1
|
Parida PK, Mahata B, Santra A, Chakraborty S, Ghosh Z, Raha S, Misra AK, Biswas K, Jana K. Inhibition of cancer progression by a novel trans-stilbene derivative through disruption of microtubule dynamics, driving G2/M arrest, and p53-dependent apoptosis. Cell Death Dis 2018; 9:448. [PMID: 29670107 PMCID: PMC5906627 DOI: 10.1038/s41419-018-0476-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 01/15/2018] [Accepted: 01/19/2018] [Indexed: 01/02/2023]
Abstract
Resveratrol, a trans-stilbene polyphenolic compound and its synthetic analogs are widely used bioactive molecules due to their remarkable chemo-preventive potential. Here, we have identified a novel synthetic trans-stilbene compound, Z-DAN-11 ((Z)-3-(3, 4-dimethoxyphenyl)-2-(3, 4, 5-trimethoxyphenyl) acrylonitrile) which shows remarkable efficacy in blocking tumor growth and progression both in vitro and in vivo. Z-DAN-11 inhibits proliferation of cancer cells in vitro through microtubule depolymerization that induced G2/M arrest and consequently leads to apoptotic cell death. More importantly, Z-DAN-11 shows limited cytotoxicity to normal cells as compared to cancer cells. Quite interestingly, we have found that Z-DAN-11-mediated ROS production helps in dramatic alteration in the mitochondrial redox status which critically contributes to the apoptosis. Mechanistic studies reveal that Z-DAN-11 induces the expression of pro-apoptotic proteins and decreases anti-apoptotic protein expression that decisively helps in the activation of caspase 8, caspase 9, and caspase 3, leading to cleavage of PARP1 and cell death via intrinsic and extrinsic pathways of apoptosis. Moreover, Z-DAN-11-mediated apoptosis of cancer cells is through a partial p53-dependent pathway, since both HCT116 p53-/- cells as well as p53-silenced cells (siRNA) were able to block apoptosis partially but significantly. Importantly, Z-DAN-11 also imparts its anti-tumorigenic effect by inhibiting clonogenic property and anchorage-independent growth potential of cancer cells at concentrations at least 10 times lower than that required for inducing apoptosis. Finally, in vivo study with immuno-competent syngeneic mice shows Z-DAN-11 to be able to impede tumor progression without any adverse side-effects. Hence, we identified a novel, synthetic trans-stilbene derivative with anti-tumorigenic potential which might tremendously help in devising potential therapeutic strategy against cancer.
Collapse
Affiliation(s)
- Pravat Kumar Parida
- Division of Molecular Medicine, Bose Institute, P1/12, C.I.T. Scheme VIIM, Kolkata, West Bengal, 700054, India
| | - Barun Mahata
- Division of Molecular Medicine, Bose Institute, P1/12, C.I.T. Scheme VIIM, Kolkata, West Bengal, 700054, India
| | - Abhisek Santra
- Division of Molecular Medicine, Bose Institute, P1/12, C.I.T. Scheme VIIM, Kolkata, West Bengal, 700054, India
| | - Sohini Chakraborty
- The Bioinformatics Center, Bose Institute, Kolkata, West Bengal, 700054, India
| | - Zhumur Ghosh
- The Bioinformatics Center, Bose Institute, Kolkata, West Bengal, 700054, India
| | | | - Anup Kumar Misra
- Division of Molecular Medicine, Bose Institute, P1/12, C.I.T. Scheme VIIM, Kolkata, West Bengal, 700054, India
| | - Kaushik Biswas
- Division of Molecular Medicine, Bose Institute, P1/12, C.I.T. Scheme VIIM, Kolkata, West Bengal, 700054, India.
| | - Kuladip Jana
- Division of Molecular Medicine, Bose Institute, P1/12, C.I.T. Scheme VIIM, Kolkata, West Bengal, 700054, India.
| |
Collapse
|
2
|
Brown DM, Chan YA, Desai PJ, Grzesik P, Oldfield LM, Vashee S, Way JC, Silver PA, Glass JI. Efficient size-independent chromosome delivery from yeast to cultured cell lines. Nucleic Acids Res 2017; 45:e50. [PMID: 27980064 PMCID: PMC5397165 DOI: 10.1093/nar/gkw1252] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 12/13/2016] [Indexed: 01/04/2023] Open
Abstract
The delivery of large DNA vectors (>100 000 bp) remains a limiting step in the engineering of mammalian cells and the development of human artificial chromosomes (HACs). Yeast is commonly used to assemble genetic constructs in the megabase size range, and has previously been used to transfer constructs directly into cultured cells. We improved this method to efficiently deliver large (1.1 Mb) synthetic yeast centromeric plasmids (YCps) to cultured cell lines at rates similar to that of 12 kb YCps. Synchronizing cells in mitosis improved the delivery efficiency by 10-fold and a statistical design of experiments approach was employed to boost the vector delivery rate by nearly 300-fold from 1/250 000 to 1/840 cells, and subsequently optimize the delivery process for multiple mammalian, avian, and insect cell lines. We adapted this method to rapidly deliver a 152 kb herpes simplex virus 1 genome cloned in yeast into mammalian cells to produce infectious virus.
Collapse
Affiliation(s)
- David M Brown
- Synthetic Biology and Bioenergy, J. Craig Venter Institute, Rockville, MD, 20850, USA.,Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Yujia A Chan
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA.,Wyss Institute for Biologically Inspired Engineering, Boston, MA 02115, USA
| | - Prashant J Desai
- Johns Hopkins University, Sidney Kimmel Comprehensive Cancer Center Johns Hopkins, Viral Oncology Program, Baltimore, MD 21231, USA
| | - Peter Grzesik
- Johns Hopkins University, Sidney Kimmel Comprehensive Cancer Center Johns Hopkins, Viral Oncology Program, Baltimore, MD 21231, USA
| | - Lauren M Oldfield
- Synthetic Biology and Bioenergy, J. Craig Venter Institute, Rockville, MD, 20850, USA
| | - Sanjay Vashee
- Synthetic Biology and Bioenergy, J. Craig Venter Institute, Rockville, MD, 20850, USA
| | - Jeffrey C Way
- Wyss Institute for Biologically Inspired Engineering, Boston, MA 02115, USA
| | - Pamela A Silver
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA.,Wyss Institute for Biologically Inspired Engineering, Boston, MA 02115, USA
| | - John I Glass
- Synthetic Biology and Bioenergy, J. Craig Venter Institute, Rockville, MD, 20850, USA
| |
Collapse
|
3
|
Szabo S, Wögenstein KL, Fuchs P. Functional and Genetic Analysis of Epiplakin in Epithelial Cells. Methods Enzymol 2015; 569:261-85. [PMID: 26778563 DOI: 10.1016/bs.mie.2015.06.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Epiplakin is a large member (>700 kDa) of the plakin protein family and exclusively expressed in epithelial cell types. Compared to other plakin proteins epiplakin exhibits an unusual structure as it consists entirely of a variable number of consecutive plakin repeat domains (13 in humans, 16 in mice). The only binding partners of epiplakin identified so far are keratins of simple as well as of stratified epithelia. Epiplakin-deficient mice show no obvious spontaneous phenotype. However, ex vivo studies using epiplakin-deficient primary cells indicated protective functions of epiplakin in response to stress. Recent studies using stress models for organs of the gastrointestinal tract revealed that epiplakin-deficient mice develop more pronounced pancreas and liver injuries than their wild-type littermates. In addition, impaired stress-induced keratin network reorganization was observed in the affected organs, and primary epiplakin-deficient hepatocytes showed reduced tolerance for forced keratin overexpression which could be rescued by a chemical chaperone. These findings indicate protective functions of epiplakin in chaperoning disease-induced keratin reorganization. In this review, we describe some of the methods we used to analyze epiplakin's function with the focus on biochemical and ex vivo techniques.
