1
|
Edwards E, Schenone D, Sivagnanalingam U, Perry S, Mullen CA. GAP JUNCTION FUNCTION IS ESSENTIAL FOR SURVIVAL OF ACUTE LYMPHOBLASTIC LEUKEMIA CELLS. Exp Oncol 2024; 46:110-118. [PMID: 39396173 DOI: 10.15407/exp-oncology.2024.02.110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Indexed: 10/14/2024]
Abstract
BACKGROUND Acute lymphoblastic leukemia has an intimate physical relationship with nonmalignant bone marrow stromal cells. We have recently demonstrated that stromal cells contribute to the survival of leukemia cells and that there is a bidirectional transfer of intracellular material between them. Understanding the mechanisms of stromal support of leukemia may provide insights into new therapies. AIM To test the hypothesis that gap junctions are formed between acute lymphoblastic leukemia cells and nonmalignant stromal cells, and that gap junction function is essential for the survival of leukemia cells. MATERIALS AND METHODS We employed a well-characterized in vitro model of human bone marrow stromal cells and primary human B lymphoblastic leukemia cells and measured leukemia cell survival in coculture using flow cytometry. We measured the effects of gap junction antagonist peptides, carbenoxolone (a drug known to interfere with the gap junction function), and several leukemia chemotherapy drugs including methotrexate upon leukemia cell survival. RESULTS We demonstrated that stromal cells need to be alive and metabolically active to keep leukemia cells alive. Physical contact between stromal and leukemia cells leads to an increase in gap junction proteins in leukemia cells. Gap junction inhibitory peptides impaired leukemia cell survival as did carbenoxolone, a nonpeptide inhibitor of the gap junction function. Stromal cell survival was not affected. We observed a very modest enhancement of methotrexate antileukemia activity by low-dose carbenoxolone but no significant interactions with dexamethasone, vincristine, mercaptopurine, or doxorubicin. CONCLUSION These studies demonstrate that acute lymphoblastic cell survival is impaired by interference with the gap junction function. The development of drugs targeting gap junctions may provide a novel approach to the therapy of acute lymphoblastic leukemia.
Collapse
Affiliation(s)
- E Edwards
- Division of Pediatric Hematology/Oncology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - D Schenone
- Division of Pediatric Hematology/Oncology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - U Sivagnanalingam
- Division of Pediatric Hematology/Oncology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - S Perry
- Division of Pediatric Hematology/Oncology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - C A Mullen
- Division of Pediatric Hematology/Oncology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| |
Collapse
|
2
|
Zappalà A, Romano IR, D’Angeli F, Musumeci G, Lo Furno D, Giuffrida R, Mannino G. Functional Roles of Connexins and Gap Junctions in Osteo-Chondral Cellular Components. Int J Mol Sci 2023; 24:ijms24044156. [PMID: 36835567 PMCID: PMC9967557 DOI: 10.3390/ijms24044156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/14/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
Gap junctions (GJs) formed by connexins (Cxs) play an important role in the intercellular communication within most body tissues. In this paper, we focus on GJs and Cxs present in skeletal tissues. Cx43 is the most expressed connexin, participating in the formation of both GJs for intercellular communication and hemichannels (HCs) for communication with the external environment. Through GJs in long dendritic-like cytoplasmic processes, osteocytes embedded in deep lacunae are able to form a functional syncytium not only with neighboring osteocytes but also with bone cells located at the bone surface, despite the surrounding mineralized matrix. The functional syncytium allows a coordinated cell activity through the wide propagation of calcium waves, nutrients and anabolic and/or catabolic factors. Acting as mechanosensors, osteocytes are able to transduce mechanical stimuli into biological signals that spread through the syncytium to orchestrate bone remodeling. The fundamental role of Cxs and GJs is confirmed by a plethora of investigations that have highlighted how up- and downregulation of Cxs and GJs critically influence skeletal development and cartilage functions. A better knowledge of GJ and Cx mechanisms in physiological and pathological conditions might help in developing therapeutic approaches aimed at the treatment of human skeletal system disorders.
Collapse
Affiliation(s)
- Agata Zappalà
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Ivana Roberta Romano
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Floriana D’Angeli
- Department of Human Sciences and Quality of Life Promotion, San Raffaele Roma Open University, 00166 Rome, Italy
| | - Giuseppe Musumeci
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Debora Lo Furno
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
- Correspondence: (D.L.F.); (R.G.)
| | - Rosario Giuffrida
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
- Correspondence: (D.L.F.); (R.G.)
| | - Giuliana Mannino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98122 Messina, Italy
| |
Collapse
|
3
|
Morishita A, Kumabe S, Nakatsuka M, Iwai Y. A histological study of mineralised tissue formation around implants with 3D culture of HMS0014 cells in Cellmatrix Type I-A collagen gel scaffold in vitro. Okajimas Folia Anat Jpn 2015; 91:57-71. [PMID: 25797459 DOI: 10.2535/ofaj.91.57] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We cultured HMS0014 Yub621b cells within a 3D collagen gel scaffold (Cellmatrix Type I-A) and aimed to study the fate and contribution of human bone-derived mesenchymal stem cells (MSCs) in the guided bone regeneration(GBR)-engineered tissue which has developed around the titanium (Ti) test dental implant (IP) in vitro. The light microscopy (LM) and transmission electron microscopy (TEM) results of the peri-IP tissue indicated that collagen fibrils of the Cellmatrix Type I-A gel were accumulated and fabricated to provide a 3D meshwork for proliferation and differentiation of the HMS0014 cells in the top (cell) layer; mineralisation of the GBR tissue had commenced since day 1 and became markedly deposited between days 7 and 14 of the experiment. TEM observation revealed sedimentation of cement line at the periphery of the interwoven Cellmatrix fibres and fibrils in the ECM scaffold of the GBR tissue; matrix vesicle-mediated and appositional collagen-mediated mineralisation were identified in the peri-IP ECM scaffold. The fine structure study of the plurimorphic osteoblast(Ob)-like osteogeneic cells demonstrated numerous membranous organelles related with vesicular trafficking, secretion and endocytosis in the cytoplasm; well-developed cytoskeleton networks and intercellular junctional complexes were also observed. The specimens on fluorescence immunohistochemistry (IHC) by confocal laser-scanning microscopy (LSM) showed the expression of LC3 and Cx43 associated with autophagic-lysosomal degeneration pathway and signal conduction mediated with gap junctions (GJS) in maintaining tissue homeostasis of the Ob-like cells which grew and degenerated in the 3D scaffold. Results from this in vitro study suggest that Ob-like HMS0014 cells actively regulate turnover of the peri-IP ECM to recapitulate the development and formation of osteoid tissue-engineered material which might contribute to augment osseointegration around the dental implant.
Collapse
|
4
|
Zappitelli T, Aubin JE. The "connexin" between bone cells and skeletal functions. J Cell Biochem 2015; 115:1646-58. [PMID: 24818806 DOI: 10.1002/jcb.24836] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 05/08/2014] [Indexed: 11/11/2022]
Abstract
The processes of bone modeling and remodeling are crucial in the skeleton's functions as a supportive and protective structure, a mineral reservoir, and an endocrine organ. The coordination between bone cell activities (bone formation and bone resorption), necessary to maintain the integrity of the skeleton during these processes, is mediated at least in part by cell-cell and cell-environment interactions across gap junctions and hemichannels. The increasing number of genetically engineered Connexin 43 (Cx43) knockout and missense mouse models have provided insight into the complex and critical roles of Cx43-containing gap junctions and hemichannels in the development and turnover of the skeleton, in differentiation, activity and survival of the bone cell lineages, and in the cellular and molecular mechanisms by which Cx43 functions and assists in mediating cellular responses to stimuli in bone. Cx43 may be an important potential therapeutic target, making it crucial that we continue to gain understanding of the multiple and complex roles of Cx43 in bone.
Collapse
Affiliation(s)
- Tanya Zappitelli
- Department of Medical Biophysics, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada, M5S 1A8
| | | |
Collapse
|
5
|
Serum-free and xenobiotic-free preservation of cultured human limbal epithelial cells. PLoS One 2015; 10:e0118517. [PMID: 25734654 PMCID: PMC4348416 DOI: 10.1371/journal.pone.0118517] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 01/13/2015] [Indexed: 01/15/2023] Open
Abstract
Aim/Purpose of the Study To develop a one-week storage method, without serum and xenobiotics, that would maintain cell viability, morphology, and phenotype of cultured human limbal epithelial sheets. Materials and Methods Human limbal explants were cultured on intact human amniotic membranes for two weeks. The sheets were stored in a hermetically sealed container at 23°C in either a serum-free medium with selected animal serum-derived compounds (Quantum 286) or a xenobiotic-free medium (Minimal Essential Medium) for 4 and 7 days. Stored and non-stored cultures were analyzed for cell viability, amniotic membrane and epithelial sheet thickness, and a panel of immunohistochemical markers for immature cells (ΔNp63α, p63, Bmi-1, C/EBP∂, ABCG2 and K19), differentiated cells (K3 and Cx43), proliferation (PCNA), and apoptosis (Caspase-3). Results The cell viability of the cultures was 98 ± 1% and remained high after storage. Mean central thickness of non-stored limbal epithelial sheets was 23 ± 3 μm, and no substantial loss of cells was observed after storage. The non-stored epithelial sheets expressed a predominantly immature phenotype with ΔNp63α positivity of more than 3% in 9 of 13 cultures. After storage, the expression of ABCG2 and C/EBP∂ was reduced for the 7 day Quantum 286-storage group; (P = 0.04), and Bmi-1 was reduced after 4 day Quantum 286-storage; (P = 0.02). No other markers varied significantly. The expression of differentiation markers was unrelated to the thickness of the epithelia and amniotic membrane, apart from ABCG2, which correlated negatively with thickness of limbal epithelia (R = -0.69, P = 0.01) and ΔNp63α, which correlated negatively with amniotic membrane thickness (R = -0.59, P = 0.03). Conclusion Limbal epithelial cells cultured from explants on amniotic membrane can be stored at 23°C in both serum-free and xenobiotic-free media, with sustained cell viability, ultrastructure, and ΔNp63α-positivity after both 4 and 7 days.
