1
|
Meyer-Gerards C, Bazzi H. Developmental and tissue-specific roles of mammalian centrosomes. FEBS J 2024. [PMID: 38935637 DOI: 10.1111/febs.17212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/08/2024] [Accepted: 06/14/2024] [Indexed: 06/29/2024]
Abstract
Centrosomes are dominant microtubule organizing centers in animal cells with a pair of centrioles at their core. They template cilia during interphase and help organize the mitotic spindle for a more efficient cell division. Here, we review the roles of centrosomes in the early developing mouse and during organ formation. Mammalian cells respond to centrosome loss-of-function by activating the mitotic surveillance pathway, a timing mechanism that, when a defined mitotic duration is exceeded, leads to p53-dependent cell death in the descendants. Mouse embryos without centrioles are highly susceptible to this pathway and undergo embryonic arrest at mid-gestation. The complete loss of the centriolar core results in earlier and more severe phenotypes than that of other centrosomal proteins. Finally, different developing tissues possess varying thresholds and mount graded responses to the loss of centrioles that go beyond the germ layer of origin.
Collapse
Affiliation(s)
- Charlotte Meyer-Gerards
- Department of Cell Biology of the Skin, Medical Faculty, University of Cologne, Germany
- Department of Dermatology and Venereology, Medical Faculty, University of Cologne, Germany
- The Cologne Cluster of Excellence in Cellular Stress Responses in Aging-associated Diseases (CECAD), Medical Faculty, University of Cologne, Germany
- Graduate School for Biological Sciences, University of Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Medical Faculty, University of Cologne, Germany
| | - Hisham Bazzi
- Department of Cell Biology of the Skin, Medical Faculty, University of Cologne, Germany
- Department of Dermatology and Venereology, Medical Faculty, University of Cologne, Germany
- The Cologne Cluster of Excellence in Cellular Stress Responses in Aging-associated Diseases (CECAD), Medical Faculty, University of Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Medical Faculty, University of Cologne, Germany
| |
Collapse
|
2
|
Grzonka M, Bazzi H. Mouse SAS-6 is required for centriole formation in embryos and integrity in embryonic stem cells. eLife 2024; 13:e94694. [PMID: 38407237 PMCID: PMC10917421 DOI: 10.7554/elife.94694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 12/12/2023] [Indexed: 02/27/2024] Open
Abstract
SAS-6 (SASS6) is essential for centriole formation in human cells and other organisms but its functions in the mouse are unclear. Here, we report that Sass6-mutant mouse embryos lack centrioles, activate the mitotic surveillance cell death pathway, and arrest at mid-gestation. In contrast, SAS-6 is not required for centriole formation in mouse embryonic stem cells (mESCs), but is essential to maintain centriole architecture. Of note, centrioles appeared after just one day of culture of Sass6-mutant blastocysts, from which mESCs are derived. Conversely, the number of cells with centrosomes is drastically decreased upon the exit from a mESC pluripotent state. At the mechanistic level, the activity of the master kinase in centriole formation, PLK4, associated with increased centriolar and centrosomal protein levels, endow mESCs with the robustness in using a SAS-6-independent centriole-biogenesis pathway. Collectively, our data suggest a differential requirement for mouse SAS-6 in centriole formation or integrity depending on PLK4 activity and centrosome composition.
Collapse
Affiliation(s)
- Marta Grzonka
- Department of Cell Biology of the Skin and Department of Dermatology and Venereology, Medical Faculty, University of CologneCologneGermany
- The Cologne Cluster of Excellence in Cellular Stress Responses in Aging-associated Diseases (CECAD), Medical Faculty, University of CologneCologneGermany
- Graduate School for Biological Sciences, University of CologneCologneGermany
| | - Hisham Bazzi
- Department of Cell Biology of the Skin and Department of Dermatology and Venereology, Medical Faculty, University of CologneCologneGermany
- The Cologne Cluster of Excellence in Cellular Stress Responses in Aging-associated Diseases (CECAD), Medical Faculty, University of CologneCologneGermany
- Center for Molecular Medicine Cologne (CMMC), Medical Faculty, University of CologneCologneGermany
| |
Collapse
|
3
|
Horakova A, Konecna M, Anger M. Chromosome Division in Early Embryos-Is Everything under Control? And Is the Cell Size Important? Int J Mol Sci 2024; 25:2101. [PMID: 38396778 PMCID: PMC10889803 DOI: 10.3390/ijms25042101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Chromosome segregation in female germ cells and early embryonic blastomeres is known to be highly prone to errors. The resulting aneuploidy is therefore the most frequent cause of termination of early development and embryo loss in mammals. And in specific cases, when the aneuploidy is actually compatible with embryonic and fetal development, it leads to severe developmental disorders. The main surveillance mechanism, which is essential for the fidelity of chromosome segregation, is the Spindle Assembly Checkpoint (SAC). And although all eukaryotic cells carry genes required for SAC, it is not clear whether this pathway is active in all cell types, including blastomeres of early embryos. In this review, we will summarize and discuss the recent progress in our understanding of the mechanisms controlling chromosome segregation and how they might work in embryos and mammalian embryos in particular. Our conclusion from the current literature is that the early mammalian embryos show limited capabilities to react to chromosome segregation defects, which might, at least partially, explain the widespread problem of aneuploidy during the early development in mammals.
Collapse
Affiliation(s)
- Adela Horakova
- Department of Genetics and Reproductive Biotechnologies, Veterinary Research Institute, 621 00 Brno, Czech Republic
- Institute of Animal Physiology and Genetics, Czech Academy of Science, 277 21 Libechov, Czech Republic
- Faculty of Science, Masaryk University, 602 00 Brno, Czech Republic
| | - Marketa Konecna
- Department of Genetics and Reproductive Biotechnologies, Veterinary Research Institute, 621 00 Brno, Czech Republic
- Institute of Animal Physiology and Genetics, Czech Academy of Science, 277 21 Libechov, Czech Republic
- Faculty of Science, Masaryk University, 602 00 Brno, Czech Republic
| | - Martin Anger
- Department of Genetics and Reproductive Biotechnologies, Veterinary Research Institute, 621 00 Brno, Czech Republic
- Institute of Animal Physiology and Genetics, Czech Academy of Science, 277 21 Libechov, Czech Republic
| |
Collapse
|
4
|
Khanal S, Jaiswal A, Chowdanayaka R, Puente N, Turner K, Assefa KY, Nawras M, Back ED, Royfman A, Burkett JP, Cheong SH, Fisher HS, Sindhwani P, Gray J, Ramachandra NB, Avidor-Reiss T. The evolution of centriole degradation in mouse sperm. Nat Commun 2024; 15:117. [PMID: 38168044 PMCID: PMC10761967 DOI: 10.1038/s41467-023-44411-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024] Open
Abstract
Centrioles are subcellular organelles found at the cilia base with an evolutionarily conserved structure and a shock absorber-like function. In sperm, centrioles are found at the flagellum base and are essential for embryo development in basal animals. Yet, sperm centrioles have evolved diverse forms, sometimes acting like a transmission system, as in cattle, and sometimes becoming dispensable, as in house mice. How the essential sperm centriole evolved to become dispensable in some organisms is unclear. Here, we test the hypothesis that this transition occurred through a cascade of evolutionary changes to the proteins, structure, and function of sperm centrioles and was possibly driven by sperm competition. We found that the final steps in this cascade are associated with a change in the primary structure of the centriolar inner scaffold protein FAM161A in rodents. This information provides the first insight into the molecular mechanisms and adaptive evolution underlying a major evolutionary transition within the internal structure of the mammalian sperm neck.
Collapse
Affiliation(s)
- Sushil Khanal
- Department of Biological Sciences, University of Toledo, Toledo, OH, USA
| | - Ankit Jaiswal
- Department of Biological Sciences, University of Toledo, Toledo, OH, USA
| | - Rajanikanth Chowdanayaka
- Department of Studies in Genetics and Genomics, University of Mysore, Manasagangotri, Mysuru, India
| | - Nahshon Puente
- Department of Biological Sciences, University of Toledo, Toledo, OH, USA
| | - Katerina Turner
- Department of Biological Sciences, University of Toledo, Toledo, OH, USA
| | | | - Mohamad Nawras
- Department of Biological Sciences, University of Toledo, Toledo, OH, USA
| | - Ezekiel David Back
- Department of Biological Sciences, University of Toledo, Toledo, OH, USA
| | - Abigail Royfman
- Department of Biological Sciences, University of Toledo, Toledo, OH, USA
| | - James P Burkett
- Department of Neurosciences, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Soon Hon Cheong
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Heidi S Fisher
- Department of Biology, University of Maryland College Park, College Park, MD, USA
| | - Puneet Sindhwani
- Department of Urology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - John Gray
- Department of Biological Sciences, University of Toledo, Toledo, OH, USA
| | | | - Tomer Avidor-Reiss
- Department of Biological Sciences, University of Toledo, Toledo, OH, USA.
- Department of Urology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA.
| |
Collapse
|
5
|
Biswas L, Schindler K. Predicting Infertility: How Genetic Variants in Oocyte Spindle Genes Affect Egg Quality. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2024; 238:1-22. [PMID: 39030352 DOI: 10.1007/978-3-031-55163-5_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
Successful reproduction relies on the union of a single chromosomally normal egg and sperm. Chromosomally normal eggs develop from precursor cells, called oocytes, that have undergone accurate chromosome segregation. The process of chromosome segregation is governed by the oocyte spindle, a unique cytoskeletal machine that splits chromatin content of the meiotically dividing oocyte. The oocyte spindle develops and functions in an idiosyncratic process, which is vulnerable to genetic variation in spindle-associated proteins. Human genetic variants in several spindle-associated proteins are associated with poor clinical fertility outcomes, suggesting that heritable etiologies for oocyte dysfunction leading to infertility exist and that the spindle is a crux for female fertility. This chapter examines the mammalian oocyte spindle through the lens of human genetic variation, covering the genes TUBB8, TACC3, CEP120, AURKA, AURKC, AURKB, BUB1B, and CDC20. Specifically, it explores how patient-identified variants perturb spindle development and function, and it links these molecular changes in the oocyte to their cognate clinical consequences, such as oocyte maturation arrest, elevated egg aneuploidy, primary ovarian insufficiency, and recurrent pregnancy loss. This discussion demonstrates that small genetic errors in oocyte meiosis can result in remarkably far-ranging embryonic consequences, and thus reveals the importance of the oocyte's fine machinery in sustaining life.
Collapse
Affiliation(s)
- Leelabati Biswas
- Department of Genetics, Rutgers University, Piscataway, NJ, USA
- Human Genetics Institute of New Jersey, Piscataway, NJ, USA
- Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Karen Schindler
- Department of Genetics, Rutgers University, Piscataway, NJ, USA.
- Human Genetics Institute of New Jersey, Piscataway, NJ, USA.
| |
Collapse
|
6
|
Aljiboury A, Hehnly H. The centrosome - diverse functions in fertilization and development across species. J Cell Sci 2023; 136:jcs261387. [PMID: 38038054 PMCID: PMC10730021 DOI: 10.1242/jcs.261387] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023] Open
Abstract
The centrosome is a non-membrane-bound organelle that is conserved across most animal cells and serves various functions throughout the cell cycle. In dividing cells, the centrosome is known as the spindle pole and nucleates a robust microtubule spindle to separate genetic material equally into two daughter cells. In non-dividing cells, the mother centriole, a substructure of the centrosome, matures into a basal body and nucleates cilia, which acts as a signal-transducing antenna. The functions of centrosomes and their substructures are important for embryonic development and have been studied extensively using in vitro mammalian cell culture or in vivo using invertebrate models. However, there are considerable differences in the composition and functions of centrosomes during different aspects of vertebrate development, and these are less studied. In this Review, we discuss the roles played by centrosomes, highlighting conserved and divergent features across species, particularly during fertilization and embryonic development.