Collapse
Affiliation(s)
- Sandra Szabo
- Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| | - Karl L Wögenstein
- Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| | - Peter Fuchs
- Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter (VBC), Vienna, Austria.
| |
Collapse
|
4
|
Drougat L, Olivier-Van Stichelen S, Mortuaire M, Foulquier F, Lacoste AS, Michalski JC, Lefebvre T, Vercoutter-Edouart AS. Characterization of O-GlcNAc cycling and proteomic identification of differentially O-GlcNAcylated proteins during G1/S transition. Biochim Biophys Acta Gen Subj 2012; 1820:1839-48. [PMID: 22967762 DOI: 10.1016/j.bbagen.2012.08.024] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 08/21/2012] [Accepted: 08/27/2012] [Indexed: 12/25/2022]
Abstract
BACKGROUND DNA replication represents a critical step of the cell cycle which requires highly controlled and ordered regulatory mechanisms to ensure the integrity of genome duplication. Among a plethora of elements, post-translational modifications (PTMs) ensure the spatiotemporal regulation of pivotal proteins orchestrating cell division. Despite increasing evidences showing that O-GlcNAcylation regulates mitotic events, the impact of this PTM in the early steps of the cell cycle remains poorly understood. METHODS AND RESULTS Quiescent MCF7 cells were stimulated by serum mitogens and cell cycle progression was determined by flow cytometry. The levels of O-GlcNAc modified proteins, O-GlcNAc Transferase (OGT) and O-GlcNAcase (OGA) were examined by Western blotting and OGA activity was measured during the progression of cells towards S phase. A global decrease in O-GlcNAcylation was observed at S phase entry, concomitantly to an increase in the activity of OGA. A combination of two-dimensional electrophoresis, Western blotting and mass spectrometry was then used to detect and identify cell cycle-dependent putative O-GlcNAcylated proteins. 58 cytoplasmic and nuclear proteins differentially O-GlcNAcylated through G1/S transition were identified and the O-GlcNAc variations of Cytokeratin 8, hnRNP K, Caprin-1, Minichromosome Maintenance proteins MCM3, MCM6 and MCM7 were validated by immunoprecipitation. CONCLUSIONS The dynamics of O-GlcNAc is regulated during G1/S transition and observed on key proteins involved in the cytoskeleton networks, mRNA processing, translation, protein folding and DNA replication. GENERAL SIGNIFICANCE Our results led us to propose that O-GlcNAcylation joins the PTMs that take part in the regulation of DNA replication initiation.
Collapse
Affiliation(s)
- Ludivine Drougat
- Université des Sciences et Technologies de Lille, Villeneuve d'Ascq, France
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Abstract
Protein glycosylation is a ubiquitous post-translational modification found in all domains of life. Despite their significant complexity in animal systems, glycan structures have crucial biological and physiological roles, from contributions in protein folding and quality control to involvement in a large number of biological recognition events. As a result, they impart an additional level of 'information content' to underlying polypeptide structures. Improvements in analytical methodologies for dissecting glycan structural diversity, along with recent developments in biochemical and genetic approaches for studying glycan biosynthesis and catabolism, have provided a greater understanding of the biological contributions of these complex structures in vertebrates.
Collapse
|
6
|
Zachara NE. The roles of O-linked β-N-acetylglucosamine in cardiovascular physiology and disease. Am J Physiol Heart Circ Physiol 2012; 302:H1905-18. [PMID: 22287582 DOI: 10.1152/ajpheart.00445.2011] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
More than 1,000 proteins of the nucleus, cytoplasm, and mitochondria are dynamically modified by O-linked β-N-acetylglucosamine (O-GlcNAc), an essential post-translational modification of metazoans. O-GlcNAc, which modifies Ser/Thr residues, is thought to regulate protein function in a manner analogous to protein phosphorylation and, on a subset of proteins, appears to have a reciprocal relationship with phosphorylation. Like phosphorylation, O-GlcNAc levels change dynamically in response to numerous signals including hyperglycemia and cellular injury. Recent data suggests that O-GlcNAc appears to be a key regulator of the cellular stress response, the augmentation of which is protective in models of acute vascular injury, trauma hemorrhage, and ischemia-reperfusion injury. In contrast to these studies, O-GlcNAc has also been implicated in the development of hypertension and type II diabetes, leading to vascular and cardiac dysfunction. Here we summarize the current understanding of the roles of O-GlcNAc in the heart and vasculature.
Collapse
Affiliation(s)
- Natasha E Zachara
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
7
|
Ku NO, Toivola DM, Strnad P, Omary MB. Cytoskeletal keratin glycosylation protects epithelial tissue from injury. Nat Cell Biol 2010; 12:876-85. [PMID: 20729838 DOI: 10.1038/ncb2091] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Accepted: 07/27/2010] [Indexed: 12/25/2022]
Abstract
Keratins 8 and 18 (K8 and K18) are heteropolymeric intermediate filament phosphoglycoproteins of simple-type epithelia. Mutations in K8 and K18 predispose the affected individual to liver disease as they protect hepatocytes from apoptosis. K18 undergoes dynamic O-linked N-acetylglucosamine glycosylation at Ser 30, 31 and 49. We investigated the function of K18 glycosylation by generating mice that overexpress human K18 S30/31/49A substitution mutants that cannot be glycosylated (K18-Gly(-)), and compared the susceptibility of these mice to injury with wild-type and other keratin-mutant mice. K18-Gly(-) mice are more susceptible to liver and pancreatic injury and apoptosis induced by streptozotocin or to liver injury by combined N-acetyl-D-glucosaminidase inhibition and Fas administration. The enhanced apoptosis in the livers of mice that express K18-Gly(-) involves the inactivation of Akt1 and protein kinase Ctheta as a result of their site-specific hypophosphorylation. Akt1 binds to K8, which probably contributes to the reciprocal hyperglycosylation and hypophosphorylation of Akt1 that occurs on K18 hypoglycosylation, and leads to decreased Akt1 kinase activity. Therefore, K18 glycosylation provides a unique protective role in epithelial injury by promoting the phosphorylation and activation of cell-survival kinases.
Collapse
Affiliation(s)
- Nam-On Ku
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, 7744 Medical Science II, 1301 East Catherine Street, Ann Arbor, MI 48109-5622, USA.
| | | | | | | |
Collapse
|
8
|
Kim H, Rhee SH, Pothoulakis C, LaMont JT. Clostridium difficile toxin A binds colonocyte Src causing dephosphorylation of focal adhesion kinase and paxillin. Exp Cell Res 2009; 315:3336-44. [PMID: 19481075 DOI: 10.1016/j.yexcr.2009.05.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Revised: 05/19/2009] [Accepted: 05/20/2009] [Indexed: 12/15/2022]
Abstract
Clostridium difficile toxin A impairs tight junction function of colonocytes by glucosylation of Rho family proteins causing actin filament disaggregation and cell rounding. We investigated the effect of toxin A on focal contact formation by assessing its action on focal adhesion kinase (FAK) and the adapter protein paxillin. Exposure of NCM460 human colonocytes to toxin A for 1 h resulted in complete dephosphorylation of FAK and paxillin, while protein tyrosine phosphatase activity was reduced. Blockage of toxin A-associated glucosyltransferase activity by co-incubation with UDP-2'3' dialdehyde did not reduce toxin A-induced FAK and paxillin dephosphorylation. GST-pull down and in vitro kinase activity experiments demonstrated toxin A binding directly to the catalytic domain of Src with suppression of its kinase activity. Direct binding of toxin A to Src, independent of any effect on protein tyrosine phosphatase or Rho glucosylation, inhibits Src kinase activity followed by FAK/paxillin inactivation. These mechanisms may contribute to toxin A inhibition of colonocyte focal adhesion that occurs in human colonic epithelium exposed to toxin A.
Collapse
Affiliation(s)
- Ho Kim
- Department of Life Science, College of Natural Science, Daejin University, Pochen, Kyungkido, Republic of Korea
| | | | | | | |
Collapse
|
9
|
Flitney EW, Kuczmarski ER, Adam SA, Goldman RD. Insights into the mechanical properties of epithelial cells: the effects of shear stress on the assembly and remodeling of keratin intermediate filaments. FASEB J 2009; 23:2110-9. [PMID: 19246484 DOI: 10.1096/fj.08-124453] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The effects of shear stress on the keratin intermediate filament (KIF) cytoskeleton of cultured human alveolar epithelial (A549) cells have been investigated. Under normal culture conditions, immunofluorescence revealed a delicate network of fine tonofibrils containing KIFs, together with many nonfilamentous, keratin-containing "particles," mostly containing either keratin 8 (K8) or 18 (K18), but not both. Triton X-100 extracted approximately 10% of the cellular keratin, and this was accompanied by a loss of the particles but not the KIFs. Shear stress dramatically reduced the soluble keratin component and transformed the fine bundles of KIFs into thicker, "wavy" tonofibrils. Both effects were accompanied by the disappearance of most keratin particles and by increased phosphorylation of K8 and K18 on serine residues 73 and 33, respectively. The particles that remained after shearing were phosphorylated and were closely associated with KIFs. We suggest that keratin particles constitute a reservoir of protein that can be recruited into KIFs under flow, creating a more robust cytoskeleton able to withstand shear forces more effectively.
