1
|
Oh Y, Jung HJ, Hong S, Cho Y, Park J, Cho D, Kim TS. Aminoacyl transfer ribonucleic acid synthetase complex-interacting multifunctional protein 1 induces microglial activation and M1 polarization via the mitogen-activated protein kinase/nuclear factor-kappa B signaling pathway. Front Cell Neurosci 2022; 16:977205. [PMID: 36159396 PMCID: PMC9491728 DOI: 10.3389/fncel.2022.977205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/19/2022] [Indexed: 11/13/2022] Open
Abstract
Activation of microglia, which is the primary immune cell of the central nervous system, plays an important role in neuroinflammation associated with several neuronal diseases. Aminoacyl tRNA synthetase (ARS) complex-interacting multifunctional protein 1 (AIMP1), a structural component of the multienzyme ARS complex, is secreted to trigger a pro-inflammatory function and has been associated with several inflammatory diseases. However, the effect of AIMP1 on microglial activation remains unknown. AIMP1 elevated the expression levels of activation-related cell surface markers and pro-inflammatory cytokines in primary and BV-2 microglial cells. In addition to the AIMP1-mediated increase in the expression levels of M1 markers [interleukin (IL)-6, tumor necrosis factor-α, and IL-1β], the expression levels of CD68, an M1 cell surface molecule, were also increased in AIMP-1-treated microglial cells, while those of CD206, an M2 cell surface molecule, were not, indicating that AIMP1 triggers the polarization of microglial cells into the M1 state but not the M2 state. AIMP1 treatment induced the phosphorylation of mitogen-activated protein kinases (MAPKs), while MAPK inhibitors suppressed the AIMP1-induced microglial cell activation. AIMP1 also induced the phosphorylation of the nuclear factor-kappa B (NF-κB) components and nuclear translocation of the NF-κB p65 subunit in microglial cells. Furthermore, c-Jun N-terminal kinase (JNK) and p38 inhibitors markedly suppressed the AIMP1-induced phosphorylation of NF-κB components as well as the nuclear translocation of NF-κB p65 subunit, suggesting the involvement of JNK and p38 as upstream regulators of NF-κB in AIMP1-induced microglial cell activation. The NF-κB inhibitor suppressed the AIMP1-induced M1 polarization of the microglial cells. Taken together, AIMP1 effectively induces M1 microglial activation via the JNK and p38/NF-κB-dependent pathways. These results suggest that AIMP1 released under stress conditions may be a pathological factor that induces neuroinflammation.
Collapse
Affiliation(s)
- Yebin Oh
- Department of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| | - Hak-Jun Jung
- Department of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| | - Seungwon Hong
- Department of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| | - Yerim Cho
- Department of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| | - Jiyeong Park
- Department of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| | - Daeho Cho
- Institute of Convergence Science, Korea University, Seoul, South Korea
| | - Tae Sung Kim
- Department of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
- *Correspondence: Tae Sung Kim,
| |
Collapse
|
2
|
Roles of aminoacyl-tRNA synthetase-interacting multi-functional proteins in physiology and cancer. Cell Death Dis 2020; 11:579. [PMID: 32709848 PMCID: PMC7382500 DOI: 10.1038/s41419-020-02794-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 07/03/2020] [Accepted: 07/06/2020] [Indexed: 12/15/2022]
Abstract
Aminoacyl-tRNA synthetases (ARSs) are an important class of enzymes with an evolutionarily conserved mechanism for protein synthesis. In higher eukaryotic systems, eight ARSs and three ARS-interacting multi-functional proteins (AIMPs) form a multi-tRNA synthetase complex (MSC), which seems to contribute to cellular homeostasis. Of these, AIMPs are generally considered as non-enzyme factors, playing a scaffolding role during MSC assembly. Although the functions of AIMPs are not fully understood, increasing evidence indicates that these scaffold proteins usually exert tumor-suppressive activities. In addition, endothelial monocyte-activating polypeptide II (EMAP II), as a cleavage product of AIMP1, and AIMP2-DX2, as a splice variant of AIMP2 lacking exon 2, also have a pivotal role in regulating tumorigenesis. In this review, we summarize the biological functions of AIMP1, EMAP II, AIMP2, AIMP2-DX2, and AIMP3. Also, we systematically introduce their emerging roles in cancer, aiming to provide new ideas for the treatment of cancer.
