1
|
Caengprasath N, Gonzalez-Abuin N, Shchepinova M, Ma Y, Inoue A, Tate EW, Frost G, Hanyaloglu AC. Internalization-Dependent Free Fatty Acid Receptor 2 Signaling Is Essential for Propionate-Induced Anorectic Gut Hormone Release. iScience 2020; 23:101449. [PMID: 32853993 PMCID: PMC7452316 DOI: 10.1016/j.isci.2020.101449] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 07/30/2020] [Accepted: 08/10/2020] [Indexed: 01/14/2023] Open
Abstract
The ability of propionate, a short-chain fatty acid produced from the fermentation of non-digestible carbohydrates in the colon, to stimulate the release of anorectic gut hormones, such as glucagon like peptide-1 (GLP-1), is an attractive approach to enhance appetite regulation, weight management, and glycemic control. Propionate induces GLP-1 release via its G protein-coupled receptor (GPCR), free fatty acid receptor 2 (FFA2), a GPCR that activates Gαi and Gαq/11. However, how pleiotropic GPCR signaling mechanisms in the gut regulates appetite is poorly understood. Here, we identify propionate-mediated G protein signaling is spatially directed within the cell whereby FFA2 is targeted to very early endosomes. Furthermore, propionate activates a Gαi/p38 signaling pathway, which requires receptor internalization and is essential for propionate-induced GLP-1 release in enteroendocrine cells and colonic crypts. Our study reveals that intestinal metabolites engage membrane trafficking pathways and that receptor internalization could orchestrate complex GPCR pathways within the gut.
Collapse
Affiliation(s)
- Natarin Caengprasath
- Institute of Reproductive and Developmental Biology (IRDB), Department of Metabolism, Digestion and Reproduction, Imperial College London, Rm 2009, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| | - Noemi Gonzalez-Abuin
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | | | - Yue Ma
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Edward W. Tate
- Department of Chemistry, Imperial College London, London, UK
| | - Gary Frost
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Aylin C. Hanyaloglu
- Institute of Reproductive and Developmental Biology (IRDB), Department of Metabolism, Digestion and Reproduction, Imperial College London, Rm 2009, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| |
Collapse
|
2
|
Bastin G, Dissanayake K, Langburt D, Tam ALC, Lee SH, Lachhar K, Heximer SP. RGS4 controls Gαi3-mediated regulation of Bcl-2 phosphorylation on TGN38-containing intracellular membranes. J Cell Sci 2020; 133:jcs241034. [PMID: 32501280 DOI: 10.1242/jcs.241034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 05/05/2020] [Indexed: 08/31/2023] Open
Abstract
Intracellular pools of the heterotrimeric G-protein α-subunit Gαi3 (encoded by GNAI3) have been shown to promote growth factor signaling, while at the same time inhibiting the activation of JNK and autophagic signaling following nutrient starvation. The precise molecular mechanisms linking Gαi3 to both stress and growth factor signaling remain poorly understood. Importantly, JNK-mediated phosphorylation of Bcl-2 was previously found to activate autophagic signaling following nutrient deprivation. Our data shows that activated Gαi3 decreases Bcl-2 phosphorylation, whereas inhibitors of Gαi3, such as RGS4 and AGS3 (also known as GPSM1), markedly increase the levels of phosphorylated Bcl-2. Manipulation of the palmitoylation status and intracellular localization of RGS4 suggests that Gαi3 modulates phosphorylated Bcl-2 levels and autophagic signaling from discreet TGN38 (also known as TGOLN2)-labeled vesicle pools. Consistent with an important role for these molecules in normal tissue responses to nutrient deprivation, increased Gαi signaling within nutrient-starved adrenal glands from RGS4-knockout mice resulted in a dramatic abrogation of autophagic flux, compared to wild-type tissues. Together, these data suggest that the activity of Gαi3 and RGS4 from discreet TGN38-labeled vesicle pools are critical regulators of autophagic signaling that act via their ability to modulate phosphorylation of Bcl-2.