Collapse
Affiliation(s)
- Eric W Flitney
- Department of Cell and Molecular Biology, Feinberg School of Medicine of Northwestern University, 303 E. Chicago Avenue, Chicago, IL 60611, USA
| | | | | | | |
Collapse
|
10
|
Slawson C, Lakshmanan T, Knapp S, Hart GW. A mitotic GlcNAcylation/phosphorylation signaling complex alters the posttranslational state of the cytoskeletal protein vimentin. Mol Biol Cell 2008; 19:4130-40. [PMID: 18653473 DOI: 10.1091/mbc.e07-11-1146] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
O-linked beta-N-acetylglucosamine (O-GlcNAc) is a highly dynamic intracellular protein modification responsive to stress, hormones, nutrients, and cell cycle stage. Alterations in O-GlcNAc addition or removal (cycling) impair cell cycle progression and cytokinesis, but the mechanisms are not well understood. Here, we demonstrate that the enzymes responsible for O-GlcNAc cycling, O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA) are in a transient complex at M phase with the mitotic kinase Aurora B and protein phosphatase 1. OGT colocalized to the midbody during telophase with Aurora B. Furthermore, these proteins coprecipitated with each other in a late mitotic extract. The complex was stable under Aurora inhibition; however, the total cellular levels of O-GlcNAc were increased and the localization of OGT was decreased at the midbody after Aurora inhibition. Vimentin, an intermediate filament protein, is an M phase substrate for both Aurora B and OGT. Overexpression of OGT or OGA led to defects in mitotic phosphorylation on multiple sites, whereas OGT overexpression increased mitotic GlcNAcylation of vimentin. OGA inhibition caused a decrease in vimentin late mitotic phosphorylation but increased GlcNAcylation. Together, these data demonstrate that the O-GlcNAc cycling enzymes associate with kinases and phosphatases at M phase to regulate the posttranslational status of vimentin.
Collapse
Affiliation(s)
- Chad Slawson
- Department of Biological Chemistry, The Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
11
|
Badlou BA, Spierenburg G, Ulrichts H, Deckmyn H, Smid WM, Akkerman JWN. Role of glycoprotein Ibalpha in phagocytosis of platelets by macrophages. Transfusion 2007; 46:2090-9. [PMID: 17176320 DOI: 10.1111/j.1537-2995.2006.01034.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Platelet (PLT) storage at 0 to 4 degrees C suppresses bacterial multiplication, but induces clusters of glycoprotein (GP) Ibalpha that trigger their phagocytosis by macrophages and reduce their survival after transfusion. A method was sought that detects cold-induced changes in GPIbalpha involved in phagocytosis. STUDY DESIGN AND METHODS Human PLTs were isolated and stored for up to 48 hours at 0 degrees C. Binding of a phycoerythrin (PE)-labeled antibody directed against amino acids (AA) 1-35 on GPIbalpha (AN51-PE) was compared with phagocytosis of PLTs by matured monocytic THP-1 cells, analyzed by fluorescence-activated cell sorting. RESULTS Freshly isolated PLTs were detected as a single population of AN51-PE-positive particles and showed less than 5 percent phagocytosis. Cold storage led to a decrease in AN51-PE binding and an increase in phagocytosis. N-Acetylglucosamine, known to interfere with macrophage recognition of GPIbalpha clusters, restored normal AN51-PE binding to cold-stored PLTs and suppressed phagocytosis. CONCLUSIONS It is concluded that binding of an antibody against AA 1-35 on GPIbalpha reflects changes in GPIbalpha that make PLTs targets for phagocytosis by macrophages.
Collapse
Affiliation(s)
- Bahram A Badlou
- Thrombosis and Haemostasis Laboratory, DCCH, the Department of Immunology, UMC-Utrecht, the Institute for Biomembranes Utrecht University, and the Sanquin Blood Bank Region North-West, Utrecht, the Netherlands
| | | | | | | | | | | |
Collapse
|
12
|
Narayanan R, Edwards DP, Weigel NL. Human progesterone receptor displays cell cycle-dependent changes in transcriptional activity. Mol Cell Biol 2005; 25:2885-98. [PMID: 15798179 PMCID: PMC1069605 DOI: 10.1128/mcb.25.8.2885-2898.2005] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The human progesterone receptor (PR) contains multiple Ser-Pro phosphorylation sites that are potential substrates for cyclin-dependent kinases, suggesting that PR activity might be regulated during the cell cycle. Using T47D breast cancer cells stably transfected with an mouse mammary tumor virus (MMTV) chloramphenicol acetyltransferase reporter (Cat0) synchronized in different phases of the cell cycle, we found that PR function and phosphorylation is remarkably cell cycle dependent, with the highest activity in S phase. Although PR expression was reduced in the G2/M phase, the activity per molecule of receptor was markedly reduced in both G1 and G2/M phases compared to the results seen with the S phase of the cell cycle. Although PR is recruited to the MMTV promoter equivalently in the G1 and S phases, recruitment of SRC-1, SRC-3, and, consequently, CBP is reduced in G1 phase despite comparable expression levels of SRC-1 and SRC-3. In G2/M phase, site-specific phosphorylation of PR at Ser162 and at Ser294, a site previously reported to be critical for transcriptional activity and receptor turnover, was abolished. Treatment with the histone deacetylase inhibitor trichostatin A elevated G1 and G2/M activity to that of the S phase, indicating that the failure to recruit sufficient levels of active histone acetyltransferase is the primary defect in PR-mediated transactivation.
Collapse
Affiliation(s)
- Ramesh Narayanan
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | |
Collapse
|
13
|
Chou CF, Shen S, Tan YJ, Fielding BC, Tan THP, Fu J, Xu Q, Lim SG, Hong W. A novel cell-based binding assay system reconstituting interaction between SARS-CoV S protein and its cellular receptor. J Virol Methods 2005; 123:41-8. [PMID: 15582697 PMCID: PMC7112911 DOI: 10.1016/j.jviromet.2004.09.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2004] [Revised: 08/26/2004] [Accepted: 09/07/2004] [Indexed: 11/29/2022]
Abstract
Severe acute respiratory syndrome (SARS), a life-threatening disease, is caused by the newly identified virus SARS coronavirus (SARS-CoV). In order to study the spike (S) protein of this highly contagious virus, we established a clonal cell-line, CHO-SG, from the Chinese hamster ovary cells that stably expresses C-terminally EGFP-tagged SARS-CoV S protein (S-EGFP). The ectodomain of the S glycoprotein is localized on the surface of CHO-SG cells with N-acetyl-glucosamine-terminated carbohydrate structure. CHO-SG cells associated tightly with Vero E6 cells, a SARS-CoV receptor (ACE2) expressing cell-line, and the interaction remained stable under highly stringent condition (1M NaCl). This interaction could be blocked by either the serum from a SARS convalescent patient or a goat anti-ACE2 antibody, indicating that the interaction is specific. A binding epitope with lesser degree of glycosylation and native conformation was localized by using rabbit anti-sera raised against five denatured recombinant S protein fragments expressed in Escherichia coli. One of the sera obtained from the fragment encompassing amino acids 48-358 significantly blocked the interaction between CHO-SG and Vero E6 cells. The region is useful for studying neutralizing antibodies in future vaccine development. This paper describes an easy and safe cell-based assay suitable for studying the binding between SARS-CoV S protein and its receptor.
Collapse
Affiliation(s)
- Chih-Fong Chou
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673, Singapore.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Russell D, Andrews PD, James J, Lane EB. Mechanical stress induces profound remodelling of keratin filaments and cell junctions inepidermolysis bullosa simplexkeratinocytes. J Cell Sci 2004; 117:5233-43. [PMID: 15454576 DOI: 10.1242/jcs.01407] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The outer epidermal layer of the skin is an epithelium with remarkable protective barrier functions, which is subject to pronounced physical stress in its day-to-day function. A major candidate component for absorbing this stress is the K5/K14 keratin intermediate filament network. To investigate the part played by keratins in stress resilience, keratinocyte cell lines were subjected to mechanical stress. Repeated stretch and relaxation cycles over increasing time produced reproducible changes in the configuration of the keratin network. When wild-type cells were compared with cells carrying a keratin mutation associated with severe epidermolysis bullosa simplex-type skin fragility, the mutant keratin filaments were unable to withstand the mechanical stress and progressively fragmented yielding aggregates and novel ring structures. The cell junctions into which the keratin filaments are normally anchored also progressively disassembled, with all components tested of the cytoplasmic plaques becoming relocated away from the membrane and onto the keratin rings, while integral membrane receptors integrins and cadherins remained at the plasma membrane. The results suggest that maintenance of desmosomes and hemidesmosomes may require some tension, normally mediated by keratin attachments.