Collapse
|
3
|
Minond D. Novel Approaches and Challenges of Discovery of Exosite Modulators of a Disintegrin and Metalloprotease 10. Front Mol Biosci 2020; 7:75. [PMID: 32435655 PMCID: PMC7218085 DOI: 10.3389/fmolb.2020.00075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/02/2020] [Indexed: 12/13/2022] Open
Abstract
A disintegrin and metaproteinase 10 is an important target for multiple therapeutic areas, however, despite drug discovery efforts by both industry and academia no compounds have reached the clinic so far. The lack of enzyme and substrate selectivity of developmental drugs is believed to be a main obstacle to the success. In this review, we will focus on novel approaches and associated challenges in discovery of ADAM10 selective modulators that can overcome shortcomings of previous generations of compounds and be translated into the clinic.
Collapse
Affiliation(s)
- Dmitriy Minond
- Rumbaugh-Goodwin Institute for Cancer Research, Nova Southeastern University, Fort Lauderdale, FL, United States.,Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, United States
| |
Collapse
|
4
|
Takeuchi Y, Tanaka M, Okura N, Fukui Y, Noguchi K, Hayashi Y, Torii T, Ooizumi H, Ohbuchi K, Mizoguchi K, Miyamoto Y, Yamauchi J. Rare Neurologic Disease-Associated Mutations of AIMP1 are Related with Inhibitory Neuronal Differentiation Which is Reversed by Ibuprofen. MEDICINES 2020; 7:medicines7050025. [PMID: 32384815 PMCID: PMC7281511 DOI: 10.3390/medicines7050025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/01/2020] [Accepted: 05/04/2020] [Indexed: 01/04/2023]
Abstract
Background: Hypomyelinating leukodystrophy 3 (HLD3), previously characterized as a congenital diseases associated with oligodendrocyte myelination, is increasingly regarded as primarily affecting neuronal cells. Methods: We used N1E-115 cells as the neuronal cell model to investigate whether HLD3-associated mutant proteins of cytoplasmic aminoacyl-tRNA synthase complex-interacting multifunctional protein 1 (AIMP1) aggregate in organelles and affect neuronal differentiation. Results: 292CA frame-shift type mutant proteins harboring a two-base (CA) deletion at the 292th nucleotide are mainly localized in the lysosome where they form aggregates. Similar results are observed in mutant proteins harboring the Gln39-to-Ter (Q39X) mutation. Interestingly, the frame-shift mutant-specific peptide specifically interacts with actin to block actin fiber formation. The presence of actin with 292CA mutant proteins, but not with wild type or Q39X ones, in the lysosome is detectable by immunoprecipitation of the lysosome. Furthermore, expression of 292CA or Q39X mutants in cells inhibits neuronal differentiation. Treatment with ibuprofen reverses mutant-mediated inhibitory differentiation as well as the localization in the lysosome. Conclusions: These results not only explain the cell pathological mechanisms inhibiting phenotype differentiation in cells expressing HLD3-associated mutants but also identify the first chemical that restores such cells in vitro.
Collapse
Affiliation(s)
- Yu Takeuchi
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan; (Y.T.); (M.T.); (N.O.); (Y.F.); (Y.M.)
| | - Marina Tanaka
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan; (Y.T.); (M.T.); (N.O.); (Y.F.); (Y.M.)
| | - Nanako Okura
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan; (Y.T.); (M.T.); (N.O.); (Y.F.); (Y.M.)
| | - Yasuyuki Fukui
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan; (Y.T.); (M.T.); (N.O.); (Y.F.); (Y.M.)
