1
|
Gupta S, Kumar M, Chaudhuri S, Kumar A. The non-canonical nuclear functions of key players of the PI3K-AKT-MTOR pathway. J Cell Physiol 2022; 237:3181-3204. [PMID: 35616326 DOI: 10.1002/jcp.30782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/05/2022] [Accepted: 05/02/2022] [Indexed: 12/29/2022]
Abstract
The PI3K-AKT-MTOR signal transduction pathway is one of the essential signalling cascades within the cell due to its involvement in many vital functions. The pathway initiates with the recruitment of phosphatidylinositol-3 kinases (PI3Ks) onto the plasma membrane, generating phosphatidylinositol-3,4,5-triphosphate [PtdIns(3,4,5)P3 ] and subsequently activating AKT. Being the central node of the PI3K network, AKT activates the mechanistic target of rapamycin kinase complex 1 (MTORC1) via Tuberous sclerosis complex 2 inhibition in the cytoplasm. Although the cytoplasmic role of the pathway has been widely explored for decades, we now know that most of the effector molecules of the PI3K axis diverge from the canonical route and translocate to other cell organelles including the nucleus. The presence of phosphoinositides (PtdIns) inside the nucleus itself indicates the existence of a nuclear PI3K signalling. The nuclear localization of these signaling components is evident in regulating many nuclear processes like DNA replication, transcription, DNA repair, maintenance of genomic integrity, chromatin architecture, and cell cycle control. Here, our review intends to present a comprehensive overview of the nuclear functions of the PI3K-AKT-MTOR signaling biomolecules.
Collapse
Affiliation(s)
- Sakshi Gupta
- Department of Molecular Reproduction, Development & Genetics, Indian Institute of Science, Bangalore, Karnataka, India
| | - Mukund Kumar
- Department of Molecular Reproduction, Development & Genetics, Indian Institute of Science, Bangalore, Karnataka, India
| | - Soumi Chaudhuri
- Department of Molecular Reproduction, Development & Genetics, Indian Institute of Science, Bangalore, Karnataka, India
| | - Arun Kumar
- Department of Molecular Reproduction, Development & Genetics, Indian Institute of Science, Bangalore, Karnataka, India
| |
Collapse
|
2
|
Class IA PI3K regulatory subunits: p110-independent roles and structures. Biochem Soc Trans 2021; 48:1397-1417. [PMID: 32677674 PMCID: PMC7458397 DOI: 10.1042/bst20190845] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/26/2020] [Accepted: 06/30/2020] [Indexed: 12/12/2022]
Abstract
The phosphatidylinositol 3-kinase (PI3K) pathway is a critical regulator of many cellular processes including cell survival, growth, proliferation and motility. Not surprisingly therefore, the PI3K pathway is one of the most frequently mutated pathways in human cancers. In addition to their canonical role as part of the PI3K holoenzyme, the class IA PI3K regulatory subunits undertake critical functions independent of PI3K. The PI3K regulatory subunits exist in excess over the p110 catalytic subunits and therefore free in the cell. p110-independent p85 is unstable and exists in a monomer-dimer equilibrium. Two conformations of dimeric p85 have been reported that are mediated by N-terminal and C-terminal protein domain interactions, respectively. The role of p110-independent p85 is under investigation and it has been found to perform critical adaptor functions, sequestering or influencing compartmentalisation of key signalling proteins. Free p85 has roles in glucose homeostasis, cellular stress pathways, receptor trafficking and cell migration. As a regulator of fundamental pathways, the amount of p110-independent p85 in the cell is critical. Factors that influence the monomer-dimer equilibrium of p110-independent p85 offer additional control over this system, disruption to which likely results in disease. Here we review the current knowledge of the structure and functions of p110-independent class IA PI3K regulatory subunits.
Collapse
|
3
|
Endocytic regulation of cytokine receptor signaling. Cytokine Growth Factor Rev 2016; 32:63-73. [DOI: 10.1016/j.cytogfr.2016.07.002] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 07/13/2016] [Indexed: 12/11/2022]
|
4
|
Signaling specificity in the Akt pathway in biology and disease. Adv Biol Regul 2014; 55:28-38. [PMID: 24794538 DOI: 10.1016/j.jbior.2014.04.001] [Citation(s) in RCA: 156] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 03/31/2014] [Accepted: 04/09/2014] [Indexed: 12/13/2022]
Abstract
Akt/PKB is a key master regulator of a wide range of physiological functions including metabolism, proliferation, survival, growth, angiogenesis and migration and invasion. The Akt protein kinase family comprises three highly related isoforms encoded by different genes. The initial observation that the Akt isoforms share upstream activators as well as several downstream effectors, together with the high sequence homology suggested that their functions were mostly redundant. By contrast, an increasing body of evidence has recently uncovered the concept of Akt isoform signaling specificity, supported by distinct phenotypes displayed by animal strains genetically modified for each of the three genes, as well as by the identification of isoform-specific substrates and association with discrete subcellular locations. Given that Akt is regarded as a promising therapeutic target in a number of pathologies, it is essential to dissect the relative contributions of each isoform, as well as the degree of compensation in pathophysiological function. Here we summarize our view of how Akt selectivity is achieved in the context of subcellular localization, isoform-specific substrate phosphorylation and context-dependent functions in normal and pathophysiological settings.
Collapse
|
5
|
Chiu YH, Lee JY, Cantley LC. BRD7, a tumor suppressor, interacts with p85α and regulates PI3K activity. Mol Cell 2014; 54:193-202. [PMID: 24657164 DOI: 10.1016/j.molcel.2014.02.016] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 01/15/2014] [Accepted: 02/06/2014] [Indexed: 12/27/2022]
Abstract
Phosphoinositide 3-kinase (PI3K) activity is important for regulating cell growth, survival, and motility. We report here the identification of bromodomain-containing protein 7 (BRD7) as a p85α-interacting protein that negatively regulates PI3K signaling. BRD7 binds to the inter-SH2 (iSH2) domain of p85 through an evolutionarily conserved region located at the C terminus of BRD7. Via this interaction, BRD7 facilitates nuclear translocation of p85α. The BRD7-dependent depletion of p85 from the cytosol impairs formation of p85/p110 complexes in the cytosol, leading to a decrease in p110 proteins and in PI3K pathway signaling. In contrast, silencing of endogenous BRD7 expression by RNAi increases the steady-state level of p110 proteins and enhances Akt phosphorylation after stimulation. These data suggest that BRD7 and p110 compete for the interaction to p85. The unbound p110 protein is unstable, leading to the attenuation of PI3K activity, which suggests how BRD7 could function as a tumor suppressor.
Collapse
Affiliation(s)
- Yu-Hsin Chiu
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA; Division of Signal Transduction, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | - Jennifer Y Lee
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA; Division of Signal Transduction, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | - Lewis C Cantley
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA; Division of Signal Transduction, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA; Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA.
| |
Collapse
|
6
|
Du W, Cui Z, Tsui ZC, Chen Q, Willingham MC. In situ immunocytochemical detection of altered membrane composition induced by cell-cell contact in cultured mammalian cells. Microsc Res Tech 2008; 71:749-59. [PMID: 18618594 DOI: 10.1002/jemt.20616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In cultured mammalian cells, both normal and transformed, cell-cell contact was shown to alter the detergent extractability of nuclear and plasma membranes detected using immunocytochemistry of fixed cells. This alteration occurred in each cell individually, occurred in less than 1 hour after altered cell-cell contact, and did not involve new protein or mRNA synthesis. These results indicate that composition of cellular membranes is highly affected by cell-cell contact and culture density. This suggests a possible role for alterations in membrane composition in the regulation of normal cell behavior, including signaling of contact inhibition of growth and movement, behaviors that are not effectively regulated by cell-cell contact in malignantly transformed cells.