Collapse
Affiliation(s)
- Guillaume Bastin
- Ted Rogers Centre for Heart Research, Translational Biology and Engineering Program, 661 University Ave. 14th Floor, Toronto, ON, M5G 1M1, Canada
- Heart and Stroke/Richard Lewar Centre of Excellence in Cardiovascular Research, Room 303, C. David Naylor Building, 6 Queen's Park Crescent West, Toronto, ON, M5S 3H2, Canada
- Department of Physiology, University of Toronto, 1 King's College Circle, Toronto, ON, M5S1A8, Canada
| | - Kaveesh Dissanayake
- Department of Physiology, University of Toronto, 1 King's College Circle, Toronto, ON, M5S1A8, Canada
| | - Dylan Langburt
- Ted Rogers Centre for Heart Research, Translational Biology and Engineering Program, 661 University Ave. 14th Floor, Toronto, ON, M5G 1M1, Canada
- Department of Physiology, University of Toronto, 1 King's College Circle, Toronto, ON, M5S1A8, Canada
| | - Alex L C Tam
- Department of Physiology, University of Toronto, 1 King's College Circle, Toronto, ON, M5S1A8, Canada
| | - Shin-Haw Lee
- Ted Rogers Centre for Heart Research, Translational Biology and Engineering Program, 661 University Ave. 14th Floor, Toronto, ON, M5G 1M1, Canada
- Department of Physiology, University of Toronto, 1 King's College Circle, Toronto, ON, M5S1A8, Canada
| | - Karanjit Lachhar
- Department of Physiology, University of Toronto, 1 King's College Circle, Toronto, ON, M5S1A8, Canada
| | - Scott P Heximer
- Ted Rogers Centre for Heart Research, Translational Biology and Engineering Program, 661 University Ave. 14th Floor, Toronto, ON, M5G 1M1, Canada
- Heart and Stroke/Richard Lewar Centre of Excellence in Cardiovascular Research, Room 303, C. David Naylor Building, 6 Queen's Park Crescent West, Toronto, ON, M5S 3H2, Canada
- Department of Physiology, University of Toronto, 1 King's College Circle, Toronto, ON, M5S1A8, Canada
| |
Collapse
|
3
|
Ghosh P, Aznar N, Swanson L, Lo IC, Lopez-Sanchez I, Ear J, Rohena C, Kalogriopoulos N, Joosen L, Dunkel Y, Sun N, Nguyen P, Bhandari D. Biochemical, Biophysical and Cellular Techniques to Study the Guanine Nucleotide Exchange Factor, GIV/Girdin. CURRENT PROTOCOLS IN CHEMICAL BIOLOGY 2016; 8:265-298. [PMID: 27925669 PMCID: PMC5154557 DOI: 10.1002/cpch.13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Canonical signal transduction via heterotrimeric G proteins is spatiotemporally restricted, i.e., triggered exclusively at the plasma membrane, only by agonist activation of G protein-coupled receptors via a finite process that is terminated within a few hundred milliseconds. Recently, a rapidly emerging paradigm has revealed a noncanonical pathway for activation of heterotrimeric G proteins via the nonreceptor guanidine-nucleotide exchange factor, GIV/Girdin. Biochemical, biophysical, and functional studies evaluating this pathway have unraveled its unique properties and distinctive spatiotemporal features. As in the case of any new pathway/paradigm, these studies first required an in-depth optimization of tools/techniques and protocols, governed by rationale and fundamentals unique to the pathway, and more specifically to the large multimodular GIV protein. Here we provide the most up-to-date overview of protocols that have generated most of what we know today about noncanonical G protein activation by GIV and its relevance in health and disease. © 2016 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Pradipta Ghosh
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA 92093-0651
- Department of Medicine, University of California at San Diego, La Jolla, CA 92093-0651
| | - Nicolas Aznar
- Department of Medicine, University of California at San Diego, La Jolla, CA 92093-0651
| | - Lee Swanson
- Department of Medicine, University of California at San Diego, La Jolla, CA 92093-0651
| | - I-Chung Lo
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA 92093-0651
| | | | - Jason Ear
- Department of Medicine, University of California at San Diego, La Jolla, CA 92093-0651
| | - Cristina Rohena
- Department of Medicine, University of California at San Diego, La Jolla, CA 92093-0651
| | | | - Linda Joosen
- Department of Medicine, University of California at San Diego, La Jolla, CA 92093-0651
| | - Ying Dunkel
- Department of Medicine, University of California at San Diego, La Jolla, CA 92093-0651
| | - Nina Sun
- Department of Medicine, University of California at San Diego, La Jolla, CA 92093-0651
| | - Peter Nguyen
- Department of Chemistry and Biochemistry, California State University Long Beach, Long Beach, CA 90840-9507
| | - Deepali Bhandari
- Department of Chemistry and Biochemistry, California State University Long Beach, Long Beach, CA 90840-9507
| |
Collapse
|
4
|
