1
|
Jaiswal A, Boring A, Mukherjee A, Avidor-Reiss T. Fly Fam161 is an essential centriole and cilium transition zone protein with unique and diverse cell type-specific localizations. Open Biol 2024; 14:240036. [PMID: 39255847 PMCID: PMC11500687 DOI: 10.1098/rsob.240036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/17/2024] [Accepted: 07/15/2024] [Indexed: 09/12/2024] Open
Abstract
Family with sequence similarity 161 (Fam161) is an ancient family of microtubule-binding proteins located at the centriole and cilium transition zone (TZ) lumen that exhibit rapid evolution in mice. However, their adaptive role is unclear. Here, we used flies to gain insight into their cell type-specific adaptations. Fam161 is the sole orthologue of FAM161A and FAM161B found in flies. Mutating Fam161 results in reduced male reproduction and abnormal geotaxis behaviour. Fam161 localizes to sensory neuron centrioles and their specialized TZ (the connecting cilium) in a cell type-specific manner, sometimes labelling only the centrioles, sometimes labelling the centrioles and cilium TZ and sometimes labelling the TZ with varying lengths that are longer than other TZ proteins, defining a new ciliary compartment, the extra distal TZ. These findings suggest that Fam161 is an essential centriole and TZ protein with a unique cell type-specific localization in fruit flies that can produce cell type-specific adaptations.
Collapse
Affiliation(s)
- Ankit Jaiswal
- Department of Biological Sciences, University of Toledo, Toledo, OH43606, USA
| | - Andrew Boring
- Department of Biological Sciences, University of Toledo, Toledo, OH43606, USA
- Department of Urology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH43614, USA
| | - Avik Mukherjee
- Department of Biological Sciences, University of Toledo, Toledo, OH43606, USA
| | - Tomer Avidor-Reiss
- Department of Biological Sciences, University of Toledo, Toledo, OH43606, USA
- Department of Urology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH43614, USA
| |
Collapse
|
2
|
Wu Z, Chen H, Zhang Y, Wang Y, Wang Q, Augière C, Hou Y, Fu Y, Peng Y, Durand B, Wei Q. Cep131-Cep162 and Cby-Fam92 complexes cooperatively maintain Cep290 at the basal body and contribute to ciliogenesis initiation. PLoS Biol 2024; 22:e3002330. [PMID: 38442096 PMCID: PMC10914257 DOI: 10.1371/journal.pbio.3002330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 01/31/2024] [Indexed: 03/07/2024] Open
Abstract
Cilia play critical roles in cell signal transduction and organ development. Defects in cilia function result in a variety of genetic disorders. Cep290 is an evolutionarily conserved ciliopathy protein that bridges the ciliary membrane and axoneme at the basal body (BB) and plays critical roles in the initiation of ciliogenesis and TZ assembly. How Cep290 is maintained at BB and whether axonemal and ciliary membrane localized cues converge to determine the localization of Cep290 remain unknown. Here, we report that the Cep131-Cep162 module near the axoneme and the Cby-Fam92 module close to the membrane synergistically control the BB localization of Cep290 and the subsequent initiation of ciliogenesis in Drosophila. Concurrent deletion of any protein of the Cep131-Cep162 module and of the Cby-Fam92 module leads to a complete loss of Cep290 from BB and blocks ciliogenesis at its initiation stage. Our results reveal that the first step of ciliogenesis strictly depends on cooperative and retroactive interactions between Cep131-Cep162, Cby-Fam92 and Cep290, which may contribute to the complex pathogenesis of Cep290-related ciliopathies.
Collapse
Affiliation(s)
- Zhimao Wu
- Center for Energy Metabolism and Reproduction, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, China
| | - Huicheng Chen
- Center for Energy Metabolism and Reproduction, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, China
| | - Yingying Zhang
- Center for Energy Metabolism and Reproduction, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, China
| | - Yaru Wang
- Center for Energy Metabolism and Reproduction, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, China
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, China
| | - Qiaoling Wang
- Institute of Medicine and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Céline Augière
- University Claude Bernard Lyon 1, MeLiS—UCBL—CNRS UMR 5284—INSERM U1314, Lyon, France
| | - Yanan Hou
- Center for Energy Metabolism and Reproduction, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, China
| | - Yuejun Fu
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, China
| | - Ying Peng
- Institute of Medicine and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Bénédicte Durand
- University Claude Bernard Lyon 1, MeLiS—UCBL—CNRS UMR 5284—INSERM U1314, Lyon, France
| | - Qing Wei
- Center for Energy Metabolism and Reproduction, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, China
- Shenzhen Key Laboratory of Metabolic Health, Shenzhen, China
- School of Synthetic Biology, Shanxi Key Laboratory of Nucleic Acid Biopesticides, Shanxi University, Taiyuan, China
| |
Collapse
|
3
|
Gottardo M, Riparbelli MG, Callaini G, Megraw TL. Evidence for intraflagellar transport in butterfly spermatocyte cilia. Cytoskeleton (Hoboken) 2023; 80:112-122. [PMID: 37036073 PMCID: PMC10330035 DOI: 10.1002/cm.21755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/04/2023] [Accepted: 03/22/2023] [Indexed: 04/11/2023]
Abstract
In the model organism insect Drosophila melanogaster short cilia assemble on spermatocytes that elaborate into 1.8 mm long flagella during spermatid differentiation. A unique feature of these cilia/flagella is their lack of dependence on intraflagellar transport (IFT) for their assembly. Here, we show that in the common butterfly Pieris brassicae, the spermatocyte cilia are exceptionally long: about 40 μm compared to less than 1 μm in Drosophila. By transmission electron microscopy, we show that P. brassicae spermatocytes display several features not found in melanogaster, including compelling evidence of IFT structures and features of motile cilia.
Collapse
Affiliation(s)
- Marco Gottardo
- Department of Life Sciences, University of Siena, Italy
- These Authors contributed equally to this work
| | - Maria Giovanna Riparbelli
- Department of Life Sciences, University of Siena, Italy
- These Authors contributed equally to this work
| | | | - Timothy L. Megraw
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL USA
| |
Collapse
|
4
|
Herrera JA, Dingle LA, Monetero MA, Venkateswaran RV, Blaikley JF, Granato F, Pearson S, Lawless C, Thornton DJ. Morphologically intact airways in lung fibrosis have an abnormal proteome. Respir Res 2023; 24:99. [PMID: 37005656 PMCID: PMC10066954 DOI: 10.1186/s12931-023-02400-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 03/16/2023] [Indexed: 04/04/2023] Open
Abstract
Honeycombing is a histological pattern consistent with Usual Interstitial Pneumonia (UIP). Honeycombing refers to cystic airways located at sites of dense fibrosis with marked mucus accumulation. Utilizing laser capture microdissection coupled mass spectrometry (LCM-MS), we interrogated the fibrotic honeycomb airway cells and fibrotic uninvolved airway cells (distant from honeycomb airways and morphologically intact) in specimens from 10 patients with UIP. Non-fibrotic airway cell specimens from 6 patients served as controls. Furthermore, we performed LCM-MS on the mucus plugs found in 6 patients with UIP and 6 patients with mucinous adenocarcinoma. The mass spectrometry data were subject to both qualitative and quantitative analysis and validated by immunohistochemistry. Surprisingly, fibrotic uninvolved airway cells share a similar protein profile to honeycomb airway cells, showing deregulation of the slit and roundabout receptor (Slit and Robo) pathway as the strongest category. We find that (BPI) fold-containing family B member 1 (BPIFB1) is the most significantly increased secretome-associated protein in UIP, whereas Mucin-5AC (MUC5AC) is the most significantly increased in mucinous adenocarcinoma. We conclude that fibrotic uninvolved airway cells share pathological features with fibrotic honeycomb airway cells. In addition, fibrotic honeycomb airway cells are enriched in mucin biogenesis proteins with a marked derangement in proteins essential for ciliogenesis. This unbiased spatial proteomic approach generates novel and testable hypotheses to decipher fibrosis progression.
Collapse
Affiliation(s)
- Jeremy A Herrera
- The Wellcome Centre for Cell-Matrix Research, University of Manchester, Manchester Academic Health Science Centre, Manchester, Great Manchester, UK.
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, Great Manchester, UK.
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| | - Lewis A Dingle
- Blond McIndoe Laboratories, University of Manchester, Manchester Academic Health Science Centre, Manchester, Great Manchester, UK
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, Great Manchester, UK
| | - M Angeles Monetero
- Manchester University NHS Foundation Trust, Manchester, Greater Manchester, UK
| | - Rajamiyer V Venkateswaran
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, Great Manchester, UK
- Manchester University NHS Foundation Trust, Manchester, Greater Manchester, UK
| | - John F Blaikley
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, Great Manchester, UK
- Manchester University NHS Foundation Trust, Manchester, Greater Manchester, UK
| | - Felice Granato
- Manchester University NHS Foundation Trust, Manchester, Greater Manchester, UK
| | - Stella Pearson
- The Wellcome Centre for Cell-Matrix Research, University of Manchester, Manchester Academic Health Science Centre, Manchester, Great Manchester, UK
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester Academic Health Science Centre, Manchester, Great Manchester, UK
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, Great Manchester, UK
| | - Craig Lawless
- The Wellcome Centre for Cell-Matrix Research, University of Manchester, Manchester Academic Health Science Centre, Manchester, Great Manchester, UK
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, Great Manchester, UK
| | - David J Thornton
- The Wellcome Centre for Cell-Matrix Research, University of Manchester, Manchester Academic Health Science Centre, Manchester, Great Manchester, UK
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester Academic Health Science Centre, Manchester, Great Manchester, UK
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, Great Manchester, UK
| |
Collapse
|
5
|
Hou Y, Zheng S, Wu Z, Augière C, Morel V, Cortier E, Duteyrat JL, Zhang Y, Chen H, Peng Y, Durand B, Wei Q. Drosophila transition fibers are essential for IFT-dependent ciliary elongation but not basal body docking and ciliary budding. Curr Biol 2023; 33:727-736.e6. [PMID: 36669498 DOI: 10.1016/j.cub.2022.12.046] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 09/22/2022] [Accepted: 12/19/2022] [Indexed: 01/20/2023]
Abstract
Cilia are highly conserved organelles critical for animal development and perception. Dysfunction of cilia has been linked to a wide spectrum of human genetic diseases, termed ciliopathies.1,2 Transition fibers (TFs) are striking ciliary base structures essential for cilia assembly. Vertebrates' TFs that originate from centriole distal appendages (DAs) mediate basal body docking to ciliary vesicles to initiate ciliogenesis and regulate the entry of ciliary proteins for axoneme assembly via intraflagellar transport (IFT) machinery.3 Although no distal appendages can be observed on Drosophila centrioles,4,5 three key TF proteins, FBF1, CEP164, and CEP89, have obvious homologs in Drosophila. We aimed to compare their functions with their mammalian counterparts in Drosophila ciliogenesis. Here, we show that all three proteins are localized like TF proteins at the ciliary base in both sensory neurons and spermatocytes, the only two types of ciliated cells in flies. Fbf1 and Cep89 are essential for the formation of IFT-dependent neuronal cilia, but Cep164 is dispensable for ciliogenesis in flies. Strikingly, none are required for basal body docking and transition zone (TZ) assembly in IFT-dependent neuronal cilia or IFT-independent spermatocyte cilia. Furthermore, we demonstrate that Unc is essential to recruit all three TF proteins and establish a hierarchical order, with Cep89 acting on Fbf1. Collectively, our results not only demonstrate that TF proteins are required for IFT-dependent ciliogenesis in Drosophila, in agreement with an evolutionarily conserved function of these proteins in regulating ciliary protein entry, but also that the basal body docking function of TFs has diverged during evolution.