Collapse
|
6
|
Stecklum M, Wulf-Goldenberg A, Purfürst B, Siegert A, Keil M, Eckert K, Fichtner I. Cell differentiation mediated by co-culture of human umbilical cord blood stem cells with murine hepatic cells. In Vitro Cell Dev Biol Anim 2015; 51:183-91. [PMID: 25270685 DOI: 10.1007/s11626-014-9817-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 08/28/2014] [Indexed: 12/27/2022]
Abstract
In the present study, purified human cord blood stem cells were co-cultivated with murine hepatic alpha mouse liver 12 (AML12) cells to compare the effect on endodermal stem cell differentiation by either direct cell-cell interaction or by soluble factors in conditioned hepatic cell medium. With that approach, we want to mimic in vitro the situation of preclinical transplantation experiments using human cells in mice. Cord blood stem cells, cultivated with hepatic conditioned medium, showed a low endodermal differentiation but an increased connexin 32 (Cx32) and Cx43, and cytokeratin 8 (CK8) and CK19 expression was monitored by reverse transcription polymerase chain reaction (RT-PCR). Microarray profiling indicated that in cultivated cord blood cells, 604 genes were upregulated 2-fold, with the highest expression for epithelial CK19 and epithelial cadherin (E-cadherin). On ultrastructural level, there were no major changes in the cellular morphology, except a higher presence of phago(ly)some-like structures observed. Direct co-culture of AML12 cells with cord blood cells led to less incisive differentiation with increased sex-determining region Y-box 17 (SOX17), Cx32 and Cx43, as well as epithelial CK8 and CK19 expressions. On ultrastructural level, tight cell contacts along the plasma membranes were revealed. FACS analysis in co-cultivated cells quantified dye exchange on low level, as also proved by time relapse video-imaging of labelled cells. Modulators of gap junction formation influenced dye transfer between the co-cultured cells, whereby retinoic acid increased and 3-heptanol reduced the dye transfer. The study indicated that the cell-co-cultured model of human umbilical cord blood cells and murine AML12 cells may be a suitable approach to study some aspects of endodermal/hepatic cell differentiation induction.
Collapse
Affiliation(s)
- Maria Stecklum
- Max Delbrück Center for Molecular Medicine, Berlin-Buch, Robert-Rössle-Str. 10, 13125, Berlin, Germany,
| | | | | | | | | | | | | |
Collapse
|
7
|
Zhang X, Sun Y, Wang Z, Huang Z, Li B, Fu J. Up-regulation of connexin-43 expression in bone marrow mesenchymal stem cells plays a crucial role in adhesion and migration of multiple myeloma cells. Leuk Lymphoma 2014; 56:211-8. [PMID: 24724781 DOI: 10.3109/10428194.2014.913289] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Multiple myeloma (MM) cells accumulate mainly in the bone marrow (BM) and are closely related to the BM microenvironment. Connexin-43 (Cx43) is the main connexin present in bone marrow mesenchymal stem cells (BMSCs). We found that normal BMSCs expressed a lower level of Cx43 than those derived from patients with MM. Cx43 expression in BMSCs was up-regulated at both the gene and protein level, and gap junction-mediated intercellular communication was improved in BMSCs after co-culture with RPMI 8226 cells. The gap junction blocker 18α-glycyrrhetinic acid (18α-GA) inhibited the adherence of MM cells to BMSCs. Treatment with 18α-GA decreased stromal cell-derived factor-1α (SDF-1α) secretion by BMSCs and inhibited the migration of MM cells induced by BMSCs. These results suggest that alteration of Cx43 expression in BMSCs is involved in the interactions of MM cells with the BM environment and plays a crucial role in the adhesion and migration of MM cells.
Collapse
Affiliation(s)
- Xiaohui Zhang
- Department of Hematology, No. 2 Affiliated Hospital of Soochow University , Suzhou , China
| | | | | | | | | | | |
Collapse
|
8
|
|
9
|
Connexin-43 prevents hematopoietic stem cell senescence through transfer of reactive oxygen species to bone marrow stromal cells. Proc Natl Acad Sci U S A 2012; 109:9071-6. [PMID: 22611193 DOI: 10.1073/pnas.1120358109] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Hematopoietic stem cell (HSC) aging has become a concern in chemotherapy of older patients. Humoral and paracrine signals from the bone marrow (BM) hematopoietic microenvironment (HM) control HSC activity during regenerative hematopoiesis. Connexin-43 (Cx43), a connexin constituent of gap junctions (GJs) is expressed in HSCs, down-regulated during differentiation, and postulated to be a self-renewal gene. Our studies, however, reveal that hematopoietic-specific Cx43 deficiency does not result in significant long-term competitive repopulation deficiency. Instead, hematopoietic Cx43 (H-Cx43) deficiency delays hematopoietic recovery after myeloablation with 5-fluorouracil (5-FU). 5-FU-treated H-Cx43-deficient HSC and progenitors (HSC/P) cells display decreased survival and fail to enter the cell cycle to proliferate. Cell cycle quiescence is associated with down-regulation of cyclin D1, up-regulation of the cyclin-dependent kinase inhibitors, p21(cip1.) and p16(INK4a), and Forkhead transcriptional factor 1 (Foxo1), and activation of p38 mitogen-activated protein kinase (MAPK), indicating that H-Cx43-deficient HSCs are prone to senescence. The mechanism of increased senescence in H-Cx43-deficient HSC/P cells depends on their inability to transfer reactive oxygen species (ROS) to the HM, leading to accumulation of ROS within HSCs. In vivo antioxidant administration prevents the defective hematopoietic regeneration, as well as exogenous expression of Cx43 in HSC/P cells. Furthermore, ROS transfer from HSC/P cells to BM stromal cells is also rescued by reexpression of Cx43 in HSC/P. Finally, the deficiency of Cx43 in the HM phenocopies the hematopoietic defect in vivo. These results indicate that Cx43 exerts a protective role and regulates the HSC/P ROS content through ROS transfer to the HM, resulting in HSC protection during stress hematopoietic regeneration.
Collapse
|
10
|
Connexin-43 in the osteogenic BM niche regulates its cellular composition and the bidirectional traffic of hematopoietic stem cells and progenitors. Blood 2012; 119:5144-54. [PMID: 22498741 DOI: 10.1182/blood-2011-07-368506] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Connexin-43 (Cx43), a gap junction protein involved in control of cell proliferation, differentiation and migration, has been suggested to have a role in hematopoiesis. Cx43 is highly expressed in osteoblasts and osteogenic progenitors (OB/P). To elucidate the biologic function of Cx43 in the hematopoietic microenvironment (HM) and its influence in hematopoietic stem cell (HSC) activity, we studied the hematopoietic function in an in vivo model of constitutive deficiency of Cx43 in OB/P. The deficiency of Cx43 in OB/P cells does not impair the steady state hematopoiesis, but disrupts the directional trafficking of HSC/progenitors (Ps) between the bone marrow (BM) and peripheral blood (PB). OB/P Cx43 is a crucial positive regulator of transstromal migration and homing of both HSCs and progenitors in an irradiated microenvironment. However, OB/P Cx43 deficiency in nonmyeloablated animals does not result in a homing defect but induces increased endosteal lodging and decreased mobilization of HSC/Ps associated with proliferation and expansion of Cxcl12-secreting mesenchymal/osteolineage cells in the BM HM in vivo. Cx43 controls the cellular content of the BM osteogenic microenvironment and is required for homing of HSC/Ps in myeloablated animals.
Collapse
|
11
|
Batra N, Kar R, Jiang JX. Gap junctions and hemichannels in signal transmission, function and development of bone. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1818:1909-18. [PMID: 21963408 DOI: 10.1016/j.bbamem.2011.09.018] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 09/03/2011] [Accepted: 09/15/2011] [Indexed: 10/17/2022]
Abstract
Gap junctional intercellular communication (GJIC) mediated by connexins, in particular connexin 43 (Cx43), plays important roles in regulating signal transmission among different bone cells and thereby regulates development, differentiation, modeling and remodeling of the bone. GJIC regulates osteoblast formation, differentiation, survival and apoptosis. Osteoclast formation and resorptive ability are also reported to be modulated by GJIC. Furthermore, osteocytes utilize GJIC to coordinate bone remodeling in response to anabolic factors and mechanical loading. Apart from gap junctions, connexins also form hemichannels, which are localized on the cell surface and function independently of the gap junction channels. Both these channels mediate the transfer of molecules smaller than 1.2kDa including small ions, metabolites, ATP, prostaglandin and IP(3). The biological importance of the communication mediated by connexin-forming channels in bone development is revealed by the low bone mass and osteoblast dysfunction in the Cx43-null mice and the skeletal malformations observed in occulodentodigital dysplasia (ODDD) caused by mutations in the Cx43 gene. The current review summarizes the role of gap junctions and hemichannels in regulating signaling, function and development of bone cells. This article is part of a Special Issue entitled: The Communicating junctions, composition, structure and characteristics.