Collapse
Affiliation(s)
- Abrar Aljiboury
- Syracuse University, Department of Biology, 107 College Place, Syracuse, NY 13244, USA
- Syracuse University, BioInspired Institute, Syracuse, NY 13244, USA
| | - Heidi Hehnly
- Syracuse University, Department of Biology, 107 College Place, Syracuse, NY 13244, USA
- Syracuse University, BioInspired Institute, Syracuse, NY 13244, USA
| |
Collapse
|
7
|
Kalbfuss N, Gönczy P. Towards understanding centriole elimination. Open Biol 2023; 13:230222. [PMID: 37963546 PMCID: PMC10645514 DOI: 10.1098/rsob.230222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/14/2023] [Indexed: 11/16/2023] Open
Abstract
Centrioles are microtubule-based structures crucial for forming flagella, cilia and centrosomes. Through these roles, centrioles are critical notably for proper cell motility, signalling and division. Recent years have advanced significantly our understanding of the mechanisms governing centriole assembly and architecture. Although centrioles are typically very stable organelles, persisting over many cell cycles, they can also be eliminated in some cases. Here, we review instances of centriole elimination in a range of species and cell types. Moreover, we discuss potential mechanisms that enable the switch from a stable organelle to a vanishing one. Further work is expected to provide novel insights into centriole elimination mechanisms in health and disease, thereby also enabling scientists to readily manipulate organelle fate.
Collapse
Affiliation(s)
- Nils Kalbfuss
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Pierre Gönczy
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
8
|
Ju LF, Xu HJ, Yang YG, Yang Y. Omics Views of Mechanisms for Cell Fate Determination in Early Mammalian Development. GENOMICS, PROTEOMICS & BIOINFORMATICS 2023; 21:950-961. [PMID: 37075831 PMCID: PMC10928378 DOI: 10.1016/j.gpb.2023.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/18/2023] [Accepted: 03/23/2023] [Indexed: 04/21/2023]
Abstract
During mammalian preimplantation development, a totipotent zygote undergoes several cell cleavages and two rounds of cell fate determination, ultimately forming a mature blastocyst. Along with compaction, the establishment of apicobasal cell polarity breaks the symmetry of an embryo and guides subsequent cell fate choice. Although the lineage segregation of the inner cell mass (ICM) and trophectoderm (TE) is the first symbol of cell differentiation, several molecules have been shown to bias the early cell fate through their inter-cellular variations at much earlier stages, including the 2- and 4-cell stages. The underlying mechanisms of early cell fate determination have long been an important research topic. In this review, we summarize the molecular events that occur during early embryogenesis, as well as the current understanding of their regulatory roles in cell fate decisions. Moreover, as powerful tools for early embryogenesis research, single-cell omics techniques have been applied to both mouse and human preimplantation embryos and have contributed to the discovery of cell fate regulators. Here, we summarize their applications in the research of preimplantation embryos, and provide new insights and perspectives on cell fate regulation.
Collapse
Affiliation(s)
- Lin-Fang Ju
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China; University of Chinese Academy of Sciences, Beijing 100049, China; CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Heng-Ji Xu
- University of Chinese Academy of Sciences, Beijing 100049, China; CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Yun-Gui Yang
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China; University of Chinese Academy of Sciences, Beijing 100049, China; CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.
| | - Ying Yang
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China; University of Chinese Academy of Sciences, Beijing 100049, China; CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
9
|
Uzbekov R, Singina GN, Shedova EN, Banliat C, Avidor-Reiss T, Uzbekova S. Centrosome Formation in the Bovine Early Embryo. Cells 2023; 12:1335. [PMID: 37174735 PMCID: PMC10177215 DOI: 10.3390/cells12091335] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 04/21/2023] [Accepted: 04/30/2023] [Indexed: 05/15/2023] Open
Abstract
Centrosome formation during early development in mice and rats occurs due to the appearance of centrioles de novo. In contrast, in humans and other non-rodent mammals, centrioles are thought to be derived from spermatozoa. Ultrastructural study of zygotes and early embryos of cattle at full series of ultrathin sections show that the proximal centriole of the spermatozoon disappears by the end of the first cleavage division. Centrioles appear in two to four cell embryos in fertilized oocytes and in parthenogenetic embryos. Centriole formation includes the appearance of atypical centrioles with randomly arranged triplets and centrioles with microtubule triplets of various lengths. After the third cleavage, four centriolar cylinders appear for the first time in the blastomeres while each embryo still has two atypical centrioles. Our results showed that the mechanisms of centriole formation in different groups of mammals are universal, differing only in the stage of development in which they occur.
Collapse
Affiliation(s)
- Rustem Uzbekov
- Laboratory of Cell Biology and Electron Microscopy, Faculty of Medicine, University of Tours, 37032 Tours, France
- Faculty of Bioengineering and Bioinformatics, Moscow State University, 119992 Moscow, Russia
| | - Galina N. Singina
- Laboratory of Experimental Embryology, L.K. Ernst Federal Research Center for Animal Husbandry, Moscow Region, 142132 Podolsk, Russia
| | - Ekaterina N. Shedova
- Laboratory of Experimental Embryology, L.K. Ernst Federal Research Center for Animal Husbandry, Moscow Region, 142132 Podolsk, Russia
| | - Charles Banliat
- Ecole Supérieure d’agricultures (ESA), Unité de Recherche sur les Systèmes D’élevage (URSE), 55 rue Rabelais BP, 30748 Angers, France
| | - Tomer Avidor-Reiss
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606, USA
| | - Svetlana Uzbekova
- UMR Physiologie de la Reproduction et des Comportements (PRC), INRAE, CNRS, Université de Tours, IFCE, 37380 Nouzilly, France
| |
Collapse
|
10
|
Ju J, Pan Z, Zhang K, Ji Y, Liu J, Sun S. Mcrs1 regulates G2/M transition and spindle assembly during mouse oocyte meiosis. EMBO Rep 2023; 24:e56273. [PMID: 36951681 PMCID: PMC10157313 DOI: 10.15252/embr.202256273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 02/24/2023] [Accepted: 03/01/2023] [Indexed: 03/24/2023] Open
Abstract
Microspherule protein 1 (Mcrs1) is a component of the nonspecific lethal (NSL) complex and the chromatin remodeling INO80 complex, which participates in transcriptional regulation during mitosis. Here, we investigate the roles of Mcrs1 during female meiosis in mice. We demonstrate that Mcrs1 is a novel regulator of the meiotic G2/M transition and spindle assembly in mouse oocytes. Mcrs1 is present in the nucleus and associates with spindle poles and chromosomes of oocytes during meiosis I. Depletion of Mcrs1 alters HDAC2-mediated H4K16ac, H3K4me2, and H3K9me2 levels in nonsurrounded nucleolus (NSN)-type oocytes, and reduces CDK1 activity and cyclin B1 accumulation, leading to G2/M transition delay. Furthermore, Mcrs1 depletion results in abnormal spindle assembly due to reduced Aurora kinase (Aurka and Aurkc) and Kif2A activities, suggesting that Mcrs1 also plays a transcription-independent role in regulation of metaphase I oocytes. Taken together, our results demonstrate that the transcription factor Mcrs1 has important roles in cell cycle regulation and spindle assembly in mouse oocyte meiosis.
Collapse
Affiliation(s)
- Jia‐Qian Ju
- College of Animal Science and TechnologyNanjing Agricultural UniversityNanjingChina
| | - Zhen‐Nan Pan
- College of Animal Science and TechnologyNanjing Agricultural UniversityNanjingChina
| | - Kun‐Huan Zhang
- College of Animal Science and TechnologyNanjing Agricultural UniversityNanjingChina
| | - Yi‐Ming Ji
- College of Animal Science and TechnologyNanjing Agricultural UniversityNanjingChina
| | - Jing‐Cai Liu
- College of Animal Science and TechnologyNanjing Agricultural UniversityNanjingChina
| | - Shao‐Chen Sun
- College of Animal Science and TechnologyNanjing Agricultural UniversityNanjingChina
| |
Collapse
|
11
|
Wu T, Dong J, Fu J, Kuang Y, Chen B, Gu H, Luo Y, Gu R, Zhang M, Li W, Dong X, Sun X, Sang Q, Wang L. The mechanism of acentrosomal spindle assembly in human oocytes. Science 2022; 378:eabq7361. [DOI: 10.1126/science.abq7361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Meiotic spindle assembly ensures proper chromosome segregation in oocytes. However, the mechanisms behind spindle assembly in human oocytes remain largely unknown. We used three-dimensional high-resolution imaging of more than 2000 human oocytes to identify a structure that we named the human oocyte microtubule organizing center (huoMTOC). The proteins TACC3, CCP110, CKAP5, and DISC1 were found to be essential components of the huoMTOC. The huoMTOC arises beneath the oocyte cortex and migrates adjacent to the nuclear envelope before nuclear envelope breakdown (NEBD). After NEBD, the huoMTOC fragments and relocates on the kinetochores to initiate microtubule nucleation and spindle assembly. Disrupting the huoMTOC led to spindle assembly defects and oocyte maturation arrest. These results reveal a physiological mechanism of huoMTOC-regulated spindle assembly in human oocytes.
Collapse
Affiliation(s)
- Tianyu Wu
- Institute of Pediatrics, Children’s Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, Fudan University, Shanghai 200032, China
| | - Jie Dong
- Institute of Pediatrics, Children’s Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, Fudan University, Shanghai 200032, China
| | - Jing Fu
- Shanghai Ji Ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
| | - Yanping Kuang
- Department of Assisted Reproduction, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Biaobang Chen
- NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai 200032, China
| | - Hao Gu
- Institute of Pediatrics, Children’s Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, Fudan University, Shanghai 200032, China
| | - Yuxi Luo
- Institute of Pediatrics, Children’s Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, Fudan University, Shanghai 200032, China
| | - Ruihuan Gu
- Shanghai Ji Ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
| | - Meiling Zhang
- Center for Reproductive Medicine and Fertility Preservation Program, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Wen Li
- Center for Reproductive Medicine and Fertility Preservation Program, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Xi Dong
- Reproductive Medicine Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xiaoxi Sun
- Shanghai Ji Ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
| | - Qing Sang
- Institute of Pediatrics, Children’s Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, Fudan University, Shanghai 200032, China
| | - Lei Wang
- Institute of Pediatrics, Children’s Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, Fudan University, Shanghai 200032, China
| |
Collapse
|
12
|
Willekers S, Tessadori F, van der Vaart B, Henning HH, Stucchi R, Altelaar M, Roelen BAJ, Akhmanova A, Bakkers J. The centriolar satellite protein Cfap53 facilitates formation of the zygotic microtubule organizing center in the zebrafish embryo. Development 2022; 149:dev198762. [PMID: 35980365 PMCID: PMC9481976 DOI: 10.1242/dev.198762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 07/20/2022] [Indexed: 12/02/2023]
Abstract
In embryos of most animal species, the zygotic centrosome is assembled by the centriole derived from the sperm cell and pericentriolar proteins present in the oocyte. This zygotic centrosome acts as a microtubule organizing center (MTOC) to assemble the sperm aster and mitotic spindle. As MTOC formation has been studied mainly in adult cells, very little is known about the formation of the zygotic MTOC. Here, we show that zebrafish (Danio rerio) embryos lacking either maternal or paternal Cfap53, a centriolar satellite protein, arrest during the first cell cycle. Although Cfap53 is dispensable for sperm aster function, it aids proper formation of the mitotic spindle. During cell division, Cfap53 colocalizes with γ-tubulin and with other centrosomal and centriolar satellite proteins at the MTOC. Furthermore, we find that γ-tubulin localization at the MTOC is impaired in the absence of Cfap53. Based on these results, we propose a model in which Cfap53 deposited in the oocyte and the sperm participates in the organization of the zygotic MTOC to allow mitotic spindle formation.