Woodard GE, Jardín I, Berna-Erro A, Salido GM, Rosado JA. Regulators of G-protein-signaling proteins: negative modulators of G-protein-coupled receptor signaling. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 317:97-183. [PMID: 26008785 DOI: 10.1016/bs.ircmb.2015.02.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Regulators of G-protein-signaling (RGS) proteins are a category of intracellular proteins that have an inhibitory effect on the intracellular signaling produced by G-protein-coupled receptors (GPCRs). RGS along with RGS-like proteins switch on through direct contact G-alpha subunits providing a variety of intracellular functions through intracellular signaling. RGS proteins have a common RGS domain that binds to G alpha. RGS proteins accelerate GTPase and thus enhance guanosine triphosphate hydrolysis through the alpha subunit of heterotrimeric G proteins. As a result, they inactivate the G protein and quickly turn off GPCR signaling thus terminating the resulting downstream signals. Activity and subcellular localization of RGS proteins can be changed through covalent molecular changes to the enzyme, differential gene splicing, and processing of the protein. Other roles of RGS proteins have shown them to not be solely committed to being inhibitors but behave more as modulators and integrators of signaling. RGS proteins modulate the duration and kinetics of slow calcium oscillations and rapid phototransduction and ion signaling events. In other cases, RGS proteins integrate G proteins with signaling pathways linked to such diverse cellular responses as cell growth and differentiation, cell motility, and intracellular trafficking. Human and animal studies have revealed that RGS proteins play a vital role in physiology and can be ideal targets for diseases such as those related to addiction where receptor signaling seems continuously switched on.
Collapse
Affiliation(s)
- Geoffrey E Woodard
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA; Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Isaac Jardín
- Department of Physiology, University of Extremadura, Caceres, Spain
| | - A Berna-Erro
- Department of Physiology, University of Extremadura, Caceres, Spain
| | - Gines M Salido
- Department of Physiology, University of Extremadura, Caceres, Spain
| | - Juan A Rosado
- Department of Physiology, University of Extremadura, Caceres, Spain
| |
Collapse
|
5
|
Rituper B, Guček A, Jorgačevski J, Flašker A, Kreft M, Zorec R. High-resolution membrane capacitance measurements for the study of exocytosis and endocytosis. Nat Protoc 2013; 8:1169-83. [PMID: 23702833 DOI: 10.1038/nprot.2013.069] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In order to understand exocytosis and endocytosis, it is necessary to study these processes directly. An elegant way to do this is by measuring plasma membrane capacitance (C(m)), a parameter proportional to cell surface area, the fluctuations of which are due to fusion and fission of secretory and other vesicles. Here we describe protocols that enable high-resolution C(m) measurements in macroscopic and microscopic modes. Macroscopic mode, performed in whole-cell configuration, is used for measuring bulk C(m) changes in the entire membrane area, and it enables the introduction of exocytosis stimulators or inhibitors into the cytosol through the patch pipette. Microscopic mode, performed in cell-attached configuration, enables measurements of C(m) with attofarad resolution and allows characterization of fusion pore properties. Although we usually apply these protocols to primary pituitary cells and astrocytes, they can be adapted and used for other cell types. After initial hardware setup and culture preparation, several C(m) measurements can be performed daily.
Collapse
Affiliation(s)
- Boštjan Rituper
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, Ljubljana, Slovenia
| | | | | | | | | | | |
Collapse
|
6
|
Sikdar SK, Kreft M, Pangrsic T, Grilc S, Zorec R. FM1-43 measurements of local exocytotic events in rat melanotrophs. FEBS Lett 2005; 579:6575-80. [PMID: 16293249 DOI: 10.1016/j.febslet.2005.10.049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2005] [Revised: 10/11/2005] [Accepted: 10/25/2005] [Indexed: 11/26/2022]
Abstract
We have explored the existence of fusion- and secretion-competent sites on the plasma membrane of peptide secreting rat pituitary melanotrophs at rest, and following stimulation with glutamate. We monitored changes in fluorescence of FM1-43, a styryl dye which labels plasma membrane. The results show spontaneous local increases in FM1-43 reporting changes in membrane surface area due to cumulative exocytosis. Addition of glutamate, further increased the occurrence of these events. Statistical analysis of local FM1-43 fluorescence changes suggests that this is due to the recruitment of inactive exocytotic domains and due to the stimulation of already active exocytotic domains.