Collapse
Affiliation(s)
- David Russell
- Cancer Research UK Cell Structure Research Group, School of Life Sciences, MSI/WTB Complex, University of Dundee, Dundee, DD1 5EH, UK
| | | | | | | |
Collapse
|
15
|
Bäck N, Litonius E, Mains RE, Eipper BA. Fluoride causes reversible dispersal of Golgi cisternae and matrix in neuroendocrine cells. Eur J Cell Biol 2004; 83:389-402. [PMID: 15506563 DOI: 10.1078/0171-9335-00405] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A role for heterotrimeric G proteins in the regulation of Golgi function and formation of secretory granules is generally accepted. We set out to study the effect of activation of heterotrimeric G proteins by aluminum fluoride on secretory granule formation in AtT-20 corticotropic tumor cells and in melanotrophs from the rat pituitary. In AtT-20 cells, treatment with aluminum fluoride or fluoride alone for 60 min induced complete dispersal of Golgi, ER-Golgi intermediate compartment and Golgi matrix markers, while betaCOP immunoreactiviy retained a juxtanuclear position and TGN38 was unaffected. Electron microscopy showed compression of Golgi cisternae followed by conversion of the Golgi stacks into clusters of tubular and vesicular elements. In the melanotroph of the rat pituitary a similar compression of Golgi cisternae was observed, followed by a progressive loss of cisternae from the stacks. As shown in other cells, brefeldin A induced redistribution of the Golgi matrix protein GM130 to punctate structures in the cytoplasm in AtT-20 cells, while mannosidase II immunoreactivity was completely dispersed. Fluoride induced a complete dispersal of mannosidase II and GM130 immunoreactivity. The effect of fluoride was fully reversible with reestablishment of normal mannosidase II and GM130 immunoreactivity within 2 h. After 1 h of recovery, showing varying stages of reassembly, the patterns of mannosidase II and GM130 immunoreactivity were identical in individual cells, indicating that Golgi matrix and cisternae reassemble with similar kinetics during recovery from fluoride treatment. Instead of a specific aluminum fluoride effect on secretory granule formation in the trans-Golgi network, we thus observe a unique form of Golgi dispersal induced by fluoride alone, possibly via its action as a phosphatase inhibitor.
Collapse
Affiliation(s)
- Nils Bäck
- Department of Anatomy, Institute of Biomedicine, Biomedicum Helsinki, University of Helsinki, Finland.
| | | | | | | |
Collapse
|
16
|
Kochin V, Pallari HM, Pant H, Eriksson JE. Approaches to Study Posttranslational Regulation of Intermediate Filament Proteins. Methods Cell Biol 2004; 78:373-409. [PMID: 15646626 DOI: 10.1016/s0091-679x(04)78014-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Affiliation(s)
- Vitaly Kochin
- Turku Centre for Biotechnology University of Turku, FIN-20521 Turku, Finland
| | | | | | | |
Collapse
|
17
|
Abstract
Simple epithelial keratins K8 and K18 are components of the intracellular cytoskeleton in the cells of the single-layered sheet tissues inside the body. As members of the intermediate filament family of proteins, their function has been a matter for debate since they were first discovered. Whilst there is an indisputable case for a structural cell-reinforcing function for keratins in the mutilayered squamous epithelia of external barrier tissues, some very different stress-protective features now seem to be emerging for the simple epithelial keratins. Even the emerging evidence of pathological mutations in K8/K18 looks very different from mutations in stratified epithelial keratins. K8/K18-like keratins were probably the first to evolve and, whilst stratified epithelial (keratinocyte) keratins have diversified into a large group of keratins highly specialised for providing mechanical stability, the simple epithelial keratins have retained early features that may protect the internal epithelia from a broader range of stresses, including osmotic stress and chemical toxicity.
Collapse
Affiliation(s)
- Dewi W Owens
- Cancer Research UK Cell Structure Research Group, School of Life Sciences, University of Dundee, Scotland.
| | | |
Collapse
|
18
|
Kamikubo Y, Takaori-Kondo A, Uchiyama T, Hori T. Inhibition of cell growth by conditional expression of kpm, a human homologue of Drosophila warts/lats tumor suppressor. J Biol Chem 2003; 278:17609-14. [PMID: 12624101 DOI: 10.1074/jbc.m211974200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
kpm is a human serine/threonine kinase that is homologous to Drosophila tumor suppressor warts/lats and its mammalian homologue LATS1. In order to define the biological function of kpm, we generated stable transfectants of wild-type kpm (kpm-wt), a kinase-dead mutant of kpm (kpm-kd), and luciferase in HeLa Tet-Off cells under the tetracycline-responsive promoter. Western blot analysis showed that high levels of expression of kpm-wt as well as kpm-kd with an apparent mass of 150 kDa were induced after the removal of doxycycline. Induction of kpm-wt expression resulted in a marked decline in viable cell number measured by both trypan blue dye exclusion and MTT assay, whereas that of kpm-kd or luciferase had no effect. We then analyzed the cell cycle progression and apoptosis upon induction of kpm expression. 2-3 days after removal of doxycycline, cells underwent G(2)/M arrest, demonstrated by flow cytometric analysis of propidium iodide incorporation and MPM-2 reactivity. In vitro kinase assay showed that induction of kpm-wt led to down-regulation of kinase activity of the Cdc2-cyclin B complex, which was accompanied by an increase in the hyperphosphorylated form of Cdc2 and a change of phosphorylation status of Cdc25C. Furthermore, both DAPI staining and TUNEL assay showed that the proportion of apoptotic cells increased as kpm expression was induced. Taken together, these results indicate that kpm negatively regulates cell growth by inducing G(2)/M arrest and apoptotic cell death through its kinase activity.
Collapse
Affiliation(s)
- Yasuhiko Kamikubo
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | | | | | | |
Collapse
|
19
|
Ito A, Koma YI, Sohda M, Watabe K, Nagano T, Misumi Y, Nojima H, Kitamura Y. Localization of the PP2A B56gamma regulatory subunit at the Golgi complex: possible role in vesicle transport and migration. THE AMERICAN JOURNAL OF PATHOLOGY 2003; 162:479-89. [PMID: 12547706 PMCID: PMC1851168 DOI: 10.1016/s0002-9440(10)63842-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The BL6 subline was derived from the F10 line, which was derived from the B16 mouse melanoma cell line. BL6 cells are more invasive than F10 cells and differ genetically from F10 cells by an alteration of the gene encoding the B56gamma regulatory subunit of protein phosphatase 2A (PP2A). This alteration results in the transcription of mRNA encoding a truncated variant of the B56gamma1 isoform (Deltagamma1). When F10 cells were stained with a polyclonal antibody that recognizes three B56gamma isoforms, B56gamma1, B56gamma2, and B56gamma3, the immunofluorescent signals co-localized well with the cis-Golgi marker proteins. When BL6 cells were fractionated in a sucrose gradient, B56gamma1 and B56gamma2, but not B56gamma3, were present in the Golgi-enriched fraction. This fraction also contained the catalytic subunit of PP2A. FLAG-tagged Deltagamma1 preferentially localized to the trans-Golgi area rather than the cis-Golgi. This localization was the same as that of FLAG-tagged B56gamma1. NIH3T3 cells stably expressing Deltagamma1 transported a mutant viral protein from the endoplasmic reticulum to the plasma membrane much faster than wild-type cells. Their directional migration, as assessed by the advance of cells into a cell-free area, was also elevated. As Deltagamma1 reduces the activity of the B56gamma-containing PP2A holoenzymes, these results suggest that the normal holoenzymes suppress vesicle transport and that Deltagamma1 might increase the invasive ability of BL6 cells by activating Golgi function.