Collapse
Affiliation(s)
- Yanan Hou
- Center for Energy Metabolism and Reproduction, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen 518055, China
| | - Shirui Zheng
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Zhimao Wu
- Center for Energy Metabolism and Reproduction, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen 518055, China
| | - Céline Augière
- University of Lyon, Université Claude Bernard Lyon 1, MeLiS - UCBL-CNRS UMR 5284 - INSERM U1314, Institut NeuroMyoGène, Lyon 69008, France
| | - Véronique Morel
- University of Lyon, Université Claude Bernard Lyon 1, MeLiS - UCBL-CNRS UMR 5284 - INSERM U1314, Institut NeuroMyoGène, Lyon 69008, France
| | - Elisabeth Cortier
- University of Lyon, Université Claude Bernard Lyon 1, MeLiS - UCBL-CNRS UMR 5284 - INSERM U1314, Institut NeuroMyoGène, Lyon 69008, France
| | - Jean-Luc Duteyrat
- University of Lyon, Université Claude Bernard Lyon 1, MeLiS - UCBL-CNRS UMR 5284 - INSERM U1314, Institut NeuroMyoGène, Lyon 69008, France
| | - Yingying Zhang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Huicheng Chen
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Ying Peng
- Institute of Medicine and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 430000, China
| | - Bénédicte Durand
- University of Lyon, Université Claude Bernard Lyon 1, MeLiS - UCBL-CNRS UMR 5284 - INSERM U1314, Institut NeuroMyoGène, Lyon 69008, France.
| | - Qing Wei
- Center for Energy Metabolism and Reproduction, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen 518055, China; Shenzhen Key Laboratory of Metabolic Health, Shenzhen 518055, China.
| |
Collapse
|
6
|
Van Bergen NJ, Massey S, Quigley A, Rollo B, Harris AR, Kapsa RM, Christodoulou J. CDKL5 deficiency disorder: molecular insights and mechanisms of pathogenicity to fast-track therapeutic development. Biochem Soc Trans 2022; 50:1207-1224. [PMID: 35997111 PMCID: PMC9444073 DOI: 10.1042/bst20220791] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/28/2022] [Accepted: 07/28/2022] [Indexed: 12/02/2022]
Abstract
CDKL5 deficiency disorder (CDD) is an X-linked brain disorder of young children and is caused by pathogenic variants in the cyclin-dependent kinase-like 5 (CDKL5) gene. Individuals with CDD suffer infantile onset, drug-resistant seizures, severe neurodevelopmental impairment and profound lifelong disability. The CDKL5 protein is a kinase that regulates key phosphorylation events vital to the development of the complex neuronal network of the brain. Pathogenic variants identified in patients may either result in loss of CDKL5 catalytic activity or are hypomorphic leading to partial loss of function. Whilst the progressive nature of CDD provides an excellent opportunity for disease intervention, we cannot develop effective therapeutics without in-depth knowledge of CDKL5 function in human neurons. In this mini review, we summarize new findings on the function of CDKL5. These include CDKL5 phosphorylation targets and the consequence of disruptions on signaling pathways in the human brain. This new knowledge of CDKL5 biology may be leveraged to advance targeted drug discovery and rapid development of treatments for CDD. Continued development of effective humanized models will further propel our understanding of CDD biology and may permit the development and testing of therapies that will significantly alter CDD disease trajectory in young children.
Collapse
Affiliation(s)
- Nicole J. Van Bergen
- Brain and Mitochondrial Research Group, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Sean Massey
- Brain and Mitochondrial Research Group, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Australia
| | - Anita Quigley
- Electrical and Biomedical Engineering, School of Engineering, RMIT University, Melbourne, VIC, Australia
- Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Fitzroy, Melbourne, VIC 3065, Australia
- Centre for Clinical Neurosciences and Neurological Research, St. Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia
- Department of Medicine, St Vincent's Hospital Melbourne, The University of Melbourne, Fitzroy, Melbourne, VIC 3065, Australia
- Aikenhead Centre for Medical Discovery, Department of Biomedical Engineering, University of Melbourne, Melbourne 3010, Australia
| | - Ben Rollo
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| | - Alexander R. Harris
- Aikenhead Centre for Medical Discovery, Department of Biomedical Engineering, University of Melbourne, Melbourne 3010, Australia
| | - Robert M.I. Kapsa
- Electrical and Biomedical Engineering, School of Engineering, RMIT University, Melbourne, VIC, Australia
- Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Fitzroy, Melbourne, VIC 3065, Australia
- Centre for Clinical Neurosciences and Neurological Research, St. Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia
- Department of Medicine, St Vincent's Hospital Melbourne, The University of Melbourne, Fitzroy, Melbourne, VIC 3065, Australia
| | - John Christodoulou
- Brain and Mitochondrial Research Group, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, VIC, Australia
- Discipline of Child and Adolescent Health, University of Sydney, Sydney, Australia
| |
Collapse
|
7
|
Hodge SH, Watts A, Marley R, Baines RA, Hafen E, MacDougall LK. Twitchy, the Drosophila orthologue of the ciliary gating protein FBF1/dyf-19, is required for coordinated locomotion and male fertility. Biol Open 2021; 10:bio058531. [PMID: 34357392 PMCID: PMC8353261 DOI: 10.1242/bio.058531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 06/21/2021] [Indexed: 12/13/2022] Open
Abstract
Primary cilia are compartmentalised from the rest of the cell by a ciliary gate comprising transition fibres and a transition zone. The ciliary gate allows the selective import and export of molecules such as transmembrane receptors and transport proteins. These are required for the assembly of the cilium, its function as a sensory and signalling centre and to maintain its distinctive composition. Certain motile cilia can also form within the cytosol as exemplified by human and Drosophila sperm. The role of transition fibre proteins has not been well described in the cytoplasmic cilia. Drosophila have both compartmentalised primary cilia, in sensory neurons, and sperm flagella that form within the cytosol. Here, we describe phenotypes for twitchy the Drosophila orthologue of a transition fibre protein, mammalian FBF1/C. elegans dyf-19. Loss-of-function mutants in twitchy are adult lethal and display a severely uncoordinated phenotype. Twitchy flies are too uncoordinated to mate but RNAi-mediated loss of twitchy specifically within the male germline results in coordinated but infertile adults. Examination of sperm from twitchy RNAi-knockdown flies shows that the flagellar axoneme forms, elongates and is post-translationally modified by polyglycylation but the production of motile sperm is impaired. These results indicate that twitchy is required for the function of both sensory cilia that are compartmentalised from the rest of the cell and sperm flagella that are formed within the cytosol of the cell. Twitchy is therefore likely to function as part of a molecular gate in sensory neurons but may have a distinct function in sperm cells.
Collapse
Affiliation(s)
- Suzanne H. Hodge
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Amy Watts
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Richard Marley
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, UK
| | - Richard A. Baines
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, UK
| | - Ernst Hafen
- Institute of Molecular Systems Biology, Swiss Federal Institute of Technology (ETH) Zürich, 8093, Zürich, Switzerland
| | - Lindsay K. MacDougall
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
8
|
Alvarez-Rodrigo I, Wainman A, Saurya S, Raff JW. Ana1 helps recruit Polo to centrioles to promote mitotic PCM assembly and centriole elongation. J Cell Sci 2021; 134:jcs258987. [PMID: 34156068 PMCID: PMC8325959 DOI: 10.1242/jcs.258987] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 06/08/2021] [Indexed: 01/12/2023] Open
Abstract
Polo kinase (PLK1 in mammals) is a master cell cycle regulator that is recruited to various subcellular structures, often by its polo-box domain (PBD), which binds to phosphorylated S-pS/pT motifs. Polo/PLK1 kinases have multiple functions at centrioles and centrosomes, and we have previously shown that in Drosophila phosphorylated Sas-4 initiates Polo recruitment to newly formed centrioles, while phosphorylated Spd-2 recruits Polo to the pericentriolar material (PCM) that assembles around mother centrioles in mitosis. Here, we show that Ana1 (Cep295 in humans) also helps to recruit Polo to mother centrioles in Drosophila. If Ana1-dependent Polo recruitment is impaired, mother centrioles can still duplicate, disengage from their daughters and form functional cilia, but they can no longer efficiently assemble mitotic PCM or elongate during G2. We conclude that Ana1 helps recruit Polo to mother centrioles to specifically promote mitotic centrosome assembly and centriole elongation in G2, but not centriole duplication, centriole disengagement or cilia assembly. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
| | | | | | - Jordan W. Raff
- The Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| |
Collapse
|
9
|
Primary cilia and the DNA damage response: linking a cellular antenna and nuclear signals. Biochem Soc Trans 2021; 49:829-841. [PMID: 33843966 DOI: 10.1042/bst20200751] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 11/17/2022]
Abstract
The maintenance of genome stability involves integrated biochemical activities that detect DNA damage or incomplete replication, delay the cell cycle, and direct DNA repair activities on the affected chromatin. These processes, collectively termed the DNA damage response (DDR), are crucial for cell survival and to avoid disease, particularly cancer. Recent work has highlighted links between the DDR and the primary cilium, an antenna-like, microtubule-based signalling structure that extends from a centriole docked at the cell surface. Ciliary dysfunction gives rise to a range of complex human developmental disorders termed the ciliopathies. Mutations in ciliopathy genes have been shown to impact on several functions that relate to centrosome integrity, DNA damage signalling, responses to problems in DNA replication and the control of gene expression. This review covers recent findings that link cilia and the DDR and explores the various roles played by key genes in these two contexts. It outlines how proteins encoded by ciliary genes impact checkpoint signalling, DNA replication and repair, gene expression and chromatin remodelling. It discusses how these diverse activities may integrate nuclear responses with those that affect a structure of the cell periphery. Additional directions for exploration of the interplay between these pathways are highlighted, with a focus on new ciliary gene candidates that alter genome stability.
Collapse
|
10
|
Role of DZIP1-CBY-FAM92 transition zone complex in the basal body to membrane attachment and ciliary budding. Biochem Soc Trans 2021; 48:1067-1075. [PMID: 32491167 DOI: 10.1042/bst20191007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/20/2020] [Accepted: 05/07/2020] [Indexed: 02/07/2023]
Abstract
Cilia play important signaling or motile functions in various organisms. In Human, cilia dysfunctions are responsible for a wide range of diseases, called ciliopathies. Cilia assembly is a tightly controlled process, which starts with the conversion of the centriole into a basal body, leading to the formation of the ciliary bud that protrudes inside a ciliary vesicle and/or ultimately at the cell surface. Ciliary bud formation is associated with the assembly of the transition zone (TZ), a complex architecture of proteins of the ciliary base which plays critical functions in gating proteins in and out of the ciliary compartment. Many proteins are involved in the assembly of the TZ, which shows structural and functional variations in different cell types or organisms. In this review, we discuss how a particular complex, composed of members of the DZIP1, CBY and FAM92 families of proteins, is required for the initial stages of cilia assembly leading to ciliary bud formation and how their functional hierarchy contributes to TZ assembly. Moreover, we summarize how evidences in Drosophila reveal functional differences of the DZIP1-CBY-FAM92 complex in the different ciliated tissues of this organism. Whereas it is essential for proper TZ assembly in the two types of ciliated tissues, it is involved in stable anchoring of basal bodies to the plasma membrane in male germ cells. Overall, the DZIP1-CBY-FAM92 complex reveals a molecular assembly pathway required for the initial stages of ciliary bud formation and that is conserved from Drosophila to Human.
Collapse
|
11
|
Avidor-Reiss T, Carr A, Fishman EL. The sperm centrioles. Mol Cell Endocrinol 2020; 518:110987. [PMID: 32810575 PMCID: PMC7606549 DOI: 10.1016/j.mce.2020.110987] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 08/07/2020] [Accepted: 08/10/2020] [Indexed: 12/13/2022]
Abstract
Centrioles are eukaryotic subcellular structures that produce and regulate massive cytoskeleton superstructures. They form centrosomes and cilia, regulate new centriole formation, anchor cilia to the cell, and regulate cilia function. These basic centriolar functions are executed in sperm cells during their amplification from spermatogonial stem cells during their differentiation to spermatozoa, and finally, after fertilization, when the sperm fuses with the egg. However, sperm centrioles exhibit many unique characteristics not commonly observed in other cell types, including structural remodeling, centriole-flagellum transition zone migration, and cell membrane association during meiosis. Here, we discuss five roles of sperm centrioles: orchestrating early spermatogenic cell divisions, forming the spermatozoon flagella, linking the spermatozoon head and tail, controlling sperm tail beating, and organizing the cytoskeleton of the zygote post-fertilization. We present the historic discovery of the centriole as a sperm factor that initiates embryogenesis, and recent genetic studies in humans and other mammals evaluating the current evidence for the five functions of sperm centrioles. We also examine information connecting the various sperm centriole functions to distinct clinical phenotypes. The emerging picture is that centrioles are essential sperm components with remarkable functional diversity and specialization that will require extensive and in-depth future studies.