Collapse
Affiliation(s)
- S K Sikdar
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Medical Faculty, University of Ljubljana Medical School, Zaloska 4, SI-1000 Ljubljana, Slovenia
| | | | | | | | | |
Collapse
|
7
|
Jones S, Farquhar M, Martin A, Howl J. Intracellular translocation of the decapeptide carboxyl terminal of Gi3 alpha induces the dual phosphorylation of p42/p44 MAP kinases. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2005; 1745:207-14. [PMID: 15953648 DOI: 10.1016/j.bbamcr.2005.05.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2005] [Revised: 04/21/2005] [Accepted: 05/13/2005] [Indexed: 11/24/2022]
Abstract
The carboxyl terminal of heterotrimeric G protein alpha subunits binds both G protein-coupled receptors and mastoparan (MP), a tetradecapeptide allostere. Moreover, peptides corresponding to the carboxyl domains of G(i)3alpha and G(t) display intrinsic biological activities in cell-free systems. Thus, the purpose of this study was to develop a cell penetrant delivery system to further investigate the biological properties of a peptide mimetic of the G(i)3alpha carboxyl terminal (G(i)3alpha(346-355); H-KNNLKECGLY-NH2). Kinetic studies, using a CFDA-conjugated analogue of G(i)3alpha(346-355), confirmed the rapid and efficient intracellular translocation of TP10-G(i)3alpha(346-355) (t(0.5) = 3 min). Translocated G(i)3alpha(346-355), but not other bioactive cargoes derived from PKC and the CB1 cannabinoid receptor, promoted the dual phosphorylation of p42/p44 MAPK without adverse changes in cellular viability. The relative specificity of this novel biological activity was further confirmed by the observation that translocated G(i)3alpha(346-355) did not influence the exocytosis of beta-hexoseaminidase from RBL-2H3, a secretory event stimulated by other cell penetrant peptide cargoes and MP. We conclude that TP10-G(i)3alpha(346-355) is a valuable, non-toxic research tool with which to study and modulate signal transduction pathways mediated by heterotrimeric G proteins and MAPK.
Collapse
Affiliation(s)
- Sarah Jones
- Research Institute in Healthcare Science, University of Wolverhampton, Wulfruna Street, Wolverhampton, WV1 1SB, UK
| | | | | | | |
Collapse
|
8
|
Voronina E, Wessel GM. βγ subunits of heterotrimeric G-proteins contribute to Ca2+ release at fertilization in the sea urchin. J Cell Sci 2004; 117:5995-6005. [PMID: 15536121 DOI: 10.1242/jcs.01518] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A cytoplasmic Ca2+ transient is required for egg activation at fertilization in all animals. The pathway leading to release of Ca2+ from the endoplasmic reticulum in echinoderms includes activation of a SRC homolog, followed by phospholipase Cγ activation, and formation of inositol trisphosphate. However, the upstream activators or modulators of this signaling pathway are not known. We recently identified four Gα subunits of heterotrimeric G-proteins present in the sea urchin egg, and here we find that activation of G-proteins of the Gαs and Gαq type, but not Gαi or Gα12 type, is required for normal Ca2+ dynamics at fertilization. The effects of these G-proteins are mediated by the Gβγ subunits, occur upstream of the cytoplasmic Ca2+ release, and influence both the amplitude of Ca2+ release and the duration of the lag phase. We propose integration of the G-protein input into the framework of signaling at sea urchin fertilization.
