1
|
Taylor RJ, Tagiltsev G, Briggs JAG. The structure of COPI vesicles and regulation of vesicle turnover. FEBS Lett 2023; 597:819-835. [PMID: 36513395 DOI: 10.1002/1873-3468.14560] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/15/2022]
Abstract
COPI-coated vesicles mediate transport between Golgi stacks and retrograde transport from the Golgi to the endoplasmic reticulum. The COPI coat exists as a stable heptameric complex in the cytosol termed coatomer and is recruited en bloc to the membrane for vesicle formation. Recruitment of COPI onto membranes is mediated by the Arf family of small GTPases, which, in their GTP-bound state, bind both membrane and coatomer. Arf GTPases also influence cargo selection, vesicle scission and vesicle uncoating. Guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs) regulate nucleotide binding by Arf GTPases. To understand the mechanism of COPI-coated vesicle trafficking, it is necessary to characterize the interplay between coatomer and Arf GTPases and their effectors. It is also necessary to understand interactions between coatomer and cargo, cargo adaptors/receptors and tethers facilitating binding to the target membrane. Here, we summarize current knowledge of COPI coat protein structure; we describe how structural and biochemical studies contributed to this knowledge; we review mechanistic insights into COPI vesicle biogenesis and disassembly; and we discuss the potential to answer open questions in the field.
Collapse
Affiliation(s)
- Rebecca J Taylor
- Department of Cell and Virus Structure, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Grigory Tagiltsev
- Department of Cell and Virus Structure, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - John A G Briggs
- Department of Cell and Virus Structure, Max Planck Institute of Biochemistry, Martinsried, Germany
| |
Collapse
|
2
|
Malis Y, Hirschberg K, Kaether C. Hanging the coat on a collar: Same function but different localization and mechanism for COPII. Bioessays 2022; 44:e2200064. [DOI: 10.1002/bies.202200064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Yehonathan Malis
- Department of Pathology, Sackler School of Medicine Tel‐Aviv University Tel Aviv Israel
| | - Koret Hirschberg
- Department of Pathology, Sackler School of Medicine Tel‐Aviv University Tel Aviv Israel
| | - Christoph Kaether
- Leibniz Institute for Age Research – Fritz Lipmann Institute Jena Germany
| |
Collapse
|
3
|
ER exit sites in Drosophila display abundant ER-Golgi vesicles and pearled tubes but no megacarriers. Cell Rep 2021; 36:109707. [PMID: 34525362 DOI: 10.1016/j.celrep.2021.109707] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 07/24/2021] [Accepted: 08/20/2021] [Indexed: 01/08/2023] Open
Abstract
Secretory cargos are collected at endoplasmic reticulum (ER) exit sites (ERES) before transport to the Golgi apparatus. Decades of research have provided many details of the molecular events underlying ER-Golgi exchanges. Essential questions, however, remain about the organization of the ER-Golgi interface in cells and the type of membrane structures mediating traffic from ERES. To investigate these, we use transgenic tagging in Drosophila flies, 3D-structured illumination microscopy (SIM), and focused ion beam scanning electron microscopy (FIB-SEM) to characterize ERES-Golgi units in collagen-producing fat body, imaginal discs, and imaginal discs overexpressing ERES determinant Tango1. Facing ERES, we find a pre-cis-Golgi region, equivalent to the vertebrate ER-Golgi intermediate compartment (ERGIC), involved in both anterograde and retrograde transport. This pre-cis-Golgi is continuous with the rest of the Golgi, not a separate compartment or collection of large carriers, for which we find no evidence. We observe, however, many vesicles, as well as pearled tubules connecting ERES and Golgi.