Collapse
Affiliation(s)
- Nidhi Batra
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, TX, USA
| | | | | |
Collapse
|
12
|
Abstract
This review article addresses the controversy as to whether the adult heart possesses an intrinsic growth reserve. If myocyte renewal takes place in healthy and diseased organs, the reconstitution of the damaged tissue lost upon pathological insults might be achieved by enhancing a natural occurring process. Evidence in support of the old and new view of cardiac biology is critically discussed in an attempt to understand whether the heart is a static or dynamic organ. According to the traditional concept, the heart exerts its function until death of the organism with the same or lesser number of cells that are present at birth. This paradigm was challenged by documentation of the cell cycle activation and nuclear and cellular division in a subset of myocytes. These observations raised the important question of the origin of replicating myocytes. Several theories have been proposed and are presented in this review article. Newly formed myocytes may derive from a pre-existing pool of cells that has maintained the ability to divide. Alternatively, myocytes may be generated by activation and commitment of resident cardiac stem cells or by migration of progenitor cells from distant organs. In all cases, parenchymal cell turnover throughout lifespan results in a heterogeneous population consisting of young, adult, and senescent myocytes. With time, accumulation of old myocytes has detrimental effects on cardiac performance and may cause the development of an aging myopathy.
Collapse
Affiliation(s)
- T Hosoda
- Division of Cardiovascular Medicine, Department of Anesthesia and Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | | | |
Collapse
|
13
|
Schajnovitz A, Itkin T, D'Uva G, Kalinkovich A, Golan K, Ludin A, Cohen D, Shulman Z, Avigdor A, Nagler A, Kollet O, Seger R, Lapidot T. CXCL12 secretion by bone marrow stromal cells is dependent on cell contact and mediated by connexin-43 and connexin-45 gap junctions. Nat Immunol 2011; 12:391-8. [PMID: 21441933 DOI: 10.1038/ni.2017] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Accepted: 03/04/2011] [Indexed: 12/13/2022]
Abstract
The chemokine CXCL12 is essential for the function of hematopoietic stem and progenitor cells. Here we report that secretion of functional CXCL12 from human bone marrow stromal cells (BMSCs) was a cell contact-dependent event mediated by connexin-43 (Cx43) and Cx45 gap junctions. Inhibition of connexin gap junctions impaired the secretion of CXCL12 and homing of leukocytes to mouse bone marrow. Purified human CD34(+) progenitor cells did not adhere to noncontacting BMSCs, which led to a much smaller pool of immature cells. Calcium conduction activated signaling by cAMP-protein kinase A (PKA) and induced CXCL12 secretion mediated by the GTPase RalA. Cx43 and Cx45 additionally controlled Cxcl12 transcription by regulating the nuclear localization of the transcription factor Sp1. We suggest that BMSCs form a dynamic syncytium via connexin gap junctions that regulates CXC12 secretion and the homeostasis of hematopoietic stem cells.
Collapse
Affiliation(s)
- Amir Schajnovitz
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Jiang Q, Liu D, Sun S, Hu J, Tan L, Wang Y, Gui Y, Yu M, Song H. Critical role of connexin43 in zebrafish late primitive and definitive hematopoiesis. FISH PHYSIOLOGY AND BIOCHEMISTRY 2010; 36:945-951. [PMID: 20020200 DOI: 10.1007/s10695-009-9371-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Accepted: 11/29/2009] [Indexed: 05/28/2023]
Abstract
In vitro studies have suggested that connexin43 (cx43) expression is of particular importance during establishment and regeneration of the mammalian hematopoietic system. However, little is known about its in vivo functions during hematopoiesis due to the embryonic lethality of mammalian knockout models. In this study, we observed that zebrafish cx43 is not only expressed in the eyes, cerebellum, heart, and vasculature, but also expressed, albeit at low levels, in intermediate cell mass (ICM, the primitive hematopoietic site). Knockdown of cx43 leads to vacuolization in the wedge of the ICM and an apparent reduction in the number of circulating blood cells, but does not affect their cellular morphology. Whole-mount in situ hybridization analysis revealed that the hemangioblastic marker flk-1 and the primitive hematopoietic markers lmo2 and scl are basically maintained at normal levels in cx43 morphant embryos at 12-13 h postfertilization (hpf) compared with the con-MO injected embryos. However, subsequent expression of the definitive hematopoietic stem cell (HSC) marker c-myb was severely downregulated in the ventral wall of the dorsal aorta of cx43-depleted embryos at 36 hpf. Furthermore, we confirmed this phenotype by injection of cx43-MO into Tg(gata1:EGFP) embryos. Together, our results show that cx43 contributes to late primitive and definitive hematopoiesis in zebrafish embryos.
Collapse
Affiliation(s)
- Qiu Jiang
- Department of Biochemistry and Molecular Biology, Shanghai Medical College and Key Laboratory of Molecular Medicine, Ministry of Education, Children's Hospital, Fudan University, 200032, Shanghai, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Liu Y, Zhang X, Li ZJ, Chen XH. Up-regulation of Cx43 expression and GJIC function in acute leukemia bone marrow stromal cells post-chemotherapy. Leuk Res 2009; 34:631-40. [PMID: 19910046 DOI: 10.1016/j.leukres.2009.10.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Revised: 09/10/2009] [Accepted: 10/14/2009] [Indexed: 10/20/2022]
Abstract
Gap junction intercellular communication (GJIC) among bone marrow stromal cells (BMSCs) most frequently occurs through a channel composed of connexin43 (Cx43). Dysregulation of connexin expression is believed to have a role in carcinogenesis. In earlier work, we found that in acute leukemia BMSCs, expression of Cx43 and functioning GJIC declined. However, there has been no evaluation of whether GJIC in BMSCs in complete remission (CR) post-chemotherapy is different from GJIC pre-chemotherapy. We studied Cx43 expression and tested GJIC function in human bone marrow cultures under different physiological and pathological conditions. To assay Cx43 expression we used immunocytochemistry, laser scan confocal microscopy (LSCM), flow cytometry and RT-PCR. The results showed that the expression level of Cx43 and its mRNA in acute leukemia BMSCs post-chemotherapy was significantly higher and similar to normal levels than in primary acute leukemia BMSCs (p<0.01). Functional tests in cultures using dye transfer and fluorescence recovery after photobleaching (FRAP) assays showed that the function of GJIC in acute leukemia BMSCs was significantly improved following effective chemotherapy. Our findings suggest Cx43 and GJIC might be involved in the courses of occurrence, development and termination of acute leukemia, and effective chemotherapy could improve Cx43 expression and GJIC function that were dysfunctional prior to treatment.
Collapse
Affiliation(s)
- Yao Liu
- Department of Hematology, Xinqiao Hospital, The Third Military Medical University, Shapingba District, Xinqiao Street, Chongqing 400037, China
| | | | | | | |
Collapse
|
16
|
Presley CA, Lee AW, Kastl B, Igbinosa I, Yamada Y, Fishman GI, Gutstein DE, Cancelas JA. Bone Marrow Connexin-43 Expression Is Critical for Hematopoietic Regeneration After Chemotherapy. ACTA ACUST UNITED AC 2009; 12:307-17. [PMID: 16531325 DOI: 10.1080/15419060500514200] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Contact between bone marrow (BM) hematopoietic stem cells (HSC) and osteoblast/stromal (OS) cells has been shown to be crucial in the regulation of hematopoiesis. However, very little is known about the regulatory mechanisms of direct cell-to-cell communication in the hematopoietic microenvironment. Gap junction channels (connexons) are formed by polypeptides (connexins) arranged in hexamers and represent the best described intercellular communication system. Connexin-43 (Cx43) is expressed by BM OS cells and has been associated with the cadherin/beta -catenin signaling pathway, recently reported as relevant in the OS/HSC interaction at the stem cell niche. Here, we employed an inducible gene-targeted murine approach to study the role of Cx43 in HSC proliferation and differentiation in vivo. Mx-Cre/Cx43+/+ and Mx-Cre/Cx43flox/flox littermates have been analyzed after gene deletion induced in vivo by the interferon-inducer poly (I)-poly (C), generating control (Cx43+) and Cx43-deficient (Cx43-/-) mice. After one week, Cx43+ and Cx43-/- mice were treated with 5-fluorouracil (5-FU). Cx43 expression in Cx43-/- BM was markedly reduced (> 90%) as analyzed on day +14 post-5-FU treatment. Cx43 deficiency did not induce a significant change in peripheral blood counts before 5-FU treatment, but the hematopoiesis recovery after 5-FU treatment was severely impaired as demonstrated by absence of recovery of peripheral blood counts, including profound neutropenia, anemia with reticulocytopenia, thrombocytopenia and a 5- to 8-fold decrease of cellularity and hematopoietic progenitor content (granulomacrophagic colony-forming-units (CFU-GM-), erythroid burst forming units (BFU-E) and mixed colony forming units (CFU-mix-) in BM and spleen on day +14 post-5-FU treatment. However, the femoral content of Lin-/c-kit+/Sca1+ cells in Cx43-/- BM was maintained when compared to Cx43+ BM. Short-term competitive repopulation ability of Cx43-/- BM cells was diminished as compared to Cx43+ mice, specifically for myeloid and B lymphoid cells, but showed spared long-term competitive repopulation ability with roughly normal hematopoietic differentiation. These data suggest that hematopoietic regeneration after cycle-specific chemotherapy is blocked in Cx43-deficient mice at the long-term HSC repopulating level. Cx43 expression within the BM appears to be crucial in the development of an efficient response to hematopoietic stress.