Collapse
Affiliation(s)
- Ekaterina Voronina
- Department of Molecular and Cell Biology and Biochemistry, Brown University, 69 Brown Street, Providence, RI 02912, USA
| | | |
Collapse
|
9
|
Cocucci E, Racchetti G, Podini P, Rupnik M, Meldolesi J. Enlargeosome, an exocytic vesicle resistant to nonionic detergents, undergoes endocytosis via a nonacidic route. Mol Biol Cell 2004; 15:5356-68. [PMID: 15469985 PMCID: PMC532016 DOI: 10.1091/mbc.e04-07-0577] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Enlargeosomes, a new type of widely expressed cytoplasmic vesicles, undergo tetanus toxin-insensitive exocytosis in response to cytosolic Ca(2+) concentration ([Ca(2+)](i)) rises. Cell biology of enlargeosomes is still largely unknown. By combining immunocytochemistry (marker desmoyokin-Ahnak, d/A) to capacitance electrophysiology in the enlargeosome-rich, neurosecretion-defective clone PC12-27, we show that 1) the two responses, cell surface enlargement and d/A surface appearance, occur with similar kinetics and in the same low micromolar [Ca(2+)](i) range, no matter whether induced by photolysis of the caged Ca(2+) compound o-nitrophenyl EGTA or by the Ca(2+) ionophore ionomycin. Thus, enlargeosomes seem to account, at least in large part, for the exocytic processes triggered by the two stimulations. 2. The enlargeosome membranes are resistant to nonionic detergents but distinct from other resistant membranes, rich in caveolin, Thy1, and/or flotillin1. 3. Cell cholesterol depletion, which affects many membrane fusions, neither disrupts enlargeosomes nor affects their regulated exocytosis. 4. The postexocytic cell surface decline is [Ca(2+)](i) dependent. 5. Exocytized d/A-rich membranes are endocytized and trafficked along an intracellular pathway by nonacidic organelles, distinct from classical endosomes and lysosomes. Our data define specific aspects of enlargeosomes and suggest their participation, in addition to cell differentiation and repair, for which evidence already exists, to other physiological and pathological processes.
Collapse
Affiliation(s)
- Emanuele Cocucci
- Vita-Salute University, and San Raffaele Scientific Institute, Excellence Center in Cell Differentiation Pathophysiology, 20132 Milan, Italy
| | | | | | | | | |
Collapse
|
10
|
Bäck N, Litonius E, Mains RE, Eipper BA. Fluoride causes reversible dispersal of Golgi cisternae and matrix in neuroendocrine cells. Eur J Cell Biol 2004; 83:389-402. [PMID: 15506563 DOI: 10.1078/0171-9335-00405] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A role for heterotrimeric G proteins in the regulation of Golgi function and formation of secretory granules is generally accepted. We set out to study the effect of activation of heterotrimeric G proteins by aluminum fluoride on secretory granule formation in AtT-20 corticotropic tumor cells and in melanotrophs from the rat pituitary. In AtT-20 cells, treatment with aluminum fluoride or fluoride alone for 60 min induced complete dispersal of Golgi, ER-Golgi intermediate compartment and Golgi matrix markers, while betaCOP immunoreactiviy retained a juxtanuclear position and TGN38 was unaffected. Electron microscopy showed compression of Golgi cisternae followed by conversion of the Golgi stacks into clusters of tubular and vesicular elements. In the melanotroph of the rat pituitary a similar compression of Golgi cisternae was observed, followed by a progressive loss of cisternae from the stacks. As shown in other cells, brefeldin A induced redistribution of the Golgi matrix protein GM130 to punctate structures in the cytoplasm in AtT-20 cells, while mannosidase II immunoreactivity was completely dispersed. Fluoride induced a complete dispersal of mannosidase II and GM130 immunoreactivity. The effect of fluoride was fully reversible with reestablishment of normal mannosidase II and GM130 immunoreactivity within 2 h. After 1 h of recovery, showing varying stages of reassembly, the patterns of mannosidase II and GM130 immunoreactivity were identical in individual cells, indicating that Golgi matrix and cisternae reassemble with similar kinetics during recovery from fluoride treatment. Instead of a specific aluminum fluoride effect on secretory granule formation in the trans-Golgi network, we thus observe a unique form of Golgi dispersal induced by fluoride alone, possibly via its action as a phosphatase inhibitor.
Collapse
Affiliation(s)
- Nils Bäck
- Department of Anatomy, Institute of Biomedicine, Biomedicum Helsinki, University of Helsinki, Finland.
