1
|
Guo M, Shen D, Su Y, Xu J, Zhao S, Zhang W, Wang Y, Jiang W, Wang J, Geng X, Ding X, Xu X. Syndecan-1 shedding destroys epithelial adherens junctions through STAT3 after renal ischemia/reperfusion injury. iScience 2023; 26:108211. [PMID: 37942007 PMCID: PMC10628745 DOI: 10.1016/j.isci.2023.108211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/22/2023] [Accepted: 10/11/2023] [Indexed: 11/10/2023] Open
Abstract
Adherens junctions between tubular epithelial cells are disrupted in renal ischemia/reperfusion (I/R) injury. Syndecan-1 (SDC-1) is involved in maintaining cell morphology. We aimed to study the role of SDC-1 shedding induced by renal I/R in the destruction of intracellular adherens junctions. We found that SDC-1 shedding was increased while the expression of E-cadherin was decreased. This observation was accompanied by the activation of STAT3 in the kidneys. Inhibiting the shedding of SDC-1 induced by I/R could alleviate this effect. Mild renal I/R could induce more severe renal injury, lower E-cadherin expression, damaged cell junctions, and activated STAT3 in knockout mice with the tubule-specific deletion of SDC-1 mice. The results in vitro were consistent with those in vivo. Inhibiting the shedding of SDC-1 could alleviate the decreased expression of E-cadherin and damage of cell adherens junctions through inhibiting the activation of STAT3 during ischemic acute kidney injury.
Collapse
Affiliation(s)
- Man Guo
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Medical Center of Kidney Disease, Shanghai, China
- Shanghai Institute of Kidney and Dialysis, Shanghai, China
- Key Laboratory of Kidney and Blood Purification, Shanghai, China
- Hemodialysis quality control center of Shanghai, Shanghai, China
| | - Daoqi Shen
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Medical Center of Kidney Disease, Shanghai, China
- Shanghai Institute of Kidney and Dialysis, Shanghai, China
- Key Laboratory of Kidney and Blood Purification, Shanghai, China
- Hemodialysis quality control center of Shanghai, Shanghai, China
| | - Yiqi Su
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Medical Center of Kidney Disease, Shanghai, China
- Shanghai Institute of Kidney and Dialysis, Shanghai, China
- Key Laboratory of Kidney and Blood Purification, Shanghai, China
- Hemodialysis quality control center of Shanghai, Shanghai, China
| | - Jiarui Xu
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Medical Center of Kidney Disease, Shanghai, China
- Shanghai Institute of Kidney and Dialysis, Shanghai, China
- Key Laboratory of Kidney and Blood Purification, Shanghai, China
- Hemodialysis quality control center of Shanghai, Shanghai, China
| | - Shuan Zhao
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Medical Center of Kidney Disease, Shanghai, China
- Shanghai Institute of Kidney and Dialysis, Shanghai, China
- Key Laboratory of Kidney and Blood Purification, Shanghai, China
- Hemodialysis quality control center of Shanghai, Shanghai, China
| | - Weidong Zhang
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Medical Center of Kidney Disease, Shanghai, China
- Shanghai Institute of Kidney and Dialysis, Shanghai, China
- Key Laboratory of Kidney and Blood Purification, Shanghai, China
- Hemodialysis quality control center of Shanghai, Shanghai, China
| | - Yaqiong Wang
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Medical Center of Kidney Disease, Shanghai, China
- Shanghai Institute of Kidney and Dialysis, Shanghai, China
- Key Laboratory of Kidney and Blood Purification, Shanghai, China
- Hemodialysis quality control center of Shanghai, Shanghai, China
| | - Wuhua Jiang
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Medical Center of Kidney Disease, Shanghai, China
- Shanghai Institute of Kidney and Dialysis, Shanghai, China
- Key Laboratory of Kidney and Blood Purification, Shanghai, China
- Hemodialysis quality control center of Shanghai, Shanghai, China
| | - Jialin Wang
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Medical Center of Kidney Disease, Shanghai, China
- Shanghai Institute of Kidney and Dialysis, Shanghai, China
- Key Laboratory of Kidney and Blood Purification, Shanghai, China
- Hemodialysis quality control center of Shanghai, Shanghai, China
| | - Xuemei Geng
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Medical Center of Kidney Disease, Shanghai, China
- Shanghai Institute of Kidney and Dialysis, Shanghai, China
- Key Laboratory of Kidney and Blood Purification, Shanghai, China
- Hemodialysis quality control center of Shanghai, Shanghai, China
| | - Xiaoqiang Ding
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Medical Center of Kidney Disease, Shanghai, China
- Shanghai Institute of Kidney and Dialysis, Shanghai, China
- Key Laboratory of Kidney and Blood Purification, Shanghai, China
- Hemodialysis quality control center of Shanghai, Shanghai, China
| | - Xialian Xu
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Medical Center of Kidney Disease, Shanghai, China
- Shanghai Institute of Kidney and Dialysis, Shanghai, China
- Key Laboratory of Kidney and Blood Purification, Shanghai, China
- Hemodialysis quality control center of Shanghai, Shanghai, China
| |
Collapse
|
2
|
Kumar-Singh A, Parniewska MM, Giotopoulou N, Javadi J, Sun W, Szatmári T, Dobra K, Hjerpe A, Fuxe J. Nuclear Syndecan-1 Regulates Epithelial-Mesenchymal Plasticity in Tumor Cells. BIOLOGY 2021; 10:biology10060521. [PMID: 34208075 PMCID: PMC8230654 DOI: 10.3390/biology10060521] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/07/2021] [Accepted: 06/08/2021] [Indexed: 12/16/2022]
Abstract
Tumor cells undergoing epithelial-mesenchymal transition (EMT) lose cell surface adhesion molecules and gain invasive and metastatic properties. EMT is a plastic process and tumor cells may shift between different epithelial-mesenchymal states during metastasis. However, how this is regulated is not fully understood. Syndecan-1 (SDC1) is the major cell surface proteoglycan in epithelial cells and has been shown to regulate carcinoma progression and EMT. Recently, it was discovered that SDC1 translocates into the cell nucleus in certain tumor cells. Nuclear SDC1 inhibits cell proliferation, but whether nuclear SDC1 contributes to the regulation of EMT is not clear. Here, we report that loss of nuclear SDC1 is associated with cellular elongation and an E-cadherin-to-N-cadherin switch during TGF-β1-induced EMT in human A549 lung adenocarcinoma cells. Further studies showed that nuclear translocation of SDC1 contributed to the repression of mesenchymal and invasive properties of human B6FS fibrosarcoma cells. The results demonstrate that nuclear translocation contributes to the capacity of SDC1 to regulate epithelial-mesenchymal plasticity in human tumor cells and opens up to mechanistic studies to elucidate the mechanisms involved.
Collapse
Affiliation(s)
- Ashish Kumar-Singh
- Department of Laboratory Medicine, Karolinska Institutet, Division of Pathology, SE-14186 Stockholm, Sweden; (A.K.-S.); (M.M.P.); (N.G.); (J.J.); (W.S.); (T.S.); (A.H.)
| | - Malgorzata Maria Parniewska
- Department of Laboratory Medicine, Karolinska Institutet, Division of Pathology, SE-14186 Stockholm, Sweden; (A.K.-S.); (M.M.P.); (N.G.); (J.J.); (W.S.); (T.S.); (A.H.)
| | - Nikolina Giotopoulou
- Department of Laboratory Medicine, Karolinska Institutet, Division of Pathology, SE-14186 Stockholm, Sweden; (A.K.-S.); (M.M.P.); (N.G.); (J.J.); (W.S.); (T.S.); (A.H.)
| | - Joman Javadi
- Department of Laboratory Medicine, Karolinska Institutet, Division of Pathology, SE-14186 Stockholm, Sweden; (A.K.-S.); (M.M.P.); (N.G.); (J.J.); (W.S.); (T.S.); (A.H.)
| | - Wenwen Sun
- Department of Laboratory Medicine, Karolinska Institutet, Division of Pathology, SE-14186 Stockholm, Sweden; (A.K.-S.); (M.M.P.); (N.G.); (J.J.); (W.S.); (T.S.); (A.H.)
| | - Tünde Szatmári
- Department of Laboratory Medicine, Karolinska Institutet, Division of Pathology, SE-14186 Stockholm, Sweden; (A.K.-S.); (M.M.P.); (N.G.); (J.J.); (W.S.); (T.S.); (A.H.)
| | - Katalin Dobra
- Department of Laboratory Medicine, Karolinska Institutet, Division of Pathology, SE-14186 Stockholm, Sweden; (A.K.-S.); (M.M.P.); (N.G.); (J.J.); (W.S.); (T.S.); (A.H.)