Collapse
Affiliation(s)
- Wei Du
- Tumor Biology Section, Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA
| | | | | | | | | |
Collapse
|
7
|
Blanco AM, Perez-Arago A, Fernandez-Lizarbe S, Guerri C. Ethanol mimics ligand-mediated activation and endocytosis of IL-1RI/TLR4 receptors via lipid rafts caveolae in astroglial cells. J Neurochem 2008; 106:625-39. [PMID: 18419766 DOI: 10.1111/j.1471-4159.2008.05425.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We have recently reported that ethanol-induced inflammatory processes in the brain and glial cells are mediated via the activation of interleukin-1 beta receptor type I (IL-1RI)/toll-like receptor type 4 (TLR4) signalling. The mechanism(s) by which ethanol activates these receptors in astroglial cells remains unknown. Recently, plasma membrane microdomains, lipid rafts, have been identified as platforms for receptor signalling and, in astrocytes, rafts/caveolae constitute an important integrators of signal events and trafficking. Here we show that stimulation of astrocytes with IL-1beta, lipopolysaccharide or ethanol (10 and 50 mM), triggers the translocation of IL-1RI and/or TLR4 into lipid rafts caveolae-enriched fractions, promoting the recruitment of signalling molecules (phospho-IL-1R-associated kinase and phospho-extracellular regulated-kinase) into these microdomains. With confocal microscopy, we further demonstrate that IL-1RI is internalized by caveolar endocytosis via enlarged caveosomes organelles upon IL-1beta or ethanol treatment, which sorted their IL-1RI cargo into the endoplasmic reticulum-Golgi compartment and into the nucleus of astrocytes. In short, our findings demonstrate that rafts/caveolae are critical for IL-1RI and TLR4 signalling in astrocytes, and reveal a novel mechanism by which ethanol, by interacting with lipid rafts caveolae, promotes IL-1RI and TLR4 receptors recruitment, triggering their endocytosis via caveosomes and downstream signalling stimulation. These results suggest that TLRs receptors are important targets of ethanol-induced inflammatory damage in the brain.
Collapse
Affiliation(s)
- Ana M Blanco
- Department of Cellular Pathology, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | | | | | | |
Collapse
|
8
|
Cocco L, Faenza I, Fiume R, Maria Billi A, Gilmour RS, Manzoli FA. Phosphoinositide-specific phospholipase C (PI-PLC) β1 and nuclear lipid-dependent signaling. Biochim Biophys Acta Mol Cell Biol Lipids 2006; 1761:509-21. [PMID: 16624616 DOI: 10.1016/j.bbalip.2006.03.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2005] [Revised: 03/02/2006] [Accepted: 03/03/2006] [Indexed: 10/24/2022]
Abstract
Over the last years, evidence has suggested that phosphoinositides, which are involved in the regulation of a large variety of cellular processes both in the cytoplasm and in the plasma membrane, are present also within the nucleus. A number of advances has resulted in the discovery that phosphoinositide-specific phospholipase C signalling in the nucleus is involved in cell growth and differentiation. Remarkably, the nuclear inositide metabolism is regulated independently from that present elsewhere in the cell. Even though nuclear inositol lipids hydrolysis generates second messengers such as diacylglycerol and inositol 1,4,5-trisphosphate, it is becoming increasingly clear that in the nucleus polyphosphoinositides may act by themselves to influence pre-mRNA splicing and chromatin structure. Among phosphoinositide-specific phospholipase C, the beta(1) isoform appears to be one of the key players of the nuclear lipid signaling. This review aims at highlighting the most significant and up-dated findings about phosphoinositide-specific phospholipase C beta(1) in the nucleus.
Collapse
Affiliation(s)
- Lucio Cocco
- Cellular Signalling Laboratory, Department of Human Anatomical Sciences, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy.
| | | | | | | | | | | |
Collapse
|
9
|
Ye K. PIKE GTPase-mediated nuclear signalings promote cell survival. Biochim Biophys Acta Mol Cell Biol Lipids 2006; 1761:570-6. [PMID: 16567124 DOI: 10.1016/j.bbalip.2006.02.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2005] [Revised: 02/19/2006] [Accepted: 02/20/2006] [Indexed: 10/24/2022]
Abstract
The nuclear GTPase PIKE (PI 3-kinase Enhancer) binds PI 3-kinase and enhances it lipid kinase activity. PIKE predominantly distributes in the brain, and nerve growth factor stimulation triggers PIKE activation by provoking nuclear translocation of PLC-gamma1, which acts as a physiologic guanine nucleotide exchange factor (GEF) for PIKE through its SH3 domain. PIKE contains GTPase and ArfGAP domains, which are separated by a PH domain. C-terminal ArfGAP domain activates its internal GTPase activity, and this process is regulated by the interaction between phosphatidylinositols and PH domain. PI 3-kinase occurs in the nuclei of a broad range of cell types, and various stimuli elicit its nuclear translocation. The nuclei from NGF-treated PC12 cells are resistant to DNA fragmentation initiated by activated cell-free apoptosome, for which PIKE/nuclear PI 3-kinase signaling through nuclear PI(3,4,5)P(3) and Akt plays an essential role. As a nuclear receptor for PI(3,4,5)P(3,) B23 binds to PI(3,4,5)P(3) in an NGF-dependent way. The PI(3,4,5)P(3)/B23 complex inhibits DNA fragmentation activity of CAD. Nuclear Akt regulation of apoptosis is dependent on its phosphorylation of key substrates in the nucleus, but the identities of these substrates are unknown. Identification of its nuclear substrates will further our understanding of the physiological roles of nuclear PI 3-kinase/Akt signaling.
Collapse
Affiliation(s)
- Keqiang Ye
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
10
|
Oda K, Kitano H. A comprehensive map of the toll-like receptor signaling network. Mol Syst Biol 2006; 2:2006.0015. [PMID: 16738560 PMCID: PMC1681489 DOI: 10.1038/msb4100057] [Citation(s) in RCA: 242] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2005] [Accepted: 02/23/2006] [Indexed: 12/18/2022] Open
Abstract
Recognition of pathogen-associated molecular signatures is critically important in proper activation of the immune system. The toll-like receptor (TLR) signaling network is responsible for innate immune response. In mammalians, there are 11 TLRs that recognize a variety of ligands from pathogens to trigger immunological responses. In this paper, we present a comprehensive map of TLRs and interleukin 1 receptor signaling networks based on papers published so far. The map illustrates the possible existence of a main network subsystem that has a bow-tie structure in which myeloid differentiation primary response gene 88 (MyD88) is a nonredundant core element, two collateral subsystems with small GTPase and phosphatidylinositol signaling, and MyD88-independent pathway. There is extensive crosstalk between the main bow-tie network and subsystems, as well as feedback and feedforward controls. One obvious feature of this network is the fragility against removal of the nonredundant core element, which is MyD88, and involvement of collateral subsystems for generating different reactions and gene expressions for different stimuli.