Collapse
Affiliation(s)
- Tomer Avidor-Reiss
- Department of Biological Sciences, College of Natural Sciences and Mathematics, University of Toledo, Toledo, OH, USA; Department of Urology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA.
| | - Alexa Carr
- Department of Biological Sciences, College of Natural Sciences and Mathematics, University of Toledo, Toledo, OH, USA
| | | |
Collapse
|
12
|
CEP131 Abrogates CHK1 Inhibitor-Induced Replication Defects and Is Associated with Unfavorable Outcome in Neuroblastoma. JOURNAL OF ONCOLOGY 2020; 2020:2752417. [PMID: 33014050 PMCID: PMC7512061 DOI: 10.1155/2020/2752417] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/11/2020] [Accepted: 08/25/2020] [Indexed: 12/16/2022]
Abstract
Checkpoint kinase 1 (CHK1) plays a key role in genome surveillance and integrity throughout the cell cycle. Selective inhibitors of CHK1 (CHK1i) are undergoing clinical evaluation for various human malignancies, including neuroblastoma. Recently, we reported that CHK1i, PF-477736, induced a p53-mediated DNA damage response. As a result, the cancer cells were able to repair DNA damage and became less sensitive to CHK1i. In this study, we discovered that PF-477736 increased expression of MDM2 oncogene along with CHK1i-induced replication defects in neuroblastoma NB-39-nu cells. A mass spectrometry analysis of protein binding to MDM2 in the presence of CHK1i identified the centrosome-associated family protein 131 (CEP131), which was correlated with unfavorable prognosis of neuroblastoma patients. We revealed that MDM2 was associated with CEP131 protein degradation, whereas overexpression of CEP131 accelerated neuroblastoma cell growth and exhibited resistance to CHK1i-induced replication defects. Thus, these findings may provide a future therapeutic strategy against centrosome-associated oncogenes involving CEP131 as a target in neuroblastoma.
Collapse
|
13
|
Wang J, Yang X, Han S, Zhang L. CEP131 knockdown inhibits cell proliferation by inhibiting the ERK and AKT signaling pathways in non-small cell lung cancer. Oncol Lett 2020; 19:3145-3152. [PMID: 32218865 PMCID: PMC7068694 DOI: 10.3892/ol.2020.11411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 12/03/2019] [Indexed: 12/18/2022] Open
Abstract
Disrupted centrosome-associated family protein expression can result in the detrimental duplication of centrosomes, causing genomic instability and subsequent carcinogenesis. Limited research has demonstrated that centrosomal protein 131 (CEP131) exhibits oncogenic activity in osteosarcoma, hepatocellular carcinoma and breast cancer. The present study demonstrated that there is an association between CEP131 expression and advanced Tumor-Node-Metastasis stage (P=0.016), and positive regional lymph node metastasis (P=0.023) in 91 cases of non-small cell lung cancer. A549 and SPC-A-1 cells, with moderate expression levels of CEP131, were selected as representative cell lines. The results indicated that downregulation of CEP131 induced G1/S cell cycle arrest, inhibition of cyclins D1/E and cyclin-dependent kinases 2/4/6, and induction of inhibitory p21/p27, all of which are regulated by ERK and AKT signaling, suggesting that CEP131 exhibits potential as a novel target in the treatment of lung cancer.
Collapse
Affiliation(s)
- Junying Wang
- Department of Pathology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Xiaoping Yang
- Department of Anesthesiology, Dalian Obstetrics and Gynecology Hospital, Dalian, Liaoning 116033, P.R. China
| | - Shixin Han
- Department of Dermatology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Lizhi Zhang
- Department of Pathology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| |
Collapse
|
14
|
Lapart JA, Gottardo M, Cortier E, Duteyrat JL, Augière C, Mangé A, Jerber J, Solassol J, Gopalakrishnan J, Thomas J, Durand B. Dzip1 and Fam92 form a ciliary transition zone complex with cell type specific roles in Drosophila. eLife 2019; 8:49307. [PMID: 31821146 PMCID: PMC6904220 DOI: 10.7554/elife.49307] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 11/12/2019] [Indexed: 12/12/2022] Open
Abstract
Cilia and flagella are conserved eukaryotic organelles essential for cellular signaling and motility. Cilia dysfunctions cause life-threatening ciliopathies, many of which are due to defects in the transition zone (TZ), a complex structure of the ciliary base. Therefore, understanding TZ assembly, which relies on ordered interactions of multiprotein modules, is of critical importance. Here, we show that Drosophila Dzip1 and Fam92 form a functional module which constrains the conserved core TZ protein, Cep290, to the ciliary base. We identify cell type specific roles of this functional module in two different tissues. While it is required for TZ assembly in all Drosophila ciliated cells, it also regulates basal-body growth and docking to the plasma membrane during spermatogenesis. We therefore demonstrate a novel regulatory role for Dzip1 and Fam92 in mediating membrane/basal-body interactions and show that these interactions exhibit cell type specific functions in basal-body maturation and TZ organization. Many animal cells have hair-like structures called cilia on their surface, which help them to sense and interact with their surroundings. The cilia are supported by protein filaments and must assemble correctly because faulty cilia can lead to several life-threatening diseases. Problems in an area at the base of the cilia, known as the ‘transition zone’, account for the most severe forms of these diseases in humans. The transition zone is responsible for selecting which proteins are allowed in and out of the cilia. The transition zone itself is made up of many proteins that work together to determine the cilia composition. But not all of these proteins are known, and it is unclear how those that are known affect cilia structure. One protein found in transition zones of several animals, including fruit flies and mice, is called Cby. Lapart et al. set out to understand which other proteins interact with Cby in fruit flies to better understand what this protein does in the transition zone. A series of experiments showed that Cby interacts with two proteins called Dzip1 and Fam92 to regulate the assembly of transition zones. Together these three proteins constrain a core component of the transition zone, a fourth protein called Cep290, to the base of the cilia. Fruit flies only have cilia on cells in their sensory organs and testes and, in both types of tissue, cilia could only form properly when Dzip1 and Fam92 were present. Lapart et al. also showed that, in the fruit fly testes, Dzip1 and Fam92 helped to anchor the newly forming cilia to the cell surface. This anchoring role was particularly important for the fruit flies’ sperm to grow their characteristic whip-like tails, which are a specialized type of cilia that allow sperm cells to move. Overall, the findings show how some transition zone proteins work together and that they can have different effects in different tissues. Understanding the mechanisms behind healthy cilia assembly will likely be key to tackling cilia-related diseases.
Collapse
Affiliation(s)
- Jean-André Lapart
- Institut NeuroMyoGène, CNRS UMR 5310, INSERM U1217, Université Claude Bernard Lyon 1, Lyon, France
| | - Marco Gottardo
- Institute of Human Genetics, Universitätsklinikum Düsseldorf, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Elisabeth Cortier
- Institut NeuroMyoGène, CNRS UMR 5310, INSERM U1217, Université Claude Bernard Lyon 1, Lyon, France
| | - Jean-Luc Duteyrat
- Institut NeuroMyoGène, CNRS UMR 5310, INSERM U1217, Université Claude Bernard Lyon 1, Lyon, France
| | - Céline Augière
- Institut NeuroMyoGène, CNRS UMR 5310, INSERM U1217, Université Claude Bernard Lyon 1, Lyon, France
| | - Alain Mangé
- IRCM, INSERM, Université de Montpellier, ICM, Montpellier, France
| | - Julie Jerber
- Institut NeuroMyoGène, CNRS UMR 5310, INSERM U1217, Université Claude Bernard Lyon 1, Lyon, France
| | - Jérôme Solassol
- IRCM, INSERM, Université de Montpellier, ICM, Montpellier, France
| | - Jay Gopalakrishnan
- Institute of Human Genetics, Universitätsklinikum Düsseldorf, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Joëlle Thomas
- Institut NeuroMyoGène, CNRS UMR 5310, INSERM U1217, Université Claude Bernard Lyon 1, Lyon, France
| | - Bénédicte Durand
- Institut NeuroMyoGène, CNRS UMR 5310, INSERM U1217, Université Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
15
|
Atoh1 Controls Primary Cilia Formation to Allow for SHH-Triggered Granule Neuron Progenitor Proliferation. Dev Cell 2019; 48:184-199.e5. [PMID: 30695697 DOI: 10.1016/j.devcel.2018.12.017] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 10/11/2018] [Accepted: 12/19/2018] [Indexed: 11/23/2022]
Abstract
During cerebellar development, granule neuron progenitors (GNPs) proliferate by transducing Sonic Hedgehog (SHH) signaling via the primary cilium. Precise regulation of ciliogenesis, thus, ensures proper GNP pool expansion. Here, we report that Atoh1, a transcription factor required for GNPs formation, controls the presence of primary cilia, maintaining GNPs responsiveness to SHH. Loss of primary cilia abolishes the ability of Atoh1 to keep GNPs in a proliferative state. Mechanistically, Atoh1 promotes ciliogenesis by transcriptionally regulating Cep131, which facilitates centriolar satellite (CS) clustering to the basal body. Importantly, ectopic expression of Cep131 counteracts the effects of Atoh1 loss in GNPs by restoring proper localization of CS and ciliogenesis. This Atoh1-CS-primary cilium-SHH pro-proliferative pathway is also conserved in SHH-type medulloblastoma, a pediatric brain tumor arising from the GNPs. Together, our data reveal how Atoh1 modulates the primary cilium to regulate GNPs development.
Collapse
|
16
|
Muñoz IM, Morgan ME, Peltier J, Weiland F, Gregorczyk M, Brown FC, Macartney T, Toth R, Trost M, Rouse J. Phosphoproteomic screening identifies physiological substrates of the CDKL5 kinase. EMBO J 2018; 37:embj.201899559. [PMID: 30266825 PMCID: PMC6293279 DOI: 10.15252/embj.201899559] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 08/14/2018] [Accepted: 09/10/2018] [Indexed: 12/21/2022] Open
Abstract
Mutations in the gene encoding the protein kinase CDKL5 cause a debilitating neurodevelopmental disease termed CDKL5 disorder. The impact of these mutations on CDKL5 function is poorly understood because the substrates and cellular processes controlled by CDKL5 are unclear. Here, we describe a quantitative phosphoproteomic screening which identified MAP1S, CEP131 and DLG5—regulators of microtubule and centrosome function—as cellular substrates of CDKL5. Antibodies against MAP1S phospho‐Ser900 and CEP131 phospho‐Ser35 confirmed CDKL5‐dependent phosphorylation of these targets in human cells. The phospho‐acceptor serine residues in MAP1S, CEP131 and DLG5 lie in the motif RPXSA, although CDKL5 can tolerate residues other than Ala immediately C‐terminal to the phospho‐acceptor serine. We provide insight into the control of CDKL5 activity and show that pathogenic mutations in CDKL5 cause a major reduction in CDKL5 activity in vitro and in cells. These data reveal the first cellular substrates of CDKL5, which may represent important biomarkers in the diagnosis and treatment of CDKL5 disorder, and illuminate the functions of this poorly characterized kinase.
Collapse
Affiliation(s)
- Ivan M Muñoz
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
| | - Michael E Morgan
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
| | - Julien Peltier
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK.,Faculty of Medical Sciences, Institute for Cell and Molecular Biosciences, Newcastle upon Tyne, UK
| | - Florian Weiland
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
| | - Mateusz Gregorczyk
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
| | - Fiona Cm Brown
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
| | - Thomas Macartney
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
| | - Rachel Toth
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
| | - Matthias Trost
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK .,Faculty of Medical Sciences, Institute for Cell and Molecular Biosciences, Newcastle upon Tyne, UK
| | - John Rouse
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
| |
Collapse
|
17
|
Sydor AM, Coyaud E, Rovelli C, Laurent E, Liu H, Raught B, Mennella V. PPP1R35 is a novel centrosomal protein that regulates centriole length in concert with the microcephaly protein RTTN. eLife 2018; 7:37846. [PMID: 30168418 PMCID: PMC6141234 DOI: 10.7554/elife.37846] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 08/21/2018] [Indexed: 01/02/2023] Open
Abstract
Centrosome structure, function, and number are finely regulated at the cellular level to ensure normal mammalian development. Here, we characterize PPP1R35 as a novel bona fide centrosomal protein and demonstrate that it is critical for centriole elongation. Using quantitative super-resolution microscopy mapping and live-cell imaging we show that PPP1R35 is a resident centrosomal protein located in the proximal lumen above the cartwheel, a region of the centriole that has eluded detailed characterization. Loss of PPP1R35 function results in decreased centrosome number and shortened centrioles that lack centriolar distal and microtubule wall associated proteins required for centriole elongation. We further demonstrate that PPP1R35 acts downstream of, and forms a complex with, RTTN, a microcephaly protein required for distal centriole elongation. Altogether, our study identifies a novel step in the centriole elongation pathway centered on PPP1R35 and elucidates downstream partners of the microcephaly protein RTTN.