- Division of Clinical Pathology/Cytology, Karolinska University Laboratory, Karolinska University Hospital, SE-14186 Stockholm, Sweden
- Correspondence: (K.D.); (J.F.); Tel.: +46-707-980-065 (J.F.)
| | - Anders Hjerpe
- Department of Laboratory Medicine, Karolinska Institutet, Division of Pathology, SE-14186 Stockholm, Sweden; (A.K.-S.); (M.M.P.); (N.G.); (J.J.); (W.S.); (T.S.); (A.H.)
- Division of Clinical Pathology/Cytology, Karolinska University Laboratory, Karolinska University Hospital, SE-14186 Stockholm, Sweden
| | - Jonas Fuxe
- Department of Laboratory Medicine, Karolinska Institutet, Division of Pathology, SE-14186 Stockholm, Sweden; (A.K.-S.); (M.M.P.); (N.G.); (J.J.); (W.S.); (T.S.); (A.H.)
- Division of Clinical Pathology/Cytology, Karolinska University Laboratory, Karolinska University Hospital, SE-14186 Stockholm, Sweden
- Correspondence: (K.D.); (J.F.); Tel.: +46-707-980-065 (J.F.)
| |
Collapse
|
3
|
Syndecan-1 (CD138), Carcinomas and EMT. Int J Mol Sci 2021; 22:ijms22084227. [PMID: 33921767 PMCID: PMC8072910 DOI: 10.3390/ijms22084227] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 04/14/2021] [Indexed: 12/16/2022] Open
Abstract
Cell surface proteoglycans are known to be important regulators of many aspects of cell behavior. The principal family of transmembrane proteoglycans is the syndecans, of which there are four in mammals. Syndecan-1 is mostly restricted to epithelia, and bears heparan sulfate chains that are capable of interacting with a large array of polypeptides, including extracellular matrix components and potent mediators of proliferation, adhesion and migration. For this reason, it has been studied extensively with respect to carcinomas and tumor progression. Frequently, but not always, syndecan-1 levels decrease as tumor grade, stage and invasiveness and dedifferentiation increase. This parallels experiments that show depletion of syndecan-1 can be accompanied by loss of cadherin-mediated adhesion. However, in some tumors, levels of syndecan-1 increase, but the characterization of its distribution is relevant. There can be loss of membrane staining, but acquisition of cytoplasmic and/or nuclear staining that is abnormal. Moreover, the appearance of syndecan-1 in the tumor stroma, either associated with its cellular component or the collagenous matrix, is nearly always a sign of poor prognosis. Given its relevance to myeloma progression, syndecan-1-directed antibody—toxin conjugates are being tested in clinical and preclinical trials, and may have future relevance to some carcinomas.
Collapse
|
4
|
Comparison of Syndecan-1 Immunohistochemical Expression in Lobular and Ductal Breast Carcinoma with Nodal Metastases. Anal Cell Pathol (Amst) 2018; 2018:9432375. [PMID: 30151336 PMCID: PMC6087611 DOI: 10.1155/2018/9432375] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 06/03/2018] [Indexed: 01/30/2023] Open
Abstract
Syndecan-1 (Sdc1) is a transmembrane heparan sulfate proteoglycan, an extracellular matrix receptor involved in intercellular communication, proliferation, angiogenesis, and metastasis. This study determined and compared Sdc1 expression in the tumor cells and stroma of 30 invasive lobular and 30 invasive ductal breast carcinomas (ILCs/IDCs), also in the axillary node metastases of ductal type, and correlated it with clinical and tumor parameters. Sdc1 was expressed in the epithelium of 90% carcinoma of both histological types. Also, it was most frequently expressed in their tumor stroma, but in ILC, stromal expression was negative in 40%. Sdc1 was expressed in 86.7% of the metastatic epithelium of IDC nodal metastases (in even 50% as high expression), while the nodal stroma was negative in 46.7%. Primary IDC showed a negative correlation between epithelial Sdc1 and progesterone receptors (PRs), whereas ILC showed a positive correlation between stromal Sdc1 and histological gradus. In the metastatic epithelium, Sdc1 was negatively correlated with a patient's age, estrogen receptors (ERs), and PRs in the primary tumors, while the stroma of metastases demonstrated a positive correlation with the focus number in primary tumors and a negative correlation with PRs in primary tumors. This research revealed identical overall epithelial Sdc1 expression in both breast carcinomas with no statistically significant difference in its stromal expression and confirmed the role of Sdc1 in the progression of both tumor types and in the development of ductal carcinoma's metastatic potential.
Collapse
|
5
|
Pisamai S, Rungsipipat A, Kalpravidh C, Suriyaphol G. Gene expression profiles of cell adhesion molecules, matrix metalloproteinases and their tissue inhibitors in canine oral tumors. Res Vet Sci 2017; 113:94-100. [DOI: 10.1016/j.rvsc.2017.09.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 08/06/2017] [Accepted: 09/07/2017] [Indexed: 12/15/2022]
|
6
|
Gopal S, Multhaupt HA, Pocock R, Couchman JR. Cell-extracellular matrix and cell-cell adhesion are linked by syndecan-4. Matrix Biol 2017; 60-61:57-69. [DOI: 10.1016/j.matbio.2016.10.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 10/13/2016] [Accepted: 10/13/2016] [Indexed: 02/06/2023]
|
7
|
Jary M, Lecomte T, Bouché O, Kim S, Dobi E, Queiroz L, Ghiringhelli F, Etienne H, Léger J, Godet Y, Balland J, Lakkis Z, Adotevi O, Bonnetain F, Borg C, Vernerey D. Prognostic value of baseline seric Syndecan-1 in initially unresectable metastatic colorectal cancer patients: a simple biological score. Int J Cancer 2016; 139:2325-35. [PMID: 27472156 DOI: 10.1002/ijc.30367] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 06/24/2016] [Accepted: 07/01/2016] [Indexed: 01/17/2023]
Abstract
In first-line metastatic colorectal cancer (mCRC), baseline prognostic factors allowing death risk and treatment strategy stratification are lacking. Syndecan-1 (CD138) soluble form was never described as a prognostic biomarker in mCRC. We investigated its additional prognostic value for overall survival (OS). mCRC patients with unresectable disease at diagnosis were treated with bevacizumab-based chemotherapy in two independent prospective clinical trials (development set: n = 126, validation set: n = 51, study NCT00489697 and study NCT00544011, respectively). Serums were collected at baseline for CD138 measurement. OS determinants were assessed and, based on the final multivariate model, a prognostic score was proposed. Two independent OS prognostic factors were identified: Lactate Dehydrogenase (LDH) high level (p = 0.0066) and log-CD138 high level (p = 0.0190). The determination of CD138 binary information (cutoff: 75 ng/mL) allowed the assessment of a biological prognostic score with CD138 and LDH values, identifying three risk groups for death (median OS= 38.9, 30.1 and 19.8 months for the low, intermediate and high risk groups, respectively; p < 0.0001). This score had a good discrimination ability (C-index = 0.63). These results were externally confirmed in the validation set. Our study provides robust evidence in favor of the additional baseline soluble CD138 prognostic value for OS, in mCRC patients. A simple biological scoring system is proposed including LDH and CD138 binary status values.