Collapse
Affiliation(s)
- Cynthia A Presley
- Hoxworth Blood Center, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Foss B, Hervig T, Bruserud Ø. Connexins Are Active Participants of Hematopoietic Stem Cell Regulation. Stem Cells Dev 2009; 18:807-12. [DOI: 10.1089/scd.2009.0086] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Brynjar Foss
- Department of Health Studies, University of Stavanger, Norway
| | - Tor Hervig
- The Blood Bank, Haukeland University Hospital, University of Bergen, Norway
- Gades Institute, Haukeland University Hospital, University of Bergen, Norway
| | - Øystein Bruserud
- Institute of Medicine, Haukeland University Hospital, University of Bergen, Norway
| |
Collapse
|
18
|
Infant limbus: An immunohistological study. Exp Eye Res 2009; 88:1161-4. [DOI: 10.1016/j.exer.2008.12.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2008] [Revised: 12/22/2008] [Accepted: 12/29/2008] [Indexed: 11/20/2022]
|
19
|
Dua HS, Miri A, Alomar T, Yeung AM, Said DG. The role of limbal stem cells in corneal epithelial maintenance: testing the dogma. Ophthalmology 2009; 116:856-63. [PMID: 19410942 DOI: 10.1016/j.ophtha.2008.12.017] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2008] [Revised: 11/07/2008] [Accepted: 12/04/2008] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE To study and characterize the epithelial cells in patients with a central "island" of normal epithelial cells surrounded with 360 degrees of clinically apparent limbal stem cell (SC) deficiency with conjunctivalization of the limbus and peripheral cornea. DESIGN Observational, prospective, consecutive case series. PARTICIPANTS Five human subjects (8 eyes) who presented with total limbal SC deficiency in 1 or both eyes with a central area of normal corneal epithelial cells. METHODS Clinical slit-lamp examination, aided with fluorescein staining, for evidence of conjunctivalization and in vivo confocal microscopy (IVCM) of the conjunctivalized limbus and peripheral cornea and the normal central corneal epithelium. MAIN OUTCOME MEASURE Long term survival of normal stratified corneal epithelial cell sheet in the presence of total limbal SC deficiency. RESULTS In all 8 eyes the diagnosis of limbal SC deficiency was confirmed by clinical and IVCM examination. The conjunctivalized area extended circumferentially along the entire limbus, seen clinically by the presence of fluorescein staining cells, epithelial irregularity, and vascularization and by IVCM showing bright conjunctival epithelial cells, superficial and deep blood vessels, and goblet cells. The central corneal epithelial cells had a normal appearance with polygonal superficial cells, well-defined wing cells, and smaller basal cells. The central "islands" of normal epithelial cells remained unchanged over the mean follow-up period of 60 months (range, 8-12 years). CONCLUSIONS The existence and survival of a healthy sheet of corneal epithelial cells over the follow-up period, in the presence of clinically apparent total limbal SC deficiency, suggests a limited role of limbal epithelial SC in physiologic homeostasis of the corneal epithelium. FINANCIAL DISCLOSURE(S) The authors have no proprietary or commercial interest in any materials discussed on this article.
Collapse
Affiliation(s)
- Harminder S Dua
- Division of Ophthalmology and Visual Sciences, Queens Medical Centre, University Hospital, Derby Road, Nottingham, UK.
| | | | | | | | | |
Collapse
|
20
|
Wong RCB, Pera MF, Pébay A. Role of gap junctions in embryonic and somatic stem cells. ACTA ACUST UNITED AC 2009; 4:283-92. [PMID: 18704771 DOI: 10.1007/s12015-008-9038-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Stem cells provide an invaluable tool to develop cell replacement therapies for a range of serious disorders caused by cell damage or degeneration. Much research in the field is focused on the identification of signals that either maintain stem cell pluripotency or direct their differentiation. Understanding how stem cells communicate within their microenvironment is essential to achieve their therapeutic potentials. Gap junctional intercellular communication (GJIC) has been described in embryonic stem cells (ES cells) and various somatic stem cells. GJIC has been implicated in regulating different biological events in many stem cells, including cell proliferation, differentiation and apoptosis. This review summarizes the current understanding of gap junctions in both embryonic and somatic stem cells, as well as their potential role in growth control and cellular differentiation.
Collapse
Affiliation(s)
- Raymond C B Wong
- Department of Biological Chemistry, University of California Irvine, Irvine, CA, USA.
| | | | | |
Collapse
|
21
|
Paredes-Gamero EJ, Leon CMMP, Borojevic R, Oshiro MEM, Ferreira AT. Changes in intracellular Ca2+ levels induced by cytokines and P2 agonists differentially modulate proliferation or commitment with macrophage differentiation in murine hematopoietic cells. J Biol Chem 2008; 283:31909-19. [PMID: 18775989 DOI: 10.1074/jbc.m801990200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The role of intracellular Ca2+ (Ca2+i) on hematopoiesis was investigated in long term bone marrow cultures using cytokines and agonists of P2 receptors. Cytokines interleukin 3 and granulocyte/macrophage colony stimulator factor promoted a modest increase in Ca2+i concentration ([Ca2+]i) with activation of phospholipase Cgamma, MEK1/2, and Ca2+/calmodulin kinase II. Involvement of protein kinase C was restricted to stimulation with interleukin 3. In addition, these cytokines promoted proliferation (20 times) and an increase in the Gr-1(-)Mac-1+ population with participation of gap junctions (GJ). Nevertheless ATP, ADP, and UTP promoted a large increase in [Ca2+]i, moderate proliferation (6 times), a reduction in the primitive Gr-1(-)Mac-1(-)c-Kit+ population, and differentiation into macrophages without participation of GJ. It is likely that Ca2+i participates as a regulator of hematopoietic signaling: moderate increases in [Ca2+]i would be related to cytokine-dependent proliferation with participation of GJ, whereas high increases in [Ca2+]i would be related to macrophage differentiation without maintenance of the primitive population.
Collapse
Affiliation(s)
- Edgar J Paredes-Gamero
- Department of Biophysics, Federal University of São Paulo, Rua Botucatu 862, 04023-062 São Paulo, Brazil.
| | | | | | | | | |
Collapse
|
22
|
Talhouk RS, Zeinieh MP, Mikati MA, El-Sabban ME. Gap junctional intercellular communication in hypoxia-ischemia-induced neuronal injury. Prog Neurobiol 2007; 84:57-76. [PMID: 18006137 DOI: 10.1016/j.pneurobio.2007.10.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2006] [Revised: 08/29/2007] [Accepted: 10/04/2007] [Indexed: 01/07/2023]
Abstract
Brain hypoxia-ischemia is a relatively common and serious problem in neonates and in adults. Its consequences include long-term histological and behavioral changes and reduction in seizure threshold. Gap junction intercellular communication is pivotal in the spread of hypoxia-ischemia related injury and in mediating its long-term effects. This review provides a comprehensive and critical review of hypoxia-ischemia and hypoxia in the brain and the potential role of gap junctions in the spread of the neuronal injury induced by these insults. It also presents the effects of hypoxia-ischemia and of hypoxia on the state of gap junctions in vitro and in vivo. Understanding the mechanisms involved in gap junction-mediated neuronal injury due to hypoxia will lead to the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Rabih S Talhouk
- Department of Biology, American University of Beirut, Beirut, Lebanon
| | | | | | | |
Collapse
|
23
|
Ye C, Eskin E. Discovering tightly regulated and differentially expressed gene sets in whole genome expression data. Bioinformatics 2007; 23:e84-90. [PMID: 17237110 DOI: 10.1093/bioinformatics/btl315] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
MOTIVATION Recently, a new type of expression data is being collected which aims to measure the effect of genetic variation on gene expression in pathways. In these datasets, expression profiles are constructed for multiple strains of the same model organism under the same condition. The goal of analyses of these data is to find differences in regulatory patterns due to genetic variation between strains, often without a phenotype of interest in mind. We present a new method based on notions of tight regulation and differential expression to look for sets of genes which appear to be significantly affected by genetic variation. RESULTS When we use categorical phenotype information, as in the Alzheimer's and diabetes datasets, our method finds many of the same gene sets as gene set enrichment analysis. In addition, our notion of correlated gene sets allows us to focus our efforts on biological processes subjected to tight regulation. In murine hematopoietic stem cells, we are able to discover significant gene sets independent of a phenotype of interest. Some of these gene sets are associated with several blood-related phenotypes. AVAILABILITY The programs are available by request from the authors.
Collapse
Affiliation(s)
- Chun Ye
- Bioinformatics Program, University of California San Diego, La Jolla, CA 92093-0404, USA.
| | | |
Collapse
|
24
|
Dobrenis K, Chang HY, Pina-Benabou MH, Woodroffe A, Lee SC, Rozental R, Spray DC, Scemes E. Human and mouse microglia express connexin36, and functional gap junctions are formed between rodent microglia and neurons. J Neurosci Res 2005; 82:306-15. [PMID: 16211561 PMCID: PMC2583240 DOI: 10.1002/jnr.20650] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Microglia, the tissue macrophages of the central nervous system (CNS), intimately interact with neurons physically and through soluble factors that can affect microglial activation state and neuronal survival and physiology. We report here a new mechanism of interaction between these cells, provided by the formation of gap junctions composed of connexin (Cx) 36. Among eight Cxs tested, expression of Cx36 mRNA and protein was found in microglial cultures prepared from human and mouse, and Cx45 mRNA was found in mouse microglial cultures. Electrophysiological measurements found coupling between one-third of human or mouse microglial pairs that averaged below 30 pico-Siemens and displayed electrical properties consistent with Cx36 gap junctions. Importantly, similar frequency of low-strength electrical coupling was also obtained between microglia and neurons in cocultures prepared from neocortical or hippocampal rodent tissue. Lucifer yellow dye coupling between neurons and microglia was observed in 4% of pairs tested, consistent with the low strength and incidence of electrical coupling. Cx36 expression level and/or the degree of coupling between microglia did not significantly change in the presence of activating agents, including lipopolysaccharide, granulocyte-macrophage colony-stimulating factor, interferon-gamma, and tumor necrosis factor-alpha, except for some reduction of Cx36 protein when exposed to the latter two agents. Our findings that intercellular coupling occurs between neuronal and microglial populations through Cx36 gap junctions have potentially important implications for normal neural physiology and microglial responses in neuronopathology in the mammalian CNS.
