the mechanism of platelet recruitment to extravascular compartments of lungs from patients with asthma and after allergen challenge in mice sensitized to house dust mite (HDM) extract (contains the DerP1 [Dermatophagoides pteronyssinus extract peptidase 1] allergen); in addition, we assessed the role of chemokines in this process. Lung sections were immunohistochemically stained for CD42b+ platelets. Intravital microscopy in allergic mice was used to visualize platelets tagged with an anti-mouse CD49b-PE (phycoerythrin) antibody. Platelet-endothelial interactions were measured in response to HDM (DerP1) exposure in the presence of antagonists to CCR3, CCR4, and CXCR4. Extravascular CD42b+ platelets were detected in the epithelium and submucosa in bronchial biopsy specimens taken from subjects with steroid-naive mild asthma. Platelets were significantly raised in the lung parenchyma from patients with fatal asthma compared with postmortem control-lung tissue. Furthermore, in DerP1-sensitized mice, subsequent HDM exposure induced endothelial rolling, endothelial adhesion, and recruitment of platelets into airway walls, compared with sham-sensitized mice, via a CCR3-dependent mechanism in the absence of aggregation or interactions with leukocytes. Localization of singular, nonaggregated platelets occurs in lungs of patients with asthma. In allergic mice, platelet recruitment occurs via recognized vascular adhesive and migratory events, independently of leukocytes via a CCR3-dependent mechanism.
Collapse
Affiliation(s)
- Sajeel A Shah
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Sciences, and
| | - Varsha Kanabar
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Sciences, and
| | - Yanira Riffo-Vasquez
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Sciences, and
| | - Zainab Mohamed
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Sciences, and
| | - Simon J Cleary
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Sciences, and
| | - Christopher Corrigan
- MRC-Asthma UK Centre for Allergic Mechanisms in Asthma, Guy's Hospital-King's College London, London, United Kingdom
| | - Alan L James
- Department of Pulmonary Physiology and Sleep Medicine, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia; and
| | - John G Elliot
- Department of Pulmonary Physiology and Sleep Medicine, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia; and
| | - Janis K Shute
- Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Clive P Page
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Sciences, and
| | - Simon C Pitchford
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Sciences, and
| |
Collapse
|
15
|
Liu K, Mao W, Liu B, Li T, Wang X, Pei L, Cao J, Wang F. Prostaglandin E2 promotes Staphylococcus aureus infection via EP4 receptor in bovine endometrium. Microb Pathog 2021; 158:105019. [PMID: 34107344 DOI: 10.1016/j.micpath.2021.105019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 10/21/2022]
Abstract
Prostaglandin E2 (PGE2) enhances Staphylococcus aureus infection but its mechanism is not well understood. Here, we examined the effect of PGE2 on Staphylococcal Protein A (SPA) expression in bovine endometrium and determined the role of select PGE2 receptors (i.e., EP2 and EP4) in adhesion and internalization of S. aureus. S. aureus isolate SA113 was used for in vitro infection of bovine endometrial tissues and epithelial cells, with treatment conditions consisting of untreated control, SA113 treatment, SA113 + PGE2, SA113 + PGE2 + EP2 receptor antagonist (AH-6809), and SA113 + PGE2 + EP4 receptor antagonist (AH-23848). Immunofluorescence assay revealed that PGE2 could promote SPA expression in S. aureus-infected bovine endometrial tissues. PGE2 also enhanced the adhesion and internalization of S. aureus in bovine endometrial cells. The addition of EP4 antagonist, but not the EP2 antagonist, abrogated the ability of PGE2 to promote S. aureus SPA expression, adhesion, and internalization in endometrial cells. Our findings suggest that S. aureus infection in the endometrium is enhanced by PGE2 through the EP4 receptor. This result is essential for the development of new approach to treating S. aureus infection, such as the application of EP4 antagonist as an adjunct drug treatment.
Collapse
Affiliation(s)
- Kun Liu
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, 010018, Hohhot, China; Key Laboratory of Clinical Diagnosis and Treatment Techniques for Anima Disease, Ministry of Agriculture, Hohhot, China; Laboratory of Veterinary Pathology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China.
| | - Wei Mao
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, 010018, Hohhot, China; Key Laboratory of Clinical Diagnosis and Treatment Techniques for Anima Disease, Ministry of Agriculture, Hohhot, China.
| | - Bo Liu
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, 010018, Hohhot, China; Key Laboratory of Clinical Diagnosis and Treatment Techniques for Anima Disease, Ministry of Agriculture, Hohhot, China.
| | - Tingting Li
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, 010018, Hohhot, China; Key Laboratory of Clinical Diagnosis and Treatment Techniques for Anima Disease, Ministry of Agriculture, Hohhot, China.
| | - Xinfei Wang
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, 010018, Hohhot, China; Key Laboratory of Clinical Diagnosis and Treatment Techniques for Anima Disease, Ministry of Agriculture, Hohhot, China.
| | - Le Pei
- Veterinary Research Institute, Inner Mongolia Academy of Agriculture and Animal Husbandry Sciences, Hohhot, China.
| | - Jinshan Cao
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, 010018, Hohhot, China; Key Laboratory of Clinical Diagnosis and Treatment Techniques for Anima Disease, Ministry of Agriculture, Hohhot, China.
| | - Fenglong Wang
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China.
| |
Collapse
|
16
|
Shao YH, Zhang Y, Liu J, Tu ZC. Investigation into predominant peptide and potential allergenicity of ultrasonicated β-lactoglobulin digestion products. Food Chem 2021; 361:130099. [PMID: 34029892 DOI: 10.1016/j.foodchem.2021.130099] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 05/11/2021] [Accepted: 05/11/2021] [Indexed: 10/21/2022]
Abstract
The effect of ultrasonicated β-lactoglobulin on the allergenic potential of predominant peptide was studied in vitro digestion. Gastrointestinal (GI) digestion of ultrasonicated β-lg was fractionated into four fractions, which have different molecular weight and allergenic potentials. The lowest allergenicity of fraction was produced by ultrasonicated β-Lg after GI digestion, depending on the changes in the structure of β-Lg by ultrasonic and the promotion of its proteolysis, resulting in the production of numerous small peptides with significantly reduced IgE activity and basophil histamine release. Mass spectrometry analysis showed that ultrasonic can promote the further hydrolysis of large intermediate peptides, Y42, L54, L57/L58, L95, L104/F105, L122 were target residues that became more available to protease by the pretreatment of ultrasonic, thus have a smaller molecular weight with reduced allergenic potential. Ultrasonic processing of milk products alone could reduce the risk of an allergenic reaction in milk allergy patients to some extent.
Collapse
Affiliation(s)
- Yan-Hong Shao
- National R&D Branch Center for Conventional Freshwater Fish Processing, Jiangxi Normal University, Nanchang, Jiangxi 330022, China; Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi Province, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Yao Zhang
- National R&D Branch Center for Conventional Freshwater Fish Processing, Jiangxi Normal University, Nanchang, Jiangxi 330022, China; Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi Province, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Jun Liu
- National R&D Branch Center for Conventional Freshwater Fish Processing, Jiangxi Normal University, Nanchang, Jiangxi 330022, China; Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi Province, Jiangxi Normal University, Nanchang, Jiangxi 330022, China.
| | - Zong-Cai Tu
- National R&D Branch Center for Conventional Freshwater Fish Processing, Jiangxi Normal University, Nanchang, Jiangxi 330022, China; Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi Province, Jiangxi Normal University, Nanchang, Jiangxi 330022, China; State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China.
| |
Collapse
|
17
|
Lazki-Hagenbach P, Klein O, Sagi-Eisenberg R. The actin cytoskeleton and mast cell function. Curr Opin Immunol 2021; 72:27-33. [PMID: 33765561 DOI: 10.1016/j.coi.2021.03.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/11/2021] [Accepted: 03/02/2021] [Indexed: 10/21/2022]
Abstract
The application of high and super-resolution microscopy techniques has extended the possibilities of studying actin dynamics in mast cells (MCs). These studies demonstrated the close correlation between actin-driven changes in cell morphology and the functions that MC perform during their life cycle. Dynamic conversions between actin polymerization and depolymerization support MC degranulation and leading to the release of the preformed, secretory granule (SG)-contained, inflammatory mediators. Cell flattening inflicting an actin porous geometry and clearing of cortical actin, characterize the secretory actin phenotype. In contrast, pericentral actin clusters, that entrap the SGs, characterize the migratory actin phenotype, which supports MC migration, but restricts MC degranulation. Multiple actin binding and actin interacting proteins regulate these actin rearrangements, in compliance with the signals elicited by the respective activating receptors. Here, we review recent findings on the interplay between the actin cytoskeleton and MC migration and degranulation.
Collapse
Affiliation(s)
- Pia Lazki-Hagenbach
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ofir Klein
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ronit Sagi-Eisenberg
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
18
|
Luo C, Chen G, Ahmed I, Sun L, Li W, Pavase TR, Li Z. Immunostimulatory and allergenic properties of emulsified and non-emulsified digestion products of parvalbumin ( Scophthalmus maximus) in RBL-2H3 cells and BALB/c mouse models. Food Funct 2021; 12:5351-5360. [PMID: 33982680 DOI: 10.1039/d1fo00575h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the present study, the influence of lipid emulsion on the allergenicity of digestion products of fish parvalbumin (PV) was investigated, which was initially subjected to simulated gastric/intestinal digestion both under emulsified and non-emulsified conditions. The release of β-hexosaminidase (β-hex), histamine (His), tryptase (TPS), interleukin 4 (IL-4), and IL-13 in RBL cells was decreased by 79.32, 26.19, 41.67, 53.95 and 54.40%, respectively, following stimulation with the gastric digestion products of PV. Whereas, lipid emulsified digestion products of PV (e-PV) significantly enhanced the release of active mediators and cytokines. The digestion products of emulsified PV at 180 min resulted in a higher release of β-hex (197.60%), His (12.18%), TPS (38.85%), IL-4 (48.19%) and IL-13 (59.40%), as compared to that of PV. However, no obvious differences in the release of active substances and cytokines were noted between intestinal digestion products of PV and intestinal digestion products of emulsified PV. In the mouse model studies, digested PV products reduced the anaphylactic scores, whereas e-PV manifested a higher level of allergic symptoms. Moreover, mice treated with 50% e-PV had significantly higher levels of specific IgE (32.56%), total IgE (16.67%) and total IgG1 (5.15%) than those treated with 50% PV. Mice treated with 50% e-PV had significantly higher levels of His (8.50%) and TPS (10.07%) compared with mice treated with 50% PV. Lipid emulsions altered the digestibility of PV in gastrointestinal digestion and enhanced the allergenicity of PV digestion products at the cellular levels, subsequently posing a higher risk of allergic reactions in susceptible individuals.