Collapse
Affiliation(s)
- Kanae Oda
- The Systems Biology Institute, Tokyo, Japan
- Department of Fundamental Science and Technology, Keio University, Tokyo, Japan
| | - Hiroaki Kitano
- The Systems Biology Institute, Tokyo, Japan
- Department of Fundamental Science and Technology, Keio University, Tokyo, Japan
- Sony Computer Science Laboratories Inc., Tokyo, Japan
- The Systems Biology Institute, Suite 6A, M31 6-31-15 Jingumae, Shibuya, Tokyo 150-0001, Japan. Tel.: +81 3 5468 1661; Fax: +81 3 5468 1664; E-mail:
| |
Collapse
|
11
|
Davis CN, Mann E, Behrens MM, Gaidarova S, Rebek M, Rebek J, Bartfai T. MyD88-dependent and -independent signaling by IL-1 in neurons probed by bifunctional Toll/IL-1 receptor domain/BB-loop mimetics. Proc Natl Acad Sci U S A 2006; 103:2953-8. [PMID: 16477040 PMCID: PMC1413805 DOI: 10.1073/pnas.0510802103] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Interleukin (IL)-1beta is a pluripotent proinflammatory cytokine that signals through the type-I IL-1 receptor (IL-1RI), a member of the Toll-like receptor family. In hypothalamic neurons, binding of IL-1beta to IL-1RI mediates transcription-dependent changes that depend on the recruitment of the cytosolic adaptor protein myeloid differentiation primary-response protein 88 (MyD88) to the IL-1RI/IL-1 receptor accessory protein (IL-1RAcP) complex through homomeric Toll/IL-1 receptor (TIR)-TIR interactions. Through design and synthesis of bifunctional TIR mimetics that disrupt the interaction of MyD88 with the IL-1RI/IL-1RAcP complex, we analyzed the involvement of MyD88 in the signaling of IL-1beta in anterior hypothalamic neurons. We show here that IL-1beta-mediated activation of the protein tyrosine kinase Src depended on a MyD88 interaction with the IL-1RI/IL-1RAcP complex. The activation of the protein kinase Akt/PKB depended on the recruitment of the p85 subunit of PI3K to IL-1RI and independent of MyD88 association with the IL-1RI/IL-1RAcP complex. These bifunctional TIR-TIR mimetics represent a class of low-molecular-weight compounds with both an antiinflammatory and neuroprotective potential. These compounds have the potential to inhibit the MyD88-dependent proinflammatory actions of IL-1beta, while permitting the potential neuronal survival supporting actions mediated by the MyD88-independent activation of the protein kinase Akt.
Collapse
Affiliation(s)
- Christopher N. Davis
- *The Harold L. Dorris Neurological Institute and Department of Molecular and Integrative Neurosciences and
| | - Enrique Mann
- The Skaggs Institute of Chemical Biology and Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
| | - M. Margarita Behrens
- *The Harold L. Dorris Neurological Institute and Department of Molecular and Integrative Neurosciences and
| | - Svetlana Gaidarova
- *The Harold L. Dorris Neurological Institute and Department of Molecular and Integrative Neurosciences and
| | - Mitra Rebek
- *The Harold L. Dorris Neurological Institute and Department of Molecular and Integrative Neurosciences and
| | - Julius Rebek
- The Skaggs Institute of Chemical Biology and Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
- To whom correspondence should be addressed. E-mail:
| | - Tamas Bartfai
- *The Harold L. Dorris Neurological Institute and Department of Molecular and Integrative Neurosciences and
| |
Collapse
|
12
|
Abstract
PI 3-kinase enhancer (PIKE) is a nuclear GTPase that enhances PI 3-kinase (PI3K) activity. Nerve growth factor (NGF) treatment leads to PIKE activation by triggering the nuclear translocation of PLC-gamma1, which acts as a physiological guanine nucleotide exchange factor (GEF) for PIKE. PI3K occurs in the nuclei of a broad range of cell types, and various stimuli elicit PI3K nuclear translocation. While cytoplasmic PI3K has been well characterized, little is known about the biological function of nuclear PI3K. Surprisingly, nuclei from 30 min NGF-treated PC12 cells are resistant to DNA fragmentation initiated by the activated cell-free apoptosome, and both PIKE and nuclear PI3K are sufficient and necessary for this effect. Moreover, pretreatment of the control nucleus with PI(3,4,5)P3 alone mimics the anti-apoptotic activity of NGF by selectively preventing apoptosis, for which nuclear Akt is required but not sufficient. Recently, a nuclear PI(3,4,5)P3 receptor, nucleophosmin/B23, has been identified from NGF-treated PC12 nuclear extract. PI(3,4,5)P3/B23 complex mediates the anti-apoptotic effects of NGF by inhibiting DNA fragmentation activity of caspase-activated DNase (CAD). Thus, PI(3,4,5)P3/B23 complex and nuclear Akt effectors might coordinately mediate PIKE/nuclear PI3K signaling in promoting cell survival by NGF.
Collapse
Affiliation(s)
- Keqiang Ye
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
| |
Collapse
|
13
|
Zini N, Lisignoli G, Solimando L, Bavelloni A, Valmori A, Cristino S, Martelli AM, Facchini A, Maraldi NM. Quantitative immunodetection of key elements of polyphosphoinositide signal transduction in osteoblasts from arthritic patients shows a direct correlation with cell proliferation. Histochem Cell Biol 2005; 124:131-7. [PMID: 16052323 DOI: 10.1007/s00418-005-0022-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2005] [Indexed: 11/24/2022]
Abstract
Phosphoinositides play an essential role in diverse cellular functions such as cell proliferation, cytoskeletal regulation, intracellular vesicle trafficking, motility, cell metabolism and death. Alteration of these pathways is common to many diseases. In this study, we show that osteoblasts from patients affected by osteoarthritis (OA) and by rheumatoid arthritis (RA) present a decreased cell proliferation and a reduced expression of the key elements of polyphosphoinositide signal transduction such as phosphatidylinositol-3-kinase (PI 3K), phospholipase C gamma1 (PLCgamma1), and protein kinase C zeta (PKCzeta) compared to the post-traumatic (PT) patients. Our results suggest that a correlation may exist between the reduced osteoblast proliferation observed in OA and RA patients and the lowered expression of PI 3K, PLCgamma1, and PKCzeta enzymes. The reduced proliferation rate of osteoblasts in response to these signal transduction effectors could counteract the evolution of arthritic disease.
Collapse
Affiliation(s)
- Nicoletta Zini
- ITOI--CNR, Sezione di Bologna c/o IOR, via di Barbiano 1/10, 40136 Bologna, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Sharma R, Sud N, Chattopadhyay TK, Ralhan R. TC21/R-Ras2 Upregulation in Esophageal Tumorigenesis: Potential Diagnostic Implications. Oncology 2005; 69:10-8. [PMID: 16088230 DOI: 10.1159/000087283] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2004] [Accepted: 10/24/2004] [Indexed: 11/19/2022]
Abstract
OBJECTIVES Early detection of esophageal cancer is hampered by paucity of molecular markers for diagnosis of this aggressive gastrointestinal malignancy in early stages. We recently identified TC21/R-Ras2, a small GTP-binding protein (SMG) in esophageal squamous cell carcinomas (ESCCs) by differential display. This study was designed to test the hypothesis that differential expression of TC21 in normal, dysplastic and malignant esophageal tissues may be of clinical relevance in esophageal tumorigenesis. METHODS Immunohistochemical analysis of TC21 was carried out in 83 ESCCs, 37 dysplasias and 29 matched histologically normal esophageal tissues and correlated with clinicopathological parameters. The cellular localization of TC21 was determined by confocal microscopy. RESULTS Expression of TC21 protein was observed in 60/83 (73%) ESCCs predominantly localized in tumor nuclei. Intriguingly, intense TC21 immunoreactivity was observed in all endoscopic biopsies with histological evidence of dysplasia (16 cases) as well as in dysplastic areas distant to ESCCs (21 cases), while matched distant histologically normal epithelia did not show detectable TC21 expression. Immunoblotting and semi-quantitative RT-PCR confirmed TC21 expression in dysplastias and ESCCs. Confocal microscopy showed nuclear as well as cytoplasmic TC21 expression in ESCCs and TE13 cells. CONCLUSIONS To our knowledge, this is the first report demonstrating differential expression of TC21 in normal, dysplastic and ESCC tissues, suggesting that TC21 expression is associated with early stages of esophageal tumorigenesis. Nuclear localization of TC21 makes it the third of over 100 small SMGs identified to be localized in the nucleus.