Collapse
Affiliation(s)
- Sven Willekers
- Hubrecht Institute-KNAW, Utrecht 3584 CT, The Netherlands
| | | | - Babet van der Vaart
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht 3584 CH, The Netherlands
| | - Heiko H. Henning
- Equine Sciences, Department Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht 3584 CM, The Netherlands
| | - Riccardo Stucchi
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht 3584 CH, The Netherlands
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht 3584 CH, The Netherlands
| | - Maarten Altelaar
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht 3584 CH, The Netherlands
| | - Bernard A. J. Roelen
- Embryology, Anatomy and Physiology, Department Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht 3584 CT, The Netherlands
| | - Anna Akhmanova
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht 3584 CH, The Netherlands
| | - Jeroen Bakkers
- Hubrecht Institute-KNAW, Utrecht 3584 CT, The Netherlands
- Department of Pediatric Cardiology, Division of Pediatrics, University Medical Center Utrecht, Utrecht 3584 EA, The Netherlands
| |
Collapse
|
13
|
Palacios Martínez S, Greaney J, Zenker J. Beyond the centrosome: The mystery of microtubule organising centres across mammalian preimplantation embryos. Curr Opin Cell Biol 2022; 77:102114. [PMID: 35841745 DOI: 10.1016/j.ceb.2022.102114] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/25/2022] [Accepted: 06/11/2022] [Indexed: 11/18/2022]
Abstract
Mammalian preimplantation embryogenesis depends on the spatio-temporal dynamics of the microtubule cytoskeleton to enable exceptionally fast changes in cell number, function, architecture, and fate. Microtubule organising centres (MTOCs), which coordinate the remodelling of microtubules, are therefore of fundamental significance during the first days of a new life. Despite its indispensable role during early mammalian embryogenesis, the origin of microtubule growth remains poorly understood. In this review, we summarise the most recent discoveries on microtubule organisation and function during early human embryogenesis and compare these to innovative studies conducted in alternative mammalian models. We emphasise the differences and analogies of centriole inheritance and their role during the first cleavage. Furthermore, we highlight the significance of non-centrosomal MTOCs for embryo viability and discuss the potential of novel in vitro models and light-inducible approaches towards unravelling microtubule formation in research and assisted reproductive technologies.
Collapse
Affiliation(s)
| | - Jessica Greaney
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - Jennifer Zenker
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
14
|
He Y, Peng L, Li J, Li Q, Chu Y, Lin Q, Rui R, Ju S. TPX2 deficiency leads to spindle abnormity and meiotic impairment in porcine oocytes. Theriogenology 2022; 187:164-172. [DOI: 10.1016/j.theriogenology.2022.04.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 04/28/2022] [Accepted: 04/30/2022] [Indexed: 10/18/2022]
|
15
|
Takumi K, Kitagawa D. Experimental and Natural Induction of de novo Centriole Formation. Front Cell Dev Biol 2022; 10:861864. [PMID: 35445021 PMCID: PMC9014216 DOI: 10.3389/fcell.2022.861864] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/14/2022] [Indexed: 01/11/2023] Open
Abstract
In cycling cells, new centrioles are assembled in the vicinity of pre-existing centrioles. Although this canonical centriole duplication is a tightly regulated process in animal cells, centrioles can also form in the absence of pre-existing centrioles; this process is termed de novo centriole formation. De novo centriole formation is triggered by the removal of all pre-existing centrioles in the cell in various manners. Moreover, overexpression of polo-like kinase 4 (Plk4), a master regulatory kinase for centriole biogenesis, can induce de novo centriole formation in some cell types. Under these conditions, structurally and functionally normal centrioles can be formed de novo. While de novo centriole formation is normally suppressed in cells with intact centrioles, depletion of certain suppressor proteins leads to the ectopic formation of centriole-related protein aggregates in the cytoplasm. It has been shown that de novo centriole formation also occurs naturally in some species. For instance, during the multiciliogenesis of vertebrate epithelial cells, massive de novo centriole amplification occurs to form numerous motile cilia. In this review, we summarize the previous findings on de novo centriole formation, particularly under experimental conditions, and discuss its regulatory mechanisms.
Collapse
Affiliation(s)
- Kasuga Takumi
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Science, The University of Tokyo, Tokyo, Japan
| | - Daiju Kitagawa
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
16
|
Avidor-Reiss T, Achinger L, Uzbekov R. The Centriole's Role in Miscarriages. Front Cell Dev Biol 2022; 10:864692. [PMID: 35300410 PMCID: PMC8922021 DOI: 10.3389/fcell.2022.864692] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 02/14/2022] [Indexed: 12/17/2022] Open
Abstract
Centrioles are subcellular organelles essential for normal cell function and development; they form the cell’s centrosome (a major cytoplasmic microtubule organization center) and cilium (a sensory and motile hair-like cellular extension). Centrioles with evolutionarily conserved characteristics are found in most animal cell types but are absent in egg cells and exhibit unexpectedly high structural, compositional, and functional diversity in sperm cells. As a result, the centriole’s precise role in fertility and early embryo development is unclear. The centrioles are found in the spermatozoan neck, a strategic location connecting two central functional units: the tail, which propels the sperm to the egg and the head, which holds the paternal genetic material. The spermatozoan neck is an ideal site for evolutionary innovation as it can control tail movement pre-fertilization and the male pronucleus’ behavior post-fertilization. We propose that human, bovine, and most other mammals–which exhibit ancestral centriole-dependent reproduction and two spermatozoan centrioles, where one canonical centriole is maintained, and one atypical centriole is formed–adapted extensive species-specific centriolar features. As a result, these centrioles have a high post-fertilization malfunction rate, resulting in aneuploidy, and miscarriages. In contrast, house mice evolved centriole-independent reproduction, losing the spermatozoan centrioles and overcoming a mechanism that causes miscarriages.
Collapse
Affiliation(s)
- Tomer Avidor-Reiss
- Department of Biological Sciences, University of Toledo, Toledo, OH, United States.,Department of Urology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, United States
| | - Luke Achinger
- Department of Biological Sciences, University of Toledo, Toledo, OH, United States
| | - Rustem Uzbekov
- Faculté de Médecine, Université de Tours, Tours, France.,Faculty of Bioengineering and Bioinformatics, Moscow State University, Moscow, Russia
| |
Collapse
|
17
|
Pomp O, Lim HYG, Skory RM, Moverley AA, Tetlak P, Bissiere S, Plachta N. A monoastral mitotic spindle determines lineage fate and position in the mouse embryo. Nat Cell Biol 2022; 24:155-167. [PMID: 35102267 DOI: 10.1038/s41556-021-00826-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 11/30/2021] [Indexed: 12/11/2022]
Abstract
During mammalian development, the first asymmetric cell divisions segregate cells into inner and outer positions of the embryo to establish the pluripotent and trophectoderm lineages. Typically, polarity components differentially regulate the mitotic spindle via astral microtubule arrays to trigger asymmetric division patterns. However, early mouse embryos lack centrosomes, the microtubule-organizing centres (MTOCs) that usually generate microtubule asters. Thus, it remains unknown whether spindle organization regulates lineage segregation. Here we find that heterogeneities in cell polarity in the early 8-cell-stage mouse embryo trigger the assembly of a highly asymmetric spindle organization. This spindle arises in an unusual modular manner, forming a single microtubule aster from an apically localized, non-centrosomal MTOC, before joining it to the rest of the spindle apparatus. When fully assembled, this 'monoastral' spindle triggers spatially asymmetric division patterns to segregate cells into inner and outer positions. Moreover, the asymmetric inheritance of spindle components causes differential cell polarization to determine pluripotent versus trophectoderm lineage fate.
Collapse
Affiliation(s)
- Oz Pomp
- Department of Cell and Developmental Biology, Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hui Yi Grace Lim
- Institute of Molecular and Cell Biology, ASTAR, Singapore, Singapore
| | - Robin M Skory
- Department of Cell and Developmental Biology, Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Adam A Moverley
- Department of Cell and Developmental Biology, Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Piotr Tetlak
- Department of Cell and Developmental Biology, Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Stephanie Bissiere
- Department of Cell and Developmental Biology, Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nicolas Plachta
- Department of Cell and Developmental Biology, Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
18
|
Wang YS, Chen C, Ahmad MJ, Chen F, Ding ZM, Yang SJ, Chen YW, Duan ZQ, Liu M, Liang AX, He CJ, Hua GH, Huo LJ. WDR62 regulates mouse oocyte meiotic maturation related to p-JNK and H3K9 trimethylation. Int J Biochem Cell Biol 2022; 144:106169. [PMID: 35093571 DOI: 10.1016/j.biocel.2022.106169] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 01/01/2023]
Abstract
WDR62 (WD40-repeat protein 62) participates in diverse biological process, especially mitotic spindle organization via regulating centriole biogenesis and the function of centriole-associated protein. However, the role of WDR62 exerts in spindle assembly and meiotic progression control in oocytes lacking typical centrosomes remains obscure. In a previous study, we reported that WDR62 is involved in spindle migration and asymmetric cytokinesis in mouse oocyte meiosis. In the current study, another novel function of WDR62 regulating cell cycle progression through meiotic spindle formation during oocyte meiotic maturation was found. Knockdown of WDR62 through siRNA microinjection disrupted the meiotic cell cycle and induced metaphase-I (MI) arrest coupled with severe spindle abnormality, chromosome misalignment, and aneuploid generation. Moreover, WDR62 depletion induced defective kinetochore-microtubule attachments (K-MT) and activated spindle assembly checkpoint (SAC), which could trigger the arrest of meiotic progression. Further study demonstrated that depletion of WDR62 was associated with an aberrant location of p-JNK and reduced its expression level; concomitantly, status of H3K9 trimethylation was also altered. In addition, phenotypes similar to WDR62 depletion were observed during the function-loss analysis of p-JNK using a specific inhibitor (SP600125), which signifies that WDR62 is important for spindle organization and meiotic progression, and this function might be via its regulation of p-JNK. In conclusion, this study revealed that WDR62 functions in multiple ways during oocyte meiotic maturation, which could be related to p-JNK and H3K9 trimethylation.