Collapse
|
4
|
Watanabe A, Hataida H, Inoue N, Kamon K, Baba K, Sasaki K, Kimura R, Sasaki H, Eura Y, Ni WF, Shibasaki Y, Waguri S, Kokame K, Shiba Y. Arf GTPase-activating proteins SMAP1 and AGFG2 regulate the size of Weibel-Palade bodies and exocytosis of von Willebrand factor. Biol Open 2021; 10:271213. [PMID: 34369554 PMCID: PMC8430232 DOI: 10.1242/bio.058789] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 07/28/2021] [Indexed: 01/22/2023] Open
Abstract
Arf GTPase-Activating proteins (ArfGAPs) mediate the hydrolysis of GTP bound to ADP-ribosylation factors (Arfs), which are critical to form transport intermediates. ArfGAPs have been thought to be negative regulators of Arfs; however, accumulating evidence indicates that ArfGAPs are important for cargo sorting and promote membrane traffic. Weibel-Palade bodies (WPBs) are cigar-shaped secretory granules in endothelial cells that contain von Willebrand factor (vWF) as their main cargo. WPB biogenesis at the Golgi was reported to be regulated by Arf and their regulators, but the role of ArfGAPs has been unknown. In this study, we performed siRNA screening of ArfGAPs to investigate the role of ArfGAPs in the biogenesis of WPBs. We found two ArfGAPs, SMAP1 and AGFG2, to be involved in WPB size and vWF exocytosis, respectively. SMAP1 depletion resulted in small-sized WPBs, and the lysosomal inhibitor leupeptin recovered the size of WPBs. The results indicate that SMAP1 functions in preventing the degradation of cigar-shaped WPBs. On the other hand, AGFG2 downregulation resulted in the inhibition of vWF secretion upon Phorbol 12-myristate 13-acetate (PMA) or histamine stimulation, suggesting that AGFG2 plays a role in vWF exocytosis. Our study revealed unexpected roles of ArfGAPs in vWF transport. Summary: The Arf GTPase-activating proteins SMAP1 and AGFG2 regulate the size of Weibel-Palade bodies and exocytosis of von Willebrand factor.
Collapse
Affiliation(s)
- Asano Watanabe
- Faculty of Science and Engineering, Iwate University, Morioka, 020-8551, Japan
| | - Hikari Hataida
- Faculty of Science and Engineering, Iwate University, Morioka, 020-8551, Japan
| | - Naoya Inoue
- Faculty of Science and Engineering, Iwate University, Morioka, 020-8551, Japan
| | - Kosuke Kamon
- Faculty of Science and Engineering, Iwate University, Morioka, 020-8551, Japan
| | - Keigo Baba
- Faculty of Science and Engineering, Iwate University, Morioka, 020-8551, Japan
| | - Kuniaki Sasaki
- Faculty of Science and Engineering, Iwate University, Morioka, 020-8551, Japan
| | - Rika Kimura
- Faculty of Science and Engineering, Iwate University, Morioka, 020-8551, Japan
| | - Honoka Sasaki
- Faculty of Science and Engineering, Iwate University, Morioka, 020-8551, Japan
| | - Yuka Eura
- Department of Molecular Pathogenesis, National Cerebral and Cardiovascular Center, Osaka, 564-8565, Japan
| | - Wei-Fen Ni
- Department of Biotechnology, National Kaohsiung Normal University, Kaohsiung, 80201, Taiwan
| | - Yuji Shibasaki
- Faculty of Science and Engineering, Iwate University, Morioka, 020-8551, Japan
| | - Satoshi Waguri
- Department of Anatomy and Histology, Fukushima Medical University, Fukushima, 960-1295, Japan
| | - Koichi Kokame
- Department of Molecular Pathogenesis, National Cerebral and Cardiovascular Center, Osaka, 564-8565, Japan
| | - Yoko Shiba
- Faculty of Science and Engineering, Iwate University, Morioka, 020-8551, Japan
| |
Collapse
|
5
|
Gilbert CE, Sztul E, Machamer CE. Commonly used trafficking blocks disrupt ARF1 activation and the localization and function of specific Golgi proteins. Mol Biol Cell 2018; 29:937-947. [PMID: 29467256 PMCID: PMC5896932 DOI: 10.1091/mbc.e17-11-0622] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Cold temperature blocks used to synchronize protein trafficking inhibit GBF1 function, leading to a decrease in ARF1-GTP levels and mislocalization of the ARF1 effector golgin-160. Several other, but not all, Golgi proteins including ARL1 also mislocalize. ARF1 activity and golgin-160 localization require more than 30 min to recover from these blocks. ADP-ribosylation factor (ARF) proteins are key regulators of the secretory pathway. ARF1, through interacting with its effectors, regulates protein trafficking by facilitating numerous events at the Golgi. One unique ARF1 effector is golgin-160, which promotes the trafficking of only a specific subset of cargo proteins through the Golgi. While studying this role of golgin-160, we discovered that commonly used cold temperature blocks utilized to synchronize cargo trafficking (20 and 16°C) caused golgin-160 dispersal from Golgi membranes. Here, we show that the loss of golgin-160 localization correlates with a decrease in the levels of activated ARF1, and that golgin-160 dispersal can be prevented by expression of a GTP-locked ARF1 mutant. Overexpression of the ARF1 activator Golgi brefeldin A–resistant guanine nucleotide exchange factor 1 (GBF1) did not prevent golgin-160 dispersal, suggesting that GBF1 may be nonfunctional at lower temperatures. We further discovered that several other Golgi resident proteins had altered localization at lower temperatures, including proteins recruited by ARF-like GTPase 1 (ARL1), a small GTPase that also became dispersed in the cold. Although cold temperature blocks are useful for synchronizing cargo trafficking through the Golgi, our data indicate that caution must be taken when interpreting results from these assays.