Collapse
Affiliation(s)
- Marine Jary
- Department of Medical Oncology, University Hospital, Besançon, France. .,INSERM, Unit 1098, University of Bourgogne- Franche Comté, Besançon, France. .,Clinical Investigation Center 1431, EFS Bourgogne-Franche Comté, Besançon, France.
| | - Thierry Lecomte
- CNRS, Unit 7292, University François-Rabelais, Tours, France.,Department of HepatoGastroenterology and Digestive Oncology, University Hospital, Tours, France
| | - Olivier Bouché
- Department of HepatoGastroenterology and Digestive Oncology, University Hospital Robert Debré, Reims, France
| | - Stefano Kim
- Department of Medical Oncology, University Hospital, Besançon, France.,Clinical Investigation Center 1431, EFS Bourgogne-Franche Comté, Besançon, France
| | - Erion Dobi
- Department of Medical Oncology, University Hospital, Besançon, France
| | - Lise Queiroz
- INSERM, Unit 1098, University of Bourgogne- Franche Comté, Besançon, France
| | | | - Hélène Etienne
- Department of Medical Oncology, University Hospital, Besançon, France.,Department of Gastroenterology, University Hospital, Besançon, France
| | - Julie Léger
- INSERM, Clinical Investigational Center CIC 1415, Tours, France
| | - Yann Godet
- INSERM, Unit 1098, University of Bourgogne- Franche Comté, Besançon, France
| | - Jérémy Balland
- INSERM, Unit 1098, University of Bourgogne- Franche Comté, Besançon, France
| | - Zaher Lakkis
- Department of Digestive Surgery and Liver Transplantation, University Hospital, Besançon, France
| | - Olivier Adotevi
- Department of Medical Oncology, University Hospital, Besançon, France.,INSERM, Unit 1098, University of Bourgogne- Franche Comté, Besançon, France
| | - Franck Bonnetain
- INSERM, Unit 1098, University of Bourgogne- Franche Comté, Besançon, France.,Clinical Investigation Center 1431, EFS Bourgogne-Franche Comté, Besançon, France.,Methodological and Quality of Life in Oncology Unit, EA 3181, University Hospital, Besançon, France
| | - Christophe Borg
- Department of Medical Oncology, University Hospital, Besançon, France.,INSERM, Unit 1098, University of Bourgogne- Franche Comté, Besançon, France.,Clinical Investigation Center 1431, EFS Bourgogne-Franche Comté, Besançon, France
| | - Dewi Vernerey
- INSERM, Unit 1098, University of Bourgogne- Franche Comté, Besançon, France.,Clinical Investigation Center 1431, EFS Bourgogne-Franche Comté, Besançon, France.,Methodological and Quality of Life in Oncology Unit, EA 3181, University Hospital, Besançon, France
| |
Collapse
|
8
|
Morin-Poulard I, Sharma A, Louradour I, Vanzo N, Vincent A, Crozatier M. Vascular control of the Drosophila haematopoietic microenvironment by Slit/Robo signalling. Nat Commun 2016; 7:11634. [PMID: 27193394 PMCID: PMC4874035 DOI: 10.1038/ncomms11634] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 04/15/2016] [Indexed: 12/16/2022] Open
Abstract
Self-renewal and differentiation of mammalian haematopoietic stem cells (HSCs) are controlled by a specialized microenvironment called 'the niche'. In the bone marrow, HSCs receive signals from both the endosteal and vascular niches. The posterior signalling centre (PSC) of the larval Drosophila haematopoietic organ, the lymph gland, regulates blood cell differentiation under normal conditions and also plays a key role in controlling haematopoiesis under immune challenge. Here we report that the Drosophila vascular system also contributes to the lymph gland homoeostasis. Vascular cells produce Slit that activates Robo receptors in the PSC. Robo activation controls proliferation and clustering of PSC cells by regulating Myc, and small GTPase and DE-cadherin activity, respectively. These findings reveal that signals from the vascular system contribute to regulating the rate of blood cell differentiation via the regulation of PSC morphology.
Collapse
Affiliation(s)
- Ismaël Morin-Poulard
- Centre de Biologie du Développement, UMR 5547 CNRS/Université Toulouse III and Fédération de Recherche de Biologie de Toulouse, 118 route de Narbonne 31062 Toulouse cedex 9, France
| | - Anurag Sharma
- Centre de Biologie du Développement, UMR 5547 CNRS/Université Toulouse III and Fédération de Recherche de Biologie de Toulouse, 118 route de Narbonne 31062 Toulouse cedex 9, France
| | - Isabelle Louradour
- Centre de Biologie du Développement, UMR 5547 CNRS/Université Toulouse III and Fédération de Recherche de Biologie de Toulouse, 118 route de Narbonne 31062 Toulouse cedex 9, France
| | - Nathalie Vanzo
- Centre de Biologie du Développement, UMR 5547 CNRS/Université Toulouse III and Fédération de Recherche de Biologie de Toulouse, 118 route de Narbonne 31062 Toulouse cedex 9, France
| | - Alain Vincent
- Centre de Biologie du Développement, UMR 5547 CNRS/Université Toulouse III and Fédération de Recherche de Biologie de Toulouse, 118 route de Narbonne 31062 Toulouse cedex 9, France
| | - Michèle Crozatier
- Centre de Biologie du Développement, UMR 5547 CNRS/Université Toulouse III and Fédération de Recherche de Biologie de Toulouse, 118 route de Narbonne 31062 Toulouse cedex 9, France
| |
Collapse
|
9
|
Demellawy DE, Ahmed AD, Bora B, Bonin M. Plasmacytoid variant of urothelial carcinoma: a report of a rare case. Pathol Res Pract 2012; 208:561-4. [PMID: 22854197 DOI: 10.1016/j.prp.2012.06.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 01/07/2012] [Accepted: 06/25/2012] [Indexed: 10/28/2022]
Abstract
Plasmacytoid variant of urothelial bladder carcinoma is rare. We report a case with a detailed discussion of features that help characterize this variant. A 50-year-old man originally presented with gross hematuria. Resections at that time revealed a grade I-II superficial urothelial carcinoma. He did not return for follow-up until recently, three years later, when he presented with recurrent gross hematuria. An extensive tumor was identified on cystoscopy. Resection revealed a high-grade non-invasive papillary urothelial carcinoma. CT scan revealed a large urinary bladder solid mass with bilateral hydronephrosis. Metastatic workup was negative. The patient underwent a radical cystectomy with creation of ileal conduit. Final pathology revealed plasmacytoid variant of urothelial carcinoma with extensive vascular invasion and extension to the perivesical adipose tissue. We present a rare variant of urothelial carcinoma with comprehensive analysis of the morphological and immunophenotypic clues that characterize this variant.
Collapse
Affiliation(s)
- Dina El Demellawy
- Northern Ontario School of Medicine, Department of Pathology and Laboratory, Medicine, Health Sciences North, Sudbury, Ontario, Canada.
| | | | | | | |
Collapse
|
10
|
Altemeier WA, Schlesinger SY, Buell CA, Parks WC, Chen P. Syndecan-1 controls cell migration by activating Rap1 to regulate focal adhesion disassembly. J Cell Sci 2012; 125:5188-95. [PMID: 22899717 DOI: 10.1242/jcs.109884] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
After injury, residual epithelial cells coordinate contextual clues from cell-cell and cell-matrix interactions to polarize and migrate over the wound bed. Protrusion formation, cell body translocation and rear retraction is a repetitive process that allows the cell to move across the substratum. Fundamental to this process is the assembly and disassembly of focal adhesions that facilitate cell adhesion and protrusion formation. Here, we identified syndecan-1 as a regulator of focal adhesion disassembly in migrating lung epithelial cells. Syndecan-1 altered the dynamic exchange of adhesion complex proteins, which in turn regulates migration speed. Moreover, we provide evidence that syndecan-1 controls this entire process through Rap1. Thus, syndecan-1 restrains migration in lung epithelium by activating Rap1 to slow focal adhesion disassembly.