Collapse
Affiliation(s)
- Yong-Sheng Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China; National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Chao Chen
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China; National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Muhammad Jamil Ahmad
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China; National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Fan Chen
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China; National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Zhi-Ming Ding
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China; National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Sheng-Ji Yang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China; National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Yang-Wu Chen
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China; National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Ze-Qun Duan
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China; National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Ming Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China; National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Ai-Xin Liang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China; National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Chang-Jiu He
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China; National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Guo-Hua Hua
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China; National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Li-Jun Huo
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China; National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan 430070, People's Republic of China.
| |
Collapse
|
19
|
Londoño-Vásquez D, Rodriguez-Lukey K, Behura SK, Balboula AZ. Microtubule organizing centers regulate spindle positioning in mouse oocytes. Dev Cell 2022; 57:197-211.e3. [PMID: 35030327 PMCID: PMC8792338 DOI: 10.1016/j.devcel.2021.12.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 10/18/2021] [Accepted: 12/10/2021] [Indexed: 01/26/2023]
Abstract
During female meiosis I (MI), spindle positioning must be tightly regulated to ensure the fidelity of the first asymmetric division and faithful chromosome segregation. Although the role of F-actin in regulating these critical processes has been studied extensively, little is known about whether microtubules (MTs) participate in regulating these processes. Using mouse oocytes as a model system, we characterize a subset of MT organizing centers that do not contribute directly to spindle assembly, termed mcMTOCs. Using laser ablation, STED super-resolution microscopy, and chemical manipulation, we show that mcMTOCs are required to regulate spindle positioning and faithful chromosome segregation during MI. We discuss how forces exerted by F-actin on the spindle are balanced by mcMTOC-nucleated MTs to anchor the spindle centrally and to regulate its timely migration. Our findings provide a model for asymmetric cell division, complementing the current F-actin-based models, and implicate mcMTOCs as a major player in regulating spindle positioning.
Collapse
Affiliation(s)
| | | | - Susanta K Behura
- Animal Sciences Research Center, University of Missouri, Columbia, MO 65211, USA
| | - Ahmed Z Balboula
- Animal Sciences Research Center, University of Missouri, Columbia, MO 65211, USA; University of Cambridge, Department of Genetics, Downing Street, Cambridge, CB2 3EH, UK.
| |
Collapse
|
20
|
Romero JJ, De Rossi MC, Oses C, Echegaray CV, Verneri P, Francia M, Guberman A, Levi V. Nucleus-cytoskeleton communication impacts on OCT4-chromatin interactions in embryonic stem cells. BMC Biol 2022; 20:6. [PMID: 34996451 PMCID: PMC8742348 DOI: 10.1186/s12915-021-01207-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 12/06/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The cytoskeleton is a key component of the system responsible for transmitting mechanical cues from the cellular environment to the nucleus, where they trigger downstream responses. This communication is particularly relevant in embryonic stem (ES) cells since forces can regulate cell fate and guide developmental processes. However, little is known regarding cytoskeleton organization in ES cells, and thus, relevant aspects of nuclear-cytoskeletal interactions remain elusive. RESULTS We explored the three-dimensional distribution of the cytoskeleton in live ES cells and show that these filaments affect the shape of the nucleus. Next, we evaluated if cytoskeletal components indirectly modulate the binding of the pluripotency transcription factor OCT4 to chromatin targets. We show that actin depolymerization triggers OCT4 binding to chromatin sites whereas vimentin disruption produces the opposite effect. In contrast to actin, vimentin contributes to the preservation of OCT4-chromatin interactions and, consequently, may have a pro-stemness role. CONCLUSIONS Our results suggest roles of components of the cytoskeleton in shaping the nucleus of ES cells, influencing the interactions of the transcription factor OCT4 with the chromatin and potentially affecting pluripotency and cell fate.
Collapse
Affiliation(s)
- Juan José Romero
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, C1428EGA, Buenos Aires, Argentina
| | - María Cecilia De Rossi
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, C1428EGA, Buenos Aires, Argentina
| | - Camila Oses
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, C1428EGA, Buenos Aires, Argentina
| | - Camila Vázquez Echegaray
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, C1428EGA, Buenos Aires, Argentina
| | - Paula Verneri
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, C1428EGA, Buenos Aires, Argentina
| | - Marcos Francia
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, C1428EGA, Buenos Aires, Argentina
| | - Alejandra Guberman
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, C1428EGA, Buenos Aires, Argentina.
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EGA, Buenos Aires, Argentina.
| | - Valeria Levi
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, C1428EGA, Buenos Aires, Argentina.
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EGA, Buenos Aires, Argentina.
| |
Collapse
|
21
|
Amargant F, Pujol A, Ferrer-Vaquer A, Durban M, Martínez M, Vassena R, Vernos I. The human sperm basal body is a complex centrosome important for embryo preimplantation development. Mol Hum Reprod 2021; 27:6377343. [PMID: 34581808 PMCID: PMC8561016 DOI: 10.1093/molehr/gaab062] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 09/09/2021] [Indexed: 12/28/2022] Open
Abstract
The mechanism of conversion of the human sperm basal body to a centrosome after fertilization, and its role in supporting human early embryogenesis, has not been directly addressed so far. Using proteomics and immunofluorescence studies, we show here that the human zygote inherits a basal body enriched with centrosomal proteins from the sperm, establishing the first functional centrosome of the new organism. Injection of human sperm tails containing the basal body into human oocytes followed by parthenogenetic activation, showed that the centrosome contributes to the robustness of the early cell divisions, increasing the probability of parthenotes reaching the compaction stage. In the absence of the sperm-derived centrosome, pericentriolar material (PCM) components stored in the oocyte can form de novo structures after genome activation, suggesting a tight PCM expression control in zygotes. Our results reveal that the sperm basal body is a complex organelle which converts to a centrosome after fertilization, ensuring the early steps of embryogenesis and successful compaction. However, more experiments are needed to elucidate the exact molecular mechanisms of centrosome inheritance in humans.
Collapse
Affiliation(s)
- Farners Amargant
- Clínica EUGIN-Eugin Group, Barcelona, Spain.,Cell and Developmental Biology Programme, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Aïda Pujol
- Centro de Infertilidad y Reproducción Humana (CIRH)-Eugin Group, Barcelona, Spain
| | | | | | | | | | - Isabelle Vernos
- Cell and Developmental Biology Programme, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| |
Collapse
|
22
|
Hawdon A, Aberkane A, Zenker J. Microtubule-dependent subcellular organisation of pluripotent cells. Development 2021; 148:272646. [PMID: 34710215 DOI: 10.1242/dev.199909] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
With the advancement of cutting-edge live imaging technologies, microtubule remodelling has evolved as an integral regulator for the establishment of distinct differentiated cells. However, despite their fundamental role in cell structure and function, microtubules have received less attention when unravelling the regulatory circuitry of pluripotency. Here, we summarise the role of microtubule organisation and microtubule-dependent events required for the formation of pluripotent cells in vivo by deciphering the process of early embryogenesis: from fertilisation to blastocyst. Furthermore, we highlight current advances in elucidating the significance of specific microtubule arrays in in vitro culture systems of pluripotent stem cells and how the microtubule cytoskeleton serves as a highway for the precise intracellular movement of organelles. This Review provides an informed understanding of the intrinsic role of subcellular architecture of pluripotent cells and accentuates their regenerative potential in combination with innovative light-inducible microtubule techniques.
Collapse
Affiliation(s)
- Azelle Hawdon
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Asma Aberkane
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Jennifer Zenker
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
23
|
Nabais C, Pessoa D, de-Carvalho J, van Zanten T, Duarte P, Mayor S, Carneiro J, Telley IA, Bettencourt-Dias M. Plk4 triggers autonomous de novo centriole biogenesis and maturation. J Cell Biol 2021; 220:211915. [PMID: 33760919 PMCID: PMC7995200 DOI: 10.1083/jcb.202008090] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 12/14/2020] [Accepted: 02/18/2021] [Indexed: 12/23/2022] Open
Abstract
Centrioles form centrosomes and cilia. In most proliferating cells, centrioles assemble through canonical duplication, which is spatially, temporally, and numerically regulated by the cell cycle and the presence of mature centrioles. However, in certain cell types, centrioles assemble de novo, yet by poorly understood mechanisms. Herein, we established a controlled system to investigate de novo centriole biogenesis, using Drosophila melanogaster egg explants overexpressing Polo-like kinase 4 (Plk4), a trigger for centriole biogenesis. We show that at a high Plk4 concentration, centrioles form de novo, mature, and duplicate, independently of cell cycle progression and of the presence of other centrioles. Plk4 concentration determines the temporal onset of centriole assembly. Moreover, our results suggest that distinct biochemical kinetics regulate de novo and canonical biogenesis. Finally, we investigated which other factors modulate de novo centriole assembly and found that proteins of the pericentriolar material (PCM), and in particular γ-tubulin, promote biogenesis, likely by locally concentrating critical components.
Collapse
Affiliation(s)
| | | | | | | | - Paulo Duarte
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Satyajit Mayor
- National Centre for Biological Sciences, Bangalore, India
| | | | - Ivo A Telley
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | | |
Collapse
|
24
|
Viais R, Fariña-Mosquera M, Villamor-Payà M, Watanabe S, Palenzuela L, Lacasa C, Lüders J. Augmin deficiency in neural stem cells causes p53-dependent apoptosis and aborts brain development. eLife 2021; 10:67989. [PMID: 34427181 PMCID: PMC8456695 DOI: 10.7554/elife.67989] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 08/16/2021] [Indexed: 01/01/2023] Open
Abstract
Microtubules that assemble the mitotic spindle are generated by centrosomal nucleation, chromatin-mediated nucleation, and nucleation from the surface of other microtubules mediated by the augmin complex. Impairment of centrosomal nucleation in apical progenitors of the developing mouse brain induces p53-dependent apoptosis and causes non-lethal microcephaly. Whether disruption of non-centrosomal nucleation has similar effects is unclear. Here, we show, using mouse embryos, that conditional knockout of the augmin subunit Haus6 in apical progenitors led to spindle defects and mitotic delay. This triggered massive apoptosis and abortion of brain development. Co-deletion of Trp53 rescued cell death, but surviving progenitors failed to organize a pseudostratified epithelium, and brain development still failed. This could be explained by exacerbated mitotic errors and resulting chromosomal defects including increased DNA damage. Thus, in contrast to centrosomes, augmin is crucial for apical progenitor mitosis, and, even in the absence of p53, for progression of brain development.
Collapse
Affiliation(s)
- Ricardo Viais
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Marcos Fariña-Mosquera
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Marina Villamor-Payà
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Sadanori Watanabe
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, Japan
| | - Lluís Palenzuela
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Cristina Lacasa
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Jens Lüders
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| |
Collapse
|
25
|
Abstract
The cytoskeleton - comprising actin filaments, microtubules and intermediate filaments - serves instructive roles in regulating cell function and behaviour during development. However, a key challenge in cell and developmental biology is to dissect how these different structures function and interact in vivo to build complex tissues, with the ultimate aim to understand these processes in a mammalian organism. The preimplantation mouse embryo has emerged as a primary model system for tackling this challenge. Not only does the mouse embryo share many morphological similarities with the human embryo during its initial stages of life, it also permits the combination of genetic manipulations with live-imaging approaches to study cytoskeletal dynamics directly within an intact embryonic system. These advantages have led to the discovery of novel cytoskeletal structures and mechanisms controlling lineage specification, cell-cell communication and the establishment of the first forms of tissue architecture during development. Here we highlight the diverse organization and functions of each of the three cytoskeletal filaments during the key events that shape the early mammalian embryo, and discuss how they work together to perform key developmental tasks, including cell fate specification and morphogenesis of the blastocyst. Collectively, these findings are unveiling a new picture of how cells in the early embryo dynamically remodel their cytoskeleton with unique spatial and temporal precision to drive developmental processes in the rapidly changing in vivo environment.