Collapse
Affiliation(s)
- Catherine E Gilbert
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Elizabeth Sztul
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35924
| | - Carolyn E Machamer
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
| |
Collapse
|
6
|
Abstract
The coat protein complex I (COPI) allows the precise sorting of lipids and proteins between Golgi cisternae and retrieval from the Golgi to the ER. This essential role maintains the identity of the early secretory pathway and impinges on key cellular processes, such as protein quality control. In this Cell Science at a Glance and accompanying poster, we illustrate the different stages of COPI-coated vesicle formation and revisit decades of research in the context of recent advances in the elucidation of COPI coat structure. By calling attention to an array of questions that have remained unresolved, this review attempts to refocus the perspectives of the field.
Collapse
Affiliation(s)
- Eric C Arakel
- Department of Molecular Biology, Universitätsmedizin Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| | - Blanche Schwappach
- Department of Molecular Biology, Universitätsmedizin Göttingen, Humboldtallee 23, 37073 Göttingen, Germany .,Max-Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| |
Collapse
|
7
|
Abstract
Advances in imaging techniques have shed new light on the structure of vesicles formed by COPI protein complexes.
Collapse
Affiliation(s)
- Eric C Arakel
- Department of Molecular Biology, University Medical Center Göttingen, Göttingen, Germany
| | - Blanche Schwappach
- Department of Molecular Biology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
8
|
Yavuz S, Warren G. A role for Sar1 and ARF1 GTPases during Golgi biogenesis in the protozoan parasite Trypanosoma brucei. Mol Biol Cell 2017; 28:1782-1791. [PMID: 28495798 PMCID: PMC5491186 DOI: 10.1091/mbc.e17-03-0151] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 05/01/2017] [Accepted: 05/05/2017] [Indexed: 11/11/2022] Open
Abstract
A single Golgi stack is duplicated and partitioned into two daughter cells during the cell cycle of the protozoan parasite Trypanosoma brucei The source of components required to generate the new Golgi and the mechanism by which it forms are poorly understood. Using photoactivatable GFP, we show that the existing Golgi supplies components directly to the newly forming Golgi in both intact and semipermeabilized cells. The movement of a putative glycosyltransferase, GntB, requires the Sar1 and ARF1 GTPases in intact cells. In addition, we show that transfer of GntB from the existing Golgi to the new Golgi can be recapitulated in semipermeabilized cells and is sensitive to the GTP analogue GTPγS. We suggest that the existing Golgi is a key source of components required to form the new Golgi and that this process is regulated by small GTPases.