Collapse
Affiliation(s)
- Rinu Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | | | | | | |
Collapse
|
15
|
Quantitative immunodetection of key elements of polyphosphoinositide signal transduction in osteoblasts from arthritic patients shows a direct correlation with cell proliferation. Biotechnol Lett 2005. [DOI: 10.1007/s10529-005-0227-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
16
|
Bogusiewicz M, Semczuk A, Gogacz M, Skomra D, Jakowicki JA, Rechberger T. Lack of correlation between leptin receptor expression and PI3-K/Akt signaling pathway proteins immunostaining in endometrioid-type endometrial carcinomas. Cancer Lett 2005; 238:61-8. [PMID: 16085355 DOI: 10.1016/j.canlet.2005.06.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2005] [Revised: 06/10/2005] [Accepted: 06/13/2005] [Indexed: 11/30/2022]
Abstract
A number of studies published recently focused on the putative role of leptin in the pathogenesis of various primary human malignancies. Current study was aimed at investigating ObR, PI3-kinase, phospho-Akt kinase and PTEN proteins expression in forty-five primary human endometrioid-type endometrial carcinomas (EC). ObR immunostaining was detected in 21 of 45 (47%) ECs, presented in almost 60% of well- and moderately-differentiated tumors compared to only 17% of poorly-differentiated neoplasms (P<0.05). Semi-quantitative histological score (H-score) ObR values were inversely correlated with patients' body mass index (R=-0.35; P=0.019). ObR expression was significantly higher in normal weight compared to overweight and obese patients (P=0.024). All slides displayed intense PI3-kinase immunoreactivity, whereas phospho-Akt kinase expression was reported in 96% (43 out of 45) cases. Fifteen (33%) ECs were negative for PTEN expression, nine (20%) showed heterogeneous immunostaining pattern, whereas 21 (47%) were PTEN-positive. There was a trend towards a higher phospho-Akt kinase intensity immunostaining in PTEN-negative compared to PTEN-positive cases, but the difference was not significant. There was no significant association between each PI3-K/Akt signaling pathway proteins immunostaining in endometrioid-type ECs. In conclusion, ObR expression is associated with histological grading and the weight of women affected by EC. The components of PI3-K/Akt kinase signaling pathway are expressed in most of the primary endometrioid-type endometrial neoplasms.
Collapse
Affiliation(s)
- Michał Bogusiewicz
- 2nd Department of Gynecology, Lublin University School of Medicine, 8 Jaczewski street, 20-954, Lublin, Poland
| | | | | | | | | | | |
Collapse
|
17
|
Böl GF, Jurrmann N, Brigelius-Flohé R. Cellular trafficking of the IL-1RI-associated kinase-1 requires intact kinase activity. Biochem Biophys Res Commun 2005; 332:279-87. [PMID: 15896328 DOI: 10.1016/j.bbrc.2005.04.121] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2005] [Accepted: 04/23/2005] [Indexed: 10/25/2022]
Abstract
Upon stimulation of cells with interleukin-1 (IL-1) the IL-1 receptor type I (IL-1RI) associated kinase-1 (IRAK-1) transiently associates to and dissociates from the IL-1RI and thereafter translocates into the nucleus. Here we show that nuclear translocation of IRAK-1 depends on its kinase activity since translocation was not observed in EL-4 cells overexpressing a kinase negative IRAK-1 mutant (EL-4(IRAK-1-K239S)). IRAK-1 itself, an endogenous substrate with an apparent molecular weight of 24kDa (p24), and exogenous substrates like histone and myelin basic protein are phosphorylated by nuclear located IRAK-1. Phosphorylation of p24 cannot be detected in EL-4(IRAK-1-K239S) cells. IL-1-dependent recruitment of IRAK-1 to the IL-1RI and subsequent phosphorylation of IRAK-1 is a prerequisite for nuclear translocation of IRAK-1. It is therefore concluded that intracellular localization of IRAK-1 depends on its kinase activity and that IRAK-1 may also function as a kinase in the nucleus as shown by a new putative endogenous substrate.
Collapse
Affiliation(s)
- Gaby-Fleur Böl
- German Institute of Human Nutrition Potsdam-Rehbruecke, Biochemistry of Micronutrients, 14558 Nuthetal, Germany.
| | | | | |
Collapse
|
18
|
Ahn JY, Liu X, Cheng D, Peng J, Chan PK, Wade PA, Ye K. Nucleophosmin/B23, a Nuclear PI(3,4,5)P3 Receptor, Mediates the Antiapoptotic Actions of NGF by Inhibiting CAD. Mol Cell 2005; 18:435-45. [PMID: 15893727 DOI: 10.1016/j.molcel.2005.04.010] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2004] [Revised: 03/21/2005] [Accepted: 04/19/2005] [Indexed: 11/23/2022]
Abstract
Phosphatidylinositol 3,4,5-triphosphate [PI(3,4,5)P(3)] is an essential second messenger implicated in various cellular processes. Cytoplasmic PI(3,4,5)P(3) has been well characterized, but little is known about the physiological role of nuclear PI(3,4,5)P(3). Here, we describe a nuclear PI(3,4,5)P(3) receptor, nucleophosmin (NPM)/B23, that mediates the antiapoptotic effects of NGF by inhibiting DNA fragmentation activity of caspase-activated DNase (CAD). Employing PI(3,4,5)P(3) column and NGF-treated PC12 nuclear extracts, we identified B23 as a nuclear PI(3,4,5)P(3) binding protein. Purification from nuclear extract demonstrates that B23 contributes to DNA fragmentation inhibitory activity. Depletion of B23 from nuclear extracts or knockdown B23 in PC12 cells abolishes NGF-provoked protective effect, whereas overexpression of B23 in PC12 cells prevents apoptosis. Further, hydrolyzing PI(3,4,5)P(3) with PTEN or SHIP abrogates its antiapoptotic activity. Moreover, B23 mutants that can not associate with PI(3,4,5)P(3) fail to prevent DNA fragmentation. Thus, the nuclear B23-PI(3,4,5)P(3) complex regulates the antiapoptotic activity of NGF in the nucleus.
Collapse
Affiliation(s)
- Jee-Yin Ahn
- Department of Pathology and Laboratory Medicine, School of Medicine, Emory University, Atlanta, Georgia 30322, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Park JI, Strock CJ, Ball DW, Nelkin BD. Interleukin-1β can mediate growth arrest and differentiation via the leukemia inhibitory factor/JAK/STAT pathway in medullary thyroid carcinoma cells. Cytokine 2005; 29:125-34. [PMID: 15613280 DOI: 10.1016/j.cyto.2004.10.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2004] [Revised: 09/15/2004] [Accepted: 10/06/2004] [Indexed: 02/05/2023]
Abstract
Interleukin-1beta (IL-1beta) is a pleiotropic cytokine that can induce several cellular signal transduction pathways. Here, we show that IL-1beta can induce cell cycle arrest and differentiation in the human medullary thyroid carcinoma (MTC) cell line, TT. IL-1beta induces cell cycle arrest accompanied by morphological changes and expression of the neuroendocrine marker calcitonin. These changes are blocked by the MEK1/2 specific inhibitor U0126, indicating that MEK1/2 is essential for IL-1beta signaling in TT cells. IL-1beta induces expression of leukemia inhibitory factor (LIF) and activation of STAT3 via the MEK/ERK pathway. This activation of STAT3 could be abrogated by treatment with anti-LIF neutralizing antibody or anti-gp130 blocking antibody, indicating that induction of LIF expression is sufficient and essential for STAT3 activation by IL-1beta. In addition to activation of the LIF/JAK/STAT pathway, IL-1beta also induced an MEK/ERK-mediated intracellular cell-autonomous signaling pathway that is independently sufficient for growth arrest and differentiation. Thus, IL-1beta activates the MEK/ERK pathway to induce growth arrest and differentiation in MTC cells via dual independent signaling mechanisms, the cell-extrinsic LIF/JAK/STAT pathway, and the cell-intrinsic autonomous signaling pathway.