Collapse
Affiliation(s)
- William A Altemeier
- Center for Lung Biology, Division of Pulmonary and Critical Care Medicine, University of Washington, Seattle, WA, USA
| | | | | | | | | |
Collapse
|
11
|
Manon-Jensen T, Itoh Y, Couchman JR. Proteoglycans in health and disease: the multiple roles of syndecan shedding. FEBS J 2010; 277:3876-89. [DOI: 10.1111/j.1742-4658.2010.07798.x] [Citation(s) in RCA: 231] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
12
|
The Tiam1 PDZ domain couples to Syndecan1 and promotes cell-matrix adhesion. J Mol Biol 2010; 398:730-46. [PMID: 20361982 DOI: 10.1016/j.jmb.2010.03.047] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 03/23/2010] [Accepted: 03/25/2010] [Indexed: 11/24/2022]
Abstract
The T-cell lymphoma invasion and metastasis gene 1 (Tiam1) is a guanine exchange factor (GEF) for the Rho-family GTPase Rac1 that is crucial for the integrity of adherens junctions, tight junctions, and cell-matrix interactions. This GEF contains several protein-protein interaction domains, including a PDZ domain. Earlier studies identified a consensus PDZ-binding motif and a synthetic peptide capable of binding to the Tiam1 PDZ domain, but little is known about its ligand specificity and physiological role in cells. Here, we investigated the structure, specificity, and function of the Tiam1 PDZ domain. We determined the crystal structures of the Tiam1 PDZ domain free and in complex with a "model" peptide, which revealed the structural basis for ligand specificity. Protein database searches using the consensus PDZ-binding motif identified two eukaryotic cell adhesion proteins, Syndecan1 and Caspr4, as potential Tiam1 PDZ domain binding proteins. Equilibrium binding experiments confirmed that C-terminal peptides derived from Syndecan1 and Caspr4 bound the Tiam1 PDZ domain. NMR chemical shift perturbation experiments indicated that the Tiam1 PDZ/Syndecan1 and PDZ/Caspr4 complexes were structurally distinct and identified key residues likely to be responsible for ligand selectivity. Moreover, cell biological analysis established that Syndecan1 is a physiological binding partner of Tiam1 and that the PDZ domain has a function in cell-matrix adhesion and cell migration. Collectively, our data provide insight into the structure, specificity, and function of the Tiam1 PDZ domain. Importantly, our data report on a physiological role for the Tiam1 PDZ domain and establish a novel link between two previously unrelated signal transduction pathways, both of which are implicated in cancer.
Collapse
|
13
|
MMP7 shedding of syndecan-1 facilitates re-epithelialization by affecting alpha(2)beta(1) integrin activation. PLoS One 2009; 4:e6565. [PMID: 19668337 PMCID: PMC2719060 DOI: 10.1371/journal.pone.0006565] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2009] [Accepted: 07/15/2009] [Indexed: 11/19/2022] Open
Abstract
Background Lung injury promotes the expression of matrix metalloproteinase-7 (MMP7, matrilysin), which is required for neutrophil recruitment and re-epithelialization. MMP7 governs the lung inflammatory response through the shedding of syndecan-1. Because inflammation and repair are related events, we evaluated the role of syndecan-1 shedding in lung re-epithelialization. Methodology/Principal Finding Epithelial injury induced syndecan-1 shedding from wild-type epithelium but not from Mmp7−/− mice in vitro and in vivo. Moreover, cell migration and wound closure was enhanced by MMP7 shedding of syndecan-1. Additionally, we found that syndecan-1 augmented cell adhesion to collagen by controlling the affinity state of the α2β1 integrin. Conclusion/Significance MMP7 shedding of syndecan-1 facilitates wound closure by causing the α2β1 integrin to assume a less active conformation thereby removing restrictions to migration. MMP7 acts in the lungs to regulate inflammation and repair, and our data now show that both these functions are controlled through the shedding of syndecan-1.
Collapse
|
14
|
Ohashi M, Kusumi T, Sato F, Kudo Y, Jin H, Akasaka H, Miyamoto K, Toyoki Y, Hakamada K, Kijima H. Expression of syndecan-1 and E-cadherin is inversely correlated with poor patient's prognosis and recurrent status of extrahepatic bile duct carcinoma. Biomed Res 2009; 30:79-86. [DOI: 10.2220/biomedres.30.79] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Association of loss of epithelial syndecan-1 with stage and local metastasis of colorectal adenocarcinomas: an immunohistochemical study of clinically annotated tumors. BMC Cancer 2008; 8:185. [PMID: 18590537 PMCID: PMC2459187 DOI: 10.1186/1471-2407-8-185] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2008] [Accepted: 06/30/2008] [Indexed: 11/12/2022] Open
Abstract
Background Syndecan-1 is a transmembrane proteoglycan with important roles in cell-cell and cell-extracellular matrix adhesion and as a growth factor co-receptor. Syndecan-1 is highly expressed by normal epithelial cells and loss of expression has been associated with epithelial-mesenchymal transition and the transformed phenotype. Loss of epithelial syndecan-1 has been reported in human colorectal adenocarcinomas, but whether this has prognostic significance remains undecided. Here we have examined syndecan-1 expression and its potential prognostic value with reference to a clinically annotated tissue microarray for human colon adenocarcinomas. Methods Syndecan-1 expression was examined by immunohistochemistry of a tissue microarray containing cores from 158 colorectal adenocarcinomas and 15 adenomas linked to a Cleveland Clinic, IRB-approved database with a mean clinical follow-up of 38 months. The Kaplan-Meier method was used to analyze the relationship between syndecan-1 expression and patient survival. Potential correlations between syndecan-1 expression and the candidate prognostic biomarker fascin were examined. Results Syndecan-1 is expressed at the basolateral borders of normal colonic epithelial cells. On adenocarcinoma cells, syndecan-1 was present around cell membranes and in cytoplasm. In 87% of adenocarcinomas, syndecan-1 was decreased or absent; only 13% of patients had stained for syndecan-1 on more than 75% of tumor cells. Decreased syndecan-1 correlated with a higher TNM stage and lymph node metastasis and was more common in males (p = 0.042), but was not associated with age, tumor location or Ki67 index. Reduced tumor syndecan-1 staining also correlated with upregulation of stromal fascin (p = 0.016). Stromal syndecan-1 was observed in 16.6% of tumors. There was no difference in survival between patients with low or high levels of either tumor or stromal syndecan-1. Conclusion Syndecan-1 immunoreactivity was decreased in the majority of human colon adenocarcinomas in correlation with TNM stage and metastasis to local lymph nodes. In a small fraction of adenocarcinomas, syndecan-1 was upregulated in the local stroma. Syndecan-1 expression status did not correlate with patient survival outcomes. Combined analysis of syndecan-1 in relation to a potential prognostic biomarker, fascin, identified that loss of tumor syndecan-1 correlated significantly with strong stromal fascin staining.
Collapse
|
16
|
Abstract
Carcinoma cells lack syndecan-1 expression when they are transiting from an epithelial to a less-differentiated mesenchymal phenotype (epithelial–mesenchymal transition, EMT). Furthermore, a shift of syndecan-1 expression from malignant epithelial cells to reactive stromal cells has also been observed during progression of many carcinomas. Finally, epithelial and/or stromal syndecan-1 expression is of prognostic value in many carcinomas. Because recent results are contradictory in breast carcinomas, we have re-evaluated the prognostic significance of syndecan-1 expression in a cohort of 80 patients with invasive ductal breast carcinomas. The tumours from 80 patients diagnosed with invasive ductal breast carcinomas were used to construct a tissue microarray, which was stained with syndecan-1 by immunohistochemistry. We correlated syndecan-1 expression with clinicopathologic parameters and relapse-free survival (RFS). Exclusive epithelial expression of syndecan-1 is observed in 61.25% of the patients, whereas exclusive stromal expression is observed in 30% of the patients. Only 8.75% of the patients had both stromal and epithelial expressions of syndecan-1. A significant correlation was found between the loss of syndecan-1 epithelial expression and the syndecan-1 stromal expression with high grade of malignancy (P=0.011). The loss of syndecan-1 epithelial expression is correlated with RFS (P=0.001). Using multivariate Cox analysis, loss of epithelial syndecan-1 expression was the only prognostic indicator (P<0.001). We concluded that the loss of syndecan-1 epithelial expression was of strong prognostic value in breast carcinomas.