Collapse
Affiliation(s)
- Akihiko Ito
- Department of Pathology, Osaka University Medical School/Graduate School of Frontier Bioscience, Suita, Osaka, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Strnad P, Windoffer R, Leube RE. Induction of rapid and reversible cytokeratin filament network remodeling by inhibition of tyrosine phosphatases. J Cell Sci 2002; 115:4133-48. [PMID: 12356917 DOI: 10.1242/jcs.00096] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The cytokeratin filament network is intrinsically dynamic, continuously exchanging subunits over its entire surface, while conferring structural stability on epithelial cells. However, it is not known how cytokeratin filaments are remodeled in situations where the network is temporarily and spatially restricted. Using the tyrosine phosphatase inhibitor orthovanadate we observed rapid and reversible restructuring in living cells, which may provide the basis for such dynamics. By examining cells stably expressing fluorescent cytokeratin chimeras, we found that cytokeratin filaments were broken down and then formed into granular aggregates within a few minutes of orthovanadate addition. After drug removal, gradual reincorporation of granules into the filament network was observed for aggregates that were either part of residual filaments or stayed in close apposition to remaining filaments. Even when cytokeratin filaments were no longer detectable, granules with low mobility were still able to reestablish a cytokeratin filament network. This process took less than 30 minutes and occurred at multiple foci throughout the cytoplasm without apparent correlation to alterations in the actin- and tubulin-based systems. Interestingly, the short-lived and rather small orthovanadate-induced cytokeratin granules contained the cytoskeletal crosslinker plectin but lacked the cytokeratin-solubilising 14-3-3 proteins. By contrast, the long-lived and larger cytokeratin aggregates generated after treatment with the serine/threonine phosphatase inhibitor okadaic acid were negative for plectin but positive for 14-3-3 proteins. Taken together, our observations in living orthovanadate-treated interphase cells revealed modes of cytokeratin remodeling that qualify as basic mechanisms capable of rapidly adapting the cytokeratin filament cytoskeleton to specific requirements.
Collapse
Affiliation(s)
- Pavel Strnad
- Department of Anatomy, Johannes Gutenberg-University, Becherweg 13, 55128 Mainz, Germany
| | | | | |
Collapse
|
21
|
Marceau N, Loranger A, Gilbert S, Daigle N, Champetier S. Keratin-mediated resistance to stress and apoptosis in simple epithelial cells in relation to health and disease. Biochem Cell Biol 2002. [PMID: 11716296 DOI: 10.1139/o01-138] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Epithelial cells such as hepatocytes exhibit highly polarized properties as a result of the asymmetric distribution of subsets of receptors at unique portions of the surface membrane. While the proper targeting of these surface receptors and maintenance of the resulting polarity depend on microtubules (MTs), the Golgi sorting compartment, and different actin-filament networks, the contribution of keratin intermediate filaments (IFs) has been unclear. Recent data show that the latter cytoskeletal network plays a predominant role in providing resistance to various forms of stress and to apoptosis targeted to the surface membrane. In this context, we first summarize our knowledge of the domain- or assembly-related features of IF proteins and the dynamic properties of IF networks that may explain how the same keratin pair K8/K18 can exert multiple resistance-related functions in simple epithelial cells. We then examine the contribution of linker protein(s) that integrate interactions of keratin IFs with MTs and the actin-cytoskeleton network, polarity-dependent surface receptors and cytoplasmic organelles. We next address likely molecular mechanisms by which K8/K18 can selectively provide resistance to a mechanical or toxic stress, or to Fas-mediated apoptosis. Finally, these issues on keratin structure-function are examined within a context of pathological anomalies emerging in tissue architecture as a result of natural or targeted mutations, or posttranslational modifications at specific amino acid residues. Clearly. the data accumulated in recent years provide new and significant insights on the role of K8/K18, particularly under conditions where polarized cells resist to stressful or apoptotic insults.
Collapse
Affiliation(s)
- N Marceau
- Centre de recherche en cancérologie et Departement de médecine, Université Laval, Quebec, QC, Canada.
| | | | | | | | | |
Collapse
|
22
|
Cheng X, Hart GW. Alternative O-glycosylation/O-phosphorylation of serine-16 in murine estrogen receptor beta: post-translational regulation of turnover and transactivation activity. J Biol Chem 2001; 276:10570-5. [PMID: 11150304 DOI: 10.1074/jbc.m010411200] [Citation(s) in RCA: 148] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
O-Linked N-acetylglucosamine (O-GlcNAc) is a dynamic post-translational modification abundant on nuclear and cytoplasmic proteins. Recently, we demonstrated that the murine estrogen receptor-beta (mER-beta) is alternatively O-GlcNAcylated or O-phosphorylated at Ser(16). Analyses of mER-betas containing mutations in the three adjacent hydroxyl amino acids at this locus confirmed that Ser(16) is the major site of O-GlcNAc modification on mER-beta and that mutants lacking hydroxyl amino acids at this locus are glycosylation-deficient. Pulse-chase studies in transfected Cos-1 cells demonstrate that the turnover rate of the mutant containing a glutamic acid moiety at Ser(16), which mimics constitutive phosphorylation at this locus, is faster than that of the wild type receptor. Whereas, the mutant without hydroxyl amino acids at this locus is degraded at a slower rate, indicating that O-GlcNAc/O-phosphate at Ser(16) modulates mER-beta protein stability. Luciferase reporter assays also show that the Ser(16) locus mutants have abnormal transactivation activities, suggesting that the two alternative modifications at Ser(16) on mER-beta may also be involved in transcriptional regulation. DNA mobility shift assays show that the mutants do not have altered DNA binding. Green fluorescence protein constructs of both wild type and mutant forms of mER-beta show that the receptor is nearly exclusively localized within the nucleus. It appears that reciprocal occupancy of Ser(16) by either O-phosphate or O-GlcNAc modulates the degradation and activity of mER-beta.
Collapse
Affiliation(s)
- X Cheng
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205-2185, USA
| | | |
Collapse
|
23
|
Berven G, Saetre F, Halvorsen K, Seglen PO. Effects of the diarrhetic shellfish toxin, okadaic acid, on cytoskeletal elements, viability and functionality of rat liver and intestinal cells. Toxicon 2001; 39:349-62. [PMID: 10978754 DOI: 10.1016/s0041-0101(00)00137-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The diarrhetic shellfish toxin, okadaic acid, administered to rats by intragastric intubation, caused intestinal damage, diarrhea and death, but had no detectable effect on the liver. In contrast, okadaic acid administered intravenously had little effect on intestinal function, but caused a rapid dissolution of hepatic bile canalicular actin sheaths, congestion of blood in the liver, hypotension and death at high doses. In isolated rat hepatocytes, okadaic acid induced disruption of the canalicular sheaths as well as of the keratin intermediate filament network. Both of these cytoskeletal changes could be prevented by addition of a cytoprotective flavonoid, naringin, to the isolated hepatocytes, whereas intravenously or intragastrically administered naringin failed to protect against the effects of okadaic acid in vivo. Freshly isolated colonocytes already had fragmented keratin and tubulin cytoskeletons, died rapidly and were not further afflicted by okadaic acid. Naringin had no protective effect on isolated colonocytes or on intestinal function in vivo, but the nonspecific protein kinase inhibitor, K-252a, and the protein-tyrosine-phosphatase inhibitor, vanadate, significantly reduced the extent of colonocytic keratin fragmentation, and an inhibitor of apoptotic caspases, zVAD.fmk, was strongly protective. Further studies of hepatic and intestinal cytoprotectants should focus on conditions that limit their effectiveness in vivo.
Collapse
Affiliation(s)
- G Berven
- Department of Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Montebello, N-0310 Oslo, Norway
| | | | | | | |
Collapse
|
24
|
Liu Y, Su B, Pei R, Yeh C, Yeh K, Ying Lee K, Hsu Y, Ho C, Lai Y. The stability of cytokeratin 18 in human liver cells during colchicine-induced microtubule disruption. Food Chem Toxicol 2001; 39:85-9. [PMID: 11259854 DOI: 10.1016/s0278-6915(00)00113-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The cytoskeleton plays important roles in cell function and is therefore implicated in the pathogenesis of many human liver diseases, including malignant tumors. The stability of cytokeratin proteins during tumor transformation in human hepatocellular carcinoma has been studied with a molecular approach previously. The results demonstrate that the cytokeratin is modulated in human hepatocellular carcinoma. Besides this, three low molecular weight cytokeratin molecules (named HCC CK) are found. This indicates that these HCC CKs have undergone modulation from the human hepatocyte cytokeratin 18. We also checked the cytokeratin profile of the human hepatoma cell line PLC/PRF/5 with the same methods to ensure the HCC CK molecules are produced by modulation but not protein degradation. The stability of cytokeratin molecules was studied by a different approach. The cytokeratin compositions of human liver cells (Chang cell line) were analysed under the effects of microtubule-disrupting drug (colchicine) by SDS-PAGE, Western blot, immunoprecipitation using a commercially available monoclonal anti-cytokeratin 18 antibody and immunofluorescent staining. Within 1 h of treatment, the microtubule began to collapse and the filamentous structure was shortening. The microtubule had almost collapsed and became fragmented to form a lattice-like network after 24 h of treatment. The cytokeratin was modulated after long-term (24 h) treatment of colchicine, and the molecular weight became 14 kD and the antigenicity was lost. The stability of cytokeratin molecules was related to the intact microtubule network, after disruption of the microtubule the cytokeratin would be modulated. The intact microtubule network was a stabilizing factor of cytokeratin 18 in human liver cells.