Collapse
Affiliation(s)
- Chen Luo
- Department of Dermatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, PR China. and College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province 266003, PR China
| | - Guanzhi Chen
- Department of Dermatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, PR China.
| | - Ishfaq Ahmed
- Department of Dermatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, PR China.
| | - Lirui Sun
- Department of Dermatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, PR China.
| | - Wenjie Li
- Qingdao Women & Children Hospital, Clinical Laboratory, Qingdao, Shandong Province 266003, PR China
| | - Tushar Ramesh Pavase
- Department of Dermatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, PR China.
| | - Zhenxing Li
- Department of Dermatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, PR China. and College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province 266003, PR China
| |
Collapse
|
19
|
Lv L, Qu X, Yang N, Liu Z, Wu X. Changes in structure and allergenicity of shrimp tropomyosin by dietary polyphenols treatment. Food Res Int 2020; 140:109997. [PMID: 33648231 DOI: 10.1016/j.foodres.2020.109997] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 11/29/2020] [Accepted: 12/08/2020] [Indexed: 11/15/2022]
Abstract
Here, the potential allergenicity of shrimp tropomyosin (TM) after conjugation with chlorogenic acid (CA) and (-)-epigallo-catechin 3-gallate (EGCG) was assessed. Conformational structures of TM-polyphenol complexes were detected using SDS-PAGE, circular dichroism (CD), and fluorescence. Potential allergenicity was assessed by immunological methods, a rat basophil leukemia cell model (RBL-2H3), and in vivo assays. Indirect ELISA showed that TM-polyphenol complexes caused a conformational change to TM structure, with decreased IgG/IgE binding capacity significantly fewer inflammatory mediators were released with EGCG-TM and CA-TM in a mediator-releasing RBL-2H3 cell line. Mice model showed low allergenicity to serum levels of TM-specific antibody and T-cell cytokine production. EGCG-TM and CA-TM might reduce the potential allergenicity of shrimp TM, which could be used to produce hypoallergenic food in the food industry.
Collapse
Affiliation(s)
- Liangtao Lv
- Department of Respiratory & Allergy, Third Affiliated Hospital of Shenzhen University, Shenzhen 518020, China; School of Public Health, Health Science Center, Shenzhen University, Shenzhen, Guangdong Province 518060, China.
| | - Xin Qu
- Qingdao Municipal Center for Disease Control and Prevention, 175 Shandong Road, Shibei District, Qingdao, Shandong Province 266033, China
| | - Ni Yang
- General Surgery Ward 1, Qingdao Eighth People's Hospital, 84 Fengshan Road, Licang District, Qingdao, Shandong Province 266100, China
| | - Zhigang Liu
- Department of Respiratory & Allergy, Third Affiliated Hospital of Shenzhen University, Shenzhen 518020, China; School of Public Health, Health Science Center, Shenzhen University, Shenzhen, Guangdong Province 518060, China
| | - Xuli Wu
- School of Public Health, Health Science Center, Shenzhen University, Shenzhen, Guangdong Province 518060, China.
| |
Collapse
|
20
|
Shao YH, Zhang Y, Zhu MF, Liu J, Tu ZC. Glycation of β-lactoglobulin combined by sonication pretreatment reduce its allergenic potential. Int J Biol Macromol 2020; 164:1527-1535. [PMID: 32738325 DOI: 10.1016/j.ijbiomac.2020.07.223] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 06/23/2020] [Accepted: 07/24/2020] [Indexed: 01/09/2023]
Abstract
β-lactoglobulin (β-Lg) was treated through different ultrasonic power and subsequently glycated with galactose to investigate its structural changes and immunological properties, and then evaluated by high-resolution mass spectrometry, enzyme-linked immunosorbent assay and basophil histamine release test. Ultrasonication combined with glycation (UCG) modification significantly reduced the IgE/IgG-binding capacity, and the release of β-hexosaminidase, histamine and interleukin-6, accompanied with changes in the secondary and tertiary structures. The decrease in the allergenicity of β-Lg depended not only on the glycation of K47, 60, 83, 91 and 135 within the linear epitopes, but also on the denaturation of conformational epitopes, which was supported by the glycation-induced alterations of the secondary and tertiary structures. This study confirmed that UCG modification is a promising method for decreasing the allergenic potential of allergic proteins, which is likely to develop a practical technology to produce hypo-allergenic milk.
Collapse
Affiliation(s)
- Yan-Hong Shao
- National R&D Branch Center for Conventional Freshwater Fish Processing, Jiangxi Normal University, Nanchang, Jiangxi 330022, China; Engineering Research Center of Freshwater Fish High-Value Utilization of Jiangxi Province, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Yao Zhang
- National R&D Branch Center for Conventional Freshwater Fish Processing, Jiangxi Normal University, Nanchang, Jiangxi 330022, China; Engineering Research Center of Freshwater Fish High-Value Utilization of Jiangxi Province, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Min-Fang Zhu
- National R&D Branch Center for Conventional Freshwater Fish Processing, Jiangxi Normal University, Nanchang, Jiangxi 330022, China; Engineering Research Center of Freshwater Fish High-Value Utilization of Jiangxi Province, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Jun Liu
- National R&D Branch Center for Conventional Freshwater Fish Processing, Jiangxi Normal University, Nanchang, Jiangxi 330022, China; Engineering Research Center of Freshwater Fish High-Value Utilization of Jiangxi Province, Jiangxi Normal University, Nanchang, Jiangxi 330022, China.
| | - Zong-Cai Tu
- National R&D Branch Center for Conventional Freshwater Fish Processing, Jiangxi Normal University, Nanchang, Jiangxi 330022, China; Engineering Research Center of Freshwater Fish High-Value Utilization of Jiangxi Province, Jiangxi Normal University, Nanchang, Jiangxi 330022, China; State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China.
| |
Collapse
|
21
|
Paluchova V, Vik A, Cajka T, Brezinova M, Brejchova K, Bugajev V, Draberova L, Draber P, Buresova J, Kroupova P, Bardova K, Rossmeisl M, Kopecky J, Hansen TV, Kuda O. Triacylglycerol-Rich Oils of Marine Origin are Optimal Nutrients for Induction of Polyunsaturated Docosahexaenoic Acid Ester of Hydroxy Linoleic Acid (13-DHAHLA) with Anti-Inflammatory Properties in Mice. Mol Nutr Food Res 2020; 64:e1901238. [PMID: 32277573 DOI: 10.1002/mnfr.201901238] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/23/2020] [Indexed: 12/22/2022]
Abstract
SCOPE The docosahexaenoic acid ester of hydroxy linoleic acid (13-DHAHLA) is a bioactive lipid with anti-inflammatory properties from the family of fatty acid esters of hydroxy fatty acids (FAHFA). METHODS AND RESULTS To explore the biosynthesis of 13-DHAHLA from dietary oils, C57BL/6N mice are gavaged for 8 days with various corn oil/marine oil mixtures containing the same amount of DHA. Plasma levels of omega-3 FAHFAs are influenced by the lipid composition of the mixtures but do not reflect the changes in bioavailability of polyunsaturated fatty acids in plasma. Triacylglycerol-bound DHA and linoleic acid serve as more effective precursors for 13-DHAHLA synthesis than DHA bound in phospholipids or wax esters. Both 13(S)- and 13(R)-DHAHLA inhibit antigen and PGE2 -induced chemotaxis and degranulation of mast cells to a comparable extent and 13(S)-DHAHLA is identified as the predominant isomer in mouse adipose tissue. CONCLUSION Here, the optimal nutritional source of DHA is identified, which supports production of anti-inflammatory FAHFAs, as triacylglycerol-based marine oil and also reveals a possible role of triacylglycerols in the synthesis of FAHFA lipokines.
Collapse
Affiliation(s)
- Veronika Paluchova
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, Prague, 14220, Czech Republic
| | - Anders Vik
- Department of Pharmacy, Section for Pharmaceutical Chemistry, University of Oslo, PO Box 1068, Blindern, Oslo, N-0316, Norway
| | - Tomas Cajka
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, Prague, 14220, Czech Republic
| | - Marie Brezinova
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, Prague, 14220, Czech Republic
| | - Kristyna Brejchova
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, Prague, 14220, Czech Republic
| | - Viktor Bugajev
- Laboratory of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, Prague, 14220, Czech Republic
| | - Lubica Draberova
- Laboratory of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, Prague, 14220, Czech Republic
| | - Petr Draber
- Laboratory of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, Prague, 14220, Czech Republic
| | - Jana Buresova
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, Prague, 14220, Czech Republic
| | - Petra Kroupova
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, Prague, 14220, Czech Republic
| | - Kristina Bardova
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, Prague, 14220, Czech Republic
| | - Martin Rossmeisl
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, Prague, 14220, Czech Republic
| | - Jan Kopecky
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, Prague, 14220, Czech Republic
| | - Trond Vidar Hansen
- Department of Pharmacy, Section for Pharmaceutical Chemistry, University of Oslo, PO Box 1068, Blindern, Oslo, N-0316, Norway
| | - Ondrej Kuda
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, Prague, 14220, Czech Republic
| |
Collapse
|
22
|
Tsuge K, Inazumi T, Shimamoto A, Sugimoto Y. Molecular mechanisms underlying prostaglandin E2-exacerbated inflammation and immune diseases. Int Immunol 2020; 31:597-606. [PMID: 30926983 DOI: 10.1093/intimm/dxz021] [Citation(s) in RCA: 152] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 03/18/2019] [Indexed: 01/12/2023] Open
Abstract
Prostaglandins (PGs) are the major lipid mediators in animals and which are biosynthesized from arachidonic acid by the cyclooxygenases (COX-1 or COX-2) as the rate-limiting enzymes. Prostaglandin E2 (PGE2), which is the most abundantly detected PG in various tissues, exerts versatile physiological and pathological actions via four receptor subtypes (EP1-4). Non-steroidal anti-inflammatory drugs, such as aspirin and indomethacin, exert potent anti-inflammatory actions by the inhibition of COX activity and the resulting suppression of PG production. Therefore, PGE2 has been shown to exacerbate several inflammatory responses and immune diseases. Recently, studies using mice deficient in each PG receptor subtype have clarified the detailed mechanisms underlying PGE2-associated inflammation and autoimmune diseases involving each EP receptor. Here, we review the recent advances in our understanding of the roles of PGE2 receptors in the progression of acute and chronic inflammation and autoimmune diseases. PGE2 induces acute inflammation through mast cell activation via the EP3 receptor. PGE2 also induces chronic inflammation and various autoimmune diseases through T helper 1 (Th1)-cell differentiation, Th17-cell proliferation and IL-22 production from Th22 cells via the EP2 and EP4 receptors. The possibility of EP receptor-targeted drug development for the treatment of immune diseases is also discussed.