Collapse
Affiliation(s)
- K Dobrenis
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461, USA.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Bodi E, Hurtado SP, Carvalho MA, Borojevic R, Carvalho ACCD. Gap junctions in hematopoietic stroma control proliferation and differentiation of blood cell precursors. AN ACAD BRAS CIENC 2004; 76:743-56. [PMID: 15558154 DOI: 10.1590/s0001-37652004000400009] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We examined gap junction communication in an in vitro model of hematopoiesis, using the murine bone marrow stroma cell line S-17, and primary cultures of murine marrow-derived blood cell precursors. S-17 cells express several connexins, the major one being connexin 43. Connexin expression and formation of functional gap junctions is modulated by stroma cell density. Transfection of S-17 cells with a vector containing connexin 43 sense or anti-sense sequences increased or decreased, respectively, connexin 43 synthesis and intercellular dye coupling. Under these conditions, modulation of gap junction-mediated communication modified the growth pattern of stroma itself, as well as the ability of the stroma to sustain hematopoiesis. Increased connexin 43 expression was associated with a delay in differentiation of blood cells, resulting in increased production of hematopoietic precursors, while decreased connexin 43 expression elicited an accelerated differentiation of myeloid blood cell precursor cells. These results suggest that connexin-mediated coupling in the stroma modulates the ratio between proliferation and differentiation of hematopoietic precursors. We therefore propose that increased gap junction communication in the stroma elicits an enhanced production of immature bone marrow cells through the delay in their terminal differentiation, inducing consequently an extended proliferation period of blood cell precursors.
Collapse
Affiliation(s)
- Estevão Bodi
- Instituto de Biofísica Carlos Chagas Filho, CCS. B1. G, Universidade Federal do Rio de Janeiro, Cidade Universitária, Ilha do Fundão, 21949-900 Rio de Janeiro, RJ, Brazil
| | | | | | | | | |
Collapse
|
26
|
Saez JC, Berthoud VM, Branes MC, Martinez AD, Beyer EC. Plasma membrane channels formed by connexins: their regulation and functions. Physiol Rev 2003; 83:1359-400. [PMID: 14506308 DOI: 10.1152/physrev.00007.2003] [Citation(s) in RCA: 881] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Members of the connexin gene family are integral membrane proteins that form hexamers called connexons. Most cells express two or more connexins. Open connexons found at the nonjunctional plasma membrane connect the cell interior with the extracellular milieu. They have been implicated in physiological functions including paracrine intercellular signaling and in induction of cell death under pathological conditions. Gap junction channels are formed by docking of two connexons and are found at cell-cell appositions. Gap junction channels are responsible for direct intercellular transfer of ions and small molecules including propagation of inositol trisphosphate-dependent calcium waves. They are involved in coordinating the electrical and metabolic responses of heterogeneous cells. New approaches have expanded our knowledge of channel structure and connexin biochemistry (e.g., protein trafficking/assembly, phosphorylation, and interactions with other connexins or other proteins). The physiological role of gap junctions in several tissues has been elucidated by the discovery of mutant connexins associated with genetic diseases and by the generation of mice with targeted ablation of specific connexin genes. The observed phenotypes range from specific tissue dysfunction to embryonic lethality.
Collapse
Affiliation(s)
- Juan C Saez
- Departamento de Ciencias Fisiológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, Chile.
| | | | | | | | | |
Collapse
|
27
|
Paraguassú-Braga FH, Borojevic R, Bouzas LF, Barcinski MA, Bonomo A. Bone marrow stroma inhibits proliferation and apoptosis in leukemic cells through gap junction-mediated cell communication. Cell Death Differ 2003; 10:1101-8. [PMID: 12934084 DOI: 10.1038/sj.cdd.4401279] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Normal and leukemic blood cell progenitors depend upon the bone marrow (BM) stroma with which they communicate through soluble and membrane-anchored mediators, adhesive interactions and gap junctions (GJ). Regarding hematopoiesis, it is believed that it can be influenced by connexin expression, but the exact role of GJ in cell death and proliferation is not clear. Using flow cytometry, we monitored the division rate of leukemic cell lines, communicating and not communicating with stromal cell line through GJ. We found that GJ-coupled cells (i) did not proliferate; (ii) were kept in G0; and (iii) were protected from drug-induced apoptosis when compared to either total or uncoupled cell population. We conclude that GJ coupling between stroma and leukemic lymphoblasts prevents proliferation, keeping cells in a quiescent state, thus increasing their resistance to antimitotic drugs. Since GJ are particularly abundant in the sub-endosteal environment, which harbors blood stem cells, we also asked which cells within the normal human BM communicate with the stroma. Using a primary BM stroma cell culture, our results show that 80% of CD34+ progenitors communicate through GJ. We propose that blood cell progenitors might be retained in the low-cycling state by GJ-mediated communication with the hematopoietic stroma.
Collapse
Affiliation(s)
- F H Paraguassú-Braga
- Centro de Transplante de Medula Ossea, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | | | | | | | | |
Collapse
|
28
|
Stewart JD, Masi TL, Cumming AE, Molnar GM, Wentworth BM, Sampath K, McPherson JM, Yaeger PC. Characterization of proliferating human skeletal muscle-derived cells in vitro: differential modulation of myoblast markers by TGF-beta2. J Cell Physiol 2003; 196:70-8. [PMID: 12767042 DOI: 10.1002/jcp.10322] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Adult human skeletal muscle-derived cells (HuSkMC) propagated in vitro are under investigation as a cell-based therapy for the treatment of myocardial infarction. We have characterized HuSkMC with respect to cell identity and state of differentiation as a prerequisite to their clinical use. Flow cytometric analysis of propagated HuSkMC revealed a population of cells that expressed the myoblast markers CD56 and desmin. The presence of myoblasts in these cultures was further confirmed by their capacity to form myotubes and increase creatine kinase activity when cultured in low serum conditions. The non-myoblast fraction of these propagated cells expressed TE7, a marker associated with the fibroblast phenotype. Spontaneous differentiation of myoblasts occurred during serial propagation of HuSkMC, as judged by myotube formation, thereby reducing the myoblast representative fraction with continued cell expansion. We examined transforming growth factor beta2 (TGF-beta2) for its utility in controlling this spontaneous differentiation of adult human myoblasts in vitro. Propagation of HuSkMC in the presence of 1 ng/ml TGF-beta2 for 5 days decreased desmin expression within the myoblast population and caused a parallel reduction of creatine kinase activity. CD56 expression was unaffected, indicating a differential regulation of these myoblast markers. The reduction in desmin expression and creatine kinase activity was, however, reversible upon the removal of TGF-beta. These data collectively indicate that TGF-beta2 restrained differentiation of adult human skeletal myoblasts during propagation without causing irreversible loss of the myoblast phenotype, demonstrating the potential utility of using TGF-beta2 during cultivation and expansion of HuSkMC intended for therapeutic implantation.
Collapse
Affiliation(s)
- Jeffrey D Stewart
- Genzyme Corporation, One Mountain Road, Framingham, Massachusetts 01701-9322, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Rosendaal M, Jopling C. Hematopoietic capacity of connexin43 wild-type and knock-out fetal liver cells not different on wild-type stroma. Blood 2003; 101:2996-8. [PMID: 12468432 DOI: 10.1182/blood-2002-07-2028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In 1995 and 1997 we proposed that gap junctions between stromal and hematopoietic cells formed by connexin43 (Cx43) determine hematopoiesis. If this were the case, are the critical gap junctions in this regard those between hematopoietic and stromal cells, or those between stromal cells alone? To test the first possibility, we compared hematopoietic repopulating capacity between fetal liver hematopoietic cells expressing the different mouse Cx43 genotypes, wild type (WT), hemizygous, or knock-out (KO) on WT host mice stroma. We deleted host glucose phosphate isomerase 1(a) (Gpi-1(a)) stems and then raced identifiable Cx43 WT host fetal liver against congenic donor Cx43 WT, hemizygous, or KO cells in sets, comparing their capacity to form 5 end cells. Hematopoietic capacity did not differ between the Cx43 WT and KO genotypes. The role of Cx43 gap junctions in hematopoiesis remains uncertain.
Collapse
Affiliation(s)
- Martin Rosendaal
- Department of Anatomy and Developmental Biology, University College, London, United Kingdom.
| | | |
Collapse
|
30
|
Visnjic D, Kalajzic I, Gronowicz G, Aguila HL, Clark SH, Lichtler AC, Rowe DW. Conditional ablation of the osteoblast lineage in Col2.3deltatk transgenic mice. J Bone Miner Res 2001; 16:2222-31. [PMID: 11760835 DOI: 10.1359/jbmr.2001.16.12.2222] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Two transgenic mouse lines were generated with a DNA construct bearing a 2.3-kilobase (kb) fragment of the rat alpha1 type I collagen promoter driving a truncated form of the herpes thymidine kinase gene (Col2.3Atk). Expression of the transgene was found in osteoblasts coincident with other genetic markers of early osteoblast differentiation. Mice treated with ganciclovir (GCV) for 16 days displayed extensive destruction of the bone lining cells and decreased osteoclast number. In addition, a dramatic decrease in bone marrow elements was observed, which was more severe in the primary spongiosum and marrow adjacent to the diaphyseal endosteal bone. Immunostaining for transgene expression within the bone marrow was negative and marrow stromal cell cultures developed normally in the presence of GCV until the point of early osteoblast differentiation. Our findings suggest that the early differentiating osteoblasts are necessary for the maintenance of osteoclasts and hematopoiesis. Termination of GCV treatment produced an exaggerated response of new bone formation in cortical and trabecular bone. The Col2.3deltatk mouse should be a useful model to define the interrelation between bone and marrow elements as well as a model to analyze the molecular and cellular events associated with a defined wave of osteogenesis on termination of GCV treatment.