Collapse
Affiliation(s)
- Y Liu
- Department of Pathology, School of Medicine, China Medical College, 91 Hsueh-Shih Road, Taichung, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Lefebvre T, Alonso C, Mahboub S, Dupire MJ, Zanetta JP, Caillet-Boudin ML, Michalski JC. Effect of okadaic acid on O-linked N-acetylglucosamine levels in a neuroblastoma cell line. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1472:71-81. [PMID: 10572927 DOI: 10.1016/s0304-4165(99)00105-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
O-Linked N-Acetylglucosamine (O-GlcNAc) is a major form of post-translational modification found in nuclear and cytoplasmic proteins. Several authors have advanced the hypothesis according to which phosphorylation and O-GlcNAc glycosylation are reciprocally related to one another [1,2]. In order to test this hypothesis we have investigated the effect of a broad spectrum phosphatase inhibitor, okadaic acid (OA), generally used to induce protein hyperphosphorylation, on the GlcNAc content of cellular glycoproteins. We demonstrate that in neuronal cells lines OA decreases the level of O-GlcNAc in both nuclear and cytoplasmic proteins with a greater effect in the nuclear fraction. This phenomenon was demonstrated by the use of three different procedures for the detection of O-GlcNAc in conjunction with a systematic treatment with PNGase F. O-Linked GlcNAc was characterized using respectively lectin staining with WGA, galactosyltransferase labeling and metabolic labeling of cultured cells with [3H]glucosamine. Although the effects on individual proteins varied, a less pronounced effect was observed on HeLa or COS cell total homogenates. When Kelly cells were treated with OA, the major observation was a decrease in O-GlcNAc content of nuclear proteins. The measurement of the UDP-GlcNAc level clearly demonstrates that the decrease on the O-GlcNAc level in the neuroblastoma cell line after treatment with okadaic acid is not a consequence of the modification of the UDP-GlcNAc pool.
Collapse
Affiliation(s)
- T Lefebvre
- Unité Mixte de Recherches 8576 du CNRS, Laboratoire de Chimie Biologique, Villeneuve d'Ascq, France
| | | | | | | | | | | | | |
Collapse
|
26
|
Eriksson JE, Toivola DM, Sahlgren C, Mikhailov A, Härmälä-Braskén AS. Strategies to assess phosphoprotein phosphatase and protein kinase-mediated regulation of the cytoskeleton. Methods Enzymol 1998; 298:542-69. [PMID: 9751907 DOI: 10.1016/s0076-6879(98)98044-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- J E Eriksson
- Turku Centre for Biotechnology, University of Turku, Finland
| | | | | | | | | |
Collapse
|
27
|
Nabi IR, Dennis JW. The extent of polylactosamine glycosylation of MDCK LAMP-2 is determined by its Golgi residence time. Glycobiology 1998; 8:947-53. [PMID: 9675228 DOI: 10.1093/glycob/8.9.947] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The increased polylactosamine glycosylation of LAMP-2 in MDCK cells cultured for 1 day relative to cells cultured for 3 days has been correlated with its slower rate of Golgi transit (Nabi and Rodriguez-Boulan, 1993, Mol. Biol. Cell., 4, 627-635). To determine if the differential polylactosamine glycosylation of LAMP-2 is a consequence of glycosyltransferase expression levels, the activities of beta1-6GlcNAc-TV, beta1-3GlcNAc-T(i), beta1-2GlcNAc-TI, beta1, 4Gal-T, alpha2-6sialyl-T, and alpha2-3sialyl-T were assayed and no significant differences in the activities of these enzymes in 1 and 3 day cell extracts were detected. During MDCK epithelial polarization, the Golgi apparatus undergoes morphological changes and apiconuclear Golgi networks were more evident in 3 day cells. Treatment with nocodazole disrupted Golgi networks and generated numerous Golgi clusters in both 1 day and 3 day cells. In the presence of nocodazole the differential migration of LAMP-2 in 1 and 3 day MDCK cells was maintained and could be eliminated by treatment with endo-beta-galactosidase, indicating that gross Golgi morphology did not influence the extent of LAMP-2 polylactosamine glycosylation. Nocodazole treatment did, however, result in the faster migration of LAMP-2 which was not due to modification of core N-glycans as the precursor form of the glycoprotein migrated with an identical molecular size. Following incubation at 20 degrees C, which prevents the exit of proteins from the trans-Golgi network, the molecular size of LAMP-2 increased to a similar extent in both 1 and 3 day MDCK cells. Extending the time of incubation at 20 degrees C did not influence the size of LAMP-2, demonstrating that its glycosylation is modified not by its retention within the Golgi but rather by its equivalent slower Golgi passage at the lower temperature in both 1 and 3 day cells. An identical effect was observed in nocodazole treated cells, demonstrating that Golgi residence time determines the extent of LAMP-2 polylactosamine glycosylation, even in isolated Golgi clusters.
Collapse
Affiliation(s)
- I R Nabi
- Département de Pathologie et Biologie Cellulaire, Université de Montréal, Montréal, Québec, Canada
| | | |
Collapse
|
28
|
Abstract
O-GlcNAcylation is a form of cytoplasmic and nuclear glycosylation that is found on many diverse proteins of the cell including RNA polymerase II and its associated transcription factors, cytoskeletal proteins, nucleoporins, viral proteins, heat shock proteins, tumor suppressors, and oncogenes. It involves the attachment of a single, unmodified N-acetylglucosaminyl residue O-glycosidically linked to the hydroxyl groups of serine and threonine moieties of proteins. It is a highly abundant and dynamic form of posttranslational modification that appears to modulate function in a manner similar to phosphorylation. All O-GlcNAc-containing proteins are phosphoproteins that are involved in the formation of multimeric complexes, suggesting that O-GlcNAc may play a role in mediating protein-protein interactions. O-GlcNAc sites resemble phosphorylation sites and in many cases the two modifications are mutually exclusive; therefore, O-GlcNAcylation may act as an antagonist of phosphorylation and help to mediate many essential functions of the cell.
Collapse
Affiliation(s)
- D M Snow
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
29
|
Herrmann H, Aebi U. Intermediate filament assembly: fibrillogenesis is driven by decisive dimer-dimer interactions. Curr Opin Struct Biol 1998; 8:177-85. [PMID: 9631290 DOI: 10.1016/s0959-440x(98)80035-3] [Citation(s) in RCA: 131] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Intermediate filaments are built from one to several members of a multigene family encoding fibrous proteins that share a highly conserved hierarchic assembly plan for the formation of multistranded filaments from distinctly structured extended coiled coils. Despite the rather low primary sequence identity, intermediate filaments form apparently similar filaments with regard to their spatial dimensions and physical properties. Over the past few years, substantial progress has been made in the elucidation of the complex expression patterns and clinically relevant phenotypes of intermediate filaments. The key question of how these filaments assemble and what the molecular architecture of their distinct assembly intermediates comprises, however, has still not been answered to the extent that has been achieved for microfilaments and microtubules.