Collapse
Affiliation(s)
- Jong-In Park
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine, CRB572, 1650 Orleans Street, Baltimore, MD 21231, USA.
| | | | | | | |
Collapse
|
20
|
Ahn JY, Rong R, Liu X, Ye K. PIKE/nuclear PI 3-kinase signaling mediates the antiapoptotic actions of NGF in the nucleus. EMBO J 2004; 23:3995-4006. [PMID: 15385964 PMCID: PMC524338 DOI: 10.1038/sj.emboj.7600392] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2004] [Accepted: 08/11/2004] [Indexed: 11/08/2022] Open
Abstract
PI 3-kinase (PI3K) occurs in the nuclei of a broad range of cell types, and various stimuli elicit PI3K nuclear translocation. However, little is known about the biological function of nuclear PI3K. Here we show that nuclear PI3K and its upstream regulator PIKE mediate the antiapoptotic activity of nerve growth factor (NGF) in the isolated nuclei. The nuclei from NGF-treated PC12 cells, EGF-treated HEK293 cells and HeLa cells are resistant to DNA fragmentation initiated by activated cell-free apoptosome. Nuclei from constitutively active PI3K adenovirus-infected cells display the same resistance as those treated by NGF, whereas PI3K inhibitors, dominant-negative PI3K or PIKE abolishes it. Knockdown of either PI3K or PIKE diminishes the antiapoptotic activity of NGF. PI (3,4,5)P3 alone mimics the antiapoptotic activity of NGF, for which nuclear Akt is required. These results demonstrate that PIKE/nuclear PI3K signaling through nuclear PI (3,4,5)P3 and Akt plays an essential role in promoting cell survival.
Collapse
Affiliation(s)
- Jee-Yin Ahn
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, USA
| | - Rong Rong
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, USA
| | - Xuesong Liu
- Cancer Research, DEPT R47S, Abbott Park, USA
| | - Keqiang Ye
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, USA
| |
Collapse
|
21
|
Reddy SAG, Lin YF, Huang HJ, Samanta AK, Liao WSL. The IL-1 receptor accessory protein is essential for PI 3-kinase recruitment and activation. Biochem Biophys Res Commun 2004; 316:1022-8. [PMID: 15044087 DOI: 10.1016/j.bbrc.2004.02.155] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2004] [Indexed: 01/26/2023]
Abstract
Interleukin-1 (IL-1) binds to its type I receptors (IL-1R), which in complex with IL-1R accessory protein (IL-1R AcP) induces various intracellular signaling events. We report here that IL-1 triggers the recruitment of phosphoinositide 3-kinase (PI 3-kinase) to a signaling complex and induces its lipid kinase activity in a biphasic manner. This IL-1-induced complex consists of IL-1R, IL-1R AcP, PI 3-kinase, and the IL-1-receptor-associated kinase (IRAK). Deletion of the C-terminus 27 amino acids of IL-1R AcP resulted in a mutant, CDelta27, that could not recruit PI 3-kinase to the signalsome nor stimulate PI3-kinase activity. Moreover, CDelta27 functioned as a dominant-negative mutant that inhibited IL-1-induced PI 3-kinase and NFkappaB activation. CDelta27, however, had no effect on IL-1-dependent activation of the Jun N-terminal kinase (JNK), indicating that distinct regions of IL-1R AcP mediate the activation of PI 3-kinase and JNK. Thus, our results identified a functional region in the IL-1R AcP required for the recruitment and activation of PI 3-kinase.
Collapse
Affiliation(s)
- Shrikanth A G Reddy
- Department of Gastrointestinal Medical Oncology, University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
22
|
Abstract
Phosphoinositide (PI) 3-kinase enhancer (PIKE) is a brain-specific GTPase that binds to PI 3-kinase and stimulates its lipid kinase activity. It exists in two forms: the first to be identified, PIKE-S, is shorter and exclusively nuclear; by contrast, the longer form, PIKE-L, resides in multiple intracellular compartments. Nerve growth factor treatment leads to PIKE-S activation by triggering the nuclear translocation of phospholipase C (PLC)-γ1, which acts as a physiological guanine nucleotide exchange factor (GEF) for PIKE-S through its Src-homlogy 3 (SH3) domain. Cytoplasmic PI 3-kinase and its lipid product phosphatidylinositol (3,4,5)-trisphosphate [PtdIns(3,4,5)P3] regulate the membrane translocation and activation of many signaling molecules by binding to their pleckstrin homology (PH) domains. However, little is known about the physiological roles of their nuclear counterparts. The nuclear PLC-γ1/PIKE-S/PI 3-kinase signaling pathway seems to be an extension of the crosstalk between cytoplasmic PLC-γ1 and PI 3-kinase. PIKE-L contains a C-terminal extension consisting of an ADP ribosylation-GTPase-activating protein (ArfGAP) domain and two ankyrin repeats in addition to the N-terminal GTPase domain. PIKE-L could have additional, extranuclear functions, including regulation of postsynaptic signaling by metabotropic glutamate receptors.
Collapse
Affiliation(s)
- Keqiang Ye
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, 615 Michael Street, Atlanta, GA 30322, USA.
| | | |
Collapse
|
23
|
Abstract
Strong evidence has been accumulating over the last 15 years suggesting that phosphoinositides, which are involved in the regulation of a large variety of cellular processes in the cytoplasm and in the plasma membrane, are present within the nucleus. Several advances have resulted in the discovery that nuclear phosphoinositides are involved in cell growth and differentiation. Remarkably, the nuclear inositide metabolism is regulated independently from that present elsewhere in the cell. Although nuclear inositol lipids generate second messengers such as diacylglycerol and inositol 1,4,5-trisphosphate, it is becoming increasingly clear that in the nucleus polyphosphoinositides may act by themselves to influence pre-mRNA splicing and chromatin structure. This review aims at highlighting the most significant and updated findings about inositol lipid metabolism in the nucleus.
Collapse
Affiliation(s)
- Alberto M Martelli
- Cellular Signalling Laboratory, Department of Human Anatomical Sciences, University of Bologna, via Irnerio 48, 40126, Bologna, Italy
| | | | | |
Collapse
|
24
|
Takano N, Owada Y, Suzuki R, Sakagami H, Shimosegawa T, Kondo H. Cloning and characterization of a novel variant (mM-rdgBbeta1) of mouse M-rdgBs, mammalian homologs of Drosophila retinal degeneration B gene proteins, and its mRNA localization in mouse brain in comparison with other M-rdgBs. J Neurochem 2003; 84:829-39. [PMID: 12562526 DOI: 10.1046/j.1471-4159.2003.01591.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We report the cloning, characterization and localization in the brain of a novel isoform termed mM-rdgBbeta1 (mouse type of mammalian retinal degeneration Bbeta1 protein) in comparison with the localization of three known mammalian homologs (M-rdgBbeta, M-rdgB1, M-rdgB2). mM-rdgBbeta1 cDNA contains a sequence of 119 bp as a form of insertion in the open reading frame of the known mM-rdgBbeta, and encodes a protein of 269 amino acids with a calculated molecular mass of 31.7 kDa, different from the molecular mass of 38.3 kDa of mM-rdgBbeta. It also contains a phosphatidylinositol transfer protein (PITP)-like domain similar to the known three homologs, as well as D-rdgB. The recombinant mM-rdgBbeta1 protein shows the specific binding activity to phosphatidylinositol but not to other phospholipids. This novel molecule is localized not only in the cytoplasm but also in the nucleus, different from the cytoplasmic localization of mM-rdgBbeta. In in situ hybridization analysis, the gene expression for mM-rdgBbeta1 in the brain, though weak, is rather confined to the embryonic stage, different from wider expression of mM-rdgBbeta in the gray matters of pre- and post-natal brains. Taken together, mM-rdgBbeta1 is suggested to play a role in the phosphoinositide-mediated signaling in the neural development.