| | - Ko Noguchi
- Laboratory of Applied Ecology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan;
| | - Yoshihiro Hayashi
- Laboratory of Oncology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan;
| | - Tomohiro Torii
- Laboratory of Ion Channel Pathophysiology, Doshisha University, Kyotanabe, Kyoto 610-0394, Japan;
| | - Hiroaki Ooizumi
- Tsumura Research Laboratories, Tsumura & Co., Inashiki, Ibaraki 200-1192, Japan; (H.O.); (K.O.); (K.M.)
| | - Katsuya Ohbuchi
- Tsumura Research Laboratories, Tsumura & Co., Inashiki, Ibaraki 200-1192, Japan; (H.O.); (K.O.); (K.M.)
| | - Kazushige Mizoguchi
- Tsumura Research Laboratories, Tsumura & Co., Inashiki, Ibaraki 200-1192, Japan; (H.O.); (K.O.); (K.M.)
| | - Yuki Miyamoto
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan; (Y.T.); (M.T.); (N.O.); (Y.F.); (Y.M.)
- Laboratory of Molecular Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo 157-8535, Japan
| | - Junji Yamauchi
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan; (Y.T.); (M.T.); (N.O.); (Y.F.); (Y.M.)
- Laboratory of Molecular Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo 157-8535, Japan
- Correspondence: ; Tel.: (+81)-42-676-7164
| |
Collapse
|
5
|
Abstract
Aminoacyl-tRNA synthetases (ARSs) are essential enzymes for protein synthesis with evolutionarily conserved enzymatic mechanisms. Despite their similarity across organisms, scientists have been able to generate effective anti-infective agents based on the structural differences in the catalytic clefts of ARSs from pathogens and humans. However, recent genomic, proteomic and functionomic advances have unveiled unexpected disease-associated mutations and altered expression, secretion and interactions in human ARSs, revealing hidden biological functions beyond their catalytic roles in protein synthesis. These studies have also brought to light their potential as a rich and unexplored source for new therapeutic targets and agents through multiple avenues, including direct targeting of the catalytic sites, controlling disease-associated protein-protein interactions and developing novel biologics from the secreted ARS proteins or their parts. This Review addresses the emerging biology and therapeutic applications of human ARSs in diseases including autoimmune and rare diseases, and cancer.
Collapse
|
6
|
Zou C, Gu C, Zhao M, Zhu D, Wang N, Yu J, Yao Y, Chen Y, Shi M, Gu Q, Qian Y, Qiu Q, Zheng Z. The Role of the AIMP1 Pathway in Diabetic Retinopathy: AIMP1-Targeted Intervention Study in Diabetic Retinopathy. Ophthalmic Res 2020; 63:122-132. [PMID: 31962335 DOI: 10.1159/000503637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 09/24/2019] [Indexed: 11/19/2022]
Abstract
INTRODUCTION We characterized the role of aminoacyl-tRNA synthetase-interacting multifunctional protein 1 (AIMP1) in retinal inflammation and apoptosis regulation, both in vivo and in vitro. In addition, we used clinical specimens to show the relationship between AIMP1 and the development of diabetic retinopathy (DR). OBJECTIVE To elucidate the role of AIMP1 in DR. METHODS A diabetic AIMP1-specific knockout (KO) C57 mouse model was used. Human retinal microvascular endothelial cells (HRMECs) were incubated with normal glucose, high glucose (HG), and HG + AIMP1-small interfering RNA (siRNA). The expression of AIMP1 and relative inflammatory and apoptotic cytokines in diabetic mice retina and HRMECs were measured using Western blotting and polymerase chain reaction. The apoptosis of HRMECs was detected by terminal deoxynucleotidyl transferase dUTP nick end labeling assay. The levels of AIMP1 in the vitreous humor and serum were determined using ELISA. Possible correlations between the intravitreal level of AIMP1 and blood glucose, glycosylated hemoglobin HbA1c, intravitreal levels of IL-1β, and caspase-3 were determined. RESULTS The expression of inflammatory and apoptotic proteins was inhibited in the AIMP1 KO mice and HRMECs incubated with AIMP1-siRNA. The apoptosis of HRMECs was decreased in the AIMP1-siRNA group. The intravitreal level of AIMP1 in DR patients was significantly higher than that in nondiabetic patients (p < 0.01). There was a positive correlation between intravitreal AIMP1 and HbA1c and intravitreal IL-1β and caspase-3 (p < 0.05). CONCLUSIONS HG induced increased expression of AIMP1 in HRMECs and retinas from diabetic C57 mice, thereby increasing the expression of inflammatory and apoptotic cytokines, which promoted DR progression. A decrease in AIMP1 expression prevented the development of DR by inhibiting the activation of inflammatory and apoptotic signaling. Therefore, AIMP1 is an effective interfering target for the prevention and treatment of DR.