Collapse
Affiliation(s)
- H Herrmann
- Division of Cell Biology, German Cancer Research Center, Heidelberg, Germany.
| | | |
Collapse
|
30
|
Deleu L, Fuks F, Spitkovsky D, Hörlein R, Faisst S, Rommelaere J. Opposite transcriptional effects of cyclic AMP-responsive elements in confluent or p27KIP-overexpressing cells versus serum-starved or growing cells. Mol Cell Biol 1998; 18:409-19. [PMID: 9418888 PMCID: PMC121511 DOI: 10.1128/mcb.18.1.409] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The minute virus of mice, an autonomous parvovirus, requires entry of host cells into the S phase of the cell cycle for its DNA to be amplified and its genes expressed. This work focuses on the P4 promoter of this parvovirus, which directs expression of the transcription unit encoding the parvoviral nonstructural polypeptides. These notably include protein NS1, necessary for the S-phase-dependent burst of parvoviral DNA amplification and gene expression. The activity of the P4 promoter is shown to be regulated in a cell cycle-dependent manner. At the G1/S-phase transition, the promoter is activated via a cis-acting DNA element which interacts with phase-specific complexes containing the cellular transcription factor E2F. It is inhibited, on the other hand, in cells arrested in G1 due to contact inhibition. This inhibitory effect is not observed in serum-starved cells. It is mediated in cis by cyclic AMP response elements (CREs). Unlike serum-starved cells, confluent cells accumulate the cyclin-dependent kinase inhibitor p27, suggesting that the switch from CRE-mediated activation to CRE-mediated repression involves the p27 protein. Accordingly, plasmid-driven overexpression of p27 causes down-modulation of promoter P4 in growing cells, depending on the presence of at least two functional CREs. No such effect is observed with two other cyclin-dependent kinase inhibitors, p16 and p21. Given the importance of P4-driven synthesis of protein NS1 in parvoviral DNA amplification and gene expression, the stringent S-phase dependency of promoter P4 is likely a major determinant of the absolute requirement of the minute virus of mice for host cell proliferation.
Collapse
Affiliation(s)
- L Deleu
- Applied Tumor Virology, Abteilung 0610 and Institut National de la Santé et de la Recherche Médicale U 375, Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
31
|
Liao J, Ku NO, Omary MB. Stress, apoptosis, and mitosis induce phosphorylation of human keratin 8 at Ser-73 in tissues and cultured cells. J Biol Chem 1997; 272:17565-73. [PMID: 9211903 DOI: 10.1074/jbc.272.28.17565] [Citation(s) in RCA: 105] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Simple epithelia express keratins 8 (K8) and 18 (K18) as their major intermediate filament proteins. We previously showed that several types of cell stress such as heat and virus infection result in a distinct hyperphosphorylated form of K8 (termed HK8). To better characterize K8/18 phosphorylation, we generated monoclonal antibodies by immunizing mice with hyperphosphorylated keratins that were purified from colonic cultured human HT29 cells pretreated with okadaic acid. One antibody specifically recognized HK8, and the epitope was identified as 71LLpSPL which corresponds to K8 phosphorylation at Ser-73. Generation of HK8 occurs in mitotic HT29 cells, basal crypt mitotic cells in normal mouse intestine, and in regenerating mouse hepatocytes after partial hepatectomy. Prominent levels of HK8 were also generated in HT29 cells that were induced to undergo apoptosis using anisomycin or etoposide. In addition, mouse hepatotoxicity that is induced by chronic feeding with griseofulvin resulted in HK8 formation in the liver. Our results demonstrate that a "reverse immunological" approach, coupled with enhancing in vivo phosphorylation using phosphatase inhibitors, can result in the identification of physiologic phosphorylation states. As such, K8 Ser-73 phosphorylation generates a distinct HK8 species under a variety of in vivo conditions including mitosis, apoptosis, and cell stress. The low steady state levels of HK8 during mitosis, in contrast to stress and apoptosis, suggest that accumulation of HK8 may represent a physiologic stress marker for simple epithelia.
Collapse
Affiliation(s)
- J Liao
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California 94304, USA
| | | | | |
Collapse
|
32
|
Foisner R. Dynamic organisation of intermediate filaments and associated proteins during the cell cycle. Bioessays 1997; 19:297-305. [PMID: 9136627 DOI: 10.1002/bies.950190407] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Intermediate filaments, which form the structural framework of both the cytoskeleton and the nuclear lamina in most eukaryotic cells, have been found to be highly dynamic structures. A continuous exchange of subunit proteins at the filament surface and a stabilisation of soluble subunits by chaperone-type proteins may modulate filament structure and plasticity. Recent studies on the cell cycle-dependent interaction of intermediate filaments with associated proteins, and a detailed analysis of intermediate filament phosphorylation in defined subcellular locations at various stages of mitosis, have brought new insights into the molecular mechanisms involved in the mitotic reorganisation of intermediate filaments. Some of these studies have allowed new speculations about the possible cellular functions of cytoplasmic intermediate filaments, and increased our understanding of the specific functions of the lamins and the lamina-associated membrane proteins in the post-mitotic reassembly of the nucleus.
Collapse
Affiliation(s)
- R Foisner
- Institute of Biochemistry and Molecular Cell Biology, University of Vienna, Austria.
| |
Collapse
|
33
|
Sawai T. Effect of protein phosphatase inhibitors on cleavage furrow formation in newt eggs: inhibition of normal furrow formation and concomitant induction of furrow-like dents. Dev Growth Differ 1997; 39:235-42. [PMID: 9108337 DOI: 10.1046/j.1440-169x.1997.t01-1-00012.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The effects of three protein phosphatase inhibitors, okadaic acid, calyculin A and tautomycin, on the formation of cleavage furrows and the induction of furrow-like dents in the egg of the newt, Cynops pyrrhogaster, were examined. Solutions of the individual compound were injected into the animal hemisphere of one of the two presumptive blastomere regions of the embryo during the first cleavage. Injection of a solution containing any of the chemicals often disturbed the formation of a normal furrow in the injected blastomere at second cleavage. Injection with okadaic acid or calyculin A often induced furrow-like dents on the surface of the injected blastomere at the same time as second cleavage in control embryos, while that with tautomycin usually did not induce them. In an injected blastomere, formation of dents started in the animal half and moved towards the vegetal half as the furrow in its counterpart blastomere extended from the animal half towards the vegetal. Dents gradually became slightly deeper and formed cytoplasmic projections that later degenerated, leaving a surface scar. Cytological observations on blastomeres injected with calyculin A revealed that nuclear division occurred normally.
Collapse
Affiliation(s)
- T Sawai
- Department of Biology, Faculty of Science, Yamagata University, Japan
| |
Collapse
|
34
|
Haltiwanger RS, Philipsberg GA. Mitotic arrest with nocodazole induces selective changes in the level of O-linked N-acetylglucosamine and accumulation of incompletely processed N-glycans on proteins from HT29 cells. J Biol Chem 1997; 272:8752-8. [PMID: 9079710 DOI: 10.1074/jbc.272.13.8752] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
O-Linked N-acetylglucosamine (O-GlcNAc) is a ubiquitous and abundant protein modification found on nuclear and cytoplasmic proteins. Several lines of evidence suggest that it is a highly dynamic modification and that the levels of this sugar on proteins may be regulated. Previous workers (Chou, C. F., and Omary, M. B. (1993) J. Biol. Chem. 268, 4465-4472) have shown that mitotic arrest with microtubule-destabilizing agents such as nocodazole causes an increase in the O-GlcNAc levels on keratins in the human colon cancer cell line HT29. We have sought to determine whether this increase in glycosylation is a general (i.e. occurring on many proteins) or a limited (i.e. occurring only on the keratins) process. A general increase would suggest that the microtubule-destabilizing agents were somehow affecting the enzymes responsible for addition and/or removal of O-GlcNAc. Our results suggest that the changes in O-GlcNAc induced by nocodazole are selective for the keratins. The levels of O-GlcNAc on other proteins, including the nuclear pore protein p62 and the transcription factor Sp1, are not significantly affected by this treatment. In agreement with these findings, nocodazole treatment caused no change in the activity of the enzymes responsible for addition or removal of O-GlcNAc as determined by direct in vitro assay. Interestingly, nocodazole treatment did cause a dramatic increase in modification of N-glycans with terminal GlcNAc residues on numerous proteins. Potential mechanisms for this and the change in glycosylation of the keratins are discussed.