Collapse
Affiliation(s)
- Nobuo Takano
- Division of Histology, Department of Cell Biology, Graduate School of Medicine, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | | | | | | | | | | |
Collapse
|
25
|
Martin MU, Wesche H. Summary and comparison of the signaling mechanisms of the Toll/interleukin-1 receptor family. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1592:265-80. [PMID: 12421671 DOI: 10.1016/s0167-4889(02)00320-8] [Citation(s) in RCA: 292] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The Toll/interleukin-1 (IL-1) receptor (TIR) family comprises two groups of transmembrane proteins, which share functional and structural properties. The members of the IL-1 receptor (IL-1R) subfamily are characterized by three extracellular immunoglobulin (Ig)-like domains. They form heterodimeric signaling receptor complexes consisting of receptor and accessory proteins. The members of the Toll-like receptor (TLR) subfamily recognize alarm signals that can be derived either from pathogens or the host itself. TLRs possess leucine-rich repeats in their extracellular part. TLRs can form dimeric receptor complexes consisting of two different TLRs or homodimers in the case of TLR4. The TLR4 receptor complex requires supportive molecules for optimal response to its ligand lipopolysaccharide (LPS). A hallmark of the TIR family is the cytoplasmic TIR domain that is indispensable for signal transduction. The TIR domain serves as a scaffold for a series of protein-protein interactions which result in the activation of a unique signaling module consisting of MyD88, interleukin-1 receptor associated kinase (IRAK) family members and Tollip, which is used exclusively by TIR family members. Subsequently, several central signaling pathways are activated in parallel, the activation of NFkappaB being the most prominent event of the inflammatory response. Recent developments indicate that in addition to the common signaling module MyD88/IRAK/Tollip, other molecules can modulate signaling by TLRs, especially of TLR4, resulting in differential biological answers to distinct pathogenic structures. Subtle differences in TLR signaling pathways are now becoming apparent, which reveal how the innate immune system decides at a very early stage the direction in which the adaptive immune response will develop. The creation of pathogen-specific mediator environments by dendritic cells defines whether a cellular or humoral response will be activated in response to the pathogen.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Animals
- Antigens, Differentiation/physiology
- Carrier Proteins/physiology
- Drosophila Proteins
- Humans
- Interleukin-1 Receptor-Associated Kinases
- Interleukin-18/chemistry
- Interleukin-18 Receptor alpha Subunit
- Intracellular Signaling Peptides and Proteins
- Membrane Glycoproteins/chemistry
- Membrane Glycoproteins/physiology
- Models, Molecular
- Myeloid Differentiation Factor 88
- Protein Kinases/physiology
- Protein Structure, Tertiary
- Receptors, Cell Surface/chemistry
- Receptors, Cell Surface/physiology
- Receptors, Immunologic/physiology
- Receptors, Interleukin/chemistry
- Receptors, Interleukin/physiology
- Receptors, Interleukin-1/chemistry
- Receptors, Interleukin-1/physiology
- Receptors, Interleukin-18
- Signal Transduction
- Toll-Like Receptor 4
- Toll-Like Receptors
Collapse
Affiliation(s)
- Michael U Martin
- Institute of Pharmacology OE 5320, Hannover Medical School, Germany.
| | | |
Collapse
|
26
|
Neri LM, Borgatti P, Capitani S, Martelli AM. The nuclear phosphoinositide 3-kinase/AKT pathway: a new second messenger system. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1584:73-80. [PMID: 12385889 DOI: 10.1016/s1388-1981(02)00300-1] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Lipid second messengers, particularly those derived from the polyphosphoinositide cycle, play a pivotal role in several cell signaling networks. Phosphoinositide 3-kinases (PI3Ks) generate specific inositol lipids that have been implicated in a plethora of cell functions. One of the best-characterized targets of PI3K lipid products is the serine/threonine protein kinase Akt. Recent findings have implicated Akt in cancer progression because it stimulates cell proliferation and suppresses apoptosis. Evidence accumulated over the past 15 years has highlighted the presence of an autonomous nuclear inositol lipid metabolism, and suggests that lipid molecules are important components of signaling pathways operating within the nucleus. PI3Ks, their lipid products, and Akt have also been identified at the nuclear level. In this review, we shall summarize the most updated findings about these molecules in relationship with the nuclear compartment and provide an overview of the possible mechanisms by which they regulate important cell functions.
Collapse
Affiliation(s)
- Luca M Neri
- Dipartimento di Morfologia ed Embriologia, Sezione di Anatomia Umana, Università di Ferrara, via Fossato di Mortara 66, 44100 Ferrara, Italy.
| | | | | | | |
Collapse
|
27
|
Visnjić D, Crljen V, Curić J, Batinić D, Volinia S, Banfić H. The activation of nuclear phosphoinositide 3-kinase C2beta in all-trans-retinoic acid-differentiated HL-60 cells. FEBS Lett 2002; 529:268-74. [PMID: 12372612 DOI: 10.1016/s0014-5793(02)03357-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The activity of nuclear phosphoinositide 3-kinase C2beta (PI3K-C2beta) was investigated in HL-60 cells induced to differentiate along granulocytic or monocytic lineages. A significant increase in the activity of immunoprecipitated PI3K-C2beta was observed in the nuclei and nuclear envelopes isolated from all-trans-retinoic acid (ATRA)-differentiated cells which was inhibited by the presence of PI3K inhibitor LY 294002. High-performance liquid chromatography analysis of inositol lipids showed an increased incorporation of radiolabelled phosphate in both PtdIns(3)P and PtdIns(3,4,5)P(3) with no changes in the levels of PtdIns(4)P, PtdIns(3,4)P(2) and PtdIns(4,5)P(2). Western blot analysis of the PI3K-C2beta immunoprecipitates with anti-P-Tyr antibody revealed a significant increase in the level of the immunoreactive band corresponding to PI3K-C2beta in the nuclei and nuclear envelopes isolated from ATRA-differentiated cells.
Collapse
Affiliation(s)
- Dora Visnjić
- Department of Physiology and Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Salata 3, 10000 Zagreb, Croatia
| | | | | | | | | | | |
Collapse
|
28
|
Faenza I, Matteucci A, Bavelloni A, Marmiroli S, Martelli AM, Gilmour RS, Suh PG, Manzoli L, Cocco L. Nuclear PLCbeta(1) acts as a negative regulator of p45/NF-E2 expression levels in Friend erythroleukemia cells. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1589:305-10. [PMID: 12031797 DOI: 10.1016/s0167-4889(02)00192-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
It is well established that phospholipase C (PLC) beta(1) plays a role in the nuclear compartment and is involved in the signalling pathway that controls the switching of the erythroleukemia cells programming from an undifferentiated to a differentiated state. Constitutive overexpression of nuclear PLCbeta(1) has been previously shown to inhibit Friend cells differentiation. For further characterization, we investigated the localization of PLCbeta(1)a and PLCbeta(1)b in Friend cells by fusing their cDNA to enhanced green fluorescent protein (GFP). To investigate the potential target of nuclear PLCbeta(1) in Friend differentiation, we studied the expression of p45/NF-E2 transcription factor, which is an enhancer binding protein for expression of the beta-globin gene and the expression of GATA proteins that are important for the survival and differentiation of erythroid cells. Our data suggest that the overexpression of PLCbeta(1) (both 1a and 1b) only in the nuclear compartment significantly reduces the expression of p45/NF-E2. The effect observed is attributable to the specific action of nuclear PLCbeta(1) signalling given that GATA-1 and GATA-3 are not affected at all. Here we show the existence of a unique target, i.e. the transcription factor p45/NF-E2, whose expression is specifically inhibited by the nuclear signalling evoked by PLCbeta(1) forms.