Collapse
Affiliation(s)
- Kyoshiro Tsuge
- Department of Regenerative Medicine Research, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Sanyo-Onoda, Yamaguchi, Japan
| | - Tomoaki Inazumi
- Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan.,Japan Agency for Medical Research and Development-Core Research for Evolutional Science and Technology, Chiyoda-ku, Tokyo, Japan
| | - Akira Shimamoto
- Department of Regenerative Medicine Research, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Sanyo-Onoda, Yamaguchi, Japan
| | - Yukihiko Sugimoto
- Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan.,Japan Agency for Medical Research and Development-Core Research for Evolutional Science and Technology, Chiyoda-ku, Tokyo, Japan
| |
Collapse
|
23
|
Liu J, Chen WM, Shao YH, Zhang JL, Tu ZC. The mechanism of the reduction in allergenic reactivity of bovine α-lactalbumin induced by glycation, phosphorylation and acetylation. Food Chem 2020; 310:125853. [DOI: 10.1016/j.foodchem.2019.125853] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 10/29/2019] [Accepted: 10/31/2019] [Indexed: 11/25/2022]
|
24
|
Bryson TD, Pandrangi TS, Khan SZ, Xu J, Pavlov TS, Ortiz PA, Peterson E, Harding P. The deleterious role of the prostaglandin E 2 EP 3 receptor in angiotensin II hypertension. Am J Physiol Heart Circ Physiol 2020; 318:H867-H882. [PMID: 32142358 DOI: 10.1152/ajpheart.00538.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Angiotensin II (ANG II) plays a key role in regulating blood pressure and inflammation. Prostaglandin E2 (PGE2) signals through four different G protein-coupled receptors, eliciting a variety of effects. We reported that activation of the EP3 receptor reduces cardiac contractility. More recently, we have shown that overexpression of the EP4 receptor is protective in a mouse myocardial infarction model. We hypothesize in this study that the relative abundance of EP3 and EP4 receptors is a major determinant of end-organ damage in the diseased heart. Thus EP3 is detrimental to cardiac function and promotes inflammation, whereas antagonism of the EP3 receptor is protective in an ANG II hypertension (HTN) model. To test our hypothesis, male 10- to 12-wk-old C57BL/6 mice were anesthetized with isoflurane and osmotic minipumps containing ANG II were implanted subcutaneously for 2 wk. We found that antagonism of the EP3 receptor using L798,106 significantly attenuated the increase in blood pressure with ANG II infusion. Moreover, antagonism of the EP3 receptor prevented a decline in cardiac function after ANG II treatment. We also found that 10- to 12-wk-old EP3-transgenic mice, which overexpress EP3 in the cardiomyocytes, have worsened cardiac function. In conclusion, activation or overexpression of EP3 exacerbates end-organ damage in ANG II HTN. In contrast, antagonism of the EP3 receptor is beneficial and reduces cardiac dysfunction, inflammation, and HTN.NEW & NOTEWORTHY This study is the first to show that systemic treatment with an EP3 receptor antagonist (L798,106) attenuates the angiotensin II-induced increase in blood pressure in mice. The results from this project could complement existing hypertension therapies by combining blockade of the EP3 receptor with antihypertensive drugs.
Collapse
Affiliation(s)
- Timothy D Bryson
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Health System, Detroit, Michigan.,Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan
| | - Teja S Pandrangi
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Health System, Detroit, Michigan
| | - Safa Z Khan
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Health System, Detroit, Michigan
| | - Jiang Xu
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Health System, Detroit, Michigan
| | - Tengis S Pavlov
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Health System, Detroit, Michigan
| | - Pablo A Ortiz
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Health System, Detroit, Michigan.,Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan
| | - Edward Peterson
- Department of Public Health Sciences, Henry Ford Health System, Detroit, Michigan
| | - Pamela Harding
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Health System, Detroit, Michigan.,Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan
| |
Collapse
|
25
|
Ren J, Shi W, Zhao D, Wang Q, Chang X, He X, Wang X, Gao Y, Lu P, Zhang X, Xu H, Zhang Y. Design and synthesis of boron-containing diphenylpyrimidines as potent BTK and JAK3 dual inhibitors. Bioorg Med Chem 2020; 28:115236. [DOI: 10.1016/j.bmc.2019.115236] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/21/2019] [Accepted: 11/23/2019] [Indexed: 11/26/2022]
|
26
|
Phellinus linteus Grown on Germinated Brown Rice Inhibits IgE-Mediated Allergic Activity through the Suppression of Fc εRI-Dependent Signaling Pathway In Vitro and In Vivo. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:1485015. [PMID: 31871471 PMCID: PMC6907041 DOI: 10.1155/2019/1485015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 08/07/2019] [Accepted: 10/17/2019] [Indexed: 12/12/2022]
Abstract
Phellinus linteus (PL) has been used as a traditional herbal medicine owing to its immune regulatory activity. Previous studies reported that PL grown on germinated brown rice (PBR) exerted immunomodulatory, anticancer, and anti-inflammatory activities. However, role of PBR on type I hypersensitive reactions has not been studied yet. We found that PBR contained more polyphenolic compounds than PL extract. Among fractions, PBR butanol fraction (PBR-BuOH) significantly contained the most amounts of total polyphenolic contents compared with all extracts or fractions. In this study, anti-allergic activity of PBR-BuOH was examined using in vitro and in vivo models of immunoglobulin E/antigen- (IgE/Ag-) stimulated allergy. The inhibitory activity of degranulation was higher in PBR-BuOH (IC50 41.31 ± 0.14 μg/mL) than in PL-BuOH (IC50 108.07 ± 8.98 μg/mL). We observed that PBR-BuOH suppressed calcium influx and the level of TNF-α and IL-4 mRNA expression in a dose-dependent manner. The phosphorylation of Fyn, Gab2, PI3K, Syk, and IκB protein is reduced by PBR-BuOH. Oral administration of PBR-BuOH inhibited allergic reactions including the extravasation of Evans blue dye, ear swelling, and infiltration of immune cells in mice with passive cutaneous anaphylaxis (PCA). These findings suggest that PBR-BuOH might be used as a functional food, a health supplement, or a drug for preventing type I hypersensitive allergic disease.
Collapse
|
27
|
Klein O, Krier-Burris RA, Lazki-Hagenbach P, Gorzalczany Y, Mei Y, Ji P, Bochner BS, Sagi-Eisenberg R. Mammalian diaphanous-related formin 1 (mDia1) coordinates mast cell migration and secretion through its actin-nucleating activity. J Allergy Clin Immunol 2019; 144:1074-1090. [PMID: 31279009 PMCID: PMC7278082 DOI: 10.1016/j.jaci.2019.06.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 05/29/2019] [Accepted: 06/19/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND Actin remodeling is a key regulator of mast cell (MC) migration and secretion. However, the precise mechanism underlying the coordination of these processes has remained obscure. OBJECTIVE We sought to characterize the actin rearrangements that occur during MC secretion or chemotactic migration and identify the underlying mechanism of their coordination. METHODS Using high-resolution microscopy, we analyzed the dynamics of actin rearrangements in MCs triggered to migration by IL-8 or prostaglandin E2 or to FcεRI-stimulated secretion. RESULTS We show that a major feature of the actin skeleton in MCs stimulated to migration is the buildup of pericentral actin clusters that prevent cell flattening and converge the secretory granules (SGs) in the cell center. This migratory phenotype is replaced on encounter of an IgE cross-linking antigen that stimulates secretion through a secretory phenotype characterized by cell flattening, reduction of actin mesh density, ruffling of cortical actin, and mobilization of SGs. Furthermore, we show that knockdown of mammalian diaphanous-related formin 1 (mDia1) inhibits chemotactic migration and its typical actin rearrangements, whereas expression of an active mDia1 mutant recapitulates the migratory actin phenotype and enhances cell migration while inhibiting FcεRI-triggered secretion. However, mice deficient in mDia1 appear to have normal numbers of MCs in various organs at baseline. CONCLUSION Our results demonstrate a unique role of actin rearrangements in clustering the SGs and inhibiting their secretion during MC migration. We identify mDia1 as a novel regulator of MC response that coordinates MC chemotaxis and secretion through its actin-nucleating activity.
Collapse
Affiliation(s)
- Ofir Klein
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Rebecca A Krier-Burris
- Department of Medicine, Division of Allergy-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Pia Lazki-Hagenbach
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yaara Gorzalczany
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yang Mei
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Peng Ji
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Bruce S Bochner
- Department of Medicine, Division of Allergy-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Ronit Sagi-Eisenberg
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
28
|
Ahmed I, Ma J, Li Z, Lin H, Xu L, Sun L, Tian S. Effect of tyrosinase and caffeic acid crosslinking of turbot parvalbumin on the digestibility, and release of mediators and cytokines from activated RBL-2H3 cells. Food Chem 2019; 300:125209. [PMID: 31344629 DOI: 10.1016/j.foodchem.2019.125209] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 07/16/2019] [Accepted: 07/19/2019] [Indexed: 02/03/2023]
Abstract
Turbot can induce allergy in susceptible individuals due to the presence of parvalbumin (PV), a major fish allergen. This study aimed at evaluating the digestibility and the ability of PV to elicit the release of cellular degranulation, following treatment with tyrosinase (PV-Tyr), caffeic acid (PV-CA) and in combination (PV-Tyr/CA), using in vitro digestion and RBL-2H3 (passive rat basophil leukemia) cell line. The digestion assay products revealed that the stability of PV in simulated gastric fluid (SGF) was stronger, while in simulated intestinal fluid (SIF) was rather weak. Western blot analysis revealed that the IgG-binding abilities of the cross-linked PV were markedly reduced. Moreover, crosslinking hampered the release of cellular degranulation process in RBL-2H3 cell lines. PV-Tyr/CA showed highly significant reduction in the release rate of β-hexosaminidase (66.02%), histamine (35.01%), tryptase (29.25%), cysteinyl leukotrienes (29.72%), prostaglandin D2 (34.96%), IL-4 (43.99%) and IL-13 (38.93%) and shown potential in developing hypoallergenic fish products.