| | | | | | | |
Collapse
|
11
|
Howl J, Jones S, Farquhar M. Intracellular Delivery of Bioactive Peptides to RBL-2H3 Cells Induces β-Hexosaminidase Secretion and Phospholipase D Activation. Chembiochem 2003; 4:1312-6. [PMID: 14661273 DOI: 10.1002/cbic.200300694] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This investigation compared the secretory efficacies of a series of peptides delivered to the cytoplasm of RBL-2H3 mast cells. Mimetic peptides, designed to target intracellular proteins that regulate cell signalling and membrane fusion, were synthesised as transportan 10 (TP10) chimeras for efficient plasma membrane translocation. Exocytosis of beta-hexosaminidase, a secretory lysosomal marker, indicated that peptides presenting sequences derived from protein kinase C (PKC; C1 H-CRRLSVEIWDWDL-NH(2)) and the CB(1) cannabinoid receptor (C3 H-RSKDLRHAFRSMFPSCE-NH(2)) induced beta-hexosaminidase secretion. Other peptide cargoes, including a Rab3A-derived sequence and a homologue of C3, were inactive in similar assays. Translocated C1 also activated phospholipase D (PLD), an enzyme intimately involved in the regulated secretory response of RBL-2H3 cells, but C1-induced secretion was not dependent upon phosphatidate synthesis. Neither down-regulation of Ca(2+)-sensitive isoforms of PKC nor the application of a selective PKC inhibitor attenuated the secretory efficacy of C1. These observations indicate that the molecular target of C1 is a protein involved in the regulated secretory pathway that is upstream of PLD but is not a PKC isoform. This study also confirmed that TP10 is a relatively inert cell-penetrating vector and is, therefore, widely suitable for studies in cells that are sensitive to peptidyl secretagogues.
Collapse
Affiliation(s)
- John Howl
- Molecular Pharmacology Group, School of Applied Sciences, University of Wolverhampton, Wulfruna Street, Wolverhampton, WV1 1SB, UK.
| | | | | |
Collapse
|
12
|
Abstract
Regulated exocytosis of secretory granules or dense-core granules has been examined in many well-characterized cell types including neurons, neuroendocrine, endocrine, exocrine, and hemopoietic cells and also in other less well-studied cell types. Secretory granule exocytosis occurs through mechanisms with many aspects in common with synaptic vesicle exocytosis and most likely uses the same basic protein components. Despite the widespread expression and conservation of a core exocytotic machinery, many variations occur in the control of secretory granule exocytosis that are related to the specialized physiological role of particular cell types. In this review we describe the wide range of cell types in which regulated secretory granule exocytosis occurs and assess the evidence for the expression of the conserved fusion machinery in these cells. The signals that trigger and regulate exocytosis are reviewed. Aspects of the control of exocytosis that are specific for secretory granules compared with synaptic vesicles or for particular cell types are described and compared to define the range of accessory control mechanisms that exert their effects on the core exocytotic machinery.
Collapse
Affiliation(s)
- Robert D Burgoyne
- The Physiological Laboratory, University of Liverpool, United Kingdom.
| | | |
Collapse
|
13
|
Poberaj I, Rupnik M, Kreft M, Sikdar SK, Zorec R. Modeling excess retrieval in rat melanotroph membrane capacitance records. Biophys J 2002; 82:226-32. [PMID: 11751311 PMCID: PMC1302464 DOI: 10.1016/s0006-3495(02)75389-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
We have used the patch-clamp technique to monitor changes in membrane capacitance (C(m)) elicited by fast and spatially homogeneous rises in cytosolic calcium concentration ([Ca(2+)](i)) using flash photolysis of NP-EGTA. Average peak [Ca(2+)](i) amplitudes of 20-25 microM triggered three different types of responses in C(m): (i) In 42% of cells, a rise in [Ca(2+)](i) activated a monotonic increase in C(m) followed by a slow decline to resting values; (ii) In 30% of cells, the rise in C(m) was clearly characterized by two dynamic components, consisting of a rapid and a slow exo-endocytosis cycle; (iii) In 28% of cells, after the initial rapid rise in C(m), endocytosis exhibited excess retrieval that was characterized by a decline in C(m) below resting C(m). The aim of this work is to develop a unified mathematical model with a minimum number of parameters that would describe all the observed types of responses. Three models were considered: Model A, a model with a single component of exo-endocytosis cycle; model B, a model consisting of a sum of two independent dynamic components; and model C, a model in which, in addition to the two dynamic components as in model B, excess retrieval due to a lipid flow through the reversal closing of the fusion pore during the rapid component of exo-endocytosis cycle was considered. The results show that the latter model describes all the types of responses in C(m) recorded in rat melanotrophs. The association of excess retrieval exclusively with the rapid, but not the slow, exocytosis indicates that some fusing vesicles mediate a lipidic flux during the reversal closing of the fusion pore, whereas those entering the slow phase of exocytosis may fuse with the plasma membrane completely and are retrieved by other endocytic machinery, independent of the lipid flow that might have occurred as the fusion pore opened permanently.