Collapse
Affiliation(s)
- Chen Zou
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, China
| | - Chufeng Gu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai, China
| | - Minjie Zhao
- Department of Ophthalmology, Yixing People's Hospital, Jiangsu University, Yixing, China
| | - Dandan Zhu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai, China
| | - Na Wang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai, China
| | - Jingjing Yu
- Department of Ophthalmology, Changshu 2nd People's Hospital, Changshu, China
| | - Yuan Yao
- Department of Ophthalmology, Shanghai General Hospital, Shanghai, China
| | - Ye Chen
- Department of Nursing, Shanghai General Hospital, Shanghai, China
| | - Min Shi
- Department of Nursing, Shanghai General Hospital, Shanghai, China
| | - Qi Gu
- Department of Nursing, Shanghai General Hospital, Shanghai, China
| | - Yingying Qian
- Department of Nursing, Shanghai General Hospital, Shanghai, China
| | - Qinghua Qiu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai, China
| | - Zhi Zheng
- Department of Ophthalmology, Shanghai General Hospital, Shanghai, China,
| |
Collapse
|
7
|
Kim MS, Lee A, Cho D, Kim TS. AIMP1 regulates TCR signaling and induces differentiation of regulatory T cells by interfering with lipid raft association. Biochem Biophys Res Commun 2019; 514:875-880. [PMID: 31084930 DOI: 10.1016/j.bbrc.2019.05.040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 05/05/2019] [Indexed: 02/07/2023]
Abstract
In addition to a role in translation, AIMP1 is secreted to affect various immune cells, such as macrophages, dendritic cells, B cells, and natural killer cells. However, the direct effects of AIMP1 on T cells have not yet been reported. In this study, we investigated whether AIMP1 could modulate T cell responses directly. Results revealed that AIMP1 significantly inhibited T cell receptor (TCR)-dependent activation and proliferation of CD4 T cells, as well as decreased TCR stimuli-induced Ca2+ influx in CD4 T cells. In addition, microscopic analysis revealed that lipid raft association in response to TCR engagement was significantly reduced in the presence of AIMP1, and the phosphorylation of PLCγ and PI3K was also down-regulated in CD4 T cells by AIMP1. Furthermore, AIMP1 specifically enhanced the differentiation of regulatory T (Treg) cells, while it had no effect on T helper type 1 (Th1), type 2 (Th2), and type 17 (Th17) cell differentiation. Collectively, these results indicate that AIMP1 affects T cells directly by down-regulating TCR signaling complex formation and inducing Treg cell differentiation in CD4 T cells.
Collapse
MESH Headings
- Animals
- Calcium/immunology
- Calcium/metabolism
- Cell Differentiation/drug effects
- Cytokines/genetics
- Cytokines/immunology
- Cytokines/pharmacology
- Female
- Gene Expression Regulation
- Immunophenotyping
- Ion Transport/drug effects
- Lymphocyte Activation/drug effects
- Membrane Microdomains/drug effects
- Membrane Microdomains/immunology
- Membrane Microdomains/metabolism
- Mice
- Mice, Inbred C57BL
- Phosphatidylinositol 3-Kinase/genetics
- Phosphatidylinositol 3-Kinase/immunology
- Phospholipase C gamma/genetics
- Phospholipase C gamma/immunology
- Phosphorylation/drug effects
- Primary Cell Culture
- Receptors, Antigen, T-Cell/antagonists & inhibitors
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Signal Transduction/drug effects
- Signal Transduction/genetics
- Signal Transduction/immunology
- T-Lymphocytes, Helper-Inducer/cytology
- T-Lymphocytes, Helper-Inducer/drug effects
- T-Lymphocytes, Helper-Inducer/immunology
- T-Lymphocytes, Regulatory/cytology
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/immunology
Collapse
Affiliation(s)
- Myun Soo Kim
- Institute of Convergence Science, Korea University, 5-ga, Anam-dong, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Arim Lee
- Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, 5-ga, Anam-dong, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Daeho Cho
- Institute of Convergence Science, Korea University, 5-ga, Anam-dong, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Tae Sung Kim
- Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, 5-ga, Anam-dong, Seongbuk-gu, Seoul, 02841, Republic of Korea.