Collapse
Affiliation(s)
- R S Haltiwanger
- Department of Biochemistry and Cell Biology, Institute for Cell and Developmental Biology, State University of New York, Stony Brook, New York 11794-5215, USA
| | | |
Collapse
|
35
|
Ku NO, Omary MB. Phosphorylation of human keratin 8 in vivo at conserved head domain serine 23 and at epidermal growth factor-stimulated tail domain serine 431. J Biol Chem 1997; 272:7556-64. [PMID: 9054461 DOI: 10.1074/jbc.272.11.7556] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Dynamic phosphorylation is one mechanism that regulates the more than 20 keratin type I and II intermediate filament proteins in epithelial cells. The major type II keratin in "simple type" glandular epithelia is keratin 8 (K8). We used biochemical and mutational approaches to localize two major in vivo phosphorylation sites of human K8 to the head (Ser-23) and tail (Ser-431) domains. Since Ser-23 of K8 is highly conserved among all type II keratins, we also examined if the corresponding Ser-59 in stratified epithelial keratin 6e is phosphorylated. Mutation of K6e Ser-59 abolished its phosphorylation in 32PO4-labeled baby hamster kidney cell transfectants. With regard to K8 phosphorylation at Ser-431, it increases dramatically upon stimulation of cells with epidermal growth factor (EGF) or after mitotic arrest and is the major K8 phosphorylated residue after incubating K8 immunoprecipitates with mitogen-activated protein or cdc2 kinases. A monoclonal antibody that specifically recognizes phosphoserine 431-K8 manifests increased reactivity with K8 and recognizes reorganized K8/18 filaments after EGF stimulation. Our results suggest that in vivo serine phosphorylation of K8 and K6e within the conserved head domain motif is likely to reflect a conserved phosphorylation site of most if not all type II keratins. Furthermore, K8 Ser-431 phosphorylation occurs after EGF stimulation and during mitotic arrest and is likely to be mediated by mitogen-activated protein and cdc2 kinases, respectively.
Collapse
Affiliation(s)
- N O Ku
- Department of Medicine, Veterans Administration Palo Alto Health Care System, Palo Alto, California 94304, USA
| | | |
Collapse
|
36
|
Abstract
Intermediate filament (IF) proteins, a large family of tissue specific proteins, undergo several posttranslational modifications, with phosphorylation being the most studied modification. IF protein phosphorylation is highly dynamic and involves the head and/or tail domains of these proteins, which are the domains that impart most of the structural heterogeneity and hence presumed tissue specific functions. Although the function of IF proteins remains poorly understood, several regulatory roles for IF protein phosphorylation have been identified or are emerging. Those roles include filament disassembly and reorganization, solubility, localization within specific cellular domains, association with other cytoplasmic or membrane associated proteins, protection against physiologic stress and mediation of tissue-specific functions. Understanding the mechanistic and functional aspects of IF protein phosphorylation is providing insights not only regarding the function of this modification, but also regarding the function of IF proteins.
Collapse
Affiliation(s)
- N O Ku
- VA Palo Alto Health Care System, CA 94304, USA
| | | | | | | |
Collapse
|
37
|
Liao J, Ku NO, Omary MB. Two-dimensional gel analysis of glandular keratin intermediate filament phosphorylation. Electrophoresis 1996; 17:1671-6. [PMID: 8982599 DOI: 10.1002/elps.1150171104] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- J Liao
- VA Palo Alto Health Care System, CA, USA
| | | | | |
Collapse
|
38
|
Ku NO, Omary MB. Identification and mutational analysis of the glycosylation sites of human keratin 18. J Biol Chem 1995; 270:11820-7. [PMID: 7538124 DOI: 10.1074/jbc.270.20.11820] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Keratin polypeptides 8 and 18 (K8/18) are intermediate filament phosphoglycoproteins that are expressed preferentially in glandular epithelia. We previously showed that K8/18 phosphorylation occurs on serine residues and that K8/18 glycosylation consists of O-linked single N-acetylglucosamines (O-GlcNAc) that are linked to Ser/Thr. Since the function of these modifications is unknown, we sought as a first step to identify the precise modification sites and asked if they play a role in keratin filament assembly. For this, we generated a panel of K18 Ser and Thr-->Ala mutants at potential glycosylation sites followed by expression in a baculovirus-insect cell system. We identified the major glycosylation sites of K18 by comparing the tryptic 3H-glycopeptide pattern of the panel of mutant and wild type K18 expressed in the insect cells with the glycopeptides of K18 in human colonic cells. The identified sites occur on three serines in the head domain of K18. The precise modified residues in human cells were verified using Edman degradation and confirmed further by the lack of glycosylation of a K18 construct that was mutated at the molecularly identified sites then transfected into NIH-3T3 cells. Partial or total K18 glycosylation mutants transfected into mammalian cells manifested nondistinguishable filament assembly to cells transfected with wild type K8/18. Our results show that K18 glycosylation sites share some features with other already identified O-GlcNAc sites and may together help predict glycosylation sites of other intermediate filament proteins.
Collapse
Affiliation(s)
- N O Ku
- Palo Alto Veterans Administration Medical Center, California 94304, USA
| | | |
Collapse
|
39
|
Fang YO, Welsch U. A histochemical study of the distribution of lectin binding sites in the developing oocytes of the lancelet Branchiostoma belcheri. Cell Tissue Res 1995; 280:427-34. [PMID: 7781039 DOI: 10.1007/bf00307816] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The distribution of carbohydrate moieties in lancelet (Branchiostoma belcheri) oocytes has been studied at different stages of development, using a peroxidase-labeled lectin incubation technique, the PAS-reaction and Alcian Blue staining. Binding sites of 5 lectins, indicating the presence of different sugar moieties (Wheat germ agglutinin (WGA) for N-acetylglucosamine, Concanavalin A (Con A) for glucose/mannose, Helix pomatia agglutinin (HPA) for N-acetyl-D-galactosamine, Ricinus communis agglutinin (RCA-I) for galactose and Ulex europaeus agglutinin (UEA-I) for fucose), were identified and were shown to undergo considerable variation during oocyte development. In the previtellogenic stage, HPA, RCA-I and UEA-I were not identified on the oocyte surface, but WGA and Con A gave strongly positive reactions at this site. In the cytoplasm, 4 lectins (Con A, HPA, RCA-I and UEA-I) gave a weak or moderate reaction, and Con A was also observed in the perinuclear region. In vitellogenic oocytes, these 4 lectins were found to also bind to the nuclear envelope, karyoplasm and nucleolus, and, with the exception of Con A, could also be found in the nuclei of more mature stages. The cytoplasmic yolk granules and Golgi vesicles of the vitellogenic oocyte, were moderately positive for Con A, HPA, RCA-I and UEA-I, but HPA, RCA-I and UEA-I were only weakly bound at the oocyte surface. In mature oocytes, all 5 lectins bound moderately or strongly to yolk granules and cell surface. HPA, RCA-I and UEA-I bound moderately or strongly to various nuclear compartments.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- Y O Fang
- Third Institute of Oceanography, SOA, Xiamen, China
| | | |
Collapse
|
40
|
Liao J, Lowthert LA, Ghori N, Omary MB. The 70-kDa heat shock proteins associate with glandular intermediate filaments in an ATP-dependent manner. J Biol Chem 1995; 270:915-22. [PMID: 7529764 DOI: 10.1074/jbc.270.2.915] [Citation(s) in RCA: 84] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Keratin polypeptides 8 and 18 (K8/18) are intermediate filament proteins expressed preferentially in glandular epithelia. We describe the identification, by co-immunoprecipitation from normal human colonic tissues and cultured cell lines, of the 70-kDa heat shock protein (hsp) and its related heat shock cognate protein as K8/18-associated proteins (hsp/c). The association is significant but sub-stoichiometric and occurs preferentially with the soluble rather than the cytoskeletal K8/18 fractions. Heat stress increases the level of soluble K8/18 in association with an increase in hsp70 levels and an increase in the stoichiometry of K8/18-hsp70 association. Identity of the associated proteins was confirmed by microsequencing of a tryptic digest of the purified associated protein and by using anti-hsp/c70-specific antibodies. The K8/18-hsp/c70 complex can be dissociated in a Mg-ATP-dependent manner that requires ATP hydrolysis. Binding of hsp to K8/18 can be reconstituted using purified bovine hsp70 and human K8/18 immunoprecipitates that have been depleted of bound hsp/c70 and increases slightly in the presence of ATP. The reconstituted K8/18-hsp70 complex can be again released in the presence of Mg-ATP. In addition, hsp70 binds to K8/18 without having a significant effect on in vitro filament assembly when added during or after assembly. Using an overlay assay, hsp70 binds exclusively to K8 in the presence of ATP. Our results show direct association of the hsp/c70 proteins with K8/18. This interaction may serve, at least in part, to regulate the function of these two abundant protein groups.
Collapse
Affiliation(s)
- J Liao
- Palo Alto Veterans Affairs Medical Center, California 94304
| | | | | | | |
Collapse
|