Collapse
Affiliation(s)
- Ishfaq Ahmed
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province 266003, PR China
| | - Jiaju Ma
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province 266003, PR China
| | - Zhenxing Li
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province 266003, PR China.
| | - Hong Lin
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province 266003, PR China
| | - Lili Xu
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province 266003, PR China
| | - Lirui Sun
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province 266003, PR China
| | - Shenglan Tian
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province 266003, PR China
| |
Collapse
|
29
|
Song CH, Joo HM, Han SH, Kim JI, Nam SY, Kim JY. Low-dose ionizing radiation attenuates mast cell migration through suppression of monocyte chemoattractant protein-1 (MCP-1) expression by Nr4a2. Int J Radiat Biol 2019; 95:1498-1506. [PMID: 31287373 DOI: 10.1080/09553002.2019.1642535] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Purpose: The aim of this study was to investigate whether low-dose ionizing radiation attenuates mast cell migration by modulating migration-associated signaling pathways and the expression of chemotactic cytokines.Materials and methods: IgE-sensitized RBL-2H3 mast cells were exposed with ionizing radiation at 0.01, 0.05, 0.1, or 0.5 Gy using a 137Cs γ-irradiator and stimulated with 2,4-dinitrophenol-human serum albumin. Cell migration was determined using a transwell assay system, F-actin distribution using Alex Fluor 488-conjugated phalloidin, expression of various signaling proteins by Western blotting, mRNA expression by RT-PCR.Results: Low-dose ionizing radiation significantly suppressed mast cell migration induced by IgE-mediated mast cell activation. Furthermore, low-dose ionizing radiation altered cell morphology, as reflected by changes in F-actin distribution, and inhibited the activation of PI3K, Btk, Rac1, and Cdc42. These effects were mediated by Nr4a2, an immune-modulating factor. Knockdown of Nr4a2 reduced mast cell migration, inhibited the PI3K and Btk signaling pathways, and reduced expression of the chemotactic cytokine monocyte chemoattractant protein-1 (MCP-1). We further demonstrated that direct blockade of MCP-1 using neutralizing antibodies inhibits mast cell migration.Conclusion: Low-dose ionizing radiation inhibits mast cell migration through the regulation production of MCP-1 by Nr4a2 in the activated mast cell system.
Collapse
Affiliation(s)
- Chin-Hee Song
- Low-dose Radiation Research Team, Radiation Health Institute, Korea Hydro & Nuclear Power Co., Ltd, Seoul, Republic of Korea
| | - Hae Mi Joo
- Low-dose Radiation Research Team, Radiation Health Institute, Korea Hydro & Nuclear Power Co., Ltd, Seoul, Republic of Korea
| | - So Hyun Han
- Low-dose Radiation Research Team, Radiation Health Institute, Korea Hydro & Nuclear Power Co., Ltd, Seoul, Republic of Korea
| | - Jeong-In Kim
- Radiation Emergency Medical Team, Radiation Health Institute, Korea Hydro & Nuclear Power Co., Ltd, Seoul, Republic of Korea
| | - Seon Young Nam
- Low-dose Radiation Research Team, Radiation Health Institute, Korea Hydro & Nuclear Power Co., Ltd, Seoul, Republic of Korea
| | - Ji Young Kim
- Low-dose Radiation Research Team, Radiation Health Institute, Korea Hydro & Nuclear Power Co., Ltd, Seoul, Republic of Korea
| |
Collapse
|
30
|
Riccio LGC, Jeljeli M, Santulli P, Chouzenoux S, Doridot L, Nicco C, Reis FM, Abrão MS, Chapron C, Batteux F. B lymphocytes inactivation by Ibrutinib limits endometriosis progression in mice. Hum Reprod 2019; 34:1225-1234. [DOI: 10.1093/humrep/dez071] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 04/14/2019] [Indexed: 12/14/2022] Open
Abstract
Abstract
STUDY QUESTION
What are the effects of B lymphocyte inactivation or depletion on the progression of endometriosis?
SUMMARY ANSWER
Skewing activated B cells toward regulatory B cells (Bregs) by Bruton’s tyrosine kinase (Btk) inhibition using Ibrutinib prevents endometriosis progression in mice while B cell depletion using an anti-CD20 antibody has no effect.
WHAT IS KNOWN ALREADY
A polyclonal activation of B cells and the presence of anti-endometrial autoantibodies have been described in a large proportion of women with endometriosis though their exact role in the disease mechanisms remains unclear.
STUDY DESIGN, SIZE, DURATION
This study included comparison of endometriosis progression for 21 days in control mice versus animals treated with the anti-CD20 depleting antibody or with the Btk inhibitor Ibrutinib that prevents B cell activation.
PARTICIPANTS/MATERIALS, SETTING, METHODS
After syngeneic endometrial transplantation, murine endometriotic lesions were compared between treated and control mice using volume, weight, ultrasonography, histology and target genes expression in lesions. Phenotyping of activated and regulatory B cells, T lymphocytes and macrophages was performed by flow cytometry on isolated spleen and peritoneal cells. Cytokines were assayed by ELISA.
MAIN RESULTS AND THE ROLE OF CHANCE
Btk inhibitor Ibrutinib prevented lesion growth, reduced mRNA expression of cyclooxygenase-2, alpha smooth muscle actin and type I collagen in the lesions and skewed activated B cells toward Bregs in the spleen and peritoneal cavity of mice with endometriosis. In addition, the number of M2 macrophages decreased in the peritoneal cavity of Ibrutinib-treated mice compared to anti-CD20 and control mice. Depletion of B cells using an anti-CD20 antibody had no effect on activity and growth of endometriotic lesions and neither on the macrophages, compared to control mice.
LARGE SCALE DATA
N/A.
LIMITATIONS, REASONS FOR CAUTION
It is still unclear whether B cell depletion by the anti-CD20 or inactivation by Ibrutinib can prevent establishment and/or progression of endometriosis in humans.
WIDER IMPLICATIONS OF THE FINDINGS
Further investigation may contribute to clarifying the role of B cell subsets in human endometriosis.
STUDY FUNDING/COMPETING INTEREST(S)
This research was supported by a grant of Institut National de la Santé et de la Recherche Médicale and Paris Descartes University. None of the authors has any conflict of interest to disclose.
Collapse
Affiliation(s)
- L G C Riccio
- Département ‘Développement, Reproduction et Cancer’, Institut Cochin, Institut National de la Santé et de la Recherche Médicale U1016, Université Paris Descartes, Sorbonne Paris Cité Paris, France
- Faculté de Médecine, Sorbonne Paris Cité, Université Paris Descartes, Paris, France
- Faculty of Medicine, Endometriosis Division, Obstetrics and Gynecology Department, University of São Paulo, Av. Dr. Enéas de Carvalho Aguiar, 255, Cerqueira César 05403-000, São Paulo, Brazil
| | - M Jeljeli
- Département ‘Développement, Reproduction et Cancer’, Institut Cochin, Institut National de la Santé et de la Recherche Médicale U1016, Université Paris Descartes, Sorbonne Paris Cité Paris, France
- Faculté de Médecine, Sorbonne Paris Cité, Université Paris Descartes, Paris, France
| | - P Santulli
- Département ‘Développement, Reproduction et Cancer’, Institut Cochin, Institut National de la Santé et de la Recherche Médicale U1016, Université Paris Descartes, Sorbonne Paris Cité Paris, France
- Faculté de Médecine, Sorbonne Paris Cité, Université Paris Descartes, Paris, France
| | - S Chouzenoux
- Département ‘Développement, Reproduction et Cancer’, Institut Cochin, Institut National de la Santé et de la Recherche Médicale U1016, Université Paris Descartes, Sorbonne Paris Cité Paris, France
| | - L Doridot
- Département ‘Développement, Reproduction et Cancer’, Institut Cochin, Institut National de la Santé et de la Recherche Médicale U1016, Université Paris Descartes, Sorbonne Paris Cité Paris, France
| | - C Nicco
- Département ‘Développement, Reproduction et Cancer’, Institut Cochin, Institut National de la Santé et de la Recherche Médicale U1016, Université Paris Descartes, Sorbonne Paris Cité Paris, France
| | - F M Reis
- Département ‘Développement, Reproduction et Cancer’, Institut Cochin, Institut National de la Santé et de la Recherche Médicale U1016, Université Paris Descartes, Sorbonne Paris Cité Paris, France
| | - M S Abrão
- Faculty of Medicine, Endometriosis Division, Obstetrics and Gynecology Department, University of São Paulo, Av. Dr. Enéas de Carvalho Aguiar, 255, Cerqueira César 05403-000, São Paulo, Brazil
| | - C Chapron
- Département ‘Développement, Reproduction et Cancer’, Institut Cochin, Institut National de la Santé et de la Recherche Médicale U1016, Université Paris Descartes, Sorbonne Paris Cité Paris, France
- Département de Gynécologie Obstétrique II et Médecine de la Reproduction, Assistance Publique-Hôpitaux de Paris, Hôpital Universitaire Paris Centre, Centre Hospitalier Universitaire Cochin, Paris, France
| | - F Batteux
- Département ‘Développement, Reproduction et Cancer’, Institut Cochin, Institut National de la Santé et de la Recherche Médicale U1016, Université Paris Descartes, Sorbonne Paris Cité Paris, France
- Service d’Immunologie Biologique, Assistance Publique-Hôpitaux de Paris, Hôpital Universitaire Paris Centre, Centre Hospitalier Universitaire Cochin, Paris, France
| |
Collapse
|
31
|
Watterson SH, Liu Q, Beaudoin Bertrand M, Batt DG, Li L, Pattoli MA, Skala S, Cheng L, Obermeier MT, Moore R, Yang Z, Vickery R, Elzinga PA, Discenza L, D’Arienzo C, Gillooly KM, Taylor TL, Pulicicchio C, Zhang Y, Heimrich E, McIntyre KW, Ruan Q, Westhouse RA, Catlett IM, Zheng N, Chaudhry C, Dai J, Galella MA, Tebben AJ, Pokross M, Li J, Zhao R, Smith D, Rampulla R, Allentoff A, Wallace MA, Mathur A, Salter-Cid L, Macor JE, Carter PH, Fura A, Burke JR, Tino JA. Discovery of Branebrutinib (BMS-986195): A Strategy for Identifying a Highly Potent and Selective Covalent Inhibitor Providing Rapid in Vivo Inactivation of Bruton’s Tyrosine Kinase (BTK). J Med Chem 2019; 62:3228-3250. [DOI: 10.1021/acs.jmedchem.9b00167] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Scott H. Watterson
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Qingjie Liu
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Myra Beaudoin Bertrand
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Douglas G. Batt
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Ling Li
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Mark A. Pattoli
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Stacey Skala
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Lihong Cheng
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Mary T. Obermeier
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Robin Moore
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Zheng Yang
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Rodney Vickery
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Paul A. Elzinga
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Lorell Discenza
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Celia D’Arienzo
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Kathleen M. Gillooly
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Tracy L. Taylor
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Claudine Pulicicchio
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Yifan Zhang
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Elizabeth Heimrich
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Kim W. McIntyre
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Qian Ruan
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Richard A. Westhouse
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Ian M. Catlett
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Naiyu Zheng
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Charu Chaudhry
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Jun Dai
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Michael A. Galella
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Andrew J. Tebben
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Matt Pokross
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Jianqing Li
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Rulin Zhao
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Daniel Smith
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Richard Rampulla
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Alban Allentoff
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Michael A. Wallace
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Arvind Mathur
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Luisa Salter-Cid
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - John E. Macor
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Percy H. Carter
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Aberra Fura
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - James R. Burke
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Joseph A. Tino
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| |
Collapse
|
32
|
Huber M, Cato ACB, Ainooson GK, Freichel M, Tsvilovskyy V, Jessberger R, Riedlinger E, Sommerhoff CP, Bischoff SC. Regulation of the pleiotropic effects of tissue-resident mast cells. J Allergy Clin Immunol 2019; 144:S31-S45. [PMID: 30772496 DOI: 10.1016/j.jaci.2019.02.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 01/29/2019] [Accepted: 02/01/2019] [Indexed: 12/18/2022]
Abstract
Mast cells (MCs), which are best known for their detrimental role in patients with allergic diseases, act in a diverse array of physiologic and pathologic functions made possible by the plurality of MC types. Their various developmental avenues and distinct sensitivity to (micro-) environmental conditions convey extensive heterogeneity, resulting in diverse functions. We briefly summarize this heterogeneity, elaborate on molecular determinants that allow MCs to communicate with their environment to fulfill their tasks, discuss the protease repertoire stored in secretory lysosomes, and consider different aspects of MC signaling. Furthermore, we describe key MC governance mechanisms (ie, the high-affinity receptor for IgE [FcεRI]), the stem cell factor receptor KIT, the IL-4 system, and both Ca2+- and phosphatase-dependent mechanisms. Finally, we focus on distinct physiologic functions, such as chemotaxis, phagocytosis, host defense, and the regulation of MC functions at the mucosal barriers of the lung, gastrointestinal tract, and skin. A deeper knowledge of the pleiotropic functions of MC mediators, as well as the molecular processes of MC regulation and communication, should enable us to promote beneficial MC traits in physiology and suppress detrimental MC functions in patients with disease.