Collapse
Affiliation(s)
- Sevil Yavuz
- Max F. Perutz Laboratories, University of Vienna, and Medical University of Vienna, Vienna Biocenter, Vienna A-1030, Austria
| | - Graham Warren
- Max F. Perutz Laboratories, University of Vienna, and Medical University of Vienna, Vienna Biocenter, Vienna A-1030, Austria
| |
Collapse
|
9
|
Ferguson S, Steyer AM, Mayhew TM, Schwab Y, Lucocq JM. Quantifying Golgi structure using EM: combining volume-SEM and stereology for higher throughput. Histochem Cell Biol 2017; 147:653-669. [PMID: 28429122 PMCID: PMC5429891 DOI: 10.1007/s00418-017-1564-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2017] [Indexed: 12/28/2022]
Abstract
Investigating organelles such as the Golgi complex depends increasingly on high-throughput quantitative morphological analyses from multiple experimental or genetic conditions. Light microscopy (LM) has been an effective tool for screening but fails to reveal fine details of Golgi structures such as vesicles, tubules and cisternae. Electron microscopy (EM) has sufficient resolution but traditional transmission EM (TEM) methods are slow and inefficient. Newer volume scanning EM (volume-SEM) methods now have the potential to speed up 3D analysis by automated sectioning and imaging. However, they produce large arrays of sections and/or images, which require labour-intensive 3D reconstruction for quantitation on limited cell numbers. Here, we show that the information storage, digital waste and workload involved in using volume-SEM can be reduced substantially using sampling-based stereology. Using the Golgi as an example, we describe how Golgi populations can be sensed quantitatively using single random slices and how accurate quantitative structural data on Golgi organelles of individual cells can be obtained using only 5–10 sections/images taken from a volume-SEM series (thereby sensing population parameters and cell–cell variability). The approach will be useful in techniques such as correlative LM and EM (CLEM) where small samples of cells are treated and where there may be variable responses. For Golgi study, we outline a series of stereological estimators that are suited to these analyses and suggest workflows, which have the potential to enhance the speed and relevance of data acquisition in volume-SEM.
Collapse
Affiliation(s)
- Sophie Ferguson
- Structural Cell Biology Group, School of Medicine, University of St Andrews, North Haugh, Fife, KY16 9TF, Scotland, UK
| | - Anna M Steyer
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Terry M Mayhew
- School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Yannick Schwab
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - John Milton Lucocq
- Structural Cell Biology Group, School of Medicine, University of St Andrews, North Haugh, Fife, KY16 9TF, Scotland, UK.
| |
Collapse
|
10
|
ARFGAP1 is dynamically associated with lipid droplets in hepatocytes. PLoS One 2014; 9:e111309. [PMID: 25397679 PMCID: PMC4232254 DOI: 10.1371/journal.pone.0111309] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 09/30/2014] [Indexed: 12/18/2022] Open
Abstract
The ARF GTPase Activating Protein 1 (ARFGAP1) associates mainly with the cytosolic side of Golgi cisternal membranes where it participates in the formation of both COPI and clathrin-coated vesicles. In this study, we show that ARFGAP1 associates transiently with lipid droplets upon addition of oleate in cultured cells. Also, that addition of cyclic AMP shifts ARFGAP1 from lipid droplets to the Golgi apparatus and that overexpression and knockdown of ARFGAP1 affect lipid droplet formation. Examination of human liver tissue reveals that ARFGAP1 is found associated with lipid droplets at steady state in some but not all hepatocytes.
Collapse
|
11
|
Beck R, Brügger B, Wieland F. GAPs in the context of COPI: Enzymes, coat components or both? CELLULAR LOGISTICS 2014; 1:52-54. [PMID: 21686253 DOI: 10.4161/cl.1.2.15174] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2011] [Accepted: 02/15/2011] [Indexed: 02/02/2023]
Abstract
TRAFFICKING IN THE EARLY SECRETORY PATHWAY AT FIRST GLANCE IS WELL UNDERSTOOD ACCORDING TO TEXTBOOK KNOWLEDGE: To achieve secretion and to maintain organelle homeostasis, protein and lipid cargo need to be transported constitutively from their origins of biosynthesis to their respective destinations. Thus, secretory cargo exits the ER and is shuttled to the Golgi via vesicular COPII carriers. Lipid and protein cargo is enzymatically modified in the Golgi, transported from cis- to trans- (by mechanisms that are still debated today), and from there travel to their final destinations. The best established roles for COPI vesicles, simply spoken, is to mediate retrograde trafficking of cargo molecules that were transported forward, but need to be transported back.