| |
Collapse
|
8
|
Voices from the dead: The complex vocabulary and intricate grammar of dead cells. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2019; 116:1-90. [PMID: 31036289 DOI: 10.1016/bs.apcsb.2019.02.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Of the roughly one million cells per second dying throughout the body, the vast majority dies by apoptosis, the predominant form of regulated cell death in higher organisms. Long regarded as mere waste, apoptotic cells are now recognized as playing a prominent and active role in homeostatic maintenance, especially resolution of inflammation, and in the sculpting of tissues during development. The activities associated with apoptotic cells are continually expanding, with more recent studies demonstrating their ability to modulate such vital functions as proliferation, survival, differentiation, metabolism, migration, and angiogenesis. In each case, the role of apoptotic cells is active, exerting their effects via new activities acquired during the apoptotic program. Moreover, the capacity to recognize and respond to apoptotic cells is not limited to professional phagocytes. Most, if not all, cells receive and integrate an array of signals from cells dying in their vicinity. These signals comprise a form of biochemical communication. As reviewed in this chapter, this communication is remarkably sophisticated; each of its three critical steps-encoding, transmission, and decoding of the apoptotic cell's "message"-is endowed with exquisite robustness. Together, the abundance and intricacy of the variables at each step comprise the vocabulary and grammar of the language by which dead cells achieve their post-mortem voice. The combinatorial complexity of the resulting communication network permits dying cells, through the signals they emit and the responses those signals elicit, to partake of an expanded role in homeostasis, acting as both sentinels of environmental change and agents of adaptation.
Collapse
|
9
|
Kim MS, Kim TS. Aminoacyl tRNA Synthetase-Interacting Multifunctional Protein 1 Acts as a Novel B Cell-Activating Factor In Vitro and In Vivo. THE JOURNAL OF IMMUNOLOGY 2015; 194:4729-36. [PMID: 25870240 DOI: 10.4049/jimmunol.1401352] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 03/14/2015] [Indexed: 12/18/2022]
Abstract
Endogenous B cell-activating factors play pivotal roles in defense mechanisms by regulating B cell responses. We previously reported that aminoacyl tRNA synthetase-interacting multifunctional protein 1 (AIMP1) functions as a novel proinflammatory cytokine that activates macrophages and dendritic cells. However, roles of AIMP1 in B cell responses have not been studied. In this study, we investigated the effects of AIMP1 on B cell responses and their underlying mechanisms. AIMP1 induced the expression of surface activation markers on murine B cells and the proliferation of B cells. Additionally, AIMP1 increased the expression of activation-induced deaminase and class switch recombination in B cells. AIMP1 also had synergistic effects on B cell activation when combined with CD40 stimulus. Intracellular signaling experiments showed that AIMP1 activated B cells through a protein kinase C/NF-κB signaling pathway. Importantly, i.v. injection of AIMP1 into mice increased the expression of CD69 on splenic B cells and significantly enhanced Ag-specific Ab production. Taken together, our results show that AIMP1 acts as a novel B cell-activating factor. AIMP1-mediated B cell activation and the involvement of AIMP1 in diseases will provide additional information for therapeutic strategies.