Collapse
Affiliation(s)
| | - Etienne Coyaud
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Cristina Rovelli
- Cell Biology Program, The Hospital for Sick Children, Toronto, Canada
| | - Estelle Laurent
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Helen Liu
- Cell Biology Program, The Hospital for Sick Children, Toronto, Canada
| | - Brian Raught
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada.,Department of Medical Biophysics, University of Toronto, Ontario, Canada
| | - Vito Mennella
- Cell Biology Program, The Hospital for Sick Children, Toronto, Canada.,Department of Biochemistry, University of Toronto, Ontario, Canada
| |
Collapse
|
18
|
Neitzel LR, Broadus MR, Zhang N, Sawyer L, Wallace HA, Merkle JA, Jodoin JN, Sitaram P, Crispi EE, Rork W, Lee LA, Pan D, Gould KL, Page-McCaw A, Lee E. Characterization of a cdc14 null allele in Drosophila melanogaster. Biol Open 2018; 7:bio.035394. [PMID: 29945873 PMCID: PMC6078348 DOI: 10.1242/bio.035394] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Cdc14 is an evolutionarily conserved serine/threonine phosphatase. Originally identified in Saccharomyces cerevisiae as a cell cycle regulator, its role in other eukaryotic organisms remains unclear. In Drosophila melanogaster, Cdc14 is encoded by a single gene, thus facilitating its study. We found that Cdc14 expression is highest in the testis of adult flies and that cdc14 null flies are viable. cdc14 null female and male flies do not display altered fertility. cdc14 null males, however, exhibit decreased sperm competitiveness. Previous studies have shown that Cdc14 plays a role in ciliogenesis during zebrafish development. In Drosophila, sensory neurons are ciliated. We found that the Drosophila cdc14 null mutants have defects in chemosensation and mechanosensation as indicated by decreased avoidance of repellant substances and decreased response to touch. In addition, we show that cdc14 null mutants have defects in lipid metabolism and resistance to starvation. These studies highlight the diversity of Cdc14 function in eukaryotes despite its structural conservation. Summary: The Cdc14 phosphatase has been implicated in cell cycle regulation in S. cerevisiae. We show that Drosophila cdc14 mutants are viable, but exhibit defects in sperm competition, chemosensation, and mechanosensation.
Collapse
Affiliation(s)
- Leif R Neitzel
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Program in Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Matthew R Broadus
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Nailing Zhang
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9040, USA
| | - Leah Sawyer
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Heather A Wallace
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Division of Genetics, Brigham and Women's Hospital, Boston, MA 02115, USA.,Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Julie A Merkle
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Jeanne N Jodoin
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Poojitha Sitaram
- Department of Microbiology, New York University Langone Medical Center, New York, NY 10016, USA
| | - Emily E Crispi
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - William Rork
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Laura A Lee
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Duojia Pan
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9040, USA
| | - Kathleen L Gould
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Andrea Page-McCaw
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA .,Program in Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.,Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Ethan Lee
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA .,Program in Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.,Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
19
|
Reina J, Gottardo M, Riparbelli MG, Llamazares S, Callaini G, Gonzalez C. Centrobin is essential for C-tubule assembly and flagellum development in Drosophila melanogaster spermatogenesis. J Cell Biol 2018; 217:2365-2372. [PMID: 29712734 PMCID: PMC6028543 DOI: 10.1083/jcb.201801032] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 04/16/2018] [Accepted: 04/24/2018] [Indexed: 12/15/2022] Open
Abstract
This work shows that Centrobin (CNB) mutant males assemble aberrant basal bodies and do not produce functional sperm. It also shows that CNB can act as a positive or negative regulator of ciliogenesis in a cell type–dependent manner. Centrobin homologues identified in different species localize on daughter centrioles. In Drosophila melanogaster sensory neurons, Centrobin (referred to as CNB in Drosophila) inhibits basal body function. These data open the question of CNB’s role in spermatocytes, where daughter and mother centrioles become basal bodies. In this study, we report that in these cells, CNB localizes equally to mother and daughter centrioles and is essential for C-tubules to attain the right position and remain attached to B-tubules as well as for centrioles to grow in length. CNB appears to be dispensable for meiosis, but flagellum development is severely compromised in Cnb mutant males. Remarkably, three N-terminal POLO phosphorylation sites that are critical for CNB function in neuroblasts are dispensable for spermatogenesis. Our results underpin the multifunctional nature of CNB that plays different roles in different cell types in Drosophila, and they identify CNB as an essential component for C-tubule assembly and flagellum development in Drosophila spermatogenesis.
Collapse
Affiliation(s)
- Jose Reina
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Marco Gottardo
- Department of Life Sciences, University of Siena, Siena, Italy
| | | | - Salud Llamazares
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | | | - Cayetano Gonzalez
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain .,Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| |
Collapse
|
20
|
Aydogan MG, Wainman A, Saurya S, Steinacker TL, Caballe A, Novak ZA, Baumbach J, Muschalik N, Raff JW. A homeostatic clock sets daughter centriole size in flies. J Cell Biol 2018; 217:1233-1248. [PMID: 29500190 PMCID: PMC5881511 DOI: 10.1083/jcb.201801014] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 01/23/2018] [Accepted: 01/26/2018] [Indexed: 12/13/2022] Open
Abstract
Centrioles are highly structured organelles whose size is remarkably consistent within any given cell type. New centrioles are born when Polo-like kinase 4 (Plk4) recruits Ana2/STIL and Sas-6 to the side of an existing "mother" centriole. These two proteins then assemble into a cartwheel, which grows outwards to form the structural core of a new daughter. Here, we show that in early Drosophila melanogaster embryos, daughter centrioles grow at a linear rate during early S-phase and abruptly stop growing when they reach their correct size in mid- to late S-phase. Unexpectedly, the cartwheel grows from its proximal end, and Plk4 determines both the rate and period of centriole growth: the more active the centriolar Plk4, the faster centrioles grow, but the faster centriolar Plk4 is inactivated and growth ceases. Thus, Plk4 functions as a homeostatic clock, establishing an inverse relationship between growth rate and period to ensure that daughter centrioles grow to the correct size.
Collapse
Affiliation(s)
- Mustafa G Aydogan
- Sir William Dunn School of Pathology, University of Oxford, Oxford, England, UK
| | - Alan Wainman
- Sir William Dunn School of Pathology, University of Oxford, Oxford, England, UK
- Micron Oxford Advanced Bioimaging Unit, Department of Biochemistry, University of Oxford, Oxford, England, UK
| | - Saroj Saurya
- Sir William Dunn School of Pathology, University of Oxford, Oxford, England, UK
| | - Thomas L Steinacker
- Sir William Dunn School of Pathology, University of Oxford, Oxford, England, UK
| | - Anna Caballe
- Sir William Dunn School of Pathology, University of Oxford, Oxford, England, UK
| | - Zsofia A Novak
- Sir William Dunn School of Pathology, University of Oxford, Oxford, England, UK
| | - Janina Baumbach
- Sir William Dunn School of Pathology, University of Oxford, Oxford, England, UK
| | - Nadine Muschalik
- Sir William Dunn School of Pathology, University of Oxford, Oxford, England, UK
| | - Jordan W Raff
- Sir William Dunn School of Pathology, University of Oxford, Oxford, England, UK
| |
Collapse
|
21
|
Liu XH, Yang YF, Fang HY, Wang XH, Zhang MF, Wu DC. CEP131 indicates poor prognosis and promotes cell proliferation and migration in hepatocellular carcinoma. Int J Biochem Cell Biol 2017; 90:1-8. [PMID: 28694105 DOI: 10.1016/j.biocel.2017.07.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 06/23/2017] [Accepted: 07/06/2017] [Indexed: 12/16/2022]
Abstract
Centrosomal proteins have been implicated in the progression of human diseases. CEP131 plays important roles in centrosome duplication and genome stability, but its role in cancers remains largely unknown. Here, we showed that CEP131 expression was increased in hepatocellular carcinoma (HCC), compared to the paracarcinoma tissues, at both mRNA and protein levels. High CEP131 expression was closely associated with tumor size (P=0.020), tumor capsule (P=0.043), TNM stage (P=0.007) and tumor differentiation (P=0.019). Furthermore, patients with high expression of CEP131 were accompanied with worse overall and disease-free survivals in our and TCGA cohorts consisting of a total of 802 cases. The prognostic value of CEP131 was further confirmed by stratified survival analysis. Multivariate cox regression model indicated that CEP131 was an independent factor for overall survival (hazard ratio=1.762, 95% confident interval: 1.443-2.151, P<0.001). In vitro data demonstrated that nucleophosmin (NPM) physically bound to CEP131 and maintained its protein stability. Overexpression of CEP131 in HCC cell lines enhanced cell proliferation and migration, whereas the knockdown of CEP131 led to the opposite phenotypes. Further studies demonstrated that CEP131 exhibited oncogenic activity via activation of PI3K/AKT signaling pathway. Taken together, our findings suggest CEP131 serves as a potential prognostic biomarker in HCC, and functions as an oncogene in this deadly disease.
Collapse
Affiliation(s)
- Xu-Hui Liu
- Department of Emergency, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yu-Feng Yang
- Department of Pathology, Dongguan Third People's Hospital, Dongguan, China
| | - Heng-Ying Fang
- Department of Nursing, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xue-Hua Wang
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Mei-Fang Zhang
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China.
| | - Dan-Chun Wu
- Department of Rheumatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
22
|
Lattao R, Kovács L, Glover DM. The Centrioles, Centrosomes, Basal Bodies, and Cilia of Drosophila melanogaster. Genetics 2017; 206:33-53. [PMID: 28476861 PMCID: PMC5419478 DOI: 10.1534/genetics.116.198168] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 03/24/2017] [Indexed: 12/19/2022] Open
Abstract
Centrioles play a key role in the development of the fly. They are needed for the correct formation of centrosomes, the organelles at the poles of the spindle that can persist as microtubule organizing centers (MTOCs) into interphase. The ability to nucleate cytoplasmic microtubules (MTs) is a property of the surrounding pericentriolar material (PCM). The centriole has a dual life, existing not only as the core of the centrosome but also as the basal body, the structure that templates the formation of cilia and flagellae. Thus the structure and functions of the centriole, the centrosome, and the basal body have an impact upon many aspects of development and physiology that can readily be modeled in Drosophila Centrosomes are essential to give organization to the rapidly increasing numbers of nuclei in the syncytial embryo and for the spatially precise execution of cell division in numerous tissues, particularly during male meiosis. Although mitotic cell cycles can take place in the absence of centrosomes, this is an error-prone process that opens up the fly to developmental defects and the potential of tumor formation. Here, we review the structure and functions of the centriole, the centrosome, and the basal body in different tissues and cultured cells of Drosophila melanogaster, highlighting their contributions to different aspects of development and cell division.
Collapse
Affiliation(s)
- Ramona Lattao
- Department of Genetics, University of Cambridge, CB2 3EH, United Kingdom
| | - Levente Kovács
- Department of Genetics, University of Cambridge, CB2 3EH, United Kingdom
| | - David M Glover
- Department of Genetics, University of Cambridge, CB2 3EH, United Kingdom
| |
Collapse
|
23
|
Gonçalves J, Pelletier L. The Ciliary Transition Zone: Finding the Pieces and Assembling the Gate. Mol Cells 2017; 40:243-253. [PMID: 28401750 PMCID: PMC5424270 DOI: 10.14348/molcells.2017.0054] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 04/05/2017] [Indexed: 12/23/2022] Open
Abstract
Eukaryotic cilia are organelles that project from the surface of cells to fulfill motility and sensory functions. In vertebrates, the functions of both motile and immotile cilia are critical for embryonic development and adult tissue homeostasis. Importantly, a multitude of human diseases is caused by abnormal cilia biogenesis and functions which rely on the compartmentalization of the cilium and the maintenance of its protein composition. The transition zone (TZ) is a specialized ciliary domain present at the base of the cilium and is part of a gate that controls protein entry and exit from this organelle. The relevance of the TZ is highlighted by the fact that several of its components are coded by ciliopathy genes. Here we review recent developments in the study of TZ proteomes, the mapping of individual components to the TZ structure and the establishment of the TZ as a lipid gate.
