1
|
Nanes BA, Bhatt K, Azarova E, Rajendran D, Munawar S, Isogai T, Dean KM, Danuser G. Shifts in keratin isoform expression activate motility signals during wound healing. Dev Cell 2024; 59:2759-2771.e11. [PMID: 39002537 PMCID: PMC11496015 DOI: 10.1016/j.devcel.2024.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 04/15/2024] [Accepted: 06/17/2024] [Indexed: 07/15/2024]
Abstract
Keratin intermediate filaments confer structural stability to epithelial tissues, but the reason this simple mechanical function requires a protein family with 54 isoforms is not understood. During skin wound healing, a shift in keratin isoform expression alters the composition of keratin filaments. If and how this change modulates cellular functions that support epidermal remodeling remains unclear. We report an unexpected effect of keratin isoform variation on kinase signal transduction. Increased expression of wound-associated keratin 6A, but not of steady-state keratin 5, potentiated keratinocyte migration and wound closure without compromising mechanical stability by activating myosin motors to increase contractile force generation. These results substantially expand the functional repertoire of intermediate filaments from their canonical role as mechanical scaffolds to include roles as isoform-tuned signaling scaffolds that organize signal transduction cascades in space and time to influence epithelial cell state.
Collapse
Affiliation(s)
- Benjamin A Nanes
- Department of Dermatology, UT Southwestern Medical Center, Dallas, TX 75390, USA; Lyda Hill Department of Bioinformatics and Cecil H and Ida Green Center for Systems Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Kushal Bhatt
- Lyda Hill Department of Bioinformatics and Cecil H and Ida Green Center for Systems Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Evgenia Azarova
- Lyda Hill Department of Bioinformatics and Cecil H and Ida Green Center for Systems Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Divya Rajendran
- Lyda Hill Department of Bioinformatics and Cecil H and Ida Green Center for Systems Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sabahat Munawar
- Lyda Hill Department of Bioinformatics and Cecil H and Ida Green Center for Systems Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Tadamoto Isogai
- Lyda Hill Department of Bioinformatics and Cecil H and Ida Green Center for Systems Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kevin M Dean
- Lyda Hill Department of Bioinformatics and Cecil H and Ida Green Center for Systems Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Gaudenz Danuser
- Lyda Hill Department of Bioinformatics and Cecil H and Ida Green Center for Systems Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
2
|
Nogueira AT, Pedrosa AT, Carabeo RA. Manipulation of the Host Cell Cytoskeleton by Chlamydia. Curr Top Microbiol Immunol 2016; 412:59-80. [PMID: 27197645 DOI: 10.1007/82_2016_10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Chlamydiae are obligate intracellular pathogens. They undergo a biphasic developmental cycle differentiating between the infectious but metabolically quiescent elementary body and the vegetative, but non-infectious reticulate body. Chlamydia spends a significant portion of its development in the non-infectious stage, demanding an effective strategy of manipulating the host cells to ensure its intracellular survival and replication. A common target of all Chlamydia species studied so far is the host cell cytoskeleton, with past and recent findings revealing crucial roles in invasion, inclusion maintenance, nutrient acquisition, and egress. The molecular details of how Chlamydia co-opts the cytoskeleton is becoming clearer, with bacterial factors and their corresponding host cell targets identified.
Collapse
Affiliation(s)
- Ana T Nogueira
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Antonio T Pedrosa
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Rey A Carabeo
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, USA.
| |
Collapse
|
3
|
Leube RE, Moch M, Kölsch A, Windoffer R. "Panta rhei": Perpetual cycling of the keratin cytoskeleton. BIOARCHITECTURE 2014; 1:39-44. [PMID: 21866261 DOI: 10.4161/bioa.1.1.14815] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 01/12/2011] [Accepted: 01/12/2011] [Indexed: 01/13/2023]
Abstract
The filamentous cytoskeletal systems fulfil seemingly incompatible functions by maintaining a stable scaffolding to ensure tissue integrity and simultaneously facilitating rapid adaptation to intracellular processes and environmental stimuli. This paradox is particularly obvious for the abundant keratin intermediate filaments in epithelial tissues. The epidermal keratin cytoskeleton, for example, supports the protective and selective barrier function of the skin while enabling rapid growth and remodelling in response to physical, chemical and microbial challenges. We propose that these dynamic properties are linked to the perpetual re-cycling of keratin intermediate filaments that we observe in cultured cells. This cycle of assembly and disassembly is independent of protein biosynthesis and consists of distinct, temporally and spatially defined steps. In this way, the keratin cytoskeleton remains in constant motion but stays intact and is also able to restructure rapidly in response to specific regulatory cues as is needed, e.g., during division, differentiation and wound healing.