Collapse
Affiliation(s)
- Michael Huber
- Institute of Biochemistry and Molecular Immunology, Medical Faculty, RWTH Aachen University, Aachen, Germany.
| | - Andrew C B Cato
- Karlsruhe Institute of Technology, Institute of Toxicology and Genetics, Eggenstein-Leopoldshafen, Germany
| | - George K Ainooson
- Karlsruhe Institute of Technology, Institute of Toxicology and Genetics, Eggenstein-Leopoldshafen, Germany
| | - Marc Freichel
- Institute of Pharmacology, Heidelberg University, Medical Faculty, Heidelberg, Germany
| | - Volodymyr Tsvilovskyy
- Institute of Pharmacology, Heidelberg University, Medical Faculty, Heidelberg, Germany
| | - Rolf Jessberger
- Institute for Physiological Chemistry, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Eva Riedlinger
- Institute of Laboratory Medicine, University Hospital, LMU Munich, Munich, Germany
| | | | - Stephan C Bischoff
- Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany.
| |
Collapse
|
33
|
Lv L, Lin H, Li Z, Nayak B, Ahmed I, Tian S, Chen G, Lin H, Zhao J. Structural changes of 2,2′-azobis(2-amidinopropane) dihydrochloride (AAPH) treated shrimp tropomyosin decrease allergenicity. Food Chem 2019; 274:547-557. [DOI: 10.1016/j.foodchem.2018.09.030] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 08/01/2018] [Accepted: 09/03/2018] [Indexed: 02/07/2023]
|
34
|
Sun L, Xu L, Huang Y, Lin H, Ahmed I, Li Z. Identification and comparison of allergenicity of native and recombinant fish major allergen parvalbumins from Japanese flounder (Paralichthys olivaceus). Food Funct 2019; 10:6615-6623. [DOI: 10.1039/c9fo01402k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Compared with native parvalbumin, recombinant β-parvalbumin based on the optimized DNA sequence can be used in fish allergen confirmation.
Collapse
Affiliation(s)
- Lirui Sun
- College of Food Science and Engineering
- Ocean University of China
- Qingdao
- P.R. China
| | - Lili Xu
- College of Food Science and Engineering
- Ocean University of China
- Qingdao
- P.R. China
| | - Yuhao Huang
- College of Food Science and Engineering
- Ocean University of China
- Qingdao
- P.R. China
| | - Hong Lin
- College of Food Science and Engineering
- Ocean University of China
- Qingdao
- P.R. China
| | - Ishfaq Ahmed
- College of Food Science and Engineering
- Ocean University of China
- Qingdao
- P.R. China
| | - Zhenxing Li
- College of Food Science and Engineering
- Ocean University of China
- Qingdao
- P.R. China
| |
Collapse
|
35
|
Halova I, Bambouskova M, Draberova L, Bugajev V, Draber P. The transmembrane adaptor protein NTAL limits mast cell chemotaxis toward prostaglandin E2. Sci Signal 2018; 11:11/556/eaao4354. [DOI: 10.1126/scisignal.aao4354] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Chemotaxis of mast cells is one of the crucial steps in their development and function. Non–T cell activation linker (NTAL) is a transmembrane adaptor protein that inhibits the activation of mast cells and B cells in a phosphorylation-dependent manner. Here, we studied the role of NTAL in the migration of mouse mast cells stimulated by prostaglandin E2 (PGE2). Although PGE2 does not induce the tyrosine phosphorylation of NTAL, unlike IgE immune complex antigens, we found that loss of NTAL increased the chemotaxis of mast cells toward PGE2. Stimulation of mast cells that lacked NTAL with PGE2 enhanced the phosphorylation of AKT and the production of phosphatidylinositol 3,4,5-trisphosphate. In resting NTAL-deficient mast cells, phosphorylation of an inhibitory threonine in ERM family proteins accompanied increased activation of β1-containing integrins, which are features often associated with increased invasiveness in tumors. Rescue experiments indicated that only full-length, wild-type NTAL restored the chemotaxis of NTAL-deficient cells toward PGE2. Together, these data suggest that NTAL is a key inhibitor of mast cell chemotaxis toward PGE2, which may act through the RHOA/ERM/β1-integrin and PI3K/AKT axes.
Collapse
|
36
|
Stimulus strength determines the BTK-dependence of the SHIP1-deficient phenotype in IgE/antigen-triggered mast cells. Sci Rep 2018; 8:15467. [PMID: 30341350 PMCID: PMC6195619 DOI: 10.1038/s41598-018-33769-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 10/05/2018] [Indexed: 01/27/2023] Open
Abstract
Antigen (Ag)-mediated crosslinking of IgE-loaded high-affinity receptors for IgE (FcεRI) on mast cells (MCs) triggers activation of proinflammatory effector functions relevant for IgE-associated allergic disorders. The cytosolic tyrosine kinase BTK and the SH2-containing inositol-5'-phosphatase SHIP1 are central positive and negative regulators of Ag-triggered MC activation, respectively, contrarily controlling Ca2+ mobilisation, degranulation, and cytokine production. Using genetic and pharmacological techniques, we examined whether BTK activation in Ship1-/- MCs is mandatory for the manifestation of the well-known hyperactive phenotype of Ship1-/- MCs. We demonstrate the prominence of BTK for the Ship1-/- phenotype in a manner strictly dependent on the strength of the initial Ag stimulus; particular importance for BTK was identified in Ship1-/- bone marrow-derived MCs in response to stimulation with suboptimal Ag concentrations. With respect to MAPK activation, BTK showed particular importance at suboptimal Ag concentrations, allowing for an analogous-to-digital switch resulting in full activation of ERK1/2 already at low Ag concentrations. Our data allow for a more precise definition of the role of BTK in FcεRI-mediated signal transduction and effector function in MCs. Moreover, they suggest that reduced activation or curtate expression of SHIP1 can be compensated by pharmacological inhibition of BTK and vice versa.
Collapse
|
37
|
Lv L, Lin H, Li Z, Ahmed I, Mi N, Chen G. Allergenicity of acrolein-treated shrimp tropomyosin evaluated using RBL-2H3 cell and mouse model. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:4374-4378. [PMID: 29427351 DOI: 10.1002/jsfa.8954] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 01/10/2018] [Accepted: 02/02/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Food processing effects can modify protein functional properties. However, protein was oxidized inevitably by lipid peroxidation during food processing. Acrolein, a primary by-product of lipid peroxidation, can modify the structural and functional properties of protein. The aim of the research was to analyze the effect of acrolein on allergenicity of TM, a major allergen in shrimp. RESULTS The overall allergenic effects of acrolein-treated TM were evaluated using female BALB/c mice and a mediator-releasing RBL-2H3 cell line. Acrolein-treated TM significantly decreased TM-specific immunoglobulin E/G1 levels, and histamine and mMCP-1 release in mouse serum. Release of inflammatory mediators such as β-hexosaminidase, histamine, cysteinyl leukotriene and prostaglandin D2 was clearly suppressed after acrolein treatment. CONCLUSION These results indicate that acrolein-induced tropomyosin modification can decrease the allergenicity of TM. This reduction contributes to allergenic potential changes in shrimp during processing and preservation. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Liangtao Lv
- Food Safety Laboratory, College of Food Science and Engineering, Ocean University of China, Qingdao, PR China
| | - Hong Lin
- Food Safety Laboratory, College of Food Science and Engineering, Ocean University of China, Qingdao, PR China
| | - Zhenxing Li
- Food Safety Laboratory, College of Food Science and Engineering, Ocean University of China, Qingdao, PR China
| | - Ishfaq Ahmed
- Food Safety Laboratory, College of Food Science and Engineering, Ocean University of China, Qingdao, PR China
| | - Nasha Mi
- Food Safety Laboratory, College of Food Science and Engineering, Ocean University of China, Qingdao, PR China
| | - Guanzhi Chen
- The Affiliated Hospital of Qingdao University, Qingdao, PR China
| |
Collapse
|
38
|
S1P₄ Regulates Passive Systemic Anaphylaxis in Mice but Is Dispensable for Canonical IgE-Mediated Responses in Mast Cells. Int J Mol Sci 2018; 19:ijms19051279. [PMID: 29693558 PMCID: PMC5983835 DOI: 10.3390/ijms19051279] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 04/18/2018] [Accepted: 04/18/2018] [Indexed: 02/07/2023] Open
Abstract
Mast cells are key players in the development of inflammatory allergic reactions. Cross-linking of the high-affinity receptor for IgE (FcεRI) on mast cells leads to the generation and secretion of the sphingolipid mediator, sphingosine-1-phosphate (S1P) which is able, in turn, to transactivate its receptors on mast cells. Previous reports have identified the expression of two of the five receptors for S1P on mast cells, S1P1 and S1P2, with functions in FcεRI-mediated chemotaxis and degranulation, respectively. Here, we show that cultured mouse mast cells also express abundant message for S1P4. Genetic deletion of S1pr4 did not affect the differentiation of bone marrow progenitors into mast cells or the proliferation of mast cells in culture. A comprehensive characterization of IgE-mediated responses in S1P4-deficient bone marrow-derived and peritoneal mouse mast cells indicated that this receptor is dispensable for mast cell degranulation, cytokine/chemokine production and FcεRI-mediated chemotaxis in vitro. However, interleukin-33 (IL-33)-mediated enhancement of IgE-induced degranulation was reduced in S1P4-deficient peritoneal mast cells, revealing a potential negative regulatory role for S1P4 in an IL-33-rich environment. Surprisingly, genetic deletion of S1pr4 resulted in exacerbation of passive systemic anaphylaxis to IgE/anti-IgE in mice, a phenotype likely related to mast cell-extrinsic influences, such as the high circulating levels of IgE in these mice which increases FcεRI expression and consequently the extent of the response to FcεRI engagement. Thus, we provide evidence that S1P4 modulates anaphylaxis in an unexpected manner that does not involve regulation of mast cell responsiveness to IgE stimulation.