Collapse
Affiliation(s)
- Irene Faenza
- Cellular Signaling Laboratory, Department of Anatomical Sciences, University of Bologna, Via Irnerio 48, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Neri LM, Bortul R, Tabellini G, Borgatti P, Baldini G, Celeghini C, Capitani S, Martelli AM. Erythropoietin-induced erythroid differentiation of K562 cells is accompanied by the nuclear translocation of phosphatidylinositol 3-kinase and intranuclear generation of phosphatidylinositol (3,4,5) trisphosphate. Cell Signal 2002; 14:21-9. [PMID: 11747985 DOI: 10.1016/s0898-6568(01)00224-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
D-3 phosphorylated inositides are a peculiar class of lipids, synthesized by phosphatidylinositol 3-kinase (PtdIns 3-K), which are also present in the nucleus. In order to clarify a possible role for nuclear D-3 phosphorylated inositides during human erythroid differentiation, we have examined the issue of whether or not, in K562 human erythroleukemia cells, erythropoietin (EPO) may generate nuclear translocation of an active PtdIns 3-K. Immunoprecipitation with an anti-p85 regulatory subunit of PtdIns 3-K, revealed that both the intranuclear amount and the activity of the kinase increased rapidly and transiently in response to EPO. Enzyme translocation was blocked by the specific PtdIns 3-K pharmacological inhibitor, LY294002, which also inhibited erythroid differentiation. In vivo, intranuclear synthesis of phosphatidylinositol (3,4,5) trisphosphate (PtdIns (3,4,5)P(3)) was stimulated by EPO. Almost all PtdIns 3-K that translocated to the nucleus was highly phosphorylated on tyrosine residues of the p85 regulatory subunit. These findings strongly suggest that an important step in the signaling pathways that mediate EPO-induced erythroid differentiation may be represented by the intranuclear translocation of an active PtdIns 3-K.
Collapse
Affiliation(s)
- Luca M Neri
- Dipartimento di Morfologia ed Embriologia, Sezione di Anatomia Umana, Università di Ferrara, via Fossato di Mortara 66, 44100 Ferrara, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Cocco L, Martelli AM, Barnabei O, Manzoli FA. Nuclear inositol lipid signaling. ADVANCES IN ENZYME REGULATION 2001; 41:361-84. [PMID: 11384755 DOI: 10.1016/s0065-2571(00)00017-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- L Cocco
- Cellular Signaling Laboratory, Department of Anatomical Sciences, University of Bologna, Via Irnerio, 48, I-40126, Bologna, Italy
| | | | | | | |
Collapse
|
31
|
Sindić A, Aleksandrova A, Fields AP, Volinia S, Banfić H. Presence and activation of nuclear phosphoinositide 3-kinase C2beta during compensatory liver growth. J Biol Chem 2001; 276:17754-61. [PMID: 11278304 DOI: 10.1074/jbc.m006533200] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Highly purified liver nuclei incorporated radiolabeled phosphate into phosphatidylinositol 4-phosphate (PtdIns(4)P), PtdIns(4,5)P(2), and PtdIns(3,4,5)P(3). When nuclei were depleted of their membrane, no radiolabeling of PtdIns(3,4,5)P(3) could be detected showing that within the intranuclear region there are no class I phosphoinositide 3-kinases (PI3K)s. In membrane-depleted nuclei harvested 20 h after partial hepatectomy, the incorporation of radiolabel into PtdIns(3)P was observed together with an increase in immunoprecipitable PI3K-C2beta activity, which is sensitive to wortmannin (10 nm) and shows strong preference for PtdIns over PtdIns(4)P as a substrate. On Western blots PI3K-C2beta revealed a single immunoreactive band of 180 kDa, whereas 20 h after partial hepatectomy gel shift of 18 kDa was noticed, suggesting that observed activation of enzyme is achieved by proteolysis. When intact membrane-depleted nuclei were subjected to short term (20 min) exposure to micro-calpain, similar gel shift together with an increase in PI3K-C2beta activity was observed, when compared with the nuclei harvested 20 h after partial hepatectomy. Moreover, the above-mentioned gel shift and increase in PI3K-C2beta activity could be prevented by the calpain inhibitor calpeptin. The data presented in this report show that, in the membrane-depleted nuclei during the compensatory liver growth, there is an increase in PtdIns(3)P formation as a result of PI3K-C2beta activation, which may be a calpain-mediated event.
Collapse
Affiliation(s)
- A Sindić
- Department of Physiology and Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Salata 3, Zagreb 10,000, Croatia
| | | | | | | | | |
Collapse
|
32
|
Cocco L, Martelli AM, Gilmour RS, Rhee SG, Manzoli FA. Nuclear phospholipase C and signaling. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1530:1-14. [PMID: 11341954 DOI: 10.1016/s1388-1981(00)00169-4] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- L Cocco
- Cellular Signaling Laboratory, Department of Anatomical Sciences and Skeletal Muscle Pathophysiology, University of Bologna, Italy.
| | | | | | | | | |
Collapse
|
33
|
Ye K, Hurt KJ, Wu FY, Fang M, Luo HR, Hong JJ, Blackshaw S, Ferris CD, Snyder SH. Pike. A nuclear gtpase that enhances PI3kinase activity and is regulated by protein 4.1N. Cell 2000; 103:919-30. [PMID: 11136977 DOI: 10.1016/s0092-8674(00)00195-1] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
While cytoplasmic PI3Kinase (PI3K) is well characterized, regulation of nuclear PI3K has been obscure. A novel protein, PIKE (PI3Kinase Enhancer), interacts with nuclear PI3K to stimulate its lipid kinase activity. PIKE encodes a 753 amino acid nuclear GTPase. Dominant-negative PIKE prevents the NGF enhancement of PI3K and upregulation of cyclin D1. NGF treatment also leads to PIKE interactions with 4.1N, which has translocated to the nucleus, fitting with the initial identification of PIKE based on its binding 4.1N in a yeast two-hybrid screen. Overexpression of 4.1N abolishes PIKE effects on PI3K. Activation of nuclear PI3K by PIKE is inhibited by the NGF-stimulated 4.1N translocation to the nucleus. Thus, PIKE physiologically modulates the activation by NGF of nuclear PI3K.
Collapse
Affiliation(s)
- K Ye
- Johns Hopkins University School of Medicine, Department of Neuroscience, North Wolfe Street 21205, Baltimore, MD, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Daun JM, Fenton MJ. Interleukin-1/Toll receptor family members: receptor structure and signal transduction pathways. J Interferon Cytokine Res 2000; 20:843-55. [PMID: 11054272 DOI: 10.1089/10799900050163217] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Interleukin-1 (IL-1) is a central mediator of the inflammatory response. It plays a role in both systemic and local immune responses to invading microbes. There are two receptors (IL-1RI and IL-1RII) that mediate the cellular responses. These receptors belong to a family of receptors based on homologous receptor structure within the intracellular signaling domain. Other family members include the Drosophila protein Toll, the recently discovered mammalian Toll-like receptors (TLR), and the IL-18 receptor. Engagement of these receptors by their diverse ligands results in activation of very similar signal transduction cascades through use of common signaling intermediates. These signal transduction cascades lead to the activation of cellular responses that are known to regulate the innate immune response. Therefore, elucidating the function and redundancy of this receptor family is essential to the understanding of the innate immune response. This review examines each member of this receptor family and emphasizes similarities and potential differences in both receptor structure and signal transduction pathways to further the understanding of this complex receptor family.
Collapse
Affiliation(s)
- J M Daun
- Pulmonary Center, Boston University School of Medicine, Boston, MA 02118, USA
| | | |
Collapse
|
35
|
Martelli AM, Borgatti P, Bortul R, Manfredini M, Massari L, Capitani S, Neri LM. Phosphatidylinositol 3-kinase translocates to the nucleus of osteoblast-like MC3T3-E1 cells in response to insulin-like growth factor I and platelet-derived growth factor but not to the proapoptotic cytokine tumor necrosis factor alpha. J Bone Miner Res 2000; 15:1716-30. [PMID: 10976992 DOI: 10.1359/jbmr.2000.15.9.1716] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Changes in the metabolism of nuclear inositides phosphorylated in the D3 position of the inositol ring, which may act as second messengers, mainly have been linked to cell differentiation. To clarify a possible role of this peculiar class of inositides also during cell proliferation and/or apoptosis, we have examined the issue of whether or not in the osteoblast-like clonal cell line MC3T3-E1 it may be observed an insulin-like growth factor-I (IGF-I)- and platelet-derived growth factor (PDGF)-dependent nuclear translocation of an active phosphatidylinositol 3-kinase (PI 3-K). We found that both the growth factors increased rapidly and transiently both the amount and the activity of immunoprecipitable nuclear PI 3-K. Intranuclear PI 3-K exhibited a massive tyrosine phosphorylation on the p85 regulatory subunit. Moreover, by means of coimmunoprecipitation experiments, we showed the presence, in isolated nuclei, of the p110beta catalytic subunit of PI 3-K. Enzyme translocation was blocked by the specific PI 3-K inhibitor LY294002. In contrast, intranuclear translocation of PI 3-K did not occur in response to the proapoptotic cytokine tumor necrosis factor alpha (TNF-alpha). IGF-I was able to counteract the apoptotic stimulus of TNF-alpha and this was accompanied by the intranuclear translocation of PI 3-K. LY294002 inhibited both intranuclear translocation of PI 3-K and the rescuing effect of IGF-I. These findings strongly suggest that an important step in the signaling pathways that mediate both cell proliferation and survival is represented by the intranuclear translocation of PI 3-K.