Collapse
Affiliation(s)
- Myun Soo Kim
- Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Republic of Korea
| | - Tae Sung Kim
- Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Republic of Korea
| |
Collapse
|
10
|
Immuno-evasive tactics by schistosomes identify an effective allergy preventative. Exp Parasitol 2015; 153:139-50. [PMID: 25819297 DOI: 10.1016/j.exppara.2015.03.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 03/15/2015] [Accepted: 03/20/2015] [Indexed: 12/11/2022]
Abstract
Many chronic inflammatory diseases can be improved by helminth infection, but the mechanisms are poorly understood. Allergy and helminthiasis are both associated with Th2-like immune responses; thus, defining how infection with parasites leads to reduced allergy has been particularly challenging. We sought to better understand this conundrum by evaluating host-parasite interactions involved in Th2 immunity in human schistosomiasis. Immune cells were cultured with schistosomes and the effect on CD23, an IgE receptor associated with resistance in schistosomiasis, was evaluated. Cells treated with schistosomes demonstrated reduced surface CD23 levels with a parallel accumulation of soluble (s) CD23 suggesting this IgE receptor is proteolytically cleaved by the parasite. Consistent with this hypothesis, a schistosome-generated (SG)-sCD23 fragment of 15 kDa was identified. SG-sCD23 inhibited IgE from binding to CD23 and FcεRI, but lacked the ability to bind CD21. These results suggested that schistosomes target IgE-mediated immunity in immuno-evasive tactics. Based on its characteristics, we predicted that SG-sCD23 would function as an efficacious allergy preventative. Treatment of human FcεRI-transgenic mice with recombinant (r) SG-sCD23 reduced the ability of human IgE to induce an acute allergic response in vivo. In addition, an optimized form of rSG-sCD23 with an introduced point mutation at Asp258 (D258E)to stabilize IgE binding had increased efficacy compared to native rSG-sCD23. Schistosome infection may thus inhibit allergic-like protective immune responses by increasing soluble IgE decoy receptors. Allergy treatments based on this naturally occurring phenomenon may be highly effective and have fewer side effects with long-term use.
Collapse
|
11
|
The antibody atliximab attenuates collagen-induced arthritis by neutralizing AIMP1, an inflammatory cytokine that enhances osteoclastogenesis. Biomaterials 2015; 44:45-54. [DOI: 10.1016/j.biomaterials.2014.12.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 11/28/2014] [Accepted: 12/16/2014] [Indexed: 12/23/2022]
|
12
|
Jeong JH, Park M, Park M, Lim EJ, Kim HR, Song H, Park SG, Choi EJ, Hong KH, Lee DR, Ko JJ, Choi Y. The expression of aminoacyl-tRNA-synthetase-interacting multifunctional protein-1 (Aimp1) is regulated by estrogen in the mouse uterus. Mol Cell Endocrinol 2015; 399:78-86. [PMID: 25132647 DOI: 10.1016/j.mce.2014.07.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 06/18/2014] [Accepted: 07/11/2014] [Indexed: 11/20/2022]
Abstract
Aimp1 is known as a multifunctional cytokine in various cellular events. Recent study showed Aimp1 is localized in glandular epithelial, endothelial, and stromal cells in functionalis and basalis layers of the endometrium. However, the regulatory mechanism of Aimp1 in the uterus remains unknown. In the present study, we found that Aimp1 is expressed in the mouse uterus. Aimp1 transcripts were decreased at diestrus stage. However, the level of Aimp1 protein was significantly increased in the luminal epithelium in the uterine endometrium at estrus stage during the estrous cycle. We found that treatment of estrogen increased the expression of Aimp1 in the uterus in ovarectomized mice. We identified one estrogen receptor binding element (ERE) on mouse Aimp1 promoter. The activity of Aimp1 promoter was increased with estrogen treatment. Our findings indicate that Aimp1 might act as an important regulator to remodel the uterine endometrium and its expression might be regulated by estrogen during the estrous cycle. This will give us better understanding of the dynamic change of uterine remodeling during the estrous cycle.