Collapse
|
26
|
Stathatos GG, Dunleavy JEM, Zenker J, O'Bryan MK. Delta and epsilon tubulin in mammalian development. Trends Cell Biol 2021; 31:774-787. [PMID: 33867233 DOI: 10.1016/j.tcb.2021.03.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 12/26/2022]
Abstract
Delta (δ-) and epsilon (ε-) tubulin are lesser-known cousins of alpha (α-) and beta (β-) tubulin. They are likely to regulate centriole function in a broad range of species; however, their in vivo role and mechanism of action in mammals remain mysterious. In unicellular species and mammalian cell lines, mutations in δ- and ε-tubulin cause centriole destabilization and atypical mitosis and, in the most severe cases, cell death. Beyond the centriole, δ- and ε-tubulin localize to the manchette during murine spermatogenesis and interact with katanin-like 2 (KATNAL2), a protein with microtubule (MT)-severing properties, indicative of novel non-centriolar functions. Herein we summarize the current knowledge surrounding δ- and ε-tubulin, identify pathways for future research, and highlight how and why spermatogenesis and embryogenesis are ideal systems to define δ- and ε-tubulin function in vivo.
Collapse
Affiliation(s)
- G Gemma Stathatos
- School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia; Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - Jessica E M Dunleavy
- School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Jennifer Zenker
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - Moira K O'Bryan
- School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
27
|
Vasquez-Limeta A, Loncarek J. Human centrosome organization and function in interphase and mitosis. Semin Cell Dev Biol 2021; 117:30-41. [PMID: 33836946 DOI: 10.1016/j.semcdb.2021.03.020] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/26/2021] [Accepted: 03/28/2021] [Indexed: 01/15/2023]
Abstract
Centrosomes were first described by Edouard Van Beneden and named and linked to chromosome segregation by Theodor Boveri around 1870. In the 1960-1980s, electron microscopy studies have revealed the remarkable ultrastructure of a centriole -- a nine-fold symmetrical microtubular assembly that resides within a centrosome and organizes it. Less than two decades ago, proteomics and genomic screens conducted in multiple species identified hundreds of centriole and centrosome core proteins and revealed the evolutionarily conserved nature of the centriole assembly pathway. And now, super resolution microscopy approaches and improvements in cryo-tomography are bringing an unparalleled nanoscale-detailed picture of the centriole and centrosome architecture. In this chapter, we summarize the current knowledge about the architecture of human centrioles. We discuss the structured organization of centrosome components in interphase, focusing on localization/function relationship. We discuss the process of centrosome maturation and mitotic spindle pole assembly in centriolar and acentriolar cells, emphasizing recent literature.
Collapse
Affiliation(s)
| | - Jadranka Loncarek
- Laboratory of Protein Dynamics and Signaling, NIH/NCI, Frederick 21702, MD, USA.
| |
Collapse
|
28
|
Amargant F, Barragan M, Vassena R, Vernos I. Insights of the tubulin code in gametes and embryos: from basic research to potential clinical applications in humans†. Biol Reprod 2020; 100:575-589. [PMID: 30247519 DOI: 10.1093/biolre/ioy203] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 07/05/2018] [Accepted: 09/20/2018] [Indexed: 12/14/2022] Open
Abstract
Microtubules are intracellular filaments that define in space and in time a large number of essential cellular functions such as cell division, morphology and motility, intracellular transport and flagella and cilia assembly. They are therefore essential for spermatozoon and oocyte maturation and function, and for embryo development. The dynamic and functional properties of the microtubules are in large part defined by various classes of interacting proteins including MAPs (microtubule associated proteins), microtubule-dependent motors, and severing and modifying enzymes. Multiple mechanisms regulate these interactions. One of them is defined by the high diversity of the microtubules themselves generated by the combination of different tubulin isotypes and by several tubulin post-translational modifications (PTMs). This generates a so-called tubulin code that finely regulates the specific set of proteins that associates with a given microtubule thereby defining the properties and functions of the network. Here we provide an in depth review of the current knowledge on the tubulin isotypes and PTMs in spermatozoa, oocytes, and preimplantation embryos in various model systems and in the human species. We focus on functional implications of the tubulin code for cytoskeletal function, particularly in the field of human reproduction and development, with special emphasis on gamete quality and infertility. Finally, we discuss some of the knowledge gaps and propose future research directions.
Collapse
Affiliation(s)
- Farners Amargant
- Clínica EUGIN, Barcelona, Spain.,Cell and Developmental Biology Programme, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
| | | | | | - Isabelle Vernos
- Cell and Developmental Biology Programme, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,Institució Catalana de Recerca I Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
29
|
So C, Seres KB, Steyer AM, Mönnich E, Clift D, Pejkovska A, Möbius W, Schuh M. A liquid-like spindle domain promotes acentrosomal spindle assembly in mammalian oocytes. Science 2020; 364:364/6447/eaat9557. [PMID: 31249032 DOI: 10.1126/science.aat9557] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 05/02/2019] [Indexed: 12/22/2022]
Abstract
Mammalian oocytes segregate chromosomes with a microtubule spindle that lacks centrosomes, but the mechanisms by which acentrosomal spindles are organized and function are largely unclear. In this study, we identify a conserved subcellular structure in mammalian oocytes that forms by phase separation. This structure, which we term the liquid-like meiotic spindle domain (LISD), permeates the spindle poles and forms dynamic protrusions that extend well beyond the spindle. The LISD selectively concentrates multiple microtubule regulatory factors and allows them to diffuse rapidly within the spindle volume. Disruption of the LISD via different means disperses these factors and leads to severe spindle assembly defects. Our data suggest a model whereby the LISD promotes meiotic spindle assembly by serving as a reservoir that sequesters and mobilizes microtubule regulatory factors in proximity to spindle microtubules.
Collapse
Affiliation(s)
- Chun So
- Department of Meiosis, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - K Bianka Seres
- Department of Meiosis, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany.,Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, UK.,Bourn Hall Clinic, Cambridge CB23 2TN, UK
| | - Anna M Steyer
- Electron Microscopy Core Unit, Department of Neurogenetics, Max Planck Institute for Experimental Medicine, 37075 Göttingen, Germany.,Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), 37073 Göttingen, Germany
| | - Eike Mönnich
- Department of Meiosis, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Dean Clift
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Anastasija Pejkovska
- Department of Meiosis, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Wiebke Möbius
- Electron Microscopy Core Unit, Department of Neurogenetics, Max Planck Institute for Experimental Medicine, 37075 Göttingen, Germany.,Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), 37073 Göttingen, Germany
| | - Melina Schuh
- Department of Meiosis, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany. .,Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| |
Collapse
|
30
|
Ikeda R, Kurokawa M, Murai M, Saito N, Ando M. Immunocytochemical Analysis of α-Tubulin Distribution Before and After Rapid Axopodial Contraction in the Centrohelid Raphidocystis contractilis. ACTA PROTOZOOL 2020. [DOI: 10.4467/16890027ap.20.001.12157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The centrohelid Raphidocystis contractilis is a heliozoan that has many radiating axopodia, each containing a bundle of microtubules. Although the rapid contraction of the axopodia at nearly a video rate (30 frames/s) is induced by mechanical stimuli, the mechanism underlying this phenomenon in R. contractilis has not yet been elucidated. In the present study, we described for the first time an adequate immunocytochemical fixation procedure for R. contractilis and the cellular distribution of α-tubulin before and after rapid axopodial contraction. We developed a flow-through chamber equipped with a micro-syringe pump that allowed the test solution to be injected at a flow rate below the threshold required to induce rapid axopodial contraction. Next, we used this injection method for evaluating the effects of different combinations of two fixatives (paraformaldehyde or glutaraldehyde) and two buffers (phosphate buffer or PHEM) on the morphological structure of the axopodia. A low concentration of glutaraldehyde in PHEM was identified as an adequate fixative for immunocytochemistry. The distribution of α-tubulin before and after rapid axopodial contraction was examined using immunocytochemistry and confocal laser scanning fluorescence microscopy. Positive signals were initially detected along the extended axopodia from the tips to the bases and were distributed in a non-uniform manner within the axopodia. Conversely, after the induction of a rapid axopodial contraction, these positive signals accumulated in the peripheral region of the cell. These results indicated that axopodial microtubules disassemble into fragments and/ or tubulin subunits during rapid axopodial contraction. Therefore, we hypothesize that the mechanism of extremely rapid axopodial contraction accompanied by cytoskeletal microtubule degradati
Collapse
|
31
|
Avidor-Reiss T, Mazur M, Fishman EL, Sindhwani P. The Role of Sperm Centrioles in Human Reproduction - The Known and the Unknown. Front Cell Dev Biol 2019; 7:188. [PMID: 31632960 PMCID: PMC6781795 DOI: 10.3389/fcell.2019.00188] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 08/23/2019] [Indexed: 01/02/2023] Open
Abstract
Each human spermatozoon contains two remodeled centrioles that it contributes to the zygote. There, the centrioles reconstitute a centrosome that assembles the sperm aster and participate in pronuclei migration and cleavage. Thus, centriole abnormalities may be a cause of male factor infertility and failure to carry pregnancy to term. However, the precise mechanisms by which sperm centrioles contribute to embryonic development in humans are still unclear, making the search for a link between centriole abnormalities and impaired male fecundity particularly difficult. Most previous investigations into the role of mammalian centrioles during fertilization have been completed in murine models; however, because mouse sperm and zygotes appear to lack centrioles, these studies provide information that is limited in its applicability to humans. Here, we review studies that examine the role of the sperm centrioles in the early embryo, with particular emphasis on humans. Available literature includes case studies and case-control studies, with a few retrospective studies and no prospective studies reported. This literature has provided some insight into the morphological characteristics of sperm centrioles in the zygote and has allowed identification of some centriole abnormalities in rare cases. Many of these studies suggest centriole involvement in early embryogenesis based on phenotypes of the embryo with only indirect evidence for centriole abnormality. Overall, these studies suggest that centriole abnormalities are present in some cases of sperm with asthenoteratozoospermia and unexplained infertility. Yet, most previously published studies have been restricted by the laborious techniques (like electron microscopy) and the limited availability of centriolar markers, resulting in small-scale studies and the lack of solid causational evidence. With recent progress in sperm centriole biology, such as the identification of the unique composition of sperm centrioles and the discovery of the atypical centriole, it is now possible to begin to fill the gaps in sperm centriole epidemiology and to identify the etiology of sperm centriole dysfunction in humans.