Collapse
|
39
|
Nimmagadda SC, Frey S, Edelmann B, Hellmich C, Zaitseva L, König GM, Kostenis E, Bowles KM, Fischer T. Bruton's tyrosine kinase and RAC1 promote cell survival in MLL-rearranged acute myeloid leukemia. Leukemia 2017; 32:846-849. [PMID: 29109446 PMCID: PMC5843904 DOI: 10.1038/leu.2017.324] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- S C Nimmagadda
- Department of Hematology and Oncology, Medical Center, Otto-von-Guericke University, Magdeburg, Germany
| | - S Frey
- Department of Hematology and Oncology, Medical Center, Otto-von-Guericke University, Magdeburg, Germany
| | - B Edelmann
- Department of Hematology and Oncology, Medical Center, Otto-von-Guericke University, Magdeburg, Germany
| | - C Hellmich
- Department of Molecular Haematology, Norwich Medical School, The University of East Anglia, Norwich Research Park, Norwich, UK
| | - L Zaitseva
- Department of Molecular Haematology, Norwich Medical School, The University of East Anglia, Norwich Research Park, Norwich, UK
| | - G M König
- Institute of Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - E Kostenis
- Institute of Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - K M Bowles
- Department of Molecular Haematology, Norwich Medical School, The University of East Anglia, Norwich Research Park, Norwich, UK.,Department of Haematology, Norfolk and Norwich University Hospitals NHS Trust, Colney Lane, Norwich, UK
| | - T Fischer
- Department of Hematology and Oncology, Medical Center, Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
40
|
Shah SA, Page CP, Pitchford SC. Platelet-Eosinophil Interactions As a Potential Therapeutic Target in Allergic Inflammation and Asthma. Front Med (Lausanne) 2017; 4:129. [PMID: 28848732 PMCID: PMC5550710 DOI: 10.3389/fmed.2017.00129] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 07/24/2017] [Indexed: 01/24/2023] Open
Abstract
The importance of platelet activation during hemostasis is well understood. An understanding of these mechanisms has led to the use of several classes of anti-platelet drugs to inhibit aggregation for the prevention of thrombi during cardiovascular disease. It is now also recognized that platelets can function very differently during inflammation, as part of their role in the innate immune response against pathogens. This dichotomy in platelet function occurs through distinct physiological processes and alternative signaling pathways compared to that of hemostasis (leading to platelet aggregation) and is manifested as increased rheological interactions with leukocytes, the ability to undergo chemotaxis, communication with antigen-presenting cells, and direct anti-pathogen responses. Mounting evidence suggests platelets are also critical in the pathogenesis of allergic diseases such as asthma, where they have been associated with antigen presentation, bronchoconstriction, bronchial hyperresponsiveness, airway inflammation, and airway remodeling in both clinical and experimental studies. In particular, platelets have been reported bound to eosinophils in the blood of patients with asthma and the incidence of these events increases after both spontaneous asthma attacks in a biphasic manner, or after allergen challenge in the clinic. Platelet depletion in animal models of allergic airway inflammation causes a profound reduction in eosinophil recruitment to the lung, suggesting that the association of platelets with eosinophils is indeed an important event during eosinophil activation. Furthermore, in cases of severe asthma, and in animal models of allergic airways inflammation, platelet–eosinophil complexes move into the lung through a platelet P-selectin-mediated, eosinophil β1-integrin activation-dependent process, while platelets increase adherence of eosinophils to the vascular endothelium in vitro, demonstrating a clear interaction between these cell types in allergic inflammatory diseases. This review will explore non-thrombotic platelet activation in the context of allergy and the association of platelets with eosinophils, to reveal how these phenomena may lead to the discovery of novel therapeutic targets.
Collapse
Affiliation(s)
- Sajeel A Shah
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom
| | - Clive P Page
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom
| | - Simon C Pitchford
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom
| |
Collapse
|
41
|
Fernández-Calleja V, Hernández P, Schvartzman JB, García de Lacoba M, Krimer DB. Differential gene expression analysis by RNA-seq reveals the importance of actin cytoskeletal proteins in erythroleukemia cells. PeerJ 2017; 5:e3432. [PMID: 28663935 PMCID: PMC5490462 DOI: 10.7717/peerj.3432] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 05/17/2017] [Indexed: 11/20/2022] Open
Abstract
Development of drug resistance limits the effectiveness of anticancer treatments. Understanding the molecular mechanisms triggering this event in tumor cells may lead to improved therapeutic strategies. Here we used RNA-seq to compare the transcriptomes of a murine erythroleukemia cell line (MEL) and a derived cell line with induced resistance to differentiation (MEL-R). RNA-seq analysis identified a total of 596 genes (Benjamini–Hochberg adjusted p-value < 0.05) that were differentially expressed by more than two-fold, of which 81.5% (486/596) of genes were up-regulated in MEL cells and 110 up-regulated in MEL-R cells. These observations revealed that for some genes the relative expression of mRNA amount in the MEL cell line has decreased as the cells acquired the resistant phenotype. Clustering analysis of a group of genes showing the highest differential expression allowed identification of a sub-group among genes up-regulated in MEL cells. These genes are related to the organization of the actin cytoskeleton network. Moreover, the majority of these genes are preferentially expressed in the hematopoietic lineage and at least three of them, Was (Wiskott Aldrich syndrome), Btk (Bruton’s tyrosine kinase) and Rac2, when mutated in humans, give rise to severe hematopoietic deficiencies. Among the group of genes that were up-regulated in MEL-R cells, 16% of genes code for histone proteins, both canonical and variants. A potential implication of these results on the blockade of differentiation in resistant cells is discussed.
Collapse
Affiliation(s)
- Vanessa Fernández-Calleja
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas, Spanish National Research Council (CSIC), Madrid, Spain
| | - Pablo Hernández
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas, Spanish National Research Council (CSIC), Madrid, Spain
| | - Jorge B Schvartzman
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas, Spanish National Research Council (CSIC), Madrid, Spain
| | - Mario García de Lacoba
- Bioinformatics and Biostatistics Service, Centro de Investigaciones Biológicas, Spanish National Research Council (CSIC), Madrid, Spain
| | - Dora B Krimer
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas, Spanish National Research Council (CSIC), Madrid, Spain
| |
Collapse
|
42
|
Watterson SH, De Lucca GV, Shi Q, Langevine CM, Liu Q, Batt DG, Beaudoin Bertrand M, Gong H, Dai J, Yip S, Li P, Sun D, Wu DR, Wang C, Zhang Y, Traeger SC, Pattoli MA, Skala S, Cheng L, Obermeier MT, Vickery R, Discenza LN, D'Arienzo CJ, Zhang Y, Heimrich E, Gillooly KM, Taylor TL, Pulicicchio C, McIntyre KW, Galella MA, Tebben AJ, Muckelbauer JK, Chang C, Rampulla R, Mathur A, Salter-Cid L, Barrish JC, Carter PH, Fura A, Burke JR, Tino JA. Discovery of 6-Fluoro-5-(R)-(3-(S)-(8-fluoro-1-methyl-2,4-dioxo-1,2-dihydroquinazolin-3(4H)-yl)-2-methylphenyl)-2-(S)-(2-hydroxypropan-2-yl)-2,3,4,9-tetrahydro-1H-carbazole-8-carboxamide (BMS-986142): A Reversible Inhibitor of Bruton's Tyrosine Kinase (BTK) Conformationally Constrained by Two Locked Atropisomers. J Med Chem 2016; 59:9173-9200. [PMID: 27583770 DOI: 10.1021/acs.jmedchem.6b01088] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Bruton's tyrosine kinase (BTK), a nonreceptor tyrosine kinase, is a member of the Tec family of kinases. BTK plays an essential role in B cell receptor (BCR)-mediated signaling as well as Fcγ receptor signaling in monocytes and Fcε receptor signaling in mast cells and basophils, all of which have been implicated in the pathophysiology of autoimmune disease. As a result, inhibition of BTK is anticipated to provide an effective strategy for the clinical treatment of autoimmune diseases such as lupus and rheumatoid arthritis. This article details the structure-activity relationships (SAR) leading to a novel series of highly potent and selective carbazole and tetrahydrocarbazole based, reversible inhibitors of BTK. Of particular interest is that two atropisomeric centers were rotationally locked to provide a single, stable atropisomer, resulting in enhanced potency and selectivity as well as a reduction in safety liabilities. With significantly enhanced potency and selectivity, excellent in vivo properties and efficacy, and a very desirable tolerability and safety profile, 14f (BMS-986142) was advanced into clinical studies.