Collapse
Affiliation(s)
- Rudolf E Leube
- Institute of Molecular and Cellular Anatomy; RWTH Aachen University; Aachen, Germany
| | | | | | | |
Collapse
|
4
|
The analysis of intermediate filament dynamics using transfections and cell fusions. Methods Mol Biol 2009. [PMID: 19768441 DOI: 10.1007/978-1-60761-376-3_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The intermediate filament (IF) proteins have been recently found as dynamic structures that influence several aspects of cell homeostasis. Here, two alternative approaches to study the dynamics of IF proteins are described: the formation of cell hybrids by the fusion of different parental cells, and the transfection of keratin genes in cultured cells. In the first case, the selection of parental cell lines and the use of specific antibodies allow us to study how IF proteins recombine and copolymerize to form the heterokaryon cytoskeleton by immunofluorescence. In the second approach, some modifications of conventional transfection protocols allow the synchronized expression conditions, making it suitable for the analysis of the incorporation of a newly synthesized IF protein into the preexisting IF cytoskeleton of transfected cells.
Collapse
|
5
|
|
6
|
Koch PJ, Roop DR. The role of keratins in epidermal development and homeostasis--going beyond the obvious. J Invest Dermatol 2004; 123:x-xi. [PMID: 15482464 DOI: 10.1111/j.0022-202x.2004.23495.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Peter J Koch
- Departments of Molecular & Cellular Biology and Dermatology, Baylor College of Medicine, Houston, Texas, USA
| | | |
Collapse
|
7
|
García-Mata R, Gao Y, Alvarez C, Sztul ES. The membrane transport factor p115 recycles only between homologous compartments in intact heterokaryons. Eur J Cell Biol 2000; 79:229-39. [PMID: 10826491 DOI: 10.1078/s0171-9335(04)70026-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cytosolic proteins that participate in membrane traffic are assumed to be recruited from the cytosol onto specific membrane sites where they perform their function, and then released into cytosol before rebinding to catalyze another round of transport. To examine whether the ER to Golgi transport factor p115 recycles through release into a cytosolic pool, we formed heterokaryons between rat NRK and simian COS-7 cells and examined the dynamics of rat p115 transfer from the rat to the simian portion of the heterokaryon. The heterokaryons shared a common cytosolic pool, as shown by the efficient relocation of a cytosolic green fluorescent protein (GFP) from the COS-7 to the NRK part of the heterokaryon. Unexpectedly, even 24 h after cell fusion, rat p115 did not redistribute to the COS-7 part of the heterokaryon. This was not due to the inability of the rat p115 to associate with simian membranes since rat p115 expressed in COS-7 cells was efficiently targeted to and associated with simian Golgi complex. Furthermore, rat p115 associated with heterologous simian membranes after the NRK and COS-7 Golgi fused into a single chimeric structure. Our results indicate that p115 is not freely diffusible in intact cells and might remain tethered to membranes throughout its life cycle. These findings suggest that p115, and perhaps other cytosolic proteins involved in membrane traffic, recycle not by being released into cytosol, but in association with recycling membranes.
Collapse
Affiliation(s)
- R García-Mata
- Department of Cell Biology, University of Alabama at Birmingham, 35294, USA
| | | | | | | |
Collapse
|
8
|
Paramio JM, Casanova ML, Segrelles C, Mittnacht S, Lane EB, Jorcano JL. Modulation of cell proliferation by cytokeratins K10 and K16. Mol Cell Biol 1999; 19:3086-94. [PMID: 10082575 PMCID: PMC84102 DOI: 10.1128/mcb.19.4.3086] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The members of the large keratin family of cytoskeletal proteins are expressed in a carefully regulated tissue- and differentiation-specific manner. Although these proteins are thought to be involved in imparting mechanical integrity to epithelial cells, the functional significance of their complex differential expression is still unclear. Here we provide new data suggesting that the expression of particular keratins may influence cell proliferation. Specifically, we demonstrate that the ectopic expression of K10 inhibits the proliferation of human keratinocytes in culture, while K16 expression appears to promote the proliferation of these cells. Other keratins, such as K13 or K14, do not significantly alter this parameter. K10-induced inhibition is reversed by the coexpression of K16 but not that of K14. These results are coherent with the observed expression pattern of these proteins in the epidermis: basal, proliferative keratinocytes express K14; when they terminally differentiate, keratinocytes switch off K14 and start K10 expression, whereas in response to hyperproliferative stimuli, K16 replaces K10. The characteristics of this process indicate that K10 and K16 act on the retinoblastoma (Rb) pathway, as (i) K10-induced inhibition is hampered by cotransfection with viral oncoproteins which interfere with pRb but not with p53; (ii) K10-mediated cell growth arrest is rescued by the coexpression of specific cyclins, cyclin-dependent kinases (CDKs), or cyclin-CDK complexes; (iii) K10-induced inhibition does not take place in Rb-deficient cells but is restored in these cells by cotransfection with pRb or p107 but not p130; (iv) K16 efficiently rescues the cell growth arrest induced by pRb in HaCaT cells but not that induced by p107 or p130; and (v) pRb phosphorylation and cyclin D1 expression are reduced in K10-transfected cells and increased in K16-transfected cells. Finally, using K10 deletion mutants, we map this inhibitory function to the nonhelical terminal domains of K10, hypervariable regions in which keratin-specific functions are thought to reside, and demonstrate that the presence of one of these domains is sufficient to promote cell growth arrest.