Collapse
Affiliation(s)
- Tomer Avidor-Reiss
- Department of Biological Sciences, College of Natural Sciences and Mathematics, The University of Toledo, Toledo, OH, United States.,Department of Urology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, United States
| | - Matthew Mazur
- Department of Biological Sciences, College of Natural Sciences and Mathematics, The University of Toledo, Toledo, OH, United States.,Department of Urology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, United States
| | - Emily L Fishman
- Department of Biological Sciences, College of Natural Sciences and Mathematics, The University of Toledo, Toledo, OH, United States
| | - Puneet Sindhwani
- Department of Biological Sciences, College of Natural Sciences and Mathematics, The University of Toledo, Toledo, OH, United States.,Department of Urology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, United States
| |
Collapse
|
32
|
Joukov V, De Nicolo A. The Centrosome and the Primary Cilium: The Yin and Yang of a Hybrid Organelle. Cells 2019; 8:E701. [PMID: 31295970 PMCID: PMC6678760 DOI: 10.3390/cells8070701] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/04/2019] [Accepted: 07/06/2019] [Indexed: 12/27/2022] Open
Abstract
Centrosomes and primary cilia are usually considered as distinct organelles, although both are assembled with the same evolutionary conserved, microtubule-based templates, the centrioles. Centrosomes serve as major microtubule- and actin cytoskeleton-organizing centers and are involved in a variety of intracellular processes, whereas primary cilia receive and transduce environmental signals to elicit cellular and organismal responses. Understanding the functional relationship between centrosomes and primary cilia is important because defects in both structures have been implicated in various diseases, including cancer. Here, we discuss evidence that the animal centrosome evolved, with the transition to complex multicellularity, as a hybrid organelle comprised of the two distinct, but intertwined, structural-functional modules: the centriole/primary cilium module and the pericentriolar material/centrosome module. The evolution of the former module may have been caused by the expanding cellular diversification and intercommunication, whereas that of the latter module may have been driven by the increasing complexity of mitosis and the requirement for maintaining cell polarity, individuation, and adhesion. Through its unique ability to serve both as a plasma membrane-associated primary cilium organizer and a juxtanuclear microtubule-organizing center, the animal centrosome has become an ideal integrator of extracellular and intracellular signals with the cytoskeleton and a switch between the non-cell autonomous and the cell-autonomous signaling modes. In light of this hypothesis, we discuss centrosome dynamics during cell proliferation, migration, and differentiation and propose a model of centrosome-driven microtubule assembly in mitotic and interphase cells. In addition, we outline the evolutionary benefits of the animal centrosome and highlight the hierarchy and modularity of the centrosome biogenesis networks.
Collapse
Affiliation(s)
- Vladimir Joukov
- N.N. Petrov National Medical Research Center of Oncology, 197758 Saint-Petersburg, Russia.
| | | |
Collapse
|
33
|
Namgoong S, Kim NH. Meiotic spindle formation in mammalian oocytes: implications for human infertility. Biol Reprod 2019; 98:153-161. [PMID: 29342242 DOI: 10.1093/biolre/iox145] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 12/27/2017] [Indexed: 12/12/2022] Open
Abstract
In the final stage of oogenesis, mammalian oocytes generate a meiotic spindle and undergo chromosome segregation to yield an egg that is ready for fertilization. Herein, we describe the recent advances in understanding the mechanisms controlling formation of the meiotic spindle in metaphase I (MI) and metaphase II (MII) in mammalian oocytes, and focus on the differences between mouse and human oocytes. Unlike mitotic cells, mammalian oocytes lack typical centrosomes that consist of two centrioles and the surrounding pericentriolar matrix proteins, which serve as microtubule-organizing centers (MTOCs) in most somatic cells. Instead, oocytes rely on different mechanisms for the formation of microtubules in MI spindles. Two different mechanisms have been described for MI spindle formation in mammalian oocytes. Chromosome-mediated microtubule formation, including RAN-mediated spindle formation and chromosomal passenger complex-mediated spindle elongation, controls the growth of microtubules from chromatin, while acentriolar MTOC-mediated microtubule formation contributes to spindle formation. Mouse oocytes utilize both chromatin- and MTOC-mediated pathways for microtubule formation. The existence of both pathways may provide a fail-safe mechanism to ensure high fidelity of chromosome segregation during meiosis. Unlike mouse oocytes, human oocytes considered unsuitable for clinical in vitro fertilization procedures, lack MTOCs; this may explain why meiosis in human oocytes is often error-prone. Understanding the mechanisms of MI/MII spindle formation, spindle assembly checkpoint, and chromosome segregation, in mammalian oocytes, will provide valuable insights into the molecular mechanisms of human infertility.
Collapse
Affiliation(s)
| | - Nam-Hyung Kim
- Department of Animal Science, Chungbuk National University, Cheong-Ju, Chungbuk, Republic of Korea
| |
Collapse
|
34
|
Kim Y, Lee I, Jo Y, Kim N, Namgoong S. Acentriolar microtubule organization centers and Ran‐mediated microtubule formation pathways are both required in porcine oocytes. Mol Reprod Dev 2019; 86:972-983. [DOI: 10.1002/mrd.23172] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 04/01/2019] [Accepted: 04/29/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Yong‐Han Kim
- Department of Animal SciencesChungbuk National University Cheong‐Ju Chungcheongbuk‐do Republic of Korea
| | - In‐Won Lee
- Department of Animal SciencesChungbuk National University Cheong‐Ju Chungcheongbuk‐do Republic of Korea
| | - Yu‐Jin Jo
- Department of Animal SciencesChungbuk National University Cheong‐Ju Chungcheongbuk‐do Republic of Korea
| | - Nam‐Hyung Kim
- Department of Animal SciencesChungbuk National University Cheong‐Ju Chungcheongbuk‐do Republic of Korea
| | - Suk Namgoong
- Department of Animal SciencesChungbuk National University Cheong‐Ju Chungcheongbuk‐do Republic of Korea
| |
Collapse
|
35
|
TUBG1 missense variants underlying cortical malformations disrupt neuronal locomotion and microtubule dynamics but not neurogenesis. Nat Commun 2019; 10:2129. [PMID: 31086189 PMCID: PMC6513894 DOI: 10.1038/s41467-019-10081-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 04/05/2019] [Indexed: 01/13/2023] Open
Abstract
De novo heterozygous missense variants in the γ-tubulin gene TUBG1 have been linked to human malformations of cortical development associated with intellectual disability and epilepsy. Here, we investigated through in-utero electroporation and in-vivo studies, how four of these variants affect cortical development. We show that TUBG1 mutants affect neuronal positioning, disrupting the locomotion of new-born neurons but without affecting progenitors’ proliferation. We further demonstrate that pathogenic TUBG1 variants are linked to reduced microtubule dynamics but without major structural nor functional centrosome defects in subject-derived fibroblasts. Additionally, we developed a knock-in Tubg1Y92C/+ mouse model and assessed consequences of the mutation. Although centrosomal positioning in bipolar neurons is correct, they fail to initiate locomotion. Furthermore, Tubg1Y92C/+ animals show neuroanatomical and behavioral defects and increased epileptic cortical activity. We show that Tubg1Y92C/+ mice partially mimic the human phenotype and therefore represent a relevant model for further investigations of the physiopathology of cortical malformations. New mutations and genes associated with malformations of cortical development keep being identified, yet there is little known about the underlying cellular mechanisms controlling these impairments. Here, authors generate and characterize a heterozygous TUBG1 knock-in mouse model bearing one of these known mutations and show that TUBG1 mutation leads to the miss-positioning of neurons in the cortical wall due to migration, because of defective microtubules dynamics, and not proliferation defects during corticogenesis.
Collapse
|
36
|
Zhang Y, Wu L, Wan X, Wang H, Li X, Pan Z, Sun S. Loss of PKC mu function induces cytoskeletal defects in mouse oocyte meiosis. J Cell Physiol 2019; 234:18513-18523. [DOI: 10.1002/jcp.28487] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/19/2019] [Accepted: 02/20/2019] [Indexed: 01/07/2023]
Affiliation(s)
- Yu Zhang
- College of Animal Science and Technology, Nanjing Agricultural University Nanjing China
| | - Lan‐Lan Wu
- College of Animal Science and Technology, Nanjing Agricultural University Nanjing China
| | - Xiang Wan
- College of Animal Science and Technology, Nanjing Agricultural University Nanjing China
| | - Hong‐Hui Wang
- College of Animal Science and Technology, Nanjing Agricultural University Nanjing China
| | - Xiao‐Han Li
- College of Animal Science and Technology, Nanjing Agricultural University Nanjing China
| | - Zhen‐Nan Pan
- College of Animal Science and Technology, Nanjing Agricultural University Nanjing China
| | - Shao‐Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University Nanjing China
| |
Collapse
|
37
|
Schneider I, Ellenberg J. Mysteries in embryonic development: How can errors arise so frequently at the beginning of mammalian life? PLoS Biol 2019; 17:e3000173. [PMID: 30840627 PMCID: PMC6422315 DOI: 10.1371/journal.pbio.3000173] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/18/2019] [Indexed: 12/21/2022] Open
Abstract
Chromosome segregation errors occur frequently during female meiosis but also in the first mitoses of mammalian preimplantation development. Such errors can lead to aneuploidy, spontaneous abortions, and birth defects. Some of the mechanisms underlying these errors in meiosis have been deciphered but which mechanisms could cause chromosome missegregation in the first embryonic cleavage divisions is mostly a “mystery”. In this article, we describe the starting conditions and challenges of these preimplantation divisions, which might impair faithful chromosome segregation. We also highlight the pending research to provide detailed insight into the mechanisms and regulation of preimplantation mitoses. Starting a new life is a challenging business. This Essay explores the changes at the oocyte-to-embryo transition to highlight the circumstances under which the very first and decisive — but ‘mysteriously’ error-prone — mitotic divisions occur.
Collapse
Affiliation(s)
- Isabell Schneider
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Candidate for joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences, Heidelberg, Germany
| | - Jan Ellenberg
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- * E-mail:
| |
Collapse
|
38
|
Abstract
Fertilizable eggs develop from diploid precursor cells termed oocytes. Once every menstrual cycle, an oocyte matures into a fertilizable egg in the ovary. To this end, the oocyte eliminates half of its chromosomes into a small cell termed a polar body. The egg is then released into the Fallopian tube, where it can be fertilized. Upon fertilization, the egg completes the second meiotic division, and the mitotic division of the embryo starts. This review highlights recent work that has shed light on the cytoskeletal structures that drive the meiotic divisions of the oocyte in mammals. In particular, we focus on how mammalian oocytes assemble a microtubule spindle in the absence of centrosomes, how they position the spindle in preparation for polar body extrusion, and how the spindle segregates the chromosomes. We primarily focus on mouse oocytes as a model system but also highlight recent insights from human oocytes.
Collapse
Affiliation(s)
- Binyam Mogessie
- Department of Meiosis, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany;
- Current affiliation: School of Biochemistry, University of Bristol, Bristol, BS8 1TD, United Kingdom
| | - Kathleen Scheffler
- Department of Meiosis, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany;
| | - Melina Schuh
- Department of Meiosis, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany;
| |
Collapse
|
39
|
Almonacid M, Terret ME, Verlhac MH. Control of nucleus positioning in mouse oocytes. Semin Cell Dev Biol 2018; 82:34-40. [DOI: 10.1016/j.semcdb.2017.08.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 08/03/2017] [Indexed: 12/15/2022]
|
40
|
Al Jord A, Verlhac MH. Spindle Assembly: Two Spindles for Two Genomes in a Mammalian Zygote. Curr Biol 2018; 28:R948-R951. [PMID: 30205069 DOI: 10.1016/j.cub.2018.07.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
A single bipolar spindle was thought to form around both parental genomes in zygotes initiating the first division. A recent study challenges this predominant view by showing that two independent spindles assemble to prevent parental genome mixing in mouse zygotes.