Collapse
Affiliation(s)
- A M Martelli
- Dipartimento di Morfologia Umana Normale, Università di Trieste, Italy
| | | | | | | | | | | | | |
Collapse
|
36
|
Maraldi NM, Zini N, Santi S, Riccio M, Falconi M, Capitani S, Manzoli FA. Nuclear domains involved in inositol lipid signal transductionmaltese cross. ADVANCES IN ENZYME REGULATION 2000; 40:219-53. [PMID: 10828353 DOI: 10.1016/s0065-2571(99)00032-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- N M Maraldi
- Institute of Cytomorphology, CNR Chieti and Bologna, c/o IOR, Bologna, Italy
| | | | | | | | | | | | | |
Collapse
|
37
|
Borgatti P, Martelli AM, Bellacosa A, Casto R, Massari L, Capitani S, Neri LM. Translocation of Akt/PKB to the nucleus of osteoblast-like MC3T3-E1 cells exposed to proliferative growth factors. FEBS Lett 2000; 477:27-32. [PMID: 10899305 DOI: 10.1016/s0014-5793(00)01758-0] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
An active phosphatidylinositol 3-kinase (PI3K) has been shown in nuclei of different cell types. The products of this enzyme, i.e. inositides phosphorylated in the D3 position of the inositol ring, may act as second messengers themselves. Nuclear PI3K translocation has been demonstrated to be related to an analogous translocation of a PtdIns(3,4,5)P(3) activated PKC, the zeta isozyme. We have examined the issue of whether or not in the osteoblast-like clonal cell line MC3T3-E1 there may be observed an insulin-like growth factor-I- (IGF-I) and platelet-derived growth factor- (PDGF) dependent nuclear translocation of an active Akt/PKB. Western blot analysis showed a maximal nuclear translocation after 20 min of IGF-I stimulation or after 30 min of PDGF treatment. Both growth factors increased rapidly and transiently the enzyme activity of immunoprecipitable nuclear Akt/PKB on a similar time scale and after 60 min the values were slightly higher than the basal levels. Enzyme translocation was blocked by the specific PI3K inhibitor, LY294002, as well as cell entry into S-phase. Confocal microscopy showed an evident increase in immunostaining intensity in the nuclear interior after growth factor treatment but no changes in the subcellular distribution of Akt/PKB when a LY294002 pre-treatment was administered to the cells. These findings strongly suggest that the intranuclear translocation of Akt/PKB is an important step in signalling pathways that mediate cell proliferation.
Collapse
Affiliation(s)
- P Borgatti
- Dipartmento di Morfologia ed Embriologia, Sezione di Anatomia Umana, Universitá di Ferrara, Via Fossata di Mortara 66, 44100 Ferrara, Italy
| | | | | | | | | | | | | |
Collapse
|
38
|
Böl G, Kreuzer OJ, Brigelius-Flohé R. Translocation of the interleukin-1 receptor-associated kinase-1 (IRAK-1) into the nucleus. FEBS Lett 2000; 477:73-8. [PMID: 10899313 DOI: 10.1016/s0014-5793(00)01759-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Interleukin-1 (IL-1) signal transduction involves the recruitment of the IL-1 receptor-associated kinase-1 (IRAK-1). Subsequent signaling finally leads to nuclear translocation of NFkappaB. We here show that the association and autophosphorylation of IRAK-1 was already detectable 30 s after IL-1 stimulation of ECV 304 cells. Significant levels of IRAK-1 accumulated in the nucleus 30 min after IL-1 stimulation shown by Western blot analysis and confocal laser scanning microscopy. Nuclear transfer of IRAK-1 upon IL-1 stimulation was confirmed in the murine T cell line EL-4. This characterizes nuclear localization of IRAK-1 as a possibly essential event in the IL-1 signaling cascade.
Collapse
Affiliation(s)
- G Böl
- German Institute of Human Nutrition, D-14558, Potsdam-Rehbrücke, Germany.
| | | | | |
Collapse
|
39
|
NERI LUCAM, MARTELLI ALBERTOM, BORGATTI PAOLA, COLAMUSSI MARIAL, MARCHISIO MARCO, CAPITANI SILVANO. Increase in nuclear phosphatidylinositol 3‐kinase activity and phosphatidylinositol (3,4,5) trisphosphate synthesis precede PKC‐ζ translocation to the nucleus of NGF‐treated PC12 cells. FASEB J 1999. [DOI: 10.1096/fasebj.13.15.2299] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- LUCA M. NERI
- Dipartimento di Morfologia ed EmbriologiaSezione di Anatomia UmanaUniversità di Ferrara44100FerraraItaly
- Istituto di Citomorfologia Normale e Patologica del CNR., c/o IOR.40137BolognaItaly
| | - ALBERTO M. MARTELLI
- Dipartimento di Morfologia Umana NormaleUniversità di Trieste34138TriesteItaly
| | - PAOLA BORGATTI
- Dipartimento di Morfologia ed EmbriologiaSezione di Anatomia UmanaUniversità di Ferrara44100FerraraItaly
| | - MARIA L. COLAMUSSI
- Dipartimento di Morfologia ed EmbriologiaSezione di Anatomia UmanaUniversità di Ferrara44100FerraraItaly
| | - MARCO MARCHISIO
- Dipartimento di Morfologia ed EmbriologiaSezione di Anatomia UmanaUniversità di Ferrara44100FerraraItaly
| | - SILVANO CAPITANI
- Dipartimento di Morfologia ed EmbriologiaSezione di Anatomia UmanaUniversità di Ferrara44100FerraraItaly
| |
Collapse
|
40
|
Abstract
An increasing body of evidence shows that many of the key inositol lipids and enzymes responsible for their metabolism reside in nuclei. Moreover, the association of the nuclear phosphoinositide cycle with progression through the cell cycle and commitment toward differentiation has built a wider picture of the implications of phosphoinositides in the control of nuclear functions. This article reviews a central aspect of inositide nuclear signaling, i.e., the spatial organization of the signaling system within the nucleus in relationship to the nuclear organization in functional domains. Most of the evidence obtained with a variety of confocal and electron microscopy immunocytochemical techniques indicates that the phosphoinositides, the enzymes required for their synthesis and hydrolysis, and the targets of the lipid second messengers are localized at ribonucleoprotein structures involved in the transcript processing in the interchromatin domains. These findings demonstrate that nuclear inositol lipids exist in a nonmembranous form, linked to structural nuclear proteins of the inner nuclear matrix. They also suggest that the inositol signaling in the nucleus is completely independent of that at the cell surface and that it probably preceded in evolution the systems that are present at the cytoskeletal and cell membrane level.
Collapse
Affiliation(s)
- N M Maraldi
- Institute of Normal and Pathological Cytomorphology, C.N.R., Laboratory of Cell Biology, IOR, Bologna, Italy.
| | | | | | | |
Collapse
|