Collapse
Affiliation(s)
- Ji-Hye Jeong
- Department of Biomedical Science, College of Medicine CHA University, Seoul 135-081, Korea
| | - Miree Park
- Department of Biomedical Science, College of Medicine CHA University, Seoul 135-081, Korea
| | - Miseon Park
- Fertility Center of CHA Gangnam Medical Center, Seoul 135-081, Korea
| | - Eun Jin Lim
- Department of Biomedical Science, College of Medicine CHA University, Seoul 135-081, Korea
| | - Hye-Ryun Kim
- Department of Biomedical Science, College of Medicine CHA University, Seoul 135-081, Korea
| | - Haengseok Song
- Department of Biomedical Science, College of Medicine CHA University, Seoul 135-081, Korea
| | - Sang Gyu Park
- Department of Biomedical Science, College of Medicine CHA University, Seoul 135-081, Korea
| | - Eun-Jin Choi
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 330-714, Korea
| | - Kwon-Ho Hong
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 330-714, Korea
| | - Dong Ryul Lee
- Department of Biomedical Science, College of Medicine CHA University, Seoul 135-081, Korea; Fertility Center of CHA Gangnam Medical Center, Seoul 135-081, Korea
| | - Jeong-Jae Ko
- Department of Biomedical Science, College of Medicine CHA University, Seoul 135-081, Korea
| | - Youngsok Choi
- Department of Biomedical Science, College of Medicine CHA University, Seoul 135-081, Korea; Fertility Center of CHA Gangnam Medical Center, Seoul 135-081, Korea.
| |
Collapse
|
13
|
Regulation of angiogenesis by aminoacyl-tRNA synthetases. Int J Mol Sci 2014; 15:23725-48. [PMID: 25535072 PMCID: PMC4284789 DOI: 10.3390/ijms151223725] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 12/11/2014] [Accepted: 12/12/2014] [Indexed: 02/06/2023] Open
Abstract
In addition to their canonical roles in translation the aminoacyl-tRNA synthetases (ARSs) have developed secondary functions over the course of evolution. Many of these activities are associated with cellular survival and nutritional stress responses essential for homeostatic processes in higher eukaryotes. In particular, six ARSs and one associated factor have documented functions in angiogenesis. However, despite their connection to this process, the ARSs are mechanistically distinct and exhibit a range of positive or negative effects on aspects of endothelial cell migration, proliferation, and survival. This variability is achieved through the appearance of appended domains and interplay with inflammatory pathways not found in prokaryotic systems. Complete knowledge of the non-canonical functions of ARSs is necessary to understand the mechanisms underlying the physiological regulation of angiogenesis.
Collapse
|
14
|
Zhou JJ, Wang F, Xu Z, Lo WS, Lau CF, Chiang KP, Nangle LA, Ashlock MA, Mendlein JD, Yang XL, Zhang M, Schimmel P. Secreted histidyl-tRNA synthetase splice variants elaborate major epitopes for autoantibodies in inflammatory myositis. J Biol Chem 2014; 289:19269-75. [PMID: 24898250 DOI: 10.1074/jbc.c114.571026] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Inflammatory and debilitating myositis and interstitial lung disease are commonly associated with autoantibodies (anti-Jo-1 antibodies) to cytoplasmic histidyl-tRNA synthetase (HisRS). Anti-Jo-1 antibodies from different disease-afflicted patients react mostly with spatially separated epitopes in the three-dimensional structure of human HisRS. We noted that two HisRS splice variants (SVs) include these spatially separated regions, but each SV lacks the HisRS catalytic domain. Despite the large deletions, the two SVs cross-react with a substantial population of anti-Jo-l antibodies from myositis patients. Moreover, expression of at least one of the SVs is up-regulated in dermatomyositis patients, and cell-based experiments show that both SVs and HisRS can be secreted. We suggest that, in patients with inflammatory myositis, anti-Jo-1 antibodies may have extracellular activity.