Collapse
Affiliation(s)
- D Visnjic
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington 06030, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Montecino‐Rodriguez E, Dorshkind K. Regulation of hematopoiesis by gap junction‐mediated intercellular communication. J Leukoc Biol 2001. [DOI: 10.1189/jlb.70.3.341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Encarnacion Montecino‐Rodriguez
- Department of Pathology and Laboratory Medicine and the Jonsson Comprehensive Cancer Center, UCLA School of Medicine, Los Angeles, California
| | - Kenneth Dorshkind
- Department of Pathology and Laboratory Medicine and the Jonsson Comprehensive Cancer Center, UCLA School of Medicine, Los Angeles, California
| |
Collapse
|
32
|
Zocchi E, Podestà M, Pitto A, Usai C, Bruzzone S, Franco L, Guida L, Bacigalupo A, De Flora A. Paracrinally stimulated expansion of early human hemopoietic progenitors by stroma-generated cyclic ADP-ribose. FASEB J 2001; 15:1610-2. [PMID: 11427502 DOI: 10.1096/fj.00-0803fje] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- E Zocchi
- Department of Experimental Medicine, Section of Biochemistry, University of Genova, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Ploemacher ROBE, Mayen ANGELIQUEEM, De Koning ALEXANDRAE, Krenacs TIBOR, Rosendaal MARTIN. Hematopoiesis: Gap Junction Intercellular Communication is Likely to be Involved in Regulation of Stroma-dependent Proliferation of Hemopoietic Stem Cells. HEMATOLOGY (AMSTERDAM, NETHERLANDS) 2001; 5:133-147. [PMID: 11399609 DOI: 10.1080/10245332.2000.11746498] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The 80-100 fold increased immunohistological expression of the Gap Junction (GJ) protein Connexin-43 in murine bone marrow during the neonatal period and directly following cytoreductive treatment of adult mice suggests that the regulation of stem cell proliferation may involve GJ Intercellular Communication (GJIC). Using a series of stromal cell lines from foetal liver and neonatal bone marrow we observed that the percentage of cells with GJIC, as indicated by dye-coupling using microinjection of lucifer yellow, correlated with the stromal support for late appearing clones formed by primitive stem cells (CAFC week 3-5). In order to functionally block all GJIC between mutual stromal cells and stromal cells and hemopoietic cells, in long-term stroma-supported flask (LTC) and CAFC cultures, the lipophilic compounds amphotericin-B (AB), nystatin, alpha-glycyrrhetinic acid, tetraphenylboron, dipicrylamine and arachidonic acid were tested for their effect on GJIC and CAFC support. Only AB and nystatin, which induced complete and prolonged GJIC blockade, were able to dramatically inhibit cobblestone area (CA) formation and CFU-C generation in LTC. This inhibition could be fully abrogated by withdrawing AB within the first 2 weeks of culture. Low AB concentrations stimulated CA formation. The AB-mediated inhibition of hemopoiesis probably involved direct stromal contact with stem cells because a) AB did not inhibit CFU-C generation when stem cells were cultured in trans-well inserts above the stroma; b) conditioned media from AB-containing or normal LTC did not inhibit colony formation by normal cells in semi-solid, non-stromal cultures, and c) AB did not inhibit colony formation by bone marrow cells in semi-solid culture nor did it inhibit growth or maintenance of stromal cells. In addition, The inhibition of hemopoiesis by AB could also not be explained by changes in the amount of cytokine and chemokine transcripts, including TGF-b1, in AB-blocked stromal cells. Our findings support the involvement of GJIC in stroma-dependent regulation of hemopoietic stem cell proliferation.
Collapse
Affiliation(s)
- ROB E. Ploemacher
- Department of Hematology, Faculty of Medicine and Health Care, Erasmus University, 3000 DR Rotterdam, The Netherlands
| | | | | | | | | |
Collapse
|
34
|
Rosendaal M, Krenács T T. Regulatory pathways in blood-forming tissue with particular reference to gap junctional communication. Pathol Oncol Res 2001; 6:243-9. [PMID: 11173655 DOI: 10.1007/bf03187326] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Blood formation by pluripotent stem cells and their progeny is thought to be regulated by receptor-ligand interactions between cell-substrate, cell-cell and cell-matrix in the bone marrow. Primitive stem cells form progenitors and, in their turn, these give rise to haemopoietic progeny which are more specifically committed in that they can form progressively fewer types of blood cells. Recently we have established that direct cell-cell communication via gap junctions may be part of this regulatory system. Connexin43 gap junctions metabolically couple the three dimensional meshwork of bone marrow stromal cells to form a functional syncytium in which some blood-forming cells are also coupled. The expression of gap junctions in the bone marrow is markedly upregulated when there is an urgent and substantial demand for blood-formation; for example, following cytotoxic injury after 5-fluorouracil or irradiation; or during neonatal blood-formation and in the epiphysis of growing bones. Chemical blockade of gap junctions blocks blood-formation in long-term cultures but is reversible after the blockade has been relieved. This short review highlights briefly the known regulatory mechanisms of blood-formation with especial attention to gap junctional communication.
Collapse
Affiliation(s)
- M Rosendaal
- Department of Anatomy and Developmental Biology, University College London, Gower Street, London, WC1E 6BT, England.
| | | |
Collapse
|
35
|
Expression of connexin 43 (Cx43) is critical for normal hematopoiesis. Blood 2000. [DOI: 10.1182/blood.v96.3.917.015k45_917_924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gap junctions are intercellular channels, formed by individual structural units known as connexins (Cx), that allow the intercellular exchange of various messenger molecules. The finding that numbers of Cx43-type gap junctions in bone marrow are elevated during establishment and regeneration of the hematopoietic system has led to the hypothesis that expression of Cx43 is critical during the initiation of blood cell formation. To test this hypothesis, lymphoid and myeloid development were examined in mice with a targeted disruption of the gene encoding Cx43. Because Cx43−/− mice die perinatally, initial analyses were performed on Cx43−/−, Cx43+/−, and Cx43+/+ embryos and newborns. The data indicate that lack of Cx43 expression during embryogenesis compromises the terminal stages of primary T and B lymphopoiesis. Cx43−/− embryos and neonates had a reduced frequency of CD4+ and T-cell receptor-expressing thymocytes and surface IgM+cells compared to their Cx43+/+ littermates. Surprisingly, Cx43+/− embryos/neonates also showed defects in B- and T-cell development similar to those observed in Cx43−/− littermates, but their hematopoietic system was normal at 4 weeks of age. However, the regeneration of lymphoid and myeloid cells was severely impaired in the Cx43+/− mice after cytoablative treatment. Taken together, these data indicate that loss of a single Cx43 allele can affect blood cell formation. Finally, the results of reciprocal bone marrow transplants between Cx43+/+ and Cx43+/− mice and examination of hematopoietic progenitors and stromal cells in vitro indicates that the primary effects of Cx43 are mediated through its expression in the hematopoietic microenvironment.
Collapse
|
36
|
Connexin-43 gap junctions are involved in multiconnexin-expressing stromal support of hemopoietic progenitors and stem cells. Blood 2000. [DOI: 10.1182/blood.v96.2.498] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractGap junctions (GJs) provide for a unique system of intercellular communication (IC) allowing rapid transport of small molecules from cell to cell. GJs are formed by a large family of proteins named connexins (Cxs). Cx43 has been considered as the predominantly expressed Cx by hematopoietic-supporting stroma. To investigate the role of the Cx family in hemopoiesis, we analyzed the expression of 11 different Cx species in different stromal cell lines derived from murine bone marrow (BM) or fetal liver (FL). We found that up to 5 Cxs are expressed in FL stromal cells (Cx43, Cx45, Cx30.3, Cx31, and Cx31.1), whereas only Cx43, Cx45, and Cx31 were clearly detectable in BM stromal cells. In vivo, the Cx43-deficient 14.5- to 15-day FL cobblestone area–forming cells (CAFC)-week 1-4 and colony-forming unit contents were 26%-38% and 39%-47% lower than in their wild-type counterparts, respectively. The reintroduction of the Cx43 gene into Cx43-deficient FL stromal cells was able to restore their diminished IC to the level of the wild-type FL stromal cells. In addition, these Cx43-reintroduced stromal cells showed an increased support ability (3.7-fold) for CAFC-week 1 in normal mouse BM and 5-fold higher supportive ability for CAFC-week 4 in 5-fluorouracil-treated BM cells as compared with Cx43-deficient FL stromal cells. These findings suggest that stromal Cx43-mediated IC, although not responsible for all GJ-mediated IC of stromal cells, plays a role in the supportive ability for hemopoietic progenitors and stem cells.