Collapse
Affiliation(s)
- J M Paramio
- Cell and Molecular Biology Program, CIEMAT, E-28040 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
9
|
Abstract
Keratins undergo highly dynamic events in the epithelial cells that express them. These dynamic changes have been associated with important cell processes. We have studied the possible role of keratin phosphorylation-dephosphorylation processes in the control of these dynamic events. Drugs that affect the protein phosphorylation metabolism (activators or inhibitors of protein kinases or protein phosphatases) have been used in two different dynamic experimental systems. First, the behaviour of keratins after the formation of cell heterokaryons, and second, the assembly of a newly synthesised keratin after transfection into the pre-existing keratin cytoskeleton. The main difference between these two systems stems on the alteration of the amount of keratin polypeptides present in the cells, since in heterokaryons this amount was unaltered whilst in transfection experiments there is an increase due to the presence of the transfected protein. We observed in both systems that the inhibition of protein kinases led to a delayed dynamic behaviour of the keratin polypeptides. On the contrary, the inhibition of protein phosphatases by okadaic acid or the activation of protein kinases by phorbol esters promoted a substantial increase in the kinetics of these processes. Biochemical studies demonstrate that this behavioural changes can be correlated with changes in the phosphorylation state of the keratin polypeptides. As a whole, present results indicate that the highly dynamic properties of the keratin polypeptides can be modulated by phosphorylation.
Collapse
Affiliation(s)
- J M Paramio
- Cell and Molecular Biology Program, CIEMAT (IMA), Madrid, Spain.
| |
Collapse
|
10
|
Fradette J, Germain L, Seshaiah P, Coulombe PA. The type I keratin 19 possesses distinct and context-dependent assembly properties. J Biol Chem 1998; 273:35176-84. [PMID: 9857055 DOI: 10.1074/jbc.273.52.35176] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Keratins (K), the cytoplasmic intermediate filament (IF) proteins of epithelial cells, are encoded by a multigene family and expressed in a tissue- and differentiation-specific manner. In human skin, keratinocytes of the basal layer of epidermis and the outer root sheath of hair follicles express K5 and K14 as their main keratins. A small subpopulation of basal cells exhibiting stem-cell like characteristics express, in addition, K19. At 40 kDa, this keratin is the smallest IF protein due to an exceptionally short carboxyl-terminal domain. We examined the assembly properties of K19 and contrasted them to K14 in vitro and in vivo. Relative to K5-K14, we find that K5-K19 form less stable tetramers that polymerize into shorter and narrower IFs in vitro. When transiently co-expressed in cultured baby hamster kidney cells, the K5 and K19 combination fails to form a filamentous array, whereas the K5-K14 and K8-K19 ones readily do so. Transient expression of K19 in the epithelial cell lines T51B-Ni and A431 results in its integration into the endogenous keratin network with minimal if any perturbation. Collectively, these results indicate that K19 possesses assembly properties that are distinct from those of K14 and suggest that it may impart unique properties to the basal cells expressing it in skin epithelia.
Collapse
Affiliation(s)
- J Fradette
- Laboratoire de Recherche des Grands Brûlés/LOEX, Hôpital du Saint-Sacrement, Québec G1S 4L8, the Department of Surgery, Université Laval, Sainte-Foy, Québec, Canada
| | | | | | | |
Collapse
|
11
|
Schnabel J, Weber K, Hatzfeld M. Protein-protein interactions between keratin polypeptides expressed in the yeast two-hybrid system. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1403:158-68. [PMID: 9630597 DOI: 10.1016/s0167-4889(98)00036-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Keratin filaments are obligatory heteropolymers of type I and type II keratin polypeptides. Specific type I/type II pairs are coexpressed in vivo. In contrast, all type I/type II pairs assemble into filaments in vitro, but the different pairs have different stabilities as demonstrated by treatment with increasing concentrations of urea. We have used the yeast two-hybrid system to analyse type I/type II interactions in a cellular context. We measured interactions between two different keratin pairs and we confirm the findings that K6+K17 form very stable heterodimers whereas K8+K18 interactions were weaker. The deletion of head domains did not reduce the strength of type I/type II interactions. Rather, the affinities were increased and the differences between the two pairs were retained in headless mutants. These findings argue against a major role of the head domains in directing heterodimer interactions and in defining heterodimer stabilities.
Collapse
Affiliation(s)
- J Schnabel
- Department of Biochemistry, Max-Planck-Institute for Biophysical Chemistry, D-37070 Göttingen, Germany
| | | | | |
Collapse
|