Collapse
Affiliation(s)
- Scott H Watterson
- Bristol-Myers Squibb Research and Development , P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - George V De Lucca
- Bristol-Myers Squibb Research and Development , P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Qing Shi
- Bristol-Myers Squibb Research and Development , P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Charles M Langevine
- Bristol-Myers Squibb Research and Development , P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Qingjie Liu
- Bristol-Myers Squibb Research and Development , P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Douglas G Batt
- Bristol-Myers Squibb Research and Development , P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Myra Beaudoin Bertrand
- Bristol-Myers Squibb Research and Development , P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Hua Gong
- Bristol-Myers Squibb Research and Development , P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Jun Dai
- Bristol-Myers Squibb Research and Development , P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Shiuhang Yip
- Bristol-Myers Squibb Research and Development , P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Peng Li
- Bristol-Myers Squibb Research and Development , P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Dawn Sun
- Bristol-Myers Squibb Research and Development , P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Dauh-Rurng Wu
- Bristol-Myers Squibb Research and Development , P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Chunlei Wang
- Bristol-Myers Squibb Research and Development , P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Yingru Zhang
- Bristol-Myers Squibb Research and Development , P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Sarah C Traeger
- Bristol-Myers Squibb Research and Development , P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Mark A Pattoli
- Bristol-Myers Squibb Research and Development , P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Stacey Skala
- Bristol-Myers Squibb Research and Development , P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Lihong Cheng
- Bristol-Myers Squibb Research and Development , P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Mary T Obermeier
- Bristol-Myers Squibb Research and Development , P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Rodney Vickery
- Bristol-Myers Squibb Research and Development , P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Lorell N Discenza
- Bristol-Myers Squibb Research and Development , P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Celia J D'Arienzo
- Bristol-Myers Squibb Research and Development , P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Yifan Zhang
- Bristol-Myers Squibb Research and Development , P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Elizabeth Heimrich
- Bristol-Myers Squibb Research and Development , P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Kathleen M Gillooly
- Bristol-Myers Squibb Research and Development , P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Tracy L Taylor
- Bristol-Myers Squibb Research and Development , P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Claudine Pulicicchio
- Bristol-Myers Squibb Research and Development , P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Kim W McIntyre
- Bristol-Myers Squibb Research and Development , P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Michael A Galella
- Bristol-Myers Squibb Research and Development , P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Andy J Tebben
- Bristol-Myers Squibb Research and Development , P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Jodi K Muckelbauer
- Bristol-Myers Squibb Research and Development , P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - ChiehYing Chang
- Bristol-Myers Squibb Research and Development , P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Richard Rampulla
- Bristol-Myers Squibb Research and Development , P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Arvind Mathur
- Bristol-Myers Squibb Research and Development , P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Luisa Salter-Cid
- Bristol-Myers Squibb Research and Development , P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Joel C Barrish
- Bristol-Myers Squibb Research and Development , P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Percy H Carter
- Bristol-Myers Squibb Research and Development , P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Aberra Fura
- Bristol-Myers Squibb Research and Development , P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - James R Burke
- Bristol-Myers Squibb Research and Development , P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Joseph A Tino
- Bristol-Myers Squibb Research and Development , P.O. Box 4000, Princeton, New Jersey 08543, United States
| |
Collapse
|
43
|
De Lucca GV, Shi Q, Liu Q, Batt DG, Beaudoin Bertrand M, Rampulla R, Mathur A, Discenza L, D’Arienzo C, Dai J, Obermeier M, Vickery R, Zhang Y, Yang Z, Marathe P, Tebben AJ, Muckelbauer JK, Chang CJ, Zhang H, Gillooly K, Taylor T, Pattoli MA, Skala S, Kukral DW, McIntyre KW, Salter-Cid L, Fura A, Burke JR, Barrish JC, Carter PH, Tino JA. Small Molecule Reversible Inhibitors of Bruton’s Tyrosine Kinase (BTK): Structure–Activity Relationships Leading to the Identification of 7-(2-Hydroxypropan-2-yl)-4-[2-methyl-3-(4-oxo-3,4-dihydroquinazolin-3-yl)phenyl]-9H-carbazole-1-carboxamide (BMS-935177). J Med Chem 2016; 59:7915-35. [DOI: 10.1021/acs.jmedchem.6b00722] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- George V. De Lucca
- Immunosciences Discovery Chemistry, ‡Immunoscience Discovery Biology, §Molecular Structure
and Design, Molecular Discovery Technologies, ∥Metabolism and Pharmacokinetic
Department, Pharmaceutical Candidate Optimization, and ⊥ECTR/CTTO Imaging Department, Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Qing Shi
- Immunosciences Discovery Chemistry, ‡Immunoscience Discovery Biology, §Molecular Structure
and Design, Molecular Discovery Technologies, ∥Metabolism and Pharmacokinetic
Department, Pharmaceutical Candidate Optimization, and ⊥ECTR/CTTO Imaging Department, Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Qingjie Liu
- Immunosciences Discovery Chemistry, ‡Immunoscience Discovery Biology, §Molecular Structure
and Design, Molecular Discovery Technologies, ∥Metabolism and Pharmacokinetic
Department, Pharmaceutical Candidate Optimization, and ⊥ECTR/CTTO Imaging Department, Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Douglas G. Batt
- Immunosciences Discovery Chemistry, ‡Immunoscience Discovery Biology, §Molecular Structure
and Design, Molecular Discovery Technologies, ∥Metabolism and Pharmacokinetic
Department, Pharmaceutical Candidate Optimization, and ⊥ECTR/CTTO Imaging Department, Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Myra Beaudoin Bertrand
- Immunosciences Discovery Chemistry, ‡Immunoscience Discovery Biology, §Molecular Structure
and Design, Molecular Discovery Technologies, ∥Metabolism and Pharmacokinetic
Department, Pharmaceutical Candidate Optimization, and ⊥ECTR/CTTO Imaging Department, Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Rick Rampulla
- Immunosciences Discovery Chemistry, ‡Immunoscience Discovery Biology, §Molecular Structure
and Design, Molecular Discovery Technologies, ∥Metabolism and Pharmacokinetic
Department, Pharmaceutical Candidate Optimization, and ⊥ECTR/CTTO Imaging Department, Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Arvind Mathur
- Immunosciences Discovery Chemistry, ‡Immunoscience Discovery Biology, §Molecular Structure
and Design, Molecular Discovery Technologies, ∥Metabolism and Pharmacokinetic
Department, Pharmaceutical Candidate Optimization, and ⊥ECTR/CTTO Imaging Department, Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Lorell Discenza
- Immunosciences Discovery Chemistry, ‡Immunoscience Discovery Biology, §Molecular Structure
and Design, Molecular Discovery Technologies, ∥Metabolism and Pharmacokinetic
Department, Pharmaceutical Candidate Optimization, and ⊥ECTR/CTTO Imaging Department, Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Celia D’Arienzo
- Immunosciences Discovery Chemistry, ‡Immunoscience Discovery Biology, §Molecular Structure
and Design, Molecular Discovery Technologies, ∥Metabolism and Pharmacokinetic
Department, Pharmaceutical Candidate Optimization, and ⊥ECTR/CTTO Imaging Department, Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Jun Dai
- Immunosciences Discovery Chemistry, ‡Immunoscience Discovery Biology, §Molecular Structure
and Design, Molecular Discovery Technologies, ∥Metabolism and Pharmacokinetic
Department, Pharmaceutical Candidate Optimization, and ⊥ECTR/CTTO Imaging Department, Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Mary Obermeier
- Immunosciences Discovery Chemistry, ‡Immunoscience Discovery Biology, §Molecular Structure
and Design, Molecular Discovery Technologies, ∥Metabolism and Pharmacokinetic
Department, Pharmaceutical Candidate Optimization, and ⊥ECTR/CTTO Imaging Department, Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Rodney Vickery
- Immunosciences Discovery Chemistry, ‡Immunoscience Discovery Biology, §Molecular Structure
and Design, Molecular Discovery Technologies, ∥Metabolism and Pharmacokinetic
Department, Pharmaceutical Candidate Optimization, and ⊥ECTR/CTTO Imaging Department, Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Yingru Zhang
- Immunosciences Discovery Chemistry, ‡Immunoscience Discovery Biology, §Molecular Structure
and Design, Molecular Discovery Technologies, ∥Metabolism and Pharmacokinetic
Department, Pharmaceutical Candidate Optimization, and ⊥ECTR/CTTO Imaging Department, Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Zheng Yang
- Immunosciences Discovery Chemistry, ‡Immunoscience Discovery Biology, §Molecular Structure
and Design, Molecular Discovery Technologies, ∥Metabolism and Pharmacokinetic
Department, Pharmaceutical Candidate Optimization, and ⊥ECTR/CTTO Imaging Department, Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Punit Marathe
- Immunosciences Discovery Chemistry, ‡Immunoscience Discovery Biology, §Molecular Structure
and Design, Molecular Discovery Technologies, ∥Metabolism and Pharmacokinetic
Department, Pharmaceutical Candidate Optimization, and ⊥ECTR/CTTO Imaging Department, Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Andrew J. Tebben
- Immunosciences Discovery Chemistry, ‡Immunoscience Discovery Biology, §Molecular Structure
and Design, Molecular Discovery Technologies, ∥Metabolism and Pharmacokinetic
Department, Pharmaceutical Candidate Optimization, and ⊥ECTR/CTTO Imaging Department, Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Jodi K. Muckelbauer
- Immunosciences Discovery Chemistry, ‡Immunoscience Discovery Biology, §Molecular Structure
and Design, Molecular Discovery Technologies, ∥Metabolism and Pharmacokinetic
Department, Pharmaceutical Candidate Optimization, and ⊥ECTR/CTTO Imaging Department, Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - ChiehYing J. Chang
- Immunosciences Discovery Chemistry, ‡Immunoscience Discovery Biology, §Molecular Structure
and Design, Molecular Discovery Technologies, ∥Metabolism and Pharmacokinetic
Department, Pharmaceutical Candidate Optimization, and ⊥ECTR/CTTO Imaging Department, Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Huiping Zhang
- Immunosciences Discovery Chemistry, ‡Immunoscience Discovery Biology, §Molecular Structure
and Design, Molecular Discovery Technologies, ∥Metabolism and Pharmacokinetic
Department, Pharmaceutical Candidate Optimization, and ⊥ECTR/CTTO Imaging Department, Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Kathleen Gillooly
- Immunosciences Discovery Chemistry, ‡Immunoscience Discovery Biology, §Molecular Structure
and Design, Molecular Discovery Technologies, ∥Metabolism and Pharmacokinetic
Department, Pharmaceutical Candidate Optimization, and ⊥ECTR/CTTO Imaging Department, Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Tracy Taylor
- Immunosciences Discovery Chemistry, ‡Immunoscience Discovery Biology, §Molecular Structure
and Design, Molecular Discovery Technologies, ∥Metabolism and Pharmacokinetic
Department, Pharmaceutical Candidate Optimization, and ⊥ECTR/CTTO Imaging Department, Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Mark A. Pattoli
- Immunosciences Discovery Chemistry, ‡Immunoscience Discovery Biology, §Molecular Structure
and Design, Molecular Discovery Technologies, ∥Metabolism and Pharmacokinetic
Department, Pharmaceutical Candidate Optimization, and ⊥ECTR/CTTO Imaging Department, Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Stacey Skala