Collapse
|
17
|
Kivisaari AK, Kallajoki M, Mirtti T, McGrath JA, Bauer JW, Weber F, Königová R, Sawamura D, Sato-Matsumura KC, Shimizu H, Csikós M, Sinemus K, Beckert W, Kähäri VM. Transformation-specific matrix metalloproteinases (MMP)-7 and MMP-13 are expressed by tumour cells in epidermolysis bullosa-associated squamous cell carcinomas. Br J Dermatol 2008; 158:778-85. [PMID: 18284387 DOI: 10.1111/j.1365-2133.2008.08466.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND Patients with recessive dystrophic epidermolysis bullosa (RDEB) have an increased risk of developing rapidly progressive and metastatic cutaneous squamous cell carcinomas (SCC). It is unclear why these SCC behave more aggressively than sporadic SCC. Matrix metalloproteinases (MMP) are a family of endopeptidases that contribute to growth, invasion and metastasis of SCC. The role of MMP in RDEB-associated SCC is not known. OBJECTIVES To investigate the expression of MMP-7, MMP-13 and MMP-9 in RDEB-associated SCC in comparison with sporadic SCC and Bowen's disease. METHODS Immunohistochemical analysis of 25 RDEB-associated SCC, 61 sporadic SCC and 28 sporadic lesions of Bowen's disease was carried out using monoclonal antibodies for MMP-7, MMP-9, MMP-13 and E-cadherin and syndecan-1. RESULTS MMP-7 was detected in all RDEB-associated SCC, in tumour cells within the invasive edge, where E-cadherin and syndecan-1 were markedly diminished or absent. MMP-7 expression was also observed in 98% of sporadic SCC and in 68% of Bowen's diseases. MMP-7 staining was significantly stronger in RDEB-associated SCC than in sporadic SCC, and was most abundant in poorly differentiated tumours. MMP-13 was detected in tumour cells in 96% of RDEB-associated SCC and in all sporadic cutaneous SCC. MMP-9 was detected in the inflammatory cells in all SCC examined. CONCLUSIONS These results identify MMP-7 and MMP-13 as tumour cell-specific markers for SCC progression and as potential therapeutic targets in RDEB-associated SCC. The pattern of immunolabelling suggests that MMP-7 may shed E-cadherin and syndecan-1 from the SCC cell surface.
Collapse
Affiliation(s)
- A K Kivisaari
- Department of Dermatology, University of Turku and Turku University Central Hospital, Turku, Finland
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Götte M, Kersting C, Radke I, Kiesel L, Wülfing P. An expression signature of syndecan-1 (CD138), E-cadherin and c-met is associated with factors of angiogenesis and lymphangiogenesis in ductal breast carcinoma in situ. Breast Cancer Res 2007; 9:R8. [PMID: 17244359 PMCID: PMC1851383 DOI: 10.1186/bcr1641] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2006] [Revised: 11/27/2006] [Accepted: 01/23/2007] [Indexed: 01/22/2023] Open
Abstract
INTRODUCTION Heparan sulphate proteoglycan syndecan-1 modulates cell proliferation, adhesion, migration and angiogenesis. It is a coreceptor for the hepatocyte growth factor receptor c-met, and its coexpression with E-cadherin is synchronously regulated during epithelial-mesenchymal transition. In breast cancer, changes in the expression of syndecan-1, E-cadherin and c-met correlate with poor prognosis. In this study we evaluated whether coexpression of these functionally linked prognostic markers constitutes an expression signature in ductal carcinoma in situ (DCIS) of the breast that may promote cell proliferation and (lymph)angiogenesis. METHODS Expression of syndecan-1, E-cadherin and c-met was detected immunohistochemically using a tissue microarray in tumour specimens from 200 DCIS patients. Results were correlated with the expression patterns of angiogenic and lymphangiogenic markers. Coexpression of the three prognostic markers was evaluated in human breast cancer cells by confocal immunofluorescence microscopy and RT-PCR. RESULTS Coexpression and membrane colocalization of the three markers was confirmed in MCF-7 cells. E-cadherin expression decreased, and c-met expression increased progressively in more aggressive cell lines. Tissue microarray analysis revealed strong positive staining of tumour cells for syndecan-1 in 72%, E-cadherin in 67.8% and c-met in 48.6% of DCIS. E-cadherin expression was significantly associated with c-met and syndecan-1. Expression of c-met and syndecan-1 was significantly more frequent in the subgroup of patients with pure DCIS than in those with DCIS and a coexisting invasive carcinoma. Levels of c-met and syndecan-1 expression were associated with HER2 expression. Expression of c-met significantly correlated with expression of endothelin A and B receptors, vascular endothelial growth factor (VEGF)-A and fibroblast growth factor receptor-1, whereas E-cadherin expression correlated significantly with endothelin A receptor, VEGF-A and VEGF-C staining. CONCLUSION Syndecan-1, E-cadherin and c-met constitute a marker signature associated with angiogenic and lymphangiogenic factors in DCIS. This coexpression may reflect a state of parallel activation of different signal transduction pathways, promoting tumour cell proliferation and angiogenesis. Our findings have implications for future therapeutic approaches in terms of a multiple target approach, which may be useful early in breast cancer progression.
Collapse
Affiliation(s)
- Martin Götte
- Department of Obstetrics and Gynecology, Münster University Hospital, Domagkstrasse 11, Münster, D-48149, Germany
| | - Christian Kersting
- Department of Pathology, Münster University Hospital, Domagkstrasse, Münster, D-48149, Germany
| | - Isabel Radke
- Department of Obstetrics and Gynecology, Münster University Hospital, Domagkstrasse 11, Münster, D-48149, Germany
| | - Ludwig Kiesel
- Department of Obstetrics and Gynecology, Münster University Hospital, Domagkstrasse 11, Münster, D-48149, Germany
| | - Pia Wülfing
- Department of Obstetrics and Gynecology, Münster University Hospital, Domagkstrasse 11, Münster, D-48149, Germany
| |
Collapse
|
19
|
Orosco A, Fromigué O, Bazille C, Entz-Werle N, Levillain P, Marie PJ, Modrowski D. Syndecan-2 Affects the Basal and Chemotherapy-Induced Apoptosis in Osteosarcoma. Cancer Res 2007; 67:3708-15. [PMID: 17440083 DOI: 10.1158/0008-5472.can-06-4164] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Syndecans are transmembrane heparan sulfate proteoglycans controlling cell adhesion, migration, and proliferation. We previously showed that syndecan-2 is involved in the control of apoptosis in cultured osteosarcoma cells. These data led us to the hypothesis that syndecan-2 may play a role in the apoptotic signaling in bone tumors. We immunohistochemically analyzed tissue sections from biopsies from 21 patients with well-characterized osteosarcoma. These tissues expressed low levels of syndecan-2 compared with osteoblasts and osteocytes in normal bone. Cultured human osteosarcoma cells also produced lower mRNA levels of syndecan-2 than normal osteoblastic cells. Moreover, the presence of syndecan-2 correlated with spontaneous apoptosis in osteosarcoma tissues as assessed by detection of DNA fragmentation in situ. Overexpression of syndecan-2 resulted in decreased number of migrating and invading U2OS osteosarcoma cells in Matrigel. In addition, overexpression of syndecan-2 sensitized human osteosarcoma cells to chemotherapy-induced apoptosis, increasing the response to methotrexate, doxorubicin, and cisplatin. Consistently, knockdown of the proteoglycan using stable transfection with a plasmid coding small interfering RNA resulted in inhibition of chemotherapy-induced apoptosis. Analysis of syndecan-2 expression both in biopsies and in corresponding postchemotherapy-resected tumors, as well as in cells treated with methotrexate or doxorubicin, showed that the cytotoxic action of chemotherapy can be associated with an increase in syndecan-2. These results provide support for a tumor-suppressor function for syndecan-2 and suggest that dysregulation of apoptosis may be related to abnormal syndecan-2 expression or induction in osteosarcoma. Moreover, our data identify syndecan-2 as a new factor mediating the antioncogenic effect of chemotherapeutic drugs.