Collapse
Affiliation(s)
- João Gonçalves
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5,
Canada
| | - Laurence Pelletier
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5,
Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8,
Canada
| |
Collapse
|
24
|
USP9X regulates centrosome duplication and promotes breast carcinogenesis. Nat Commun 2017; 8:14866. [PMID: 28361952 PMCID: PMC5380967 DOI: 10.1038/ncomms14866] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Accepted: 01/31/2017] [Indexed: 12/23/2022] Open
Abstract
Defective centrosome duplication is implicated in microcephaly and primordial dwarfism as well as various ciliopathies and cancers. Yet, how the centrosome biogenesis is regulated remains poorly understood. Here we report that the X-linked deubiquitinase USP9X is physically associated with centriolar satellite protein CEP131, thereby stabilizing CEP131 through its deubiquitinase activity. We demonstrate that USP9X is an integral component of centrosome and is required for centrosome biogenesis. Loss-of-function of USP9X impairs centrosome duplication and gain-of-function of USP9X promotes centrosome amplification and chromosome instability. Significantly, USP9X is overexpressed in breast carcinomas, and its level of expression is correlated with that of CEP131 and higher histologic grades of breast cancer. Indeed, USP9X, through regulation of CEP131 abundance, promotes breast carcinogenesis. Our experiments identify USP9X as an important regulator of centrosome biogenesis and uncover a critical role for USP9X/CEP131 in breast carcinogenesis, supporting the pursuit of USP9X/CEP131 as potential targets for breast cancer intervention. USP9X is a deubiquitinating enzyme with many known substrates and functions; it has been linked to cancer but the mechanisms remain unclear. Here Li et al. report that USP9X stabilizes the centrosomal protein CEP131 leading to centrosome amplification and breast cancer development.
Collapse
|
25
|
Hoang-Minh LB, Deleyrolle LP, Nakamura NS, Parker AK, Martuscello RT, Reynolds BA, Sarkisian MR. PCM1 Depletion Inhibits Glioblastoma Cell Ciliogenesis and Increases Cell Death and Sensitivity to Temozolomide. Transl Oncol 2016; 9:392-402. [PMID: 27661404 PMCID: PMC5035360 DOI: 10.1016/j.tranon.2016.08.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 08/08/2016] [Accepted: 08/12/2016] [Indexed: 01/09/2023] Open
Abstract
A better understanding of the molecules implicated in the growth and survival of glioblastoma (GBM) cells and their response to temozolomide (TMZ), the standard-of-care chemotherapeutic agent, is necessary for the development of new therapies that would improve the outcome of current GBM treatments. In this study, we characterize the role of pericentriolar material 1 (PCM1), a component of centriolar satellites surrounding centrosomes, in GBM cell proliferation and sensitivity to genotoxic agents such as TMZ. We show that PCM1 is expressed around centrioles and ciliary basal bodies in patient GBM biopsies and derived cell lines and that its localization is dynamic throughout the cell cycle. To test whether PCM1 mediates GBM cell proliferation and/or response to TMZ, we used CRISPR/Cas9 genome editing to generate primary GBM cell lines depleted of PCM1. These PCM1-depleted cells displayed reduced AZI1 satellite protein localization and significantly decreased proliferation, which was attributable to increased apoptotic cell death. Furthermore, PCM1-depleted lines were more sensitive to TMZ toxicity than control lines. The increase in TMZ sensitivity may be partly due to the reduced ability of PCM1-depleted cells to form primary cilia, as depletion of KIF3A also ablated GBM cells' ciliogenesis and increased their sensitivity to TMZ while preserving PCM1 localization. In addition, the co-depletion of KIF3A and PCM1 did not have any additive effect on TMZ sensitivity. Together, our data suggest that PCM1 plays multiple roles in GBM pathogenesis and that associated pathways could be targeted to augment current or future anti-GBM therapies.
Collapse
Affiliation(s)
- Lan B Hoang-Minh
- Department of Neuroscience, University of Florida College of Medicine, McKnight Brain Institute, Gainesville, FL 32610, USA; Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida College of Medicine, McKnight Brain Institute, Gainesville, FL 32610, USA
| | - Loic P Deleyrolle
- Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida College of Medicine, McKnight Brain Institute, Gainesville, FL 32610, USA; Department of Neurosurgery, University of Florida College of Medicine, McKnight Brain Institute, Gainesville, FL 32610, USA
| | - Nariaki S Nakamura
- Department of Neuroscience, University of Florida College of Medicine, McKnight Brain Institute, Gainesville, FL 32610, USA
| | - Alexander K Parker
- Department of Neuroscience, University of Florida College of Medicine, McKnight Brain Institute, Gainesville, FL 32610, USA
| | - Regina T Martuscello
- Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida College of Medicine, McKnight Brain Institute, Gainesville, FL 32610, USA; Department of Neurosurgery, University of Florida College of Medicine, McKnight Brain Institute, Gainesville, FL 32610, USA
| | - Brent A Reynolds
- Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida College of Medicine, McKnight Brain Institute, Gainesville, FL 32610, USA; Department of Neurosurgery, University of Florida College of Medicine, McKnight Brain Institute, Gainesville, FL 32610, USA
| | - Matthew R Sarkisian
- Department of Neuroscience, University of Florida College of Medicine, McKnight Brain Institute, Gainesville, FL 32610, USA; Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida College of Medicine, McKnight Brain Institute, Gainesville, FL 32610, USA.
| |
Collapse
|
26
|
Vieillard J, Paschaki M, Duteyrat JL, Augière C, Cortier E, Lapart JA, Thomas J, Durand B. Transition zone assembly and its contribution to axoneme formation in Drosophila male germ cells. J Cell Biol 2016; 214:875-89. [PMID: 27646273 PMCID: PMC5037411 DOI: 10.1083/jcb.201603086] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 08/26/2016] [Indexed: 01/04/2023] Open
Abstract
Ciliary transition zone (TZ) assembly is complex and incompletely understood. Vieillard et al. show that Drosophila Cby and Dila cooperate to assemble the TZ and membrane cap, which, together with microtubule remodeling by kinesin-13, is required for axoneme formation in male germ cells. The ciliary transition zone (TZ) is a complex structure found at the cilia base. Defects in TZ assembly are associated with human ciliopathies. In most eukaryotes, three protein complexes (CEP290, NPHP, and MKS) cooperate to build the TZ. We show that in Drosophila melanogaster, mild TZ defects are observed in the absence of MKS components. In contrast, Cby and Azi1 cooperate to build the TZ by acting upstream of Cep290 and MKS components. Without Cby and Azi1, centrioles fail to form the TZ, precluding sensory cilia assembly, and no ciliary membrane cap associated with sperm ciliogenesis is made. This ciliary cap is critical to recruit the tubulin-depolymerizing kinesin Klp59D, required for regulation of axonemal growth. Our results show that Drosophila TZ assembly in sensory neurons and male germ cells involves cooperative actions of Cby and Dila. They further reveal that temporal control of membrane cap assembly by TZ components and microtubule elongation by kinesin-13 is required for axoneme formation in male germ cells.
Collapse
Affiliation(s)
- Jennifer Vieillard
- Université Claude Bernard Lyon 1, Institut National de la Santé et de la Recherche Médicale U1217, Institut NeuroMyoGène, Centre National de la Recherche Scientifique UMR 5310, F-69100 Lyon, France
| | - Marie Paschaki
- Université Claude Bernard Lyon 1, Institut National de la Santé et de la Recherche Médicale U1217, Institut NeuroMyoGène, Centre National de la Recherche Scientifique UMR 5310, F-69100 Lyon, France
| | - Jean-Luc Duteyrat
- Université Claude Bernard Lyon 1, Institut National de la Santé et de la Recherche Médicale U1217, Institut NeuroMyoGène, Centre National de la Recherche Scientifique UMR 5310, F-69100 Lyon, France
| | - Céline Augière
- Université Claude Bernard Lyon 1, Institut National de la Santé et de la Recherche Médicale U1217, Institut NeuroMyoGène, Centre National de la Recherche Scientifique UMR 5310, F-69100 Lyon, France
| | - Elisabeth Cortier
- Université Claude Bernard Lyon 1, Institut National de la Santé et de la Recherche Médicale U1217, Institut NeuroMyoGène, Centre National de la Recherche Scientifique UMR 5310, F-69100 Lyon, France
| | - Jean-André Lapart
- Université Claude Bernard Lyon 1, Institut National de la Santé et de la Recherche Médicale U1217, Institut NeuroMyoGène, Centre National de la Recherche Scientifique UMR 5310, F-69100 Lyon, France
| | - Joëlle Thomas
- Université Claude Bernard Lyon 1, Institut National de la Santé et de la Recherche Médicale U1217, Institut NeuroMyoGène, Centre National de la Recherche Scientifique UMR 5310, F-69100 Lyon, France
| | - Bénédicte Durand
- Université Claude Bernard Lyon 1, Institut National de la Santé et de la Recherche Médicale U1217, Institut NeuroMyoGène, Centre National de la Recherche Scientifique UMR 5310, F-69100 Lyon, France
| |
Collapse
|
27
|
Pratt MB, Titlow JS, Davis I, Barker AR, Dawe HR, Raff JW, Roque H. Drosophila sensory cilia lacking MKS proteins exhibit striking defects in development but only subtle defects in adults. J Cell Sci 2016; 129:3732-3743. [PMID: 27577095 PMCID: PMC5087661 DOI: 10.1242/jcs.194621] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 08/19/2016] [Indexed: 01/05/2023] Open
Abstract
Cilia are conserved organelles that have important motility, sensory and signalling roles. The transition zone (TZ) at the base of the cilium is crucial for cilia function, and defects in several TZ proteins are associated with human congenital ciliopathies such as nephronophthisis (NPHP) and Meckel-Gruber syndrome (MKS). In several species, MKS and NPHP proteins form separate complexes that cooperate with Cep290 to assemble the TZ, but flies seem to lack core components of the NPHP module. We show that MKS proteins in flies are spatially separated from Cep290 at the TZ, and that flies mutant for individual MKS genes fail to recruit other MKS proteins to the TZ, whereas Cep290 seems to be recruited normally. Although there are abnormalities in microtubule and membrane organisation in developing MKS mutant cilia, these defects are less apparent in adults, where sensory cilia and sperm flagella seem to function quite normally. Thus, localising MKS proteins to the cilium or flagellum is not essential for viability or fertility in flies.
Collapse
Affiliation(s)
- Metta B Pratt
- The Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Joshua S Titlow
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Ilan Davis
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Amy R Barker
- Centre for Microvascular Research, William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Helen R Dawe
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK
| | - Jordan W Raff
- The Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Helio Roque
- The Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| |
Collapse
|
28
|
Jana SC, Bettencourt-Dias M, Durand B, Megraw TL. Drosophila melanogaster as a model for basal body research. Cilia 2016; 5:22. [PMID: 27382461 PMCID: PMC4932733 DOI: 10.1186/s13630-016-0041-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 04/01/2016] [Indexed: 01/09/2023] Open
Abstract
The fruit fly, Drosophila melanogaster, is one of the most extensively studied organisms in biological research and has centrioles/basal bodies and cilia that can be modelled to investigate their functions in animals generally. Centrioles are nine-fold symmetrical microtubule-based cylindrical structures required to form centrosomes and also to nucleate the formation of cilia and flagella. When they function to template cilia, centrioles transition into basal bodies. The fruit fly has various types of basal bodies and cilia, which are needed for sensory neuron and sperm function. Genetics, cell biology and behaviour studies in the fruit fly have unveiled new basal body components and revealed different modes of assembly and functions of basal bodies that are conserved in many other organisms, including human, green algae and plasmodium. Here we describe the various basal bodies of Drosophila, what is known about their composition, structure and function.
Collapse
Affiliation(s)
- Swadhin Chandra Jana
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, número 6, 2780-156 Oeiras, Portugal
| | | | - Bénédicte Durand
- Institut NeuroMyogène, CNRS UMR-5310 INSERM-U1217, Université Claude Bernard Lyon-1, Lyon, Villeurbanne, France
| | - Timothy L Megraw
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL 32306 USA
| |
Collapse
|
29
|
Abstract
Centrioles and cilia are highly conserved eukaryotic organelles. Drosophila melanogaster is a powerful genetic and cell biology model organism, extensively used to discover underlying mechanisms of centrosome and cilia biogenesis and function. Defects in centrosomes and cilia reduce fertility and affect different sensory functions, such as proprioception, olfaction, and hearing. The fly possesses a large diversity of ciliary structures and assembly modes, such as motile, immotile, and intraflagellar transport (IFT)-independent or IFT-dependent assembly. Moreover, all the diverse ciliated cells harbor centrioles at the base of the cilia, called basal bodies, making the fly an attractive model to better understand the biology of this organelle. This chapter describes protocols to visualize centrosomes and cilia by fluorescence and electron microscopy.