Collapse
Affiliation(s)
- Igor Poberaj
- Department of Physics, Faculty of Mathematics and Physics, 1001 Ljubljana, Slovenia
| | | | | | | | | |
Collapse
|
14
|
Gromada J, Høy M, Buschard K, Salehi A, Rorsman P. Somatostatin inhibits exocytosis in rat pancreatic alpha-cells by G(i2)-dependent activation of calcineurin and depriming of secretory granules. J Physiol 2001; 535:519-32. [PMID: 11533141 PMCID: PMC2278803 DOI: 10.1111/j.1469-7793.2001.00519.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
1. Measurements of cell capacitance were used to investigate the molecular mechanisms by which somatostatin inhibits Ca(2+)-induced exocytosis in single rat glucagon-secreting pancreatic alpha-cells. 2. Somatostatin decreased the exocytotic responses elicited by voltage-clamp depolarisations by 80 % in the presence of cyclic AMP-elevating agents such as isoprenaline and forskolin. Inhibition was time dependent and half-maximal within 22 s. 3. The inhibitory action of somatostatin was concentration dependent with an IC(50) of 68 nM and prevented by pretreatment of the cells with pertussis toxin. The latter effect was mimicked by intracellular dialysis with specific antibodies to G(i1/2) and by antisense oligonucleotides against G proteins of the subtype G(i2). 4. Somatostatin lacked inhibitory action when applied in the absence of forskolin or in the presence of the L-type Ca(2+) channel blocker nifedipine. The size of the omega-conotoxin-sensitive and forskolin-independent component of exocytosis was limited to 60 fF. By contrast, somatostatin abolished L-type Ca(2+) channel-dependent exocytosis in alpha-cells exposed to forskolin. The magnitude of the latter pool amounted to 230 fF. 5. The inhibitory effect of somatostatin on exocytosis was mediated by activation of the serine/threonine protein phosphatase calcineurin and was prevented by pretreatment with cyclosporin A and deltamethrin or intracellularly applied calcineurin autoinhibitory peptide. Experiments using the stable ATP analogue AMP-PCP indicate that somatostatin acts by depriming of granules. 6. We propose that somatostatin receptors associate with L-type Ca(2+) channels and couple to G(i2) proteins leading to a localised activation of calcineurin and depriming of secretory granules situated close to the L-type Ca(2+) channels.
Collapse
Affiliation(s)
- J Gromada
- Laboratory of Islet Cell Physiology, Novo Nordisk A/S, Novo Allé, DK-2880 Bagsvaerd, Denmark
| | | | | | | | | |
Collapse
|
15
|
Rupnik M, Kreft M, Sikdar SK, Grilc S, Romih R, Zupancic G, Martin TF, Zorec R. Rapid regulated dense-core vesicle exocytosis requires the CAPS protein. Proc Natl Acad Sci U S A 2000; 97:5627-32. [PMID: 10792045 PMCID: PMC25879 DOI: 10.1073/pnas.090359097] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although many proteins essential for regulated neurotransmitter and peptide hormone secretion have been identified, little is understood about their precise roles at specific stages of the multistep pathway of exocytosis. To study the function of CAPS (Ca(2+)-dependent activator protein for secretion), a protein required for Ca(2+)-dependent exocytosis of dense-core vesicles, secretory responses in single rat melanotrophs were monitored by patch-clamp membrane capacitance measurements. Flash photolysis of caged Ca(2+) elicited biphasic capacitance increases consisting of rapid and slow components with distinct Ca(2+) dependencies. A threshold of approximately 10 microM Ca(2+) was required to trigger the slow component, while the rapid capacitance increase was recorded already at a intracellular Ca(2+) activity < 10 microM. Both kinetic membrane capacitance components were abolished by botulinum neurotoxin B or E treatment, suggesting involvement of SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor)-dependent vesicle fusion. The rapid but not the slow component was inhibited by CAPS antibody. These results were further clarified by immunocytochemical studies that revealed that CAPS was present on only a subset of dense-core vesicles. Overall, the results indicate that dense-core vesicle exocytosis in melanotrophs occurs by two parallel pathways. The faster pathway exhibits high sensitivity to Ca(2+) and requires the presence of CAPS, which appears to act at a late stage in the secretory pathway.
Collapse
Affiliation(s)
- M Rupnik
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Medical School, Ljubljana, Slovenia SI-1001
| | | | | | | | | | | | | | | |
Collapse
|