Collapse
Affiliation(s)
- Armelle Orosco
- INSERM U606 and Université Paris 7, Hôpital Lariboisière, 2 rue Ambroise Paré, 75475 Paris cedex 10, France
| | | | | | | | | | | | | |
Collapse
|
20
|
Expression of syndecans, cell-cell interaction regulating heparan sulfate proteoglycans, within the human endometrium and their regulation throughout the menstrual cycle. Fertil Steril 2006; 87:657-63. [PMID: 17123519 DOI: 10.1016/j.fertnstert.2006.07.1526] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2006] [Revised: 07/19/2006] [Accepted: 07/19/2006] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To evaluate the expression of syndecan-1, -2, -3, and -4 in different phases of eutopic endometrium of normal cycling women. DESIGN Prospective observational study. SETTING University-based research center for reproductive medicine. PATIENT(S) Twenty-nine healthy ovulatory volunteers. INTERVENTION(S) mRNA and protein expression of syndecan-1 to -4 in human endometrium. MAIN OUTCOME MEASURE(S) Real-time polymerase chain reaction of syndecan members and further characterization of mRNA expression of syndecan-1 and -4 with multiprobe RNase protection assays of epithelial and stromal cells after purification with antibody-coated magnetic beads. For confirmation of results, protein expression and localization using immunohistochemistry for syndecan-1 and -4 was performed. RESULT(S) All syndecans were expressed within human endometrium. Syndecan-1 and -4 proved to be significantly upregulated in whole endometrium during the secretory phase (2.73-fold and 2.85-fold, respectively). Using multiprobe RNase protection assays, a significant upregulation of mRNA was noted in epithelial cells during the secretory phase for both syndecan-1 and -4 (7.46-fold and 2.52-fold, respectively) and confirmed by immunohistochemistry. CONCLUSION(S) Cycle-dependent expression of syndecan-1 and -4 suggests that these adhesion proteins are involved in the regulation of the cycling endometrium.
Collapse
|
21
|
Alexopoulou AN, Multhaupt HAB, Couchman JR. Syndecans in wound healing, inflammation and vascular biology. Int J Biochem Cell Biol 2006; 39:505-28. [PMID: 17097330 DOI: 10.1016/j.biocel.2006.10.014] [Citation(s) in RCA: 233] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2006] [Revised: 10/20/2006] [Accepted: 10/23/2006] [Indexed: 01/24/2023]
Abstract
Syndecans are heparan sulphate proteoglycans consisting of a type I transmembrane core protein modified by heparan sulphate and sometimes chondroitin sulphate chains. They are major proteoglycans of many organs including the vasculature, along with glypicans and matrix proteoglycans. Heparan sulphate chains have potential to interact with a wide array of ligands, including many growth factors, cytokines, chemokines and extracellular matrix molecules relevant to growth regulation in vascular repair, hypoxia, angiogenesis and immune cell function. This is consistent with the phenotypes of syndecan knock-out mice, which while viable and fertile, show deficits in tissue repair. Furthermore, there are potentially important changes in syndecan distribution and function described in a variety of human vascular diseases. The purpose of this review is to describe syndecan structure and function, consider the role of syndecan core proteins in transmembrane signalling and also their roles as co-receptors with other major classes of cell surface molecules. Current debates include potential redundancy between syndecan family members, the significance of multiple heparan sulphate interactions, regulation of the cytoskeleton and cell behaviour and the switch between promoter and inhibitor of important cell functions, resulting from protease-mediated shedding of syndecan ectodomains.
Collapse
Affiliation(s)
- Annika N Alexopoulou
- Division of Biomedical Sciences, Imperial College London, Sir Alexander Fleming Building, Exhibition Road, London SW7 2AZ, UK
| | | | | |
Collapse
|
22
|
Baba F, Swartz K, van Buren R, Eickhoff J, Zhang Y, Wolberg W, Friedl A. Syndecan-1 and syndecan-4 are overexpressed in an estrogen receptor-negative, highly proliferative breast carcinoma subtype. Breast Cancer Res Treat 2006; 98:91-8. [PMID: 16636895 DOI: 10.1007/s10549-005-9135-2] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2005] [Accepted: 12/05/2005] [Indexed: 10/24/2022]
Abstract
Members of the syndecan and glypican families of cell surface heparan sulfate proteoglycans (HSPGs) are modulators of growth factor signaling and cell adhesion. Both loss and gain in expression of syndecans and glypicans has been associated with malignant progression. The goal of this project was to investigate a possible relationship between expression of cell surface HSPGs (syndecan-1, syndecan-4 and glypican-1) and established prognostic factors or clinical outcome in breast carcinomas. Tissue arrays containing 207 human breast carcinoma samples in duplicate were immuno-labeled with antibodies to syndecan-1, syndecan-4, glypican-1, Ki67, E-cadherin, estrogen receptor (ER) and progesterone receptor (PR). Clinical follow-up information was available for up to 18.6 years (median follow-up 6.2 years). Syndecan-1 and syndecan-4 expression in carcinoma cells ranged from complete loss to high expression, but glypican-1 was detected only in a small subset of breast carcinomas. Expression of all three HSPGs was significantly associated with the Ki67 proliferation index (syndecan-1: p=0.0025; syndecan-4: p<0.0001; glypican-1 p=0.01). Syndecan-1 and syndecan-4 expression correlated with ER negativity, grade, and size of the primary tumors. Syndecan-1 expression (but not syndecan-4 nor glypican-1) predicted patient outcome (DFS: p=0.0054; OS: p=0.0086). However, multivariate analysis failed to identify syndecan-1 as an independent prognostic marker, which was due to its significant association with established prognostic factors. The strong association between cell surface HSPGs and the Ki67 proliferation marker would support a biologic role in carcinoma growth regulation. Furthermore, the close correlation between syndecan expression and negative ER status raises the possibility of hormonal regulation or more likely an association with an aggressive, ER-negative carcinoma phenotype.
Collapse
Affiliation(s)
- Füsun Baba
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53792, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Murray P, Edgar D. The topographical regulation of embryonic stem cell differentiation. Philos Trans R Soc Lond B Biol Sci 2004; 359:1009-20. [PMID: 15306413 PMCID: PMC1693374 DOI: 10.1098/rstb.2003.1460] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The potential use of pluripotent stem cells for tissue repair or replacement is now well recognized. While the ability of embryonic stem (ES) cells to differentiate into all cells of the body is undisputed, their use is currently restricted by our limited knowledge of the mechanisms controlling their differentiation. This review discusses recent work by ourselves and others investigating the intercellular signalling events that occur within aggregates of mouse ES cells. The work illustrates that the processes of ES cell differentiation, epithelialization and programmed cell death are dependent upon their location within the aggregates and coordinated by the extracellular matrix. Establishment of the mechanisms involved in these events is not only of use for the manipulation of ES cells themselves, but it also throws light on the ways in which differentiation is coordinated during embryogenesis.
Collapse
Affiliation(s)
- Patricia Murray
- School of Biological Sciences and Department of Human Anatomy and Cell Biology, The University of Liverpool, Liverpool L69 3BX, UK.
| | | |
Collapse
|
24
|
Couchman JR. Syndecans: proteoglycan regulators of cell-surface microdomains? Nat Rev Mol Cell Biol 2004; 4:926-37. [PMID: 14685171 DOI: 10.1038/nrm1257] [Citation(s) in RCA: 340] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- John R Couchman
- Division of Biomedical Sciences, Faculty of Medicine, Imperial College London, Exhibition Road, London SW7 2AZ, UK.
| |
Collapse
|
25
|
Contreras HR, Fabre M, Granés F, Casaroli-Marano R, Rocamora N, Herreros AG, Reina M, Vilaró S. Syndecan-2 expression in colorectal cancer-derived HT-29 M6 epithelial cells induces a migratory phenotype. Biochem Biophys Res Commun 2001; 286:742-51. [PMID: 11520060 DOI: 10.1006/bbrc.2001.5459] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Members of the heparan sulfate proteoglycan family, the syndecans have emerged as integrators of extracellular signals, such as ECM components or growth factors, that activate cytoplasmic signaling cascades and regulate cytoskeletal functions. Specifically, syndecan-2 has been implicated in various cellular processes, from differentiation to migration, including its participation in cell-cell and cell-matrix adhesion. Here, we focused on the involvement of syndecan-2 in epithelial versus mesenchymal differentiation. Colorectal cancer-derived HT-29 M6 epithelial cells were stably transfected with full-length syndecan-2 cDNA, and the effect on cell morphology, adhesion, and mobility was evaluated. Characteristic features of migratory cells such as loss of intercellular contacts, flatter shape and multiple membrane projections were observed in syndecan-2 transfectants. Western blot analysis of the major component of epithelial adherens junctions, E-cadherin, revealed decreased expression levels. Furthermore, syndecan-2 induced stronger adhesion to collagen type I, specifically inhibited by heparin. This was correlated with an increased ability for migration, as demonstrated by wound healing experiments and transwell assays, without affecting their growth rate. These results indicate that syndecan-2 expression in mucus-secreting HT-29 M6 cells induces differentiation toward a migratory mesenchymal-like phenotype.