Collapse
Affiliation(s)
- Jie J Zhou
- From the IAS HKUST-Scripps R&D Laboratory, Institute for Advanced Study, and Pangu BioPharma, Hong Kong, China
| | - Feng Wang
- From the IAS HKUST-Scripps R&D Laboratory, Institute for Advanced Study, and Pangu BioPharma, Hong Kong, China
| | - Zhiwen Xu
- From the IAS HKUST-Scripps R&D Laboratory, Institute for Advanced Study, and Pangu BioPharma, Hong Kong, China
| | - Wing-Sze Lo
- From the IAS HKUST-Scripps R&D Laboratory, Institute for Advanced Study, and Pangu BioPharma, Hong Kong, China
| | - Ching-Fun Lau
- From the IAS HKUST-Scripps R&D Laboratory, Institute for Advanced Study, and Pangu BioPharma, Hong Kong, China
| | | | | | | | | | - Xiang-Lei Yang
- From the IAS HKUST-Scripps R&D Laboratory, Institute for Advanced Study, and The Scripps Research Institute, La Jolla, California 92037, and
| | - Mingjie Zhang
- From the IAS HKUST-Scripps R&D Laboratory, Institute for Advanced Study, and Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Paul Schimmel
- From the IAS HKUST-Scripps R&D Laboratory, Institute for Advanced Study, and The Scripps Research Institute, La Jolla, California 92037, and Scripps Florida, Jupiter, Florida 33458
| |
Collapse
|
15
|
Son SH, Park MC, Kim S. Extracellular activities of aminoacyl-tRNA synthetases: new mediators for cell-cell communication. Top Curr Chem (Cham) 2013; 344:145-66. [PMID: 24352603 DOI: 10.1007/128_2013_476] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Over the last decade, many reports have discussed aminoacyl-tRNA synthetases (ARSs) in extracellular space. Now that so many of them are known to be secreted with distinct activities in the broad range of target cells including endothelial, various immune cells, and fibroblasts, they need to be classified as a new family of extracellular signal mediators. In this chapter the identity of the secreted ARSs, receptors, and their physiological and pathological implications will be described.
Collapse
Affiliation(s)
- Sung Hwa Son
- Medicinal Bioconvergence Research Center, Graduate School of Convergence Science and Technology, College of Pharmacy, Seoul National University, Seoul, 151-742, South Korea
| | | | | |
Collapse
|
16
|
Protein-protein interactions and multi-component complexes of aminoacyl-tRNA synthetases. Top Curr Chem (Cham) 2013; 344:119-44. [PMID: 24072587 DOI: 10.1007/128_2013_479] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Protein-protein interaction occurs transiently or stably when two or more proteins bind together to mediate a wide range of cellular processes such as protein modification, signal transduction, protein trafficking, and structural folding. The macromolecules involved in protein biosynthesis such as aminoacyl-tRNA synthetase (ARS) have a number of protein-protein interactions. The mammalian multi-tRNA synthetase complex (MSC) consists of eight different enzymes: EPRS, IRS, LRS, QRS, MRS, KRS, RRS, and DRS, and three auxiliary proteins: AIMP1/p43, AIMP2/p38, and AIMP/p18. The distinct ARS proteins are also connected to diverse protein networks to carry out biological functions. In this chapter we first show the protein networks of the entire MSC and explain how MSC components interact with or can regulate other proteins. Finally, it is pointed out that the understanding of protein-protein interaction mechanism will provide insight to potential therapeutic application for diseases related to the MSC network.
Collapse
|
17
|
Abstract
Although aminoacyl-tRNA synthetases (ARSs) and ARS-interacting multi-functional proteins (AIMPs) have long been recognized as housekeeping proteins, evidence indicating that they play a key role in regulating cancer is now accumulating. In this chapter we will review the conventional and non-conventional functions of ARSs and AIMPs with respect to carcinogenesis. First, we will address how ARSs and AIMPs are altered in terms of expression, mutation, splicing, and post-translational modifications. Second, the molecular mechanisms for ARSs' and AIMPs' involvement in the initiation, maintenance, and progress of carcinogenesis will be covered. Finally, we will introduce the development of therapeutic approaches that target ARSs and AIMPs with the goal of treating cancer.
Collapse
|