Collapse
|
37
|
Connexin-43 gap junctions are involved in multiconnexin-expressing stromal support of hemopoietic progenitors and stem cells. Blood 2000. [DOI: 10.1182/blood.v96.2.498.014k44_498_505] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Gap junctions (GJs) provide for a unique system of intercellular communication (IC) allowing rapid transport of small molecules from cell to cell. GJs are formed by a large family of proteins named connexins (Cxs). Cx43 has been considered as the predominantly expressed Cx by hematopoietic-supporting stroma. To investigate the role of the Cx family in hemopoiesis, we analyzed the expression of 11 different Cx species in different stromal cell lines derived from murine bone marrow (BM) or fetal liver (FL). We found that up to 5 Cxs are expressed in FL stromal cells (Cx43, Cx45, Cx30.3, Cx31, and Cx31.1), whereas only Cx43, Cx45, and Cx31 were clearly detectable in BM stromal cells. In vivo, the Cx43-deficient 14.5- to 15-day FL cobblestone area–forming cells (CAFC)-week 1-4 and colony-forming unit contents were 26%-38% and 39%-47% lower than in their wild-type counterparts, respectively. The reintroduction of the Cx43 gene into Cx43-deficient FL stromal cells was able to restore their diminished IC to the level of the wild-type FL stromal cells. In addition, these Cx43-reintroduced stromal cells showed an increased support ability (3.7-fold) for CAFC-week 1 in normal mouse BM and 5-fold higher supportive ability for CAFC-week 4 in 5-fluorouracil-treated BM cells as compared with Cx43-deficient FL stromal cells. These findings suggest that stromal Cx43-mediated IC, although not responsible for all GJ-mediated IC of stromal cells, plays a role in the supportive ability for hemopoietic progenitors and stem cells.
Collapse
|
38
|
Becker DL, McGonnell I, Makarenkova HP, Patel K, Tickle C, Lorimer J, Green CR. Roles for alpha 1 connexin in morphogenesis of chick embryos revealed using a novel antisense approach. DEVELOPMENTAL GENETICS 2000; 24:33-42. [PMID: 10079509 DOI: 10.1002/(sici)1520-6408(1999)24:1/2<33::aid-dvg5>3.0.co;2-f] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Gap junctional communication has been implicated in embryonic development and pattern formation. The gap junction protein, alpha 1 connexin (Cx43) is expressed in dynamic and spatially restricted patterns in the developing chick embryo and its expression correlates with many specific developmental events. High levels of expression are found in regions of budding, which leads to shaping and appears to be a necessary prelude for tissue fusions. In order to investigate the role of alpha 1 connexin in these morphogenetic events, we developed a novel method of applying unmodified antisense deoxyoligonucleotides (ODNs) to chick embryos. The use of pluronic gel to deliver antisense ODNs has allowed us to regulate the expression of alpha 1 connexin protein, both spatially and temporally. This "knockdown" results in some striking developmental defects that mimic some common congenital abnormalities, such as spina bifida, anencephaly, myeloschisis, limb malformation, cleft palate, failure of hematopoiesis, and cardiovascular deformity. The results imply a major role for alpha 1 connexin communication in the integration of signaling required for pattern formation during embryonic development. This novel antisense technique may also be widely applicable.
Collapse
Affiliation(s)
- D L Becker
- Department of Anatomy and Developmental Biology, University College London, UK.
| | | | | | | | | | | | | |
Collapse
|
39
|
Oviedo-Orta E, Hoy T, Evans WH. Intercellular communication in the immune system: differential expression of connexin40 and 43, and perturbation of gap junction channel functions in peripheral blood and tonsil human lymphocyte subpopulations. Immunology 2000; 99:578-90. [PMID: 10792506 PMCID: PMC2327182 DOI: 10.1046/j.1365-2567.2000.00991.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/1999] [Revised: 10/07/1999] [Accepted: 11/25/1999] [Indexed: 11/20/2022] Open
Abstract
The distribution and function of connexins (integral membrane proteins assembled into gap junction intercellular communication channels) were studied in human lymphocyte subpopulations. The expression of mRNA encoding connexins in peripheral blood and tonsil-derived T, B and natural killer (NK) lymphocytes was examined. Connexin43 (Cx43) mRNA was expressed in peripheral blood and tonsil lymphocytes, but Cx40 mRNA expression was confined to tonsil-derived T and B lymphocytes; Cx26, Cx32, Cx37 and Cx45 were not detected by reverse transcription-polymerase chain reaction (RT-PCR). Western blot analysis also demonstrated the presence of Cx40 and Cx43 proteins in T and B lymphocytes in a manner coincidental to the mRNA detection. Stimulation in vitro of T and B lymphocytes with phytohaemagglutinin (PHA) and lipopolysaccharide (LPS), respectively, increased Cx40 and Cx43 protein expression. Flow cytometric analysis, using antibodies to extracellular loop amino acid sequences of connexins, confirmed the surface expression of connexins in all lymphocyte subpopulations. Assembly of connexins into gap junctions providing direct intercellular channels linking attached lymphocytes was demonstrated by using a dye transfer technique. The exchange of dye between lymphocytes was inhibited by a connexin extracellular loop mimetic peptide and alpha-glycyrrhetinic acid, two reagents that restrict intercellular communication across gap junctions. Dye coupling occurred between homologous and heterologous co-cultures of T and B lymphocytes, and was not influenced by their stimulation with PHA and LPS. The connexin mimetic peptide caused a significant decrease in the in vitro synthesis of immunoglobulin M (IgM) by T- and B-lymphocyte co-cultured populations in the presence or absence of stimulation by PHA. The results identify connexins as important cell surface components that modulate immune processes.
Collapse
Affiliation(s)
- E Oviedo-Orta
- Department of Medical Biochemistry and Wales Heart Research Institute, University of Wales College of Medicine, Cardiff, UK
| | | | | |
Collapse
|
40
|
Sáez JC, Brañes MC, Corvalán LA, Eugenín EA, González H, Martínez AD, Palisson F. Gap junctions in cells of the immune system: structure, regulation and possible functional roles. Braz J Med Biol Res 2000; 33:447-55. [PMID: 10775310 DOI: 10.1590/s0100-879x2000000400011] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Gap junction channels are sites of cytoplasmic communication between contacting cells. In vertebrates, they consist of protein subunits denoted connexins (Cxs) which are encoded by a gene family. According to their Cx composition, gap junction channels show different gating and permeability properties that define which ions and small molecules permeate them. Differences in Cx primary sequences suggest that channels composed of different Cxs are regulated differentially by intracellular pathways under specific physiological conditions. Functional roles of gap junction channels could be defined by the relative importance of permeant substances, resulting in coordination of electrical and/or metabolic cellular responses. Cells of the native and specific immune systems establish transient homo- and heterocellular contacts at various steps of the immune response. Morphological and functional studies reported during the last three decades have revealed that many intercellular contacts between cells in the immune response present gap junctions or "gap junction-like" structures. Partial characterization of the molecular composition of some of these plasma membrane structures and regulatory mechanisms that control them have been published recently. Studies designed to elucidate their physiological roles suggest that they might permit coordination of cellular events which favor the effective and timely response of the immune system.
Collapse
Affiliation(s)
- J C Sáez
- Departamento de Ciencias Fisiológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | | | | | | | | | | | | |
Collapse
|
41
|
Waldo KL, Lo CW, Kirby ML. Connexin 43 expression reflects neural crest patterns during cardiovascular development. Dev Biol 1999; 208:307-23. [PMID: 10191047 DOI: 10.1006/dbio.1999.9219] [Citation(s) in RCA: 149] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We used transgenic mice in which the promoter sequence for connexin 43 linked to a lacZ reporter was expressed in neural crest but not myocardial cells to document the pattern of cardiac neural crest cells in the caudal pharyngeal arches and cardiac outflow tract. Expression of lacZ was strikingly similar to that of cardiac neural crest cells in quail-chick chimeras. By using this transgenic mouse line to compare cardiac neural crest involvement in cardiac outflow septation and aortic arch artery development in mouse and chick, we were able to note differences and similarities in their cardiovascular development. Similar to neural crest cells in the chick, lacZ-positive cells formed a sheath around the persisting aortic arch arteries, comprised the aorticopulmonary septation complex, were located at the site of final fusion of the conal cushions, and populated the cardiac ganglia. In quail-chick chimeras generated for this study, neural crest cells entered the outflow tract by two pathways, submyocardially and subendocardially. In the mouse only the subendocardial population of lacZ-positive cells could be seen as the cells entered the outflow tract. In addition lacZ-positive cells completely surrounded the aortic sac prior to septation, while in the chick, neural crest cells were scattered around the aortic sac with the bulk of cells distributed in the bridging portion of the aorticopulmonary septation complex. In the chick, submyocardial populations of neural crest cells assembled on opposite sides of the aortic sac and entered the conotruncal ridges. Even though the aortic sac in the mouse was initially surrounded by lacZ-positive cells, the two outflow vessels that resulted from its septation showed differential lacZ expression. The ascending aorta was invested by lacZ-positive cells while the pulmonary trunk was devoid of lacZ staining. In the chick, both of these vessels were invested by neural crest cells, but the cells arrived secondarily by displacement from the aortic arch arteries during vessel elongation. This may indicate a difference in derivation of the pulmonary trunk in the mouse or a difference in distribution of cardiac neural crest cells. An independent mouse neural crest marker is needed to confirm whether the differences are indeed due to species differences in cardiovascular and/or neural crest development. Nevertheless, with the differences noted, we believe that this mouse model faithfully represents the location of cardiac neural crest cells. The similarities in location of lacZ-expressing cells in the mouse to that of cardiac neural crest cells in the chick suggest that this mouse is a good model for studying mammalian cardiac neural crest and that the mammalian cardiac neural crest performs functions similar to those shown for chick.
Collapse
Affiliation(s)
- K L Waldo
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, Georgia, 30912-2640, USA.
| | | | | |
Collapse
|
42
|
Chapter 25: Gap Junctions in Inflammatory Responses: Connexins, Regulation and Possible Functional Roles. CURRENT TOPICS IN MEMBRANES 1999. [DOI: 10.1016/s0070-2161(08)61029-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
43
|
Abstract
We characterized the formation and regulation of the gap junction in calvarial osteoblasts and in a series of subtypes from marrow stromal cells. The stromal cells included osteogenic, chondro-osteogenic, and endothelial cells. The cell coupling was measured by using fluorescence dye injected into single cells, and its migration to neighboring cells was measured. The functional coupling of cells was highly expressed by the osteoblastic cells. This process is mediated through fast changes in intracellular Ca+2 levels. Calcium ionophore (A 23,187) demonstrated an uncoupling effect on the cells. In addition, the exposure of the cells to the parathyroid hormone increased the formation of the gap junction complex; the highest level was demonstrated in the osteoblastic cells.