Collapse
Affiliation(s)
- H R Contreras
- Physiology and Biophysical Program, ICBM, Faculty of Medicine, University of Chile, Independencia 1027, Santiago, Chile
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Goldstein NS, Bassi D, Watts JC, Layfield LJ, Yaziji H, Gown AM. E-cadherin reactivity of 95 noninvasive ductal and lobular lesions of the breast. Implications for the interpretation of problematic lesions. Am J Clin Pathol 2001; 115:534-42. [PMID: 11293901 DOI: 10.1309/b0dd-4m7h-gjg1-7kcw] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Studies suggest that E-cadherin is useful to classify epithelial breast lesions as ductal or lobular, but extensive experience with this antibody is lacking. We studied reactivity of lesions with classic and indeterminate morphologic features. We reviewed 95 lesions and divided them into unanimous and nonunanimous diagnosis groups; the unanimous group served as benchmark lesions to which E-cadherin reactivity could be standardized and compared. All 37 ductal lesions in the unanimous group had strong, diffuse E-cadherin reactivity. Two of 22 classic lobular carcinoma in situ (LCIS) lesions had sparse E-cadherin-reactive lobular cells within a few terminal duct lobular units. Neither displayed transition from nonreactive to reactive cells. Of 36 lesions in the nonunanimous group, 19 had insufficient morphologic features for definitive classification. Only 6 of 19 were E-cadherin reactive, including several minimally proliferative lesions. The other 17 lesions in the nonunanimous group had LCIS and ductal carcinoma in situ (DCIS) features. All had no E-cadherin, or strong membrane reactivity of constituent cells in varying proportions, without a transition between reactive and nonreactive cells. Results suggest that the majority of morphologically nondiagnostic atypical lesions are lobular, including those associated with DCIS. E-cadherin seems to be absent in most lobular lesions.
Collapse
Affiliation(s)
- N S Goldstein
- Dept of Anatomic Pathology, William Beaumont Hospital, 3601 W Thirteen Mile Rd, Royal Oak, MI 48073, USA
| | | | | | | | | | | |
Collapse
|
27
|
Abstract
Because heparan sulfate proteoglycans mediate cell adhesion and control the activities of numerous growth and motility factors, they play a critical role in regulating the metastatic behavior of tumor cells. Due to their utilitarian nature, heparan sulfate proteoglycans may at times act as inhibitors of cell invasion and at other times as promoters of cell invasion, with their function being determined by their location (cell surface or extracellular matrix), the heparin-binding molecules they associate with, the presence of modifying enzymes (proteases, heparanases) and the precise structural characteristics of the proteoglycan. Also, the tissue type and pathophysiological state of the tumor influence proteogylcan function. This review summarizes our current knowledge of the role heparan sulfate proteoglycans play in regulating tumor cell metastasis, proposes mechanisms of how these molecules function and examines the potential for discovery of new therapeutic approaches designed to block metastatic cancer.
Collapse
Affiliation(s)
- R D Sanderson
- Department of Pathology, Arkansas Cancer Research Center, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| |
Collapse
|
28
|
Zimmermann P, Tomatis D, Rosas M, Grootjans J, Leenaerts I, Degeest G, Reekmans G, Coomans C, David G. Characterization of syntenin, a syndecan-binding PDZ protein, as a component of cell adhesion sites and microfilaments. Mol Biol Cell 2001; 12:339-50. [PMID: 11179419 PMCID: PMC30947 DOI: 10.1091/mbc.12.2.339] [Citation(s) in RCA: 142] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Syntenin is a PDZ protein that binds the cytoplasmic C-terminal FYA motif of the syndecans. Syntenin is widely expressed. In cell fractionation experiments, syntenin partitions between the cytosol and microsomes. Immunofluorescence microscopy localizes endogenous and epitope-tagged syntenin to cell adhesion sites, microfilaments, and the nucleus. Syntenin is composed of at least three domains. Both PDZ domains of syntenin are necessary to target reporter tags to the plasma membrane. The addition of a segment of 10 amino acids from the N-terminal domain of syntenin to these PDZ domains increases the localization of the tags to stress fibers and induces the formation of long, branching plasma membrane extensions. The addition of the complete N-terminal region, in contrast, reduces the localization of the tags to plasma membrane/adhesion sites and stress fibers, and reduces the morphotypical effects. Recombinant domains of syntenin with the highest plasma membrane localization display the lowest nuclear localization. Syndecan-1, E-cadherin, beta-catenin, and alpha-catenin colocalize with syntenin at cell-cell contacts in epithelial cells, and coimmunoprecipitate with syntenin from extracts of these cells. These results suggest a role for syntenin in the composition of adherens junctions and the regulation of plasma membrane dynamics, and imply a potential role for syntenin in nuclear processes.
Collapse
Affiliation(s)
- P Zimmermann
- Laboratory for Glycobiology and Developmental Genetics, Center for Human Genetics, University of Leuven, Leuven, B-3000 Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Bayer-Garner IB, Smoller BR. The expression of syndecan-1 is preferentially reduced compared with that of E-cadherin in acantholytic squamous cell carcinoma. J Cutan Pathol 2001; 28:83-9. [PMID: 11168756 DOI: 10.1034/j.1600-0560.2001.280204.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND Syndecan-1 and E-cadherin are cell adhesion molecules which are expressed primarily on the surface of adult epithelial cells. They appear to be co-regulated and may act in concert to stabilize the epithelium. Loss of expression of both E-cadherin and syndecan-1 is seen in malignant transformation and invasion. METHODS Thirteen cutaneous biopsies of acantholytic squamous cell carcinoma (SCC) were examined for coexpression of E-cadherin and syndecan-1. RESULTS Interestingly, immunoreactivity for E-cadherin was increased in the in situ component while immunoreactivity for syndecan-1 was similar to that seen in normal skin. Conversely, in invasive SCC the expression of these two adhesion molecules was very similar. Both diminished with decreasing cell differentiation, as well as in the acantholytic areas where both molecules exhibited increasing cytosolic staining rather than cell membrane staining. CONCLUSIONS Our results suggest that it is likely E-cadherin and syndecan-1 act in concert to stabilize the epithelium and that the loss or decreased expression of both of these adhesion molecules is associated with malignant transformation.
Collapse
Affiliation(s)
- I B Bayer-Garner
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock 72205, USA
| | | |
Collapse
|
30
|
Abstract
Now that transmembrane signaling through primary cell-matrix receptors, integrins, is being elucidated, attention is turning to how integrin-ligand interactions can be modulated. Syndecans are transmembrane proteoglycans implicated as coreceptors in a variety of physiological processes, including cell adhesion, migration, response to growth factors, development, and tumorigenesis. This review will describe this family of proteoglycans in terms of their structures and functions and their signaling in conjunction with integrins, and indicate areas for future research.
Collapse
Affiliation(s)
- J R Couchman
- Department of Cell Biology and Cell Adhesion and Matrix Research Center, University of Alabama at Birmingham, 35294, USA
| | | | | |
Collapse
|
31
|
Affiliation(s)
- A Woods
- Department of Cell Biology and Cell Adhesion and Matrix Research Center, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA.
| | | |
Collapse
|
32
|
Bernfield M, Götte M, Park PW, Reizes O, Fitzgerald ML, Lincecum J, Zako M. Functions of cell surface heparan sulfate proteoglycans. Annu Rev Biochem 2000; 68:729-77. [PMID: 10872465 DOI: 10.1146/annurev.biochem.68.1.729] [Citation(s) in RCA: 2106] [Impact Index Per Article: 84.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The heparan sulfate on the surface of all adherent cells modulates the actions of a large number of extracellular ligands. Members of both cell surface heparan sulfate proteoglycan families, the transmembrane syndecans and the glycosylphosphoinositide-linked glypicans, bind these ligands and enhance formation of their receptor-signaling complexes. These heparan sulfate proteoglycans also immobilize and regulate the turnover of ligands that act at the cell surface. The extracellular domains of these proteoglycans can be shed from the cell surface, generating soluble heparan sulfate proteoglycans that can inhibit interactions at the cell surface. Recent analyses of genetic defects in Drosophila melanogaster, mice, and humans confirm most of these activities in vivo and identify additional processes that involve cell surface heparan sulfate proteoglycans. This chapter focuses on the mechanisms underlying these activities and on the cellular functions that they regulate.