- Immunosciences Discovery Chemistry, ‡Immunoscience Discovery Biology, §Molecular Structure
and Design, Molecular Discovery Technologies, ∥Metabolism and Pharmacokinetic
Department, Pharmaceutical Candidate Optimization, and ⊥ECTR/CTTO Imaging Department, Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Daniel W. Kukral
- Immunosciences Discovery Chemistry, ‡Immunoscience Discovery Biology, §Molecular Structure
and Design, Molecular Discovery Technologies, ∥Metabolism and Pharmacokinetic
Department, Pharmaceutical Candidate Optimization, and ⊥ECTR/CTTO Imaging Department, Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Kim W. McIntyre
- Immunosciences Discovery Chemistry, ‡Immunoscience Discovery Biology, §Molecular Structure
and Design, Molecular Discovery Technologies, ∥Metabolism and Pharmacokinetic
Department, Pharmaceutical Candidate Optimization, and ⊥ECTR/CTTO Imaging Department, Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Luisa Salter-Cid
- Immunosciences Discovery Chemistry, ‡Immunoscience Discovery Biology, §Molecular Structure
and Design, Molecular Discovery Technologies, ∥Metabolism and Pharmacokinetic
Department, Pharmaceutical Candidate Optimization, and ⊥ECTR/CTTO Imaging Department, Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Aberra Fura
- Immunosciences Discovery Chemistry, ‡Immunoscience Discovery Biology, §Molecular Structure
and Design, Molecular Discovery Technologies, ∥Metabolism and Pharmacokinetic
Department, Pharmaceutical Candidate Optimization, and ⊥ECTR/CTTO Imaging Department, Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - James R. Burke
- Immunosciences Discovery Chemistry, ‡Immunoscience Discovery Biology, §Molecular Structure
and Design, Molecular Discovery Technologies, ∥Metabolism and Pharmacokinetic
Department, Pharmaceutical Candidate Optimization, and ⊥ECTR/CTTO Imaging Department, Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Joel C. Barrish
- Immunosciences Discovery Chemistry, ‡Immunoscience Discovery Biology, §Molecular Structure
and Design, Molecular Discovery Technologies, ∥Metabolism and Pharmacokinetic
Department, Pharmaceutical Candidate Optimization, and ⊥ECTR/CTTO Imaging Department, Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Percy H. Carter
- Immunosciences Discovery Chemistry, ‡Immunoscience Discovery Biology, §Molecular Structure
and Design, Molecular Discovery Technologies, ∥Metabolism and Pharmacokinetic
Department, Pharmaceutical Candidate Optimization, and ⊥ECTR/CTTO Imaging Department, Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Joseph A. Tino
- Immunosciences Discovery Chemistry, ‡Immunoscience Discovery Biology, §Molecular Structure
and Design, Molecular Discovery Technologies, ∥Metabolism and Pharmacokinetic
Department, Pharmaceutical Candidate Optimization, and ⊥ECTR/CTTO Imaging Department, Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| |
Collapse
|
44
|
New Regulatory Roles of Galectin-3 in High-Affinity IgE Receptor Signaling. Mol Cell Biol 2016; 36:1366-82. [PMID: 26929198 DOI: 10.1128/mcb.00064-16] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 02/16/2016] [Indexed: 01/18/2023] Open
Abstract
Aggregation of the high-affinity receptor for IgE (FcεRI) in mast cells initiates activation events that lead to degranulation and release of inflammatory mediators. To better understand the signaling pathways and genes involved in mast cell activation, we developed a high-throughput mast cell degranulation assay suitable for RNA interference experiments using lentivirus-based short hairpin RNA (shRNA) delivery. We tested 432 shRNAs specific for 144 selected genes for effects on FcεRI-mediated mast cell degranulation and identified 15 potential regulators. In further studies, we focused on galectin-3 (Gal3), identified in this study as a negative regulator of mast cell degranulation. FcεRI-activated cells with Gal3 knockdown exhibited upregulated tyrosine phosphorylation of spleen tyrosine kinase and several other signal transduction molecules and enhanced calcium response. We show that Gal3 promotes internalization of IgE-FcεRI complexes; this may be related to our finding that Gal3 is a positive regulator of FcεRI ubiquitination. Furthermore, we found that Gal3 facilitates mast cell adhesion and motility on fibronectin but negatively regulates antigen-induced chemotaxis. The combined data indicate that Gal3 is involved in both positive and negative regulation of FcεRI-mediated signaling events in mast cells.
Collapse
|
45
|
Sunouchi K, Koganezawa M, Yamamoto D. REQUIREMENT OF THE TEC FAMILY TYROSINE KINASE BTK29A FOR COURTSHIP MEMORY IN Drosophila MALES. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2016; 91:165-174. [PMID: 26782301 DOI: 10.1002/arch.21316] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A male Drosophila that is not successful in courtship will reduce his courtship efforts in the next encounter with a female. This courtship suppression persists for more than 1 h in wild-type males. The Btk29A(ficP) mutant males null for the Btk29A type 2 isoform, a fly homolog of the nonreceptor tyrosine kinase Btk, show no courtship suppression, while Btk29A hypomorphic males exhibit a rapid decline in courtship suppression, leading to its complete loss within 30 min. The males of a revertant stock or Btk29A(ficP) males that are also mutant for parkas, a gene encoding the presumptive negative regulator of Btk29A, exhibit normal courtship suppression. Since another behavioral assay has shown that Btk29A(ficP) mutants are sensitization-defective, we hypothesize that the mutant flies are unable to maintain the neural excitation state acquired by experience, resulting in the rapid loss of courtship suppression.
Collapse
Affiliation(s)
- Kazuya Sunouchi
- Division of Neurogenetics, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Masayuki Koganezawa
- Division of Neurogenetics, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Daisuke Yamamoto
- Division of Neurogenetics, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| |
Collapse
|
46
|
The Neutrophil Btk Signalosome Regulates Integrin Activation during Sterile Inflammation. Immunity 2016; 44:73-87. [PMID: 26777396 DOI: 10.1016/j.immuni.2015.11.011] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 09/18/2015] [Accepted: 11/09/2015] [Indexed: 01/26/2023]
Abstract
Neutrophils are recruited from the blood to sites of sterile inflammation, where they are involved in wound healing but can also cause tissue damage. During sterile inflammation, necrotic cells release pro-inflammatory molecules including formylated peptides. However, the signaling pathway triggered by formylated peptides to integrin activation and leukocyte recruitment is unknown. By using spinning-disk confocal intravital microscopy, we examined the molecular mechanisms of leukocyte recruitment to sites of focal hepatic necrosis in vivo. We demonstrated that the Bruton's tyrosine kinase (Btk) was required for multiple Mac-1 activation events involved in neutrophil recruitment and functions during sterile inflammation triggered by fMLF. The Src family kinase Hck, Wiskott-Aldrich-syndrome protein, and phospholipase Cγ2 were also involved in this pathway required for fMLF-triggered Mac-1 activation and neutrophil recruitment. Thus, we have identified a neutrophil Btk signalosome that is involved in a signaling pathway triggered by formylated peptides leading to the selective activation of Mac-1 and neutrophil recruitment during sterile inflammation.
Collapse
|
47
|
Gotlib J. Tyrosine Kinase Inhibitors and Therapeutic Antibodies in Advanced Eosinophilic Disorders and Systemic Mastocytosis. Curr Hematol Malig Rep 2015; 10:351-61. [DOI: 10.1007/s11899-015-0280-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
48
|
Draber P, Halova I, Polakovicova I, Kawakami T. Signal transduction and chemotaxis in mast cells. Eur J Pharmacol 2015; 778:11-23. [PMID: 25941081 DOI: 10.1016/j.ejphar.2015.02.057] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 02/09/2015] [Accepted: 02/17/2015] [Indexed: 01/08/2023]
Abstract
Mast cells play crucial roles in both innate and adaptive arms of the immune system. Along with basophils, mast cells are essential effector cells for allergic inflammation that causes asthma, allergic rhinitis, food allergy and atopic dermatitis. Mast cells are usually increased in inflammatory sites of allergy and, upon activation, release various chemical, lipid, peptide and protein mediators of allergic reactions. Since antigen/immunoglobulin E (IgE)-mediated activation of these cells is a central event to trigger allergic reactions, innumerable studies have been conducted on how these cells are activated through cross-linking of the high-affinity IgE receptor (FcεRI). Development of mature mast cells from their progenitor cells is under the influence of several growth factors, of which the stem cell factor (SCF) seems to be the most important. Therefore, how SCF induces mast cell development and activation via its receptor, KIT, has been studied extensively, including a cross-talk between KIT and FcεRI signaling pathways. Although our understanding of the signaling mechanisms of the FcεRI and KIT pathways is far from complete, pharmaceutical applications of the knowledge about these pathways are underway. This review will focus on recent progresses in FcεRI and KIT signaling and chemotaxis.
Collapse
Affiliation(s)
- Petr Draber
- Department of Signal Transduction, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, CZ 14220 Prague, Czech Republic.
| | - Ivana Halova
- Department of Signal Transduction, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, CZ 14220 Prague, Czech Republic
| | - Iva Polakovicova
- Department of Signal Transduction, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, CZ 14220 Prague, Czech Republic
| | - Toshiaki Kawakami
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle La Jolla, CA 92037, USA; Laboratory for Allergic Disease, RIKEN Center for Integrative Medical Sciences (IMS-RCAI), Yokohama 230-0045, Japan
| |
Collapse
|
49
|
Kawahara K, Hohjoh H, Inazumi T, Tsuchiya S, Sugimoto Y. Prostaglandin E2-induced inflammation: Relevance of prostaglandin E receptors. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1851:414-21. [PMID: 25038274 DOI: 10.1016/j.bbalip.2014.07.008] [Citation(s) in RCA: 295] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 07/04/2014] [Accepted: 07/10/2014] [Indexed: 12/15/2022]
Abstract
Prostaglandin E2 (PGE2) is one of the most typical lipid mediators produced from arachidonic acid (AA) by cyclooxygenase (COX) as the rate-limiting enzyme, and acts on four kinds of receptor subtypes (EP1-EP4) to elicit its diverse actions including pyrexia, pain sensation, and inflammation. Recently, the molecular mechanisms underlying the PGE2 actions mediated by each EP subtype have been elucidated by studies using mice deficient in each EP subtype as well as several compounds highly selective to each EP subtype, and their findings now enable us to discuss how PGE2 initiates and exacerbates inflammation at the molecular level. Here, we review the recent advances in PGE2 receptor research by focusing on the activation of mast cells via the EP3 receptor and the control of helper T cells via the EP2/4 receptor, which are the molecular mechanisms involved in PGE2-induced inflammation that had been unknown for many years. We also discuss the roles of PGE2 in acute inflammation and inflammatory disorders, and the usefulness of anti-inflammatory therapies that target EP receptors. This article is part of a Special Issue entitled "Oxygenated metabolism of PUFA: analysis and biological relevance".
Collapse
Affiliation(s)
- Kohichi Kawahara
- Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Hirofumi Hohjoh
- Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Tomoaki Inazumi
- Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan; Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama 332-0012, Japan
| | - Soken Tsuchiya
- Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan; Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama 332-0012, Japan
| | - Yukihiko Sugimoto
- Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan; Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama 332-0012, Japan.
| |
Collapse
|
50
|
Purine derivatives as potent Bruton’s tyrosine kinase (BTK) inhibitors for autoimmune diseases. Bioorg Med Chem Lett 2014; 24:2206-11. [DOI: 10.1016/j.bmcl.2014.02.075] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Revised: 02/26/2014] [Accepted: 02/28/2014] [Indexed: 11/20/2022]
|