Collapse
Affiliation(s)
- R Massas
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel-Aviv University, Israel
| | | |
Collapse
|
44
|
Martin CA, el-Sabban ME, Zhao L, Burakoff R, Homaidan FR. Adhesion and cytosolic dye transfer between macrophages and intestinal epithelial cells. CELL ADHESION AND COMMUNICATION 1998; 5:83-95. [PMID: 9638330 DOI: 10.3109/15419069809040283] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Activated macrophages (M phi) found in the intestinal lesions of patients with inflammatory bowel disease (IBD) secrete many inflammatory mediators which can regulate intestinal epithelial cell (IEC) function. However, little is known about direct M phi-IEC interactions. Two potential mechanisms by which cells may interact are through specific receptor-ligand binding of adhesion molecules, such as integrins or cadherins, and by exchange of cytoplasmic substances through transmembraneous channels called gap junctions. We investigated whether M phi could adhere to epithelial cells in culture and form transmembrane communication channels as defined by dye transfer. Primary cultures of murine M phi and a M phi cell line, P388D1, adhered to Mode-K and IEC6, but not CMT-93 IEC. Antibody blocking studies determined that P388D1-Mode-K binding was partially dependent on beta 2 integrin (CD18) function, Mode-K constitutively expressed CD106 (VCAM-1) and cell associated fibronectin, while P388D1 expressed low levels of CD49d/CD29 (VLA4) but blocking antibodies to these surface molecules did not inhibit P388D1-Mode-K adherence. Transfer of calcein dye from M phi to IEC was quantitated by flow cytometry and was dependent on M phi-IEC adhesion. Dye transfer was concentration dependent in that the fluorescence intensity of Mode-K was proportional to the number of adherent P388D1 cells as well as the dye load of the M phi. These results indicate that M phi interact with IEC by adhesion and possibly through gap junctions and may thus regulate IEC function by direct cell-cell communication.
Collapse
Affiliation(s)
- C A Martin
- Division of Gastroenterology and Nutrition, Winthrop University Hospital, Mineola, NY 11501, USA
| | | | | | | | | |
Collapse
|
45
|
Abstract
The process of blood formation is sustained throughout an individual's life by a small population of haemopoietic stem cells (HSCs). The HSC compartment represents a hierarchy of HSC subsets with decreasing proliferative ability. This heterogeneity is reflected in the varying time periods that HSCs may contribute to the initiation and maintenance of donor-type haemopoietic multilineage chimerism in vivo. The phenotype of HSC is incompletely defined rendering morphological or flow cytometric quantitation unreliable. Functional HSC assays, both in vitro (CAFC, LTC-IC) and in vivo (repopulation of NOD/SCID mice) may be superior to phenotypic analysis; however, such assays have not been truly validated in a human transplant setting. The quiescence and proliferation of HSCs is highly regulated by the stroma in haemopoietic organs. Many of the cytokines that have been cloned in recent years are actually elaborated and presented by the haemopoietic organ stroma and are supposed to serve as local regulators in order to gain specificity and avoid pleitropic and thus undesired side effects. Most probably, additional stroma-derived factors will be characterized as suggested by the observation that HSCs produce more progeny in stroma-contact than in its absence or in stroma-conditioned medium, irrespectively of the exogenous cytokines included. Stem cells are considered to possess the ability to self-renew and are therefore attractive vehicles for gene therapy. The same assumed characteristic fuels attempts to amplify their numbers ex vivo, and is expected to enable more rapid haemopoietic recovery of conditioned recipients as well as enlarge HSC grafts of insufficient size before actual transplantation.
Collapse
Affiliation(s)
- R E Ploemacher
- Department of Haematology, Erasmus University, Rotterdam, The Netherlands
| |
Collapse
|
46
|
Krenacs T, van Dartel M, Lindhout E, Rosendaal M. Direct cell/cell communication in the lymphoid germinal center: connexin43 gap junctions functionally couple follicular dendritic cells to each other and to B lymphocytes. Eur J Immunol 1997; 27:1489-97. [PMID: 9209502 DOI: 10.1002/eji.1830270627] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Direct cell/cell communication occurs through gap junctions (GJ). We mapped GJ expression in secondary lymphoid organs and found, for the first time, a high density of connexin43 (Cx43) GJ in follicular dendritic cells (FDC) in close association with lymphocytes (Krenacs T. and Rosendaal M., J. Histochem. Cytochem. 1995. 43: 1125-1137). In this work, we used a combination of ultrastructural, immunocytochemical, molecular methods, and functional dye transfer experiments to study which germinal center cells are involved in direct cell/ cell communication and how GJ expression is regulated during antigen responses. One week after injecting the footpad of mice with 50 micrograms lysozyme, Cx43 GJ were detected on elongated cells in the paracortex of their popliteal lymph nodes. Repeated challenge led to the formation of secondary follicles with enlarged FDC meshwork full of Cx43 GJ. This positive correlation may reflect an importance for GJ in the pattern formation of FDC and lymphoid follicles. In human tonsil, the density of GJ and FDC was highest in the light zone of germinal centers where the fate of B cells is thought to be decided. Cx43 colocalized with CD21 and CD35 antigens in the vicinity of desmosomal junctions on FDC embracing lymphocytes. Freeze-fracture hallmarks of GJ of 200-400 nm were also found on FDC in the vicinity of desmosomal plaques. Furthermore, Northern blot analysis showed the consistent presence of Cx43 mRNA in human tonsil and spleen. Most Cx43 message was localized in situ to cells with FDC morphology and some to a few germinal center lymphocytes. To investigate functional cell coupling, we set up FDC/B cell cultures from the low density cell fractions of human tonsils. Cx43 plaques associated with lymphocytes were detected both on elongated FDC processes in early cultures (up to 4 h) and in established FDC/B cell clusters (between 4 and 24 h). In early cultures, we injected FDC with Lucifer Yellow, a fluorescent dye which passes through GJ: the dye spread into adjacent FDC and occasionally from FDC into CD19+ B cells. Based on these results, we propose that direct cell/cell communication through Cx43 GJ is involved in FDC/FDC and in FDC/B cell interactions. The functionally coupled FDC meshwork may serve as a communication channel synchronizing germinal center events. FDC may also deliver crucial direct signals through GJ involved in the rescue of high-affinity B cell clones from apoptotic cell death.
Collapse
Affiliation(s)
- T Krenacs
- Department of Anatomy, University College London, England
| | | | | | | |
Collapse
|
47
|
Bruzzone R, White TW, Paul DL. Connections with connexins: the molecular basis of direct intercellular signaling. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 238:1-27. [PMID: 8665925 DOI: 10.1111/j.1432-1033.1996.0001q.x] [Citation(s) in RCA: 951] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Adjacent cells share ions, second messengers and small metabolites through intercellular channels which are present in gap junctions. This type of intercellular communication permits coordinated cellular activity, a critical feature for organ homeostasis during development and adult life of multicellular organisms. Intercellular channels are structurally more complex than other ion channels, because a complete cell-to-cell channel spans two plasma membranes and results from the association of two half channels, or connexons, contributed separately by each of the two participating cells. Each connexon, in turn, is a multimeric assembly of protein subunits. The structural proteins comprising these channels, collectively called connexins, are members of a highly related multigene family consisting of at least 13 members. Since the cloning of the first connexin in 1986, considerable progress has been made in our understanding of the complex molecular switches that control the formation and permeability of intercellular channels. Analysis of the mechanisms of channel assembly has revealed the selectivity of inter-connexin interactions and uncovered novel characteristics of the channel permeability and gating behavior. Structure/function studies have begun to provide a molecular understanding of the significance of connexin diversity and demonstrated the unique regulation of connexins by tyrosine kinases and oncogenes. Finally, mutations in two connexin genes have been linked to human diseases. The development of more specific approaches (dominant negative mutants, knockouts, transgenes) to study the functional role of connexins in organ homeostasis is providing a new perception about the significance of connexin diversity and the regulation of intercellular communication.
Collapse
Affiliation(s)
- R Bruzzone
- Unité de Neurovirologie et Régénération du Système Nerveux, Institut Pasteur, Paris, France
| | | | | |
Collapse
|
48
|
Affiliation(s)
- C D Stern
- Department of Genetics and Development, College of Physicians and Surgeons of Columbia University, New York, NY 10032, USA
| |
Collapse
|
49
|
Abstract
More than ten research groups have now reported the presence of gap junctions in blood-forming tissue or cultured cells. It is time to accept that these cell-coupling structures are present in this tissue. To find out what they are doing here we need to develop appropriate experimental techniques. This review covers the particular problems of investigating direct cell-cell communication by gap or other junctions in undisturbed haemopoietic tissue. It then describes and assesses the published reports of haemopoietic gap junctions. Recently, in the author's laboratory, three means of increasing the number of gap junctions 50- to 100-fold in mouse marrow have been described, as well as techniques for doing so in culture. There is a complete report of this work here. At present it is quite unclear what function gap junctions serve in blood-formation, perhaps it is some consolation that 30 years after their ultramicroscopic discovery it is also true for all other unexcitable tissues. Possibly the ability to up-regulate their expression in haemopoietic tissue will help us find out what their role is in blood formation.
Collapse
Affiliation(s)
- M Rosendaal
- Department of Anatomy and Developmental Biology, University College London, England
| |
Collapse
|