Collapse
Affiliation(s)
- M Bernfield
- Division of Developmental and Newborn Biology, Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | | | | | | | | | |
Collapse
|
33
|
Bayer-Garner IB, Dilday B, Sanderson RD, Smoller BR. Syndecan-1 expression is decreased with increasing aggressiveness of basal cell carcinoma. Am J Dermatopathol 2000; 22:119-22. [PMID: 10770430 DOI: 10.1097/00000372-200004000-00005] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Syndecans, a family of cell-surface proteoglycans of which syndecan-1 is the prototypical member, play an important role in limiting tumor growth and invasive capacity through their actions as receptors for growth factors and extracellular matrix. Cutaneous biopsy specimens of basal cell carcinoma, including superficial, nodular, infiltrative, and morpheic subtypes, were assessed regarding the pattern of syndecan-1 expression. We found that with increasing aggressiveness of basal cell carcinomas, syndecan-1 expression is lost from the surface of the neoplastic cells. However, within the dermis, which is normally devoid of syndecan-1 expression, immunopositivity for syndecan-1 is present in areas adjacent to aggressive tumors. This pattern of staining indicates that syndecan-1 expression is produced by stromal cells rather than being shed by the carcinoma cells into the stroma.
Collapse
Affiliation(s)
- I B Bayer-Garner
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock 72205, USA
| | | | | | | |
Collapse
|
34
|
Longley RL, Woods A, Fleetwood A, Cowling GJ, Gallagher JT, Couchman JR. Control of morphology, cytoskeleton and migration by syndecan-4. J Cell Sci 1999; 112 ( Pt 20):3421-31. [PMID: 10504291 DOI: 10.1242/jcs.112.20.3421] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Syndecan-4 is a widely expressed transmembrane heparan sulfate proteoglycan which localizes to focal adhesions. Previous studies showed that the syndecan-4 cytoplasmic domain can associate with and potentiate the activity of protein kinase C, which is required for focal adhesion formation. To examine further the role of syndecan-4 in cell adhesion, we expressed syndecan-4 cDNA constructs in CHO-K1 cells. Syndecan-2 transfection was used to confirm effects seen were specific for syndecan-4. Cells overexpressing full length syndecan-4 core protein exhibited a more flattened, fibroblastic morphology, with increased focal adhesion formation and decreased cell motility. Expression of a syndecan-4 core protein with either a partial or complete deletion of the cytoplasmic domain or of an antisense construct led to markedly decreased spreading and focal adhesion formation, a more epithelioid morphology, and decreased motility. Overexpression of syndecan-2 changed the adhesive phenotype, but did not markedly alter focal adhesion and microfilament bundle formation. The data suggest that syndecan-4 is a regulator of focal adhesion and stress fiber formation, and influences both morphology and migration.
Collapse
Affiliation(s)
- R L Longley
- Department of Cell Biology and Cell Adhesion and Matrix Research Center, University of Alabama at Birmingham, Birmingham, Alabama, USA.
| | | | | | | | | | | |
Collapse
|
35
|
|
36
|
Bayer-Garner IB, Sanderson RD, Smoller BR. Syndecan-1 expression is diminished in acantholytic cutaneous squamous cell carcinoma. J Cutan Pathol 1999; 26:386-90. [PMID: 10551410 DOI: 10.1111/j.1600-0560.1999.tb01862.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Syndecan-1 is a cell surface proteoglycan predominantly expressed on the surface of adult epithelial cells, and is normally present in all epidermal layers except for the most superficial terminally differentiated cells. Syndecan-1 mediates cell-cell and cell-extracellular matrix adhesion, thereby influencing cell morphology and growth characteristics. In addition, in vitro studies have shown that expression of syndecan-1 on tumor cells inhibits their invasion into the extracellular matrix. A total of 23 cutaneous biopsies of squamous cell carcinoma, including acantholytic squamous cell carcinoma, invasive squamous cell carcinoma which was not acantholytic, and squamous cell carcinoma in situ were examined for syndecan-1 immunoreactivity. The level of syndecan-1 expression was related to the degree of squamous cell dyshesion, with expression being greatest in the in situ lesions and least in the acantholytic lesions. The loss of syndecan-1 expression with increasing dyshesion of squamous cell carcinoma may be a mechanism for loosening of intercellular and cell-extracellular matrix attachments, thereby promoting the invasion of neoplastic cells into the dermis.
Collapse
Affiliation(s)
- I B Bayer-Garner
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock 72205, USA
| | | | | |
Collapse
|
37
|
Birch MA, Skerry TM. Differential regulation of syndecan expression by osteosarcoma cell lines in response to cytokines but not osteotropic hormones. Bone 1999; 24:571-8. [PMID: 10375199 DOI: 10.1016/s8756-3282(99)00088-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Bone cells are regulated by interactions with both growth factors and components of the extracellular matrix (ECM). Syndecans are cell-surface heparan sulfate proteoglycans known to play a role in cell adhesion and migration, and binding of growth factors. This study was performed to investigate the expression of syndecans by osteoblasts. Reverse transcription-linked polymerase chain reaction (RT-PCR) and Northern analysis detected syndecan transcripts in the human osteosarcoma cell lines MG-63, TE-85, SaOS-2, and U2OS; human osteoblast-like cells; rat calvarial osteoblasts; and in human bone. Western blot analysis of proteoglycans from MG-63 and TE-85 cells detected multiple heparan sulfate proteoglycan core proteins consistent with syndecan expression. Regulation of syndecan-1, -2, and -4 expression was investigated in TE-85, MG-63, and SaOS-2 cells, in response to interleukin (IL)-1beta, and IL-6, parathyroid hormone [PTH(1-34)], and 1,25(OH)2-vitamin D3. Northern analysis demonstrated that in the osteosarcoma cell lines there was no regulation of syndecan transcript levels in response to PTH(1-34) or 1,25(OH)2-vitamin D3 for 24 or 48 h. In contrast, when MG-63 and SaOS-2 cells were incubated with IL-1beta (0.01-10 ng/mL) and IL-6 (0.1-50 ng/mL) there was a dose-dependent decrease in mRNA levels for syndecan-1 and -2 at 24 and 48 h, but in response to IL-1beta upregulation in the levels of syndecan-4 transcripts. In addition, Northern analysis was performed on RNA isolated from neonatal rat calvarial osteoblasts cultured under conditions that promote osteogenesis for 0, 5, 13, 21, and 35 days. Syndecan-1 expression was observed to decrease during the culture period, syndecan-2 transcript levels increased, and there appeared to be no overall change in syndecan-4 levels. Controlled expression of syndecans by cells of the osteoblast lineage may be important in the regulation of osteoblastic proliferation and differentiation.
Collapse
Affiliation(s)
- M A Birch
- Department of Biology, University of York, UK.
| | | |
Collapse
|
38
|
Abstract
It is now becoming clear that a family of transmembrane proteoglycans, the syndecans, have important roles in cell adhesion. They participate through binding of matrix ligand to their glycosaminoglycan chains, clustering, and the induction of signaling cascades to modify the internal microfilament organization. Syndecans can modulate the type of adhesive responses induced by other matrix ligand-receptor interactions, such as those involving the integrins, and so contribute to the control of cell morphology, adhesion and migration.
Collapse
Affiliation(s)
- A Woods
- Department of Cell Biology and the Cell Adhesion and Matrix Research Center, University of Alabama at Birmingham, 35294-0019, USA
| | | | | |
Collapse
|
39
|
Abstract
Cell-surface proteoglycans participate in cell adhesion, growth-factor signalling, lipase activity and anticoagulation. Until recently, only the roles of the glycosaminoglycan chains were investigated. Now, with molecular characterization of several core proteins, the roles of each individual proteoglycan species in cellular signalling pathways are being determined. This review describes some of the recent advances in our understanding of the major transmembrane group of heparan sulfate proteoglycans, the syndecans, including evidence that they play an important role as accessory signalling molecules modulating integrin-based adhesion.
Collapse
Affiliation(s)
- A Woods
- Dept of Cell Biology, University of Alabama at Birmingham 35294-0019, USA.
| | | |
Collapse
|