Collapse
Affiliation(s)
- Adel Al Jord
- CIRB, Collège de France, and CNRS-UMR7241 and INSERM-U1050, Equipe Labellisée FRM, Paris F-75005, France.
| | - Marie-Hélène Verlhac
- CIRB, Collège de France, and CNRS-UMR7241 and INSERM-U1050, Equipe Labellisée FRM, Paris F-75005, France
| |
Collapse
|
41
|
Simerly C, Manil-Ségalen M, Castro C, Hartnett C, Kong D, Verlhac MH, Loncarek J, Schatten G. Separation and Loss of Centrioles From Primordidal Germ Cells To Mature Oocytes In The Mouse. Sci Rep 2018; 8:12791. [PMID: 30143724 PMCID: PMC6109097 DOI: 10.1038/s41598-018-31222-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 08/09/2018] [Indexed: 12/15/2022] Open
Abstract
Oocytes, including from mammals, lack centrioles, but neither the mechanism by which mature eggs lose their centrioles nor the exact stage at which centrioles are destroyed during oogenesis is known. To answer questions raised by centriole disappearance during oogenesis, using a transgenic mouse expressing GFP-centrin-2 (GFP CETN2), we traced their presence from e11.5 primordial germ cells (PGCs) through oogenesis and their ultimate dissolution in mature oocytes. We show tightly coupled CETN2 doublets in PGCs, oogonia, and pre-pubertal oocytes. Beginning with follicular recruitment of incompetent germinal vesicle (GV) oocytes, through full oocyte maturation, the CETN2 doublets separate within the pericentriolar material (PCM) and a rise in single CETN2 pairs is identified, mostly at meiotic metaphase-I and -II spindle poles. Partial CETN2 foci dissolution occurs even as other centriole markers, like Cep135, a protein necessary for centriole duplication, are maintained at the PCM. Furthermore, live imaging demonstrates that the link between the two centrioles breaks as meiosis resumes and that centriole association with the PCM is progressively lost. Microtubule inhibition shows that centriole dissolution is uncoupled from microtubule dynamics. Thus, centriole doublets, present in early G2-arrested meiotic prophase oocytes, begin partial reduction during follicular recruitment and meiotic resumption, later than previously thought.
Collapse
Affiliation(s)
- Calvin Simerly
- Departments of Cell Biology; Obstetrics, Gynecology and Reproductive Sciences; and Bioengineering, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Marion Manil-Ségalen
- Center for Interdisciplinary Research in Biology (CIRB) Collège de France, CNRS, INSERM, PSL Research University, Equipe labellisée FRM, Paris, France
| | - Carlos Castro
- Departments of Cell Biology; Obstetrics, Gynecology and Reproductive Sciences; and Bioengineering, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Carrie Hartnett
- Departments of Cell Biology; Obstetrics, Gynecology and Reproductive Sciences; and Bioengineering, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Dong Kong
- Laboratory of Protein Dynamics and Signaling, National Institutes of Health/Center for Cancer Research/National Cancer Institute-Frederick, Frederick, MD, 21702, USA
| | - Marie-Hélène Verlhac
- Center for Interdisciplinary Research in Biology (CIRB) Collège de France, CNRS, INSERM, PSL Research University, Equipe labellisée FRM, Paris, France
| | - Jadranka Loncarek
- Laboratory of Protein Dynamics and Signaling, National Institutes of Health/Center for Cancer Research/National Cancer Institute-Frederick, Frederick, MD, 21702, USA
| | - Gerald Schatten
- Departments of Cell Biology; Obstetrics, Gynecology and Reproductive Sciences; and Bioengineering, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
42
|
Rapid Evolution of Sperm Produces Diverse Centriole Structures that Reveal the Most Rudimentary Structure Needed for Function. Cells 2018; 7:cells7070067. [PMID: 29949922 PMCID: PMC6071034 DOI: 10.3390/cells7070067] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 06/22/2018] [Accepted: 06/22/2018] [Indexed: 11/17/2022] Open
Abstract
Centrioles are ancient subcellular protein-based organelles that maintain a conserved number and structure across many groups of eukaryotes. Centriole number (two per cells) is tightly regulated; each pre-existing centriole nucleates only one centriole as the cell prepares for division. The structure of centrioles is barrel-shaped, with a nine-fold symmetry of microtubules. This organization of microtubules is essential for the ancestral function of centriole–cilium nucleation. In animal cells, centrioles have gained an additional role: recruiting pericentriolar material (PCM) to form a centrosome. Therefore, it is striking that in animal spermatozoa, the centrioles have a remarkable diversity of structures, where some are so anomalous that they are referred to as atypical centrioles and are barely recognizable. The atypical centriole maintains the ability to form a centrosome and nucleate a new centriole, and therefore reveals the most rudimentary structure that is needed for centriole function. However, the atypical centriole appears to be incapable of forming a cilium. Here, we propose that the diversity in sperm centriole structure is due to rapid evolution in the shape of the spermatozoa head and neck. The enhanced diversity may be driven by a combination of direct selection for novel centriole functions and pleiotropy, which eliminates centriole properties that are dispensable in the spermatozoa function.
Collapse
|
43
|
Yaguchi K, Yamamoto T, Matsui R, Tsukada Y, Shibanuma A, Kamimura K, Koda T, Uehara R. Uncoordinated centrosome cycle underlies the instability of non-diploid somatic cells in mammals. J Cell Biol 2018; 217:2463-2483. [PMID: 29712735 PMCID: PMC6028549 DOI: 10.1083/jcb.201701151] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 09/27/2017] [Accepted: 04/09/2018] [Indexed: 12/22/2022] Open
Abstract
Mammalian somatic cells are more stable as diploids, but the mechanisms underlying this stability are unclear. Yaguchi et al. show that changes in centriole licensing compromise the control of centrosome number in haploid or tetraploid human cells, suggesting that the ploidy-dependent control of the centrosome cycle explains the instability of non-diploid karyotypes. In animals, somatic cells are usually diploid and are unstable when haploid for unknown reasons. In this study, by comparing isogenic human cell lines with different ploidies, we found frequent centrosome loss specifically in the haploid state, which profoundly contributed to haploid instability through subsequent mitotic defects. We also found that the efficiency of centriole licensing and duplication changes proportionally to ploidy level, whereas that of DNA replication stays constant. This caused gradual loss or frequent overduplication of centrioles in haploid and tetraploid cells, respectively. Centriole licensing efficiency seemed to be modulated by astral microtubules, whose development scaled with ploidy level, and artificial enhancement of aster formation in haploid cells restored centriole licensing efficiency to diploid levels. The ploidy–centrosome link was observed in different mammalian cell types. We propose that incompatibility between the centrosome duplication and DNA replication cycles arising from different scaling properties of these bioprocesses upon ploidy changes underlies the instability of non-diploid somatic cells in mammals.
Collapse
Affiliation(s)
- Kan Yaguchi
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Takahiro Yamamoto
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Ryo Matsui
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Yuki Tsukada
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Atsuko Shibanuma
- Creative Research Institution, Hokkaido University, Sapporo, Japan
| | - Keiko Kamimura
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Toshiaki Koda
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan.,Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Ryota Uehara
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan .,Creative Research Institution, Hokkaido University, Sapporo, Japan.,Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| |
Collapse
|
44
|
Nabais C, Pereira SG, Bettencourt-Dias M. Noncanonical Biogenesis of Centrioles and Basal Bodies. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2018; 82:123-135. [PMID: 29686032 DOI: 10.1101/sqb.2017.82.034694] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Centrioles and basal bodies (CBBs) organize centrosomes and cilia within eukaryotic cells. These organelles are composed of microtubules and hundreds of proteins performing multiple functions such as signaling, cytoskeleton remodeling, and cell motility. The CBB is present in all branches of the eukaryotic tree of life and, despite its ultrastructural and protein conservation, there is diversity in its function, occurrence (i.e., presence/absence), and modes of biogenesis across species. In this review, we provide an overview of the multiple pathways through which CBBs are formed in nature, with a special focus on the less studied, noncanonical ways. Despite the differences among each mechanism herein presented, we highlighted some of their common principles. These principles, governing different steps of biogenesis, ensure that CBBs may perform a multitude of functions in a huge diversity of organisms but yet retained their robustness in structure throughout evolution.
Collapse
Affiliation(s)
- Catarina Nabais
- Cell Cycle Regulation Lab, Instituto Gulbenkian de Ciência (IGC), 2780-156 Oeiras, Portugal
| | - Sónia Gomes Pereira
- Cell Cycle Regulation Lab, Instituto Gulbenkian de Ciência (IGC), 2780-156 Oeiras, Portugal
| | | |
Collapse
|
45
|
Zenker J, White MD, Templin RM, Parton RG, Thorn-Seshold O, Bissiere S, Plachta N. A microtubule-organizing center directing intracellular transport in the early mouse embryo. Science 2018; 357:925-928. [PMID: 28860385 DOI: 10.1126/science.aam9335] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 05/03/2017] [Accepted: 08/01/2017] [Indexed: 12/26/2022]
Abstract
The centrosome is the primary microtubule-organizing center (MTOC) of most animal cells; however, this organelle is absent during early mammalian development. Therefore, the mechanism by which the mammalian embryo organizes its microtubules (MTs) is unclear. We visualize MT bridges connecting pairs of cells and show that the cytokinetic bridge does not undergo stereotypical abscission after cell division. Instead, it serves as scaffold for the accumulation of the MT minus-end-stabilizing protein CAMSAP3 throughout interphase, thereby transforming this structure into a noncentrosomal MTOC. Transport of the cell adhesion molecule E-cadherin to the membrane is coordinated by this MTOC and is required to form the pluripotent inner mass. Our study reveals a noncentrosomal form of MT organization that directs intracellular transport and is essential for mammalian development.
Collapse
Affiliation(s)
- J Zenker
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| | - M D White
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| | - R M Templin
- Institute for Molecular Biosciences and Centre for Microscopy and Microanalysis, University of Queensland, Brisbane, Queensland, Australia
| | - R G Parton
- Institute for Molecular Biosciences and Centre for Microscopy and Microanalysis, University of Queensland, Brisbane, Queensland, Australia
| | - O Thorn-Seshold
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-University Munich, Munich, Germany
| | - S Bissiere
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| | - N Plachta
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore. .,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
46
|
Xie B, Zhang L, Zhao H, Bai Q, Fan Y, Zhu X, Yu Y, Li R, Liang X, Sun QY, Li M, Qiao J. Poly(ADP-ribose) mediates asymmetric division of mouse oocyte. Cell Res 2018; 28:462-475. [PMID: 29463901 DOI: 10.1038/s41422-018-0009-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 10/30/2017] [Accepted: 01/05/2018] [Indexed: 11/09/2022] Open
Abstract
Before fertilization, mammalian oocyte undergoes an asymmetric division which depends on eccentric positioning of the spindle at the oocyte cortex to form a polar body and an egg. Since the centriole is absent and, as a result, the polar array microtubules are not fully developed in oocytes, microtubules have seldom been considered as required for eccentric positioning of the spindle, while actin-related forces have instead been proposed to be primarily responsible for this process. However, the existing models are largely conflicting and the underlying mechanism of asymmetric division is still elusive. Here we show that poly(ADP-ribose) (PAR) is enriched at mouse oocyte cortical area throughout meiosis. Specific removal of cortical PAR results in an ectopic spindle and a failure of asymmetric division. During spindle migration, when the spindle deviates from the center of oocyte by a pushing force of cytoplasmic actin, the short polar array microtubules emanating from the juxtacortical spindle pole extend to the cortex and penetrate into cortical PAR, docking and stabilizing the spindle at the cortex which facilitates the asymmetric division. This process depends on the affinity between PAR and microtubule-associated proteins such as Spindly, which contributes to a physical link for cortical PAR and the spindle. Notably, fusing a PAR-binding domain to end-binding protein 3, a plus-end tracking protein at the polar array microtubules, restores the asymmetric division of oocytes with Spindly knockdown. Thus, our work demonstrates a comprehensive mechanism for oocyte spindle positioning and asymmetric division.