Collapse
|
30
|
Gottardo M, Callaini G, Riparbelli MG. Aurora A inhibition by MNL8054 promotes centriole elongation during Drosophila male meiosis. Cell Cycle 2015; 14:2844-52. [PMID: 25785740 DOI: 10.1080/15384101.2015.1026488] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Aurora A kinase plays an important role in several aspects of cell division, including centrosome maturation and separation, a crucial step for the correct organization of the bipolar spindle. Although it has long been showed that this kinase accumulates at the centrosome throughout mitosis its precise contribution to centriole biogenesis and structure has until now not been reported. It is not surprising that so little is known, due to the small size of somatic centrioles, where only dramatic structural changes may be identified by careful electron microscopy analysis. Conversely, centrioles of Drosophila primary spermatocytes increase tenfold in length during the first prophase, thus making any change easily detectable. Therefore, we examined the consequence of the pharmacological inhibition of Aurora A by MLN8054 on centriole biogenesis during early Drosophila gametogenesis. Here, we show that depletion of this kinase results in longer centrioles, mainly during transition from prophase to prometaphase of the first meiosis. We also found abnormal ciliogenesis characterized by irregularly growing axonemal doublets. Our results represent the first documentation of a potential requirement of Aurora A in centriole integrity and elongation.
Collapse
Affiliation(s)
- Marco Gottardo
- a Department of Life Sciences ; University of Siena ; Siena , Italy
| | | | | |
Collapse
|
31
|
Abstract
Drosophila melanogaster is a powerful genetic model organism to understand the function of proteins in specific cellular processes. Cilia have been extensively studied in Drosophila playing various sensory functions that are essential for fly survival. Indeed, flies defective in cilia formation cannot walk, fly, or feed properly. Drosophila harbors different types of cilia that can be motile or immotile or that can show compartimentalized (intraflagellar transport (IFT)-dependent) or cytoplasmic (IFT-independent) mode of assembly. Therefore, Drosophila represents an advantageous model organism to study the function of novel ciliary candidates and to address specific questions such as their requirement for IFT-dependent processes versus other aspects of cilia-associated functions. This chapter describes protocols to visualize cilia by direct or indirect fluorescent labeling and protocols to analyze ciliary ultrastructure by electron microscopy.
Collapse
|
32
|
Tollenaere MAX, Mailand N, Bekker-Jensen S. Centriolar satellites: key mediators of centrosome functions. Cell Mol Life Sci 2015; 72:11-23. [PMID: 25173771 PMCID: PMC11114028 DOI: 10.1007/s00018-014-1711-3] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 08/01/2014] [Accepted: 08/25/2014] [Indexed: 01/18/2023]
Abstract
Centriolar satellites are small, microscopically visible granules that cluster around centrosomes. These structures, which contain numerous proteins directly involved in centrosome maintenance, ciliogenesis, and neurogenesis, have traditionally been viewed as vehicles for protein trafficking towards the centrosome. However, the recent identification of several new centriolar satellite components suggests that this model offers only an incomplete picture of their cellular functions. While the mechanisms controlling centriolar satellite status and function are not yet understood in detail, emerging evidence points to these structures as important hubs for dynamic, multi-faceted regulation in response to a variety of cues. In this review, we summarize the current knowledge of the roles of centriolar satellites in regulating centrosome functions, ciliogenesis, and neurogenesis. We also highlight newly discovered regulatory mechanisms targeting centriolar satellites and their functional status, and we discuss how defects in centriolar satellite components are intimately linked to a wide spectrum of human diseases.
Collapse
Affiliation(s)
- Maxim A. X. Tollenaere
- Faculty of Health Sciences, Ubiquitin Signaling Group, The Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Niels Mailand
- Faculty of Health Sciences, Ubiquitin Signaling Group, The Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Simon Bekker-Jensen
- Faculty of Health Sciences, Ubiquitin Signaling Group, The Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| |
Collapse
|
33
|
Basiri ML, Ha A, Chadha A, Clark NM, Polyanovsky A, Cook B, Avidor-Reiss T. A migrating ciliary gate compartmentalizes the site of axoneme assembly in Drosophila spermatids. Curr Biol 2014; 24:2622-31. [PMID: 25447994 DOI: 10.1016/j.cub.2014.09.047] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 08/27/2014] [Accepted: 09/16/2014] [Indexed: 01/07/2023]
Abstract
BACKGROUND In most cells, the cilium is formed within a compartment separated from the cytoplasm. Entry into the ciliary compartment is regulated by a specialized gate located at the base of the cilium in a region known as the transition zone. The transition zone is closely associated with multiple structures of the ciliary base, including the centriole, axoneme, and ciliary membrane. However, the contribution of these structures to the ciliary gate remains unclear. RESULTS Here we report that, in Drosophila spermatids, a conserved module of transition zone proteins mutated in Meckel-Gruber syndrome (MKS), including Cep290, Mks1, B9d1, and B9d2, comprise a ciliary gate that continuously migrates away from the centriole to compartmentalize the growing axoneme tip. We show that Cep290 is essential for transition zone composition, compartmentalization of the axoneme tip, and axoneme integrity and find that MKS proteins also delimit a centriole-independent compartment in mouse spermatids. CONCLUSIONS Our findings demonstrate that the ciliary gate can migrate away from the base of the cilium, thereby functioning independently of the centriole and of a static interaction with the axoneme to compartmentalize the site of axoneme assembly.
Collapse
Affiliation(s)
- Marcus L Basiri
- Department of Biological Sciences, University of Toledo, 3050 W. Towerview Boulevard, Toledo, OH 43606, USA
| | - Andrew Ha
- Department of Biological Sciences, University of Toledo, 3050 W. Towerview Boulevard, Toledo, OH 43606, USA
| | - Abhishek Chadha
- Department of Cell Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Nicole M Clark
- Department of Biological Sciences, University of Toledo, 3050 W. Towerview Boulevard, Toledo, OH 43606, USA
| | - Andrey Polyanovsky
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Prospekt Toreza, 44, 194223 St. Petersburg, Russia
| | - Boaz Cook
- Department of Cell Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Tomer Avidor-Reiss
- Department of Biological Sciences, University of Toledo, 3050 W. Towerview Boulevard, Toledo, OH 43606, USA.
| |
Collapse
|
34
|
Acentrosomal Drosophila epithelial cells exhibit abnormal cell division, leading to cell death and compensatory proliferation. Dev Cell 2014; 30:731-45. [PMID: 25241934 DOI: 10.1016/j.devcel.2014.08.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 07/01/2014] [Accepted: 08/07/2014] [Indexed: 12/14/2022]
Abstract
Mitotic spindles are critical for accurate chromosome segregation. Centrosomes, the primary microtubule nucleating centers of animal cells, play key roles in forming and orienting mitotic spindles. However, the survival of Drosophila without centrosomes suggested they are dispensable in somatic cells, challenging the canonical view. We used fly wing disc epithelia as a model to resolve these conflicting hypotheses, revealing that centrosomes play vital roles in spindle assembly, function, and orientation. Many acentrosomal cells exhibit prolonged spindle assembly, chromosome missegregation, DNA damage, misoriented divisions, and eventual apoptosis. We found that multiple mechanisms buffer the effects of centrosome loss, including alternative microtubule nucleation pathways and the spindle assembly checkpoint. Apoptosis of acentrosomal cells is mediated by JNK signaling, which also drives compensatory proliferation to maintain tissue integrity and viability. These data reveal the importance of centrosomes in fly epithelia and demonstrate the robust compensatory mechanisms at the cellular and organismal level.
Collapse
|
35
|
Bokolia NP, Mishra M. Hearing molecules, mechanism and transportation: modeled in Drosophila melanogaster. Dev Neurobiol 2014; 75:109-30. [PMID: 25081222 DOI: 10.1002/dneu.22221] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 07/29/2014] [Accepted: 07/29/2014] [Indexed: 01/19/2023]
Abstract
Mechanosensory transduction underlies the perception of touch, sound and acceleration. The mechanical signals exist in the environment are resensed by the specialized mechanosensory cells, which convert the external forces into the electrical signals. Hearing is a magnificent example that relies on the mechanotransduction mediated by the auditory cells, for example the inner-ear hair cells in vertebrates and the Johnston's organ (JO) in fly. Previous studies have shown the fundamental physiological processes in the fly and vertebrate auditory organs are similar, suggesting that there might be a set of similar molecules underlying these processes. The molecular studies of the fly JO have been shown to be remarkably successful in discovering the developmental and functional genes that provided further implications in vertebrates. Several evolutionarily conserved molecules and signaling pathways have been shown to govern the development of the auditory organs in both vertebrates and invertebrates. The current review describes the similarities and differences between the vertebrate and fly auditory organs at developmental, structural, molecular, and transportation levels.
Collapse
Affiliation(s)
- Naveen Prakash Bokolia
- Department of Life Science, National Institute of Technology Rourkela, Rourkela, Orissa, India
| | | |
Collapse
|
36
|
Staples CJ, Myers KN, Beveridge RDD, Patil AA, Howard AE, Barone G, Lee AJX, Swanton C, Howell M, Maslen S, Skehel JM, Boulton SJ, Collis SJ. Ccdc13 is a novel human centriolar satellite protein required for ciliogenesis and genome stability. J Cell Sci 2014; 127:2910-9. [PMID: 24816561 DOI: 10.1242/jcs.147785] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2024] Open
Abstract
Here, we identify coiled-coil domain-containing protein 13 (Ccdc13) in a genome-wide RNA interference screen for regulators of genome stability. We establish that Ccdc13 is a newly identified centriolar satellite protein that interacts with PCM1, Cep290 and pericentrin and prevents the accumulation of DNA damage during mitotic transit. Depletion of Ccdc13 results in the loss of microtubule organisation in a manner similar to PCM1 and Cep290 depletion, although Ccdc13 is not required for satellite integrity. We show that microtubule regrowth is enhanced in Ccdc13-depleted cells, but slowed in cells that overexpress Ccdc13. Furthermore, in serum-starved cells, Ccdc13 localises to the basal body, is required for primary cilia formation and promotes the localisation of the ciliopathy protein BBS4 to both centriolar satellites and cilia. These data highlight the emerging link between DNA damage response factors, centriolar and peri-centriolar satellites and cilia-associated proteins and implicate Ccdc13 as a centriolar satellite protein that functions to promote both genome stability and cilia formation.