Collapse
Affiliation(s)
- Bingteng Xie
- Center for Reproductive Medicine, Peking University Third Hospital, 100191, Beijing, China.,Key Laboratory of Assisted Reproduction, Ministry of Education, 100191, Beijing, China
| | - Lu Zhang
- Center for Reproductive Medicine, Peking University Third Hospital, 100191, Beijing, China.,Key Laboratory of Assisted Reproduction, Ministry of Education, 100191, Beijing, China
| | - Huiling Zhao
- School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China
| | - Qingyun Bai
- School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China
| | - Yong Fan
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, 510150, Guangzhou, China
| | - Xiaohui Zhu
- Center for Reproductive Medicine, Peking University Third Hospital, 100191, Beijing, China
| | - Yang Yu
- Center for Reproductive Medicine, Peking University Third Hospital, 100191, Beijing, China
| | - Rong Li
- Center for Reproductive Medicine, Peking University Third Hospital, 100191, Beijing, China
| | - Xin Liang
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Qing-Yuan Sun
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Mo Li
- Center for Reproductive Medicine, Peking University Third Hospital, 100191, Beijing, China. .,Key Laboratory of Assisted Reproduction, Ministry of Education, 100191, Beijing, China.
| | - Jie Qiao
- Center for Reproductive Medicine, Peking University Third Hospital, 100191, Beijing, China. .,Key Laboratory of Assisted Reproduction, Ministry of Education, 100191, Beijing, China.
| |
Collapse
|
47
|
Feitosa WB, Hwang K, Morris PL. Temporal and SUMO-specific SUMOylation contribute to the dynamics of Polo-like kinase 1 (PLK1) and spindle integrity during mouse oocyte meiosis. Dev Biol 2018; 434:278-291. [PMID: 29269218 PMCID: PMC5805567 DOI: 10.1016/j.ydbio.2017.12.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 11/28/2017] [Accepted: 12/15/2017] [Indexed: 01/09/2023]
Abstract
During mammalian meiosis, Polo-like kinase 1 (PLK1) is essential during cell cycle progression. In oocyte maturation, PLK1 expression is well characterized but timing of posttranslational modifications regulating its activity and subcellular localization are less clear. Small ubiquitin-related modifier (SUMO) posttranslational modifier proteins have been detected in mammalian gametes but their precise function during gametogenesis is largely unknown. In the present paper we report for mouse oocytes that both PLK1 and phosphorylated PLK1 undergo SUMOylation in meiosis II (MII) oocytes using immunocytochemistry, immunoprecipitation and in vitro SUMOylation assays. At MII, PLK1 is phosphorylated at threonine-210 and serine-137. MII oocyte PLK1 and phosphorylated PLK1 undergo SUMOylation by SUMO-1, -2 and -3 as shown by individual in vitro assays. Using these assays, forms of phosphorylated PLK1 normalized to PLK1 increased significantly and correlated with SUMOylated PLK1 levels. During meiotic progression and maturation, SUMO-1-SUMOylation of PLK1 is involved in spindle formation whereas SUMO-2/3-SUMOylation may regulate PLK1 activity at kinetochore-spindle attachment sites. Microtubule integrity is required for PLK1 localization with SUMO-1 but not with SUMO-2/3. Inhibition of SUMOylation disrupts proper meiotic bipolar spindle organization and spindle-kinetochore attachment. The data show that both temporal and SUMO-specific-SUMOylation play important roles in orchestrating functional dynamics of PLK1 during mouse oocyte meiosis, including subcellular compartmentalization.
Collapse
Affiliation(s)
- Weber Beringui Feitosa
- Center for Biomedical Research, Population Council, 1230 York Avenue, New York, NY 10065, USA
| | - KeumSil Hwang
- Center for Biomedical Research, Population Council, 1230 York Avenue, New York, NY 10065, USA
| | - Patricia L Morris
- Center for Biomedical Research, Population Council, 1230 York Avenue, New York, NY 10065, USA; The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
48
|
Arquint C, Cubizolles F, Morand A, Schmidt A, Nigg EA. The SKP1-Cullin-F-box E3 ligase βTrCP and CDK2 cooperate to control STIL abundance and centriole number. Open Biol 2018; 8:170253. [PMID: 29445034 PMCID: PMC5830536 DOI: 10.1098/rsob.170253] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 01/18/2018] [Indexed: 01/14/2023] Open
Abstract
Deregulation of centriole duplication has been implicated in cancer and primary microcephaly. Accordingly, it is important to understand how key centriole duplication factors are regulated. E3 ubiquitin ligases have been implicated in controlling the levels of several duplication factors, including PLK4, STIL and SAS-6, but the precise mechanisms ensuring centriole homeostasis remain to be fully understood. Here, we have combined proteomics approaches with the use of MLN4924, a generic inhibitor of SCF E3 ubiquitin ligases, to monitor changes in the cellular abundance of centriole duplication factors. We identified human STIL as a novel substrate of SCF-βTrCP. The binding of βTrCP depends on a DSG motif within STIL, and serine 395 within this motif is phosphorylated in vivo SCF-βTrCP-mediated degradation of STIL occurs throughout interphase and mutations in the DSG motif causes massive centrosome amplification, attesting to the physiological importance of the pathway. We also uncover a connection between this new pathway and CDK2, whose role in centriole biogenesis remains poorly understood. We show that CDK2 activity protects STIL against SCF-βTrCP-mediated degradation, indicating that CDK2 and SCF-βTrCP cooperate via STIL to control centriole biogenesis.
Collapse
Affiliation(s)
- Christian Arquint
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | - Fabien Cubizolles
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | - Agathe Morand
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | - Alexander Schmidt
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | - Erich A Nigg
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| |
Collapse
|
49
|
Bennabi I, Quéguiner I, Kolano A, Boudier T, Mailly P, Verlhac MH, Terret ME. Shifting meiotic to mitotic spindle assembly in oocytes disrupts chromosome alignment. EMBO Rep 2018; 19:368-381. [PMID: 29330318 PMCID: PMC5797964 DOI: 10.15252/embr.201745225] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 12/11/2017] [Accepted: 12/13/2017] [Indexed: 11/10/2022] Open
Abstract
Mitotic spindles assemble from two centrosomes, which are major microtubule-organizing centers (MTOCs) that contain centrioles. Meiotic spindles in oocytes, however, lack centrioles. In mouse oocytes, spindle microtubules are nucleated from multiple acentriolar MTOCs that are sorted and clustered prior to completion of spindle assembly in an "inside-out" mechanism, ending with establishment of the poles. We used HSET (kinesin-14) as a tool to shift meiotic spindle assembly toward a mitotic "outside-in" mode and analyzed the consequences on the fidelity of the division. We show that HSET levels must be tightly gated in meiosis I and that even slight overexpression of HSET forces spindle morphogenesis to become more mitotic-like: rapid spindle bipolarization and pole assembly coupled with focused poles. The unusual length of meiosis I is not sufficient to correct these early spindle morphogenesis defects, resulting in severe chromosome alignment abnormalities. Thus, the unique "inside-out" mechanism of meiotic spindle assembly is essential to prevent chromosomal misalignment and production of aneuploidy gametes.
Collapse
Affiliation(s)
- Isma Bennabi
- Center for Interdisciplinary Research in Biology (CIRB) College de France, CNRS, INSERM, PSL Research University, Equipe labellisée FRM, Paris, France
| | - Isabelle Quéguiner
- Center for Interdisciplinary Research in Biology (CIRB) College de France, CNRS, INSERM, PSL Research University, Equipe labellisée FRM, Paris, France
| | - Agnieszka Kolano
- International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Thomas Boudier
- Université Pierre et Marie Curie, Sorbonne Universités, Paris, France
| | - Philippe Mailly
- Center for Interdisciplinary Research in Biology (CIRB) College de France, CNRS, INSERM, PSL Research University, Equipe labellisée FRM, Paris, France
| | - Marie-Hélène Verlhac
- Center for Interdisciplinary Research in Biology (CIRB) College de France, CNRS, INSERM, PSL Research University, Equipe labellisée FRM, Paris, France
| | - Marie-Emilie Terret
- Center for Interdisciplinary Research in Biology (CIRB) College de France, CNRS, INSERM, PSL Research University, Equipe labellisée FRM, Paris, France
| |
Collapse
|
50
|
Lee IW, Jo YJ, Jung SM, Wang HY, Kim NH, Namgoong S. Distinct roles of Cep192 and Cep152 in acentriolar MTOCs and spindle formation during mouse oocyte maturation. FASEB J 2018; 32:625-638. [PMID: 28970258 DOI: 10.1096/fj.201700559rr] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mammalian oocytes lack a centriole that acts as a microtubule organization center (MTOC) in most somatic cells. During oocyte maturation, MTOCs undergo remodeling processes, including decondensation, fragmentation, and self-organization. However, the underlying mechanisms of MTOC remodeling in mouse oocytes are not well understood. We showed that two pericentriolar proteins, Cep192 and Cep152, play crucial roles during MTOC remodeling in mouse oocytes. Cep192 is present in MTOCs at all stages of oocyte maturation, and its depletion induces ablation of MTOCs, delay in spindle formation, and abnormal chromosomal alignment in spindles. In the case of Cep152, its localization on MTOCs is limited at the germinal vesicle stage and then disappears from the MTOCs after the germinal vesicle breakdown stage. Cep152 exclusion from MTOCs is involved in the fragmentation of MTOCs, and it is regulated by cyclin-dependent kinase 1 activity. Our results demonstrate the different roles of Cep192 and Cep152 in MTOC remodeling and a novel regulatory mechanism during meiotic spindle formation in mouse oocytes.-Lee, I.-W., Jo, Y.-J., Jung, S.-M., Wang, H.-Y., Kim, N.-H., Namgoong, S. Distinct roles of Cep192 and Cep152 in acentriolar MTOCs and spindle formation during mouse oocyte maturation.
Collapse
Affiliation(s)
- In-Won Lee
- Department of Animal Science, Chungbuk National University, Cheongju, South Korea
| | - Yu-Jin Jo
- Department of Animal Science, Chungbuk National University, Cheongju, South Korea
| | - Seung-Min Jung
- Department of Animal Science, Chungbuk National University, Cheongju, South Korea
| | - Hai-Yang Wang
- Department of Animal Science, Chungbuk National University, Cheongju, South Korea
| | - Nam-Hyung Kim
- Department of Animal Science, Chungbuk National University, Cheongju, South Korea
| | - Suk Namgoong
- Department of Animal Science, Chungbuk National University, Cheongju, South Korea
| |
Collapse
|