Collapse
Affiliation(s)
- Christopher J Staples
- Genome Stability Group, CR-UK/YCR Sheffield Cancer Research Centre, Department of Oncology, Academic Unit of Molecular Oncology, University of Sheffield Medical School, Beech Hill Road, Sheffield S10 2RX, UK
| | - Katie N Myers
- Genome Stability Group, CR-UK/YCR Sheffield Cancer Research Centre, Department of Oncology, Academic Unit of Molecular Oncology, University of Sheffield Medical School, Beech Hill Road, Sheffield S10 2RX, UK
| | - Ryan D D Beveridge
- Genome Stability Group, CR-UK/YCR Sheffield Cancer Research Centre, Department of Oncology, Academic Unit of Molecular Oncology, University of Sheffield Medical School, Beech Hill Road, Sheffield S10 2RX, UK
| | - Abhijit A Patil
- Genome Stability Group, CR-UK/YCR Sheffield Cancer Research Centre, Department of Oncology, Academic Unit of Molecular Oncology, University of Sheffield Medical School, Beech Hill Road, Sheffield S10 2RX, UK
| | - Anna E Howard
- Genome Stability Group, CR-UK/YCR Sheffield Cancer Research Centre, Department of Oncology, Academic Unit of Molecular Oncology, University of Sheffield Medical School, Beech Hill Road, Sheffield S10 2RX, UK
| | - Giancarlo Barone
- Genome Stability Group, CR-UK/YCR Sheffield Cancer Research Centre, Department of Oncology, Academic Unit of Molecular Oncology, University of Sheffield Medical School, Beech Hill Road, Sheffield S10 2RX, UK
| | - Alvin J X Lee
- Translational Cancer Therapeutics Laboratory, Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Charles Swanton
- Translational Cancer Therapeutics Laboratory, Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Michael Howell
- High Throughput Screening Facility, CR-UK London Research Institute, 44 Lincoln's Inn Fields London, WC2A 3LY, UK
| | - Sarah Maslen
- Mass Spectrometry Group, The MRC Laboratory of Molecular Biology, Division of Cell Biology, Hills Road, Cambridge, CB2 0QH, UK
| | - J Mark Skehel
- Mass Spectrometry Group, The MRC Laboratory of Molecular Biology, Division of Cell Biology, Hills Road, Cambridge, CB2 0QH, UK
| | - Simon J Boulton
- DNA CR-UK Damage Response Laboratory, London Research Institute, Clare Hall Laboratories, South Mimms, EN6 3LD, UK
| | - Spencer J Collis
- Genome Stability Group, CR-UK/YCR Sheffield Cancer Research Centre, Department of Oncology, Academic Unit of Molecular Oncology, University of Sheffield Medical School, Beech Hill Road, Sheffield S10 2RX, UK
| |
Collapse
|
37
|
Abstract
The primary cilium compartmentalizes a tiny fraction of the cell surface and volume, yet many proteins are highly enriched in this area and so efficient mechanisms are necessary to concentrate them in the ciliary compartment. Here we review mechanisms that are thought to deliver protein cargo to the base of cilia and are likely to interact with ciliary gating mechanisms. Given the immense variety of ciliary cytosolic and transmembrane proteins, it is almost certain that multiple, albeit frequently interconnected, pathways mediate this process. It is also clear that none of these pathways is fully understood at the present time. Mechanisms that are discussed below facilitate ciliary localization of structural and signaling molecules, which include receptors, G-proteins, ion channels, and enzymes. These mechanisms form a basis for every aspect of cilia function in early embryonic patterning, organ morphogenesis, sensory perception and elsewhere.
Collapse
Affiliation(s)
- Jarema Malicki
- MRC Centre for Developmental and Biomedical Genetics; Department of Biomedical Science; The University of Sheffield; Sheffield, UK
| | | |
Collapse
|
38
|
Singhania A, Grueber WB. Development of the embryonic and larval peripheral nervous system of Drosophila. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2014; 3:193-210. [PMID: 24896657 DOI: 10.1002/wdev.135] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 02/19/2014] [Accepted: 03/05/2014] [Indexed: 01/01/2023]
Abstract
The peripheral nervous system (PNS) of embryonic and larval stage Drosophila consists of diverse types of sensory neurons positioned along the body wall. Sensory neurons, and associated end organs, show highly stereotyped locations and morphologies. Many powerful genetic tools for gene manipulation available in Drosophila make the PNS an advantageous system for elucidating basic principles of neural development. Studies of the Drosophila PNS have provided key insights into molecular mechanisms of cell fate specification, asymmetric cell division, and dendritic morphogenesis. A canonical lineage gives rise to sensory neurons and associated organs, and cells within this lineage are diversified through asymmetric cell divisions. Newly specified sensory neurons develop specific dendritic patterns, which are controlled by numerous factors including transcriptional regulators, interactions with neighboring neurons, and intracellular trafficking systems. In addition, sensory axons show modality specific terminations in the central nervous system, which are patterned by secreted ligands and their receptors expressed by sensory axons. Modality-specific axon projections are critical for coordinated larval behaviors. We review the molecular basis for PNS development and address some of the instances in which the mechanisms and molecules identified are conserved in vertebrate development.
Collapse
Affiliation(s)
- Aditi Singhania
- Department of Genetics and Development, Columbia University Medical Center, New York, NY, USA
| | | |
Collapse
|
39
|
Choksi SP, Lauter G, Swoboda P, Roy S. Switching on cilia: transcriptional networks regulating ciliogenesis. Development 2014; 141:1427-41. [DOI: 10.1242/dev.074666] [Citation(s) in RCA: 205] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cilia play many essential roles in fluid transport and cellular locomotion, and as sensory hubs for a variety of signal transduction pathways. Despite having a conserved basic morphology, cilia vary extensively in their shapes and sizes, ultrastructural details, numbers per cell, motility patterns and sensory capabilities. Emerging evidence indicates that this diversity, which is intimately linked to the different functions that cilia perform, is in large part programmed at the transcriptional level. Here, we review our understanding of the transcriptional control of ciliary biogenesis, highlighting the activities of FOXJ1 and the RFX family of transcriptional regulators. In addition, we examine how a number of signaling pathways, and lineage and cell fate determinants can induce and modulate ciliogenic programs to bring about the differentiation of distinct cilia types.
Collapse
Affiliation(s)
- Semil P. Choksi
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, 138673 Singapore
| | - Gilbert Lauter
- Karolinska Institute, Department of Biosciences and Nutrition, S-141 83 Huddinge, Sweden
| | - Peter Swoboda
- Karolinska Institute, Department of Biosciences and Nutrition, S-141 83 Huddinge, Sweden
| | - Sudipto Roy
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, 138673 Singapore
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, 117543 Singapore
| |
Collapse
|
40
|
Chamling X, Seo S, Searby CC, Kim G, Slusarski DC, Sheffield VC. The centriolar satellite protein AZI1 interacts with BBS4 and regulates ciliary trafficking of the BBSome. PLoS Genet 2014; 10:e1004083. [PMID: 24550735 PMCID: PMC3923683 DOI: 10.1371/journal.pgen.1004083] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 11/19/2013] [Indexed: 11/28/2022] Open
Abstract
Bardet-Biedl syndrome (BBS) is a well-known ciliopathy with mutations reported in 18 different genes. Most of the protein products of the BBS genes localize at or near the primary cilium and the centrosome. Near the centrosome, BBS proteins interact with centriolar satellite proteins, and the BBSome (a complex of seven BBS proteins) is believed to play a role in transporting ciliary membrane proteins. However, the precise mechanism by which BBSome ciliary trafficking activity is regulated is not fully understood. Here, we show that a centriolar satellite protein, AZI1 (also known as CEP131), interacts with the BBSome and regulates BBSome ciliary trafficking activity. Furthermore, we show that AZI1 interacts with the BBSome through BBS4. AZI1 is not involved in BBSome assembly, but accumulation of the BBSome in cilia is enhanced upon AZI1 depletion. Under conditions in which the BBSome does not normally enter cilia, such as in BBS3 or BBS5 depleted cells, knock down of AZI1 with siRNA restores BBSome trafficking to cilia. Finally, we show that azi1 knockdown in zebrafish embryos results in typical BBS phenotypes including Kupffer's vesicle abnormalities and melanosome transport delay. These findings associate AZI1 with the BBS pathway. Our findings provide further insight into the regulation of BBSome ciliary trafficking and identify AZI1 as a novel BBS candidate gene. Bardet-Biedl syndrome (BBS) is a genetically heterogeneous autosomal recessive ciliopathy with 18 causative genes reported to date. The syndrome is characterized by obesity, polydactyly, renal defects, hypogenitalism and retinal degeneration. Previous work has illustrated a role for BBS proteins in the trafficking of ciliary cargo proteins including MCHR1, SSTR3, and dopamine receptor 1. In addition, interaction of BBS proteins with other centriolar satellite proteins has been reported. In order to identify novel BBS interacting proteins and novel BBS candidate genes we generated a transgenic BBS4 mouse. In this study, we utilized the transgenic mice to identify a novel BBSome (a complex of eight BBS proteins) interacting protein, AZI1. We show that AZI1 physically binds to the BBSome via BBS4. We also suggest a negative role of AZI1 in ciliary trafficking of the BBSome: when AZI1 is depleted, more BBSome localizes to cilia. Using zebrafish as a model, we show that azi1 morphants are similar to bbs morphants, a finding that further implicates AZI1 with the BBS pathway. Our findings provide further insight into the regulation of BBSome ciliary trafficking and identify AZI1 as a BBS candidate gene.
Collapse
Affiliation(s)
- Xitiz Chamling
- Department of Pediatrics, University of Iowa Interdisciplinary program of genetics, Iowa City, Iowa, United States of America
| | - Seongjin Seo
- Department of Ophthalmology and Visual Sciences, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| | - Charles C. Searby
- Department of Pediatrics, University of Iowa Interdisciplinary program of genetics, Iowa City, Iowa, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - GunHee Kim
- Department of Pediatrics, University of Iowa Interdisciplinary program of genetics, Iowa City, Iowa, United States of America
| | - Diane C. Slusarski
- Department of Biology, University of Iowa, Iowa City, Iowa, United States of America
| | - Val C. Sheffield
- Department of Pediatrics, University of Iowa Interdisciplinary program of genetics, Iowa City, Iowa, United States of America
- Department of Ophthalmology and Visual Sciences, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
- * E-mail:
| |
Collapse
|
41
|
The extracellular matrix protein artichoke is required for integrity of ciliated mechanosensory and chemosensory organs in Drosophila embryos. Genetics 2014; 196:1091-102. [PMID: 24496014 DOI: 10.1534/genetics.113.156323] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sensory cilia are often encapsulated by an extracellular matrix (ECM). In Caenorhabditis elegans, Drosophila melanogaster, and vertebrates, this ECM is thought to be directly involved in ciliary mechanosensing by coupling external forces to the ciliary membrane. Drosophila mechano- and chemosensory cilia are both associated with an ECM, indicating that the ECM may have additional roles that go beyond mechanosensory cilium function. Here, we identify Artichoke (ATK), an evolutionarily conserved leucine-rich repeat ECM protein that is required for normal morphogenesis and function of ciliated sensilla in Drosophila. atk is transiently expressed in accessory cells in all ciliated sensory organs during their late embryonic development. Antibody stainings show ATK protein in the ECM that surrounds sensory cilia. Loss of ATK protein in atk null mutants leads to cilium deformation and disorientation in chordotonal organs, apparently without uncoupling the cilia from the ECM, and consequently to locomotion defects. Moreover, impaired chemotaxis in atk mutant larvae suggests that, based on ATK protein localization, the ECM is also crucial for the correct assembly of chemosensory receptors. In addition to defining a novel ECM component, our findings show the importance of ECM integrity for the proper morphogenesis of ciliated organs in different sensory modalities.
Collapse
|
42
|
Affiliation(s)
- Moe R. Mahjoub
- Renal Division, Department of Medicine, Washington University, St. Louis, Missouri, United States of America
- Department of Cell Biology and Physiology, Washington University, St. Louis, Missouri, United States of America
- * E-mail: (MRM); (MFT)
| | - Meng-Fu Bryan Tsou
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
- * E-mail: (MRM); (MFT)
| |
Collapse
|
43
|
Hall EA, Keighren M, Ford MJ, Davey T, Jarman AP, Smith LB, Jackson IJ, Mill P. Acute versus chronic loss of mammalian Azi1/Cep131 results in distinct ciliary phenotypes. PLoS Genet 2013; 9:e1003928. [PMID: 24415959 PMCID: PMC3887133 DOI: 10.1371/journal.pgen.1003928] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 09/14/2013] [Indexed: 01/20/2023] Open
Abstract
Defects in cilium and centrosome function result in a spectrum of clinically-related disorders, known as ciliopathies. However, the complex molecular composition of these structures confounds functional dissection of what any individual gene product is doing under normal and disease conditions. As part of an siRNA screen for genes involved in mammalian ciliogenesis, we and others have identified the conserved centrosomal protein Azi1/Cep131 as required for cilia formation, supporting previous Danio rerio and Drosophila melanogaster mutant studies. Acute loss of Azi1 by knock-down in mouse fibroblasts leads to a robust reduction in ciliogenesis, which we rescue by expressing siRNA-resistant Azi1-GFP. Localisation studies show Azi1 localises to centriolar satellites, and traffics along microtubules becoming enriched around the basal body. Azi1 also localises to the transition zone, a structure important for regulating traffic into the ciliary compartment. To study the requirement of Azi1 during development and tissue homeostasis, Azi1 null mice were generated (Azi1Gt/Gt). Surprisingly, Azi1Gt/Gt MEFs have no discernible ciliary phenotype and moreover are resistant to Azi1 siRNA knock-down, demonstrating that a compensation mechanism exists to allow ciliogenesis to proceed despite the lack of Azi1. Cilia throughout Azi1 null mice are functionally normal, as embryonic patterning and adult homeostasis are grossly unaffected. However, in the highly specialised sperm flagella, the loss of Azi1 is not compensated, leading to striking microtubule-based trafficking defects in both the manchette and the flagella, resulting in male infertility. Our analysis of Azi1 knock-down (acute loss) versus gene deletion (chronic loss) suggests that Azi1 plays a conserved, but non-essential trafficking role in ciliogenesis. Importantly, our in vivo analysis reveals Azi1 mediates novel trafficking functions necessary for flagellogenesis. Our study highlights the importance of both acute removal of a protein, in addition to mouse knock-out studies, when functionally characterising candidates for human disease. Cilia are slender projections from the surface of most mammalian cells and have sensory and sometimes motile functions. They are essential for mammalian development and defects in cilia lead to a group of human diseases, termed ciliopathies, with variable symptoms including embryonic lethality, lung and kidney defects, blindness and infertility. Cilia are complex structures composed of hundreds of components, whose individual functions are poorly understood. We screened for mammalian genes important in building cilia, and identified Azi1/Cep131, a gene previously shown to be required for cilia formation and function in fish and flies. We show that if we acutely reduce levels of Azi1 in mouse cells, fewer cells form cilia, but if we generate cells chronically lacking all Azi1, cilia form normally. In addition, mice without any Azi1 are healthy and viable, confirming normal cilia function. However, in these mice, the highly specialised ciliary structure of the sperm tail does not form, resulting in male infertility. We suggest Azi1 has conserved trafficking roles in both primary cilia and the specialised sperm flagella. Abruptly removing Azi1 results in instability causing the existing cilia network to collapse, whereas chronic deletion of Azi1 allows the system to re-equilibrate, and cilia to form normally.
Collapse
Affiliation(s)
- Emma A. Hall
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine at The University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| | - Margaret Keighren
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine at The University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| | - Matthew J. Ford
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine at The University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| | - Tracey Davey
- Electron Microscopy Research Services, Medical School, Newcastle University, Newcastle, United Kingdom
| | - Andrew P. Jarman
- Centre for Integrative Physiology, School of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Lee B. Smith
- MRC Centre for Reproductive Health, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, United Kingdom
| | - Ian J. Jackson
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine at The University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
- * E-mail: (IJJ); (PM)
| | - Pleasantine Mill
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine at The University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
- * E-mail: (IJJ); (PM)
| |
Collapse
|
44
|
Boekhoff-Falk G, Eberl DF. The Drosophila auditory system. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2013; 3:179-91. [PMID: 24719289 DOI: 10.1002/wdev.128] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 08/28/2013] [Accepted: 09/10/2013] [Indexed: 11/10/2022]
Abstract
Development of a functional auditory system in Drosophila requires specification and differentiation of the chordotonal sensilla of Johnston's organ (JO) in the antenna, correct axonal targeting to the antennal mechanosensory and motor center in the brain, and synaptic connections to neurons in the downstream circuit. Chordotonal development in JO is functionally complicated by structural, molecular, and functional diversity that is not yet fully understood, and construction of the auditory neural circuitry is only beginning to unfold. Here, we describe our current understanding of developmental and molecular mechanisms that generate the exquisite functions of the Drosophila auditory system, emphasizing recent progress and highlighting important new questions arising from research on this remarkable sensory system.
Collapse
Affiliation(s)
- Grace Boekhoff-Falk
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | | |
Collapse
|
45
|
Villumsen BH, Danielsen JR, Povlsen L, Sylvestersen KB, Merdes A, Beli P, Yang YG, Choudhary C, Nielsen ML, Mailand N, Bekker-Jensen S. A new cellular stress response that triggers centriolar satellite reorganization and ciliogenesis. EMBO J 2013; 32:3029-40. [PMID: 24121310 DOI: 10.1038/emboj.2013.223] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 09/19/2013] [Indexed: 01/20/2023] Open
Abstract
Centriolar satellites are small, granular structures that cluster around centrosomes, but whose biological function and regulation are poorly understood. We show that centriolar satellites undergo striking reorganization in response to cellular stresses such as UV radiation, heat shock, and transcription blocks, invoking acute and selective displacement of the factors AZI1/CEP131, PCM1, and CEP290 from this compartment triggered by activation of the stress-responsive kinase p38/MAPK14. We demonstrate that the E3 ubiquitin ligase MIB1 is a new component of centriolar satellites, which interacts with and ubiquitylates AZI1 and PCM1 and suppresses primary cilium formation. In response to cell stress, MIB1 is abruptly inactivated in a p38-independent manner, leading to loss of AZI1, PCM1, and CEP290 ubiquitylation and concomitant stimulation of ciliogenesis, even in proliferating cells. Collectively, our findings uncover a new two-pronged signalling response, which by coupling p38-dependent phosphorylation with MIB1-catalysed ubiquitylation of ciliogenesis-promoting factors plays an important role in controlling centriolar satellite status and key centrosomal functions in a cell stress-regulated manner.
Collapse
Affiliation(s)
- Bine H Villumsen
- Ubiquitin Signaling Group, Department of Disease Biology, The Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Riparbelli MG, Cabrera OA, Callaini G, Megraw TL. Unique properties of Drosophila spermatocyte primary cilia. Biol Open 2013; 2:1137-47. [PMID: 24244850 PMCID: PMC3828760 DOI: 10.1242/bio.20135355] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 08/06/2013] [Indexed: 01/09/2023] Open
Abstract
The primary cilium is an essential organelle required for animal development and adult homeostasis that is found on most animal cells. The primary cilium contains a microtubule-based axoneme cytoskeleton that typically grows from the mother centriole in G0/G1 phase of the cell cycle as a membrane-bound compartment that protrudes from the cell surface. A unique system of bidirectional transport, intraflagellar transport (IFT), maintains the structure and function of cilia. While the axoneme is dynamic, growing and shrinking at its tip, at the same time it is very stable to the effects of microtubule-targeting drugs. The primary cilia found on Drosophila spermatocytes diverge from the general rules of primary cilium biology in several respects. Among these unique attributes, spermatocyte cilia assemble from all four centrioles in an IFT-independent manner in G2 phase, and persist continuously through two cell divisions. Here, we show that Drosophila spermatocyte primary cilia are extremely sensitive to microtubule-targeting drugs, unlike their mammalian counterparts. Spermatocyte cilia and their axonemes fail to assemble or be maintained upon nocodazole treatment, while centriole replication appears unperturbed. On the other hand, paclitaxel (Taxol), a microtubule-stabilizing drug, disrupted transition zone assembly and anchoring to the plasma membrane while causing spermatocyte primary cilia to grow extensively long during the assembly/elongation phase, but did not overtly affect the centrioles. However, once assembled to their mature length, spermatocyte cilia appeared unaffected by Taxol. The effects of these drugs on axoneme dynamics further demonstrate that spermatocyte primary cilia are endowed with unique assembly properties.
Collapse
|
47
|
Jarman AP, Groves AK. The role of Atonal transcription factors in the development of mechanosensitive cells. Semin Cell Dev Biol 2013; 24:438-47. [PMID: 23548731 DOI: 10.1016/j.semcdb.2013.03.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 01/04/2013] [Accepted: 03/21/2013] [Indexed: 11/29/2022]
Abstract
Mechanosensation is an evolutionarily ancient sensory modality seen in all main animal groups. Mechanosensation can be mediated by sensory neurons or by dedicated receptor cells that form synapses with sensory neurons. Evidence over the last 15-20 years suggests that both classes of mechanosensory cells can be specified by the atonal class of basic helix-loop-helix transcription factors. In this review we discuss recent work addressing how atonal factors specify mechanosensitive cells in vertebrates and invertebrates, and how the redeployment of these factors underlies the regeneration of mechanosensitive cells in some vertebrate groups.
Collapse
Affiliation(s)
- Andrew P Jarman
- Centre for Integrative Physiology, School of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom.
| | | |
Collapse
|
48
|
Hoh RA, Stowe TR, Turk E, Stearns T. Transcriptional program of ciliated epithelial cells reveals new cilium and centrosome components and links to human disease. PLoS One 2012; 7:e52166. [PMID: 23300604 PMCID: PMC3534086 DOI: 10.1371/journal.pone.0052166] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 11/15/2012] [Indexed: 01/11/2023] Open
Abstract
Defects in the centrosome and cilium are associated with a set of human diseases having diverse phenotypes. To further characterize the components that define the function of these organelles we determined the transcriptional profile of multiciliated tracheal epithelial cells. Cultures of mouse tracheal epithelial cells undergoing differentiation in vitro were derived from mice expressing GFP from the ciliated-cell specific FOXJ1 promoter (FOXJ1:GFP). The transcriptional profile of ciliating GFP+ cells from these cultures was defined at an early and a late time point during differentiation and was refined by subtraction of the profile of the non-ciliated GFP- cells. We identified 649 genes upregulated early, when most cells were forming basal bodies, and 73 genes genes upregulated late, when most cells were fully ciliated. Most, but not all, of known centrosome proteins are transcriptionally upregulated early, particularly Plk4, a master regulator of centriole formation. We found that three genes associated with human disease states, Mdm1, Mlf1, and Dyx1c1, are upregulated during ciliogenesis and localize to centrioles and cilia. This transcriptome for mammalian multiciliated epithelial cells identifies new candidate centrosome and cilia proteins, highlights similarities between components of motile and primary cilia, and identifies new links between cilia proteins and human disease.
Collapse
Affiliation(s)
- Ramona A. Hoh
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Timothy R. Stowe
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Erin Turk
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Tim Stearns
- Department of Biology, Stanford University, Stanford, California, United States of America
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
49
|
Jerber J, Thomas J, Durand B. [Transcriptional control of ciliogenesis in animal development]. Biol Aujourdhui 2012; 206:205-18. [PMID: 23171843 DOI: 10.1051/jbio/2012023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Indexed: 12/20/2022]
Abstract
Cilia and flagella are eukaryotic organelles with a conserved structure and function from unicellular organisms to human. In animals, different types of cilia can be found and cilia assembly during development is a highly dynamic process. Ciliary defects in human lead to a wide spectrum of diseases called ciliopathies. Understanding the molecular mechanisms that govern dynamic cilia assembly during development and in different tissues in metazoans is an important biological challenge. The FOXJ1 (Forkhead Box J1) and RFX (Regulatory Factor X) family of transcription factors have been shown to be important factors in ciliogenesis control. FOXJ1 proteins are required for motile ciliogenesis in vertebrates. By contrast, RFX proteins are essential to assemble both primary and motile cilia through the regulation of specific sets of genes such as those encoding intraflagellar transport components. Recently, new actors with more specific roles in cilia biogenesis and physiology have also been discovered. All these factors are subject to complex regulation, allowing for the dynamic and specific regulation of ciliogenesis in metazoans.
Collapse
Affiliation(s)
- Julie Jerber
- Centre de Genetique et de Physiologie Moleculare et Cellulaire, Universite Lyon, Villeurbanne, Lyon, France
| | | | | |
Collapse
|
50
|
Senthilan PR, Piepenbrock D, Ovezmyradov G, Nadrowski B, Bechstedt S, Pauls S, Winkler M, Möbius W, Howard J, Göpfert MC. Drosophila auditory organ genes and genetic hearing defects. Cell 2012; 150:1042-54. [PMID: 22939627 DOI: 10.1016/j.cell.2012.06.043] [Citation(s) in RCA: 150] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 03/02/2012] [Accepted: 06/20/2012] [Indexed: 12/22/2022]
Abstract
The Drosophila auditory organ shares equivalent transduction mechanisms with vertebrate hair cells, and both are specified by atonal family genes. Using a whole-organ knockout strategy based on atonal, we have identified 274 Drosophila auditory organ genes. Only four of these genes had previously been associated with fly hearing, yet one in five of the genes that we identified has a human cognate that is implicated in hearing disorders. Mutant analysis of 42 genes shows that more than half of them contribute to auditory organ function, with phenotypes including hearing loss, auditory hypersusceptibility, and ringing ears. We not only discover ion channels and motors important for hearing, but also show that auditory stimulus processing involves chemoreceptor proteins as well as phototransducer components. Our findings demonstrate mechanosensory roles for ionotropic receptors and visual rhodopsins and indicate that different sensory modalities utilize common signaling cascades.
Collapse
Affiliation(s)
- Pingkalai R Senthilan
- Department of Cellular Neurobiology, University of Göttingen, Julia-Lermontowa-Weg 3, 37077 Göttingen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|