Collapse
Affiliation(s)
- Rainer Beck
- Department of Cell Biology; Yale University School of Medicine; New Haven, CT USA
| | | | | |
Collapse
|
12
|
Cevher-Keskin B. ARF1 and SAR1 GTPases in endomembrane trafficking in plants. Int J Mol Sci 2013; 14:18181-99. [PMID: 24013371 PMCID: PMC3794775 DOI: 10.3390/ijms140918181] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Revised: 08/19/2013] [Accepted: 08/20/2013] [Indexed: 01/06/2023] Open
Abstract
Small GTPases largely control membrane traffic, which is essential for the survival of all eukaryotes. Among the small GTP-binding proteins, ARF1 (ADP-ribosylation factor 1) and SAR1 (Secretion-Associated RAS super family 1) are commonly conserved among all eukaryotes with respect to both their functional and sequential characteristics. The ARF1 and SAR1 GTP-binding proteins are involved in the formation and budding of vesicles throughout plant endomembrane systems. ARF1 has been shown to play a critical role in COPI (Coat Protein Complex I)-mediated retrograde trafficking in eukaryotic systems, whereas SAR1 GTPases are involved in intracellular COPII-mediated protein trafficking from the ER to the Golgi apparatus. This review offers a summary of vesicular trafficking with an emphasis on the ARF1 and SAR1 expression patterns at early growth stages and in the de-etiolation process.
Collapse
Affiliation(s)
- Birsen Cevher-Keskin
- Plant Molecular Biology Laboratory, Genetic Engineering and Biotechnology Institute, Marmara Research Center, The Scientific and Technical Research Council of Turkey, TUBITAK, P.O. Box: 21, Gebze 41470, Kocaeli, Turkey.
| |
Collapse
|
13
|
Cottam NP, Ungar D. Retrograde vesicle transport in the Golgi. PROTOPLASMA 2012; 249:943-55. [PMID: 22160157 DOI: 10.1007/s00709-011-0361-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 11/29/2011] [Indexed: 05/23/2023]
Abstract
The Golgi apparatus is the central sorting and biosynthesis hub of the secretory pathway, and uses vesicle transport for the recycling of its resident enzymes. This system must operate with high fidelity and efficiency for the correct modification of secretory glycoconjugates. In this review, we discuss recent advances on how coats, tethers, Rabs and SNAREs cooperate at the Golgi to achieve vesicle transport. We cover the well understood vesicle formation process orchestrated by the COPI coat, and the comprehensively documented fusion process governed by a set of Golgi localised SNAREs. Much less clear are the steps in-between formation and fusion of vesicles, and we therefore provide a much needed update of the latest findings about vesicle tethering. The interplay between Rab GTPases, golgin family coiled-coil tethers and the conserved oligomeric Golgi (COG) complex at the Golgi are thoroughly evaluated.
Collapse
Affiliation(s)
- Nathanael P Cottam
- Department of Biology (Area 9), University of York, Heslington, York, YO10 5DD, UK
| | | |
Collapse
|
14
|
The Arf-GEF Schizo/Loner regulates N-cadherin to induce fusion competence of Drosophila myoblasts. Dev Biol 2012; 368:18-27. [DOI: 10.1016/j.ydbio.2012.04.031] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 03/30/2012] [Accepted: 04/27/2012] [Indexed: 01/19/2023]
|
15
|
Abstract
Bacteria and eukaryotic cells contain geometry-sensing tools in their cytosol: protein motifs or domains that recognize the curvature, concave or convex, deep or shallow, of lipid membranes. These sensors contrast with classical lipid-binding domains by their extended structure and, sometimes, counterintuitive chemistry. Among the sensors are long amphipathic helices, such as the ALPS motif and the N-terminal region of α-synuclein, whose apparent "design defects" translate into a remarkable ability to specifically adsorb to the surface of small vesicles. Fundamental differences in the lipid composition of membranes of the early and late secretory pathways probably explain why some sensors use mostly electrostatics whereas others take advantage of the hydrophobic effect. Membrane curvature sensors help to organize very diverse reactions, such as lipid transfer between membranes, the tethering of vesicles at the Golgi apparatus, and the assembly-disassembly cycle of protein coats.
Collapse
Affiliation(s)
- Bruno Antonny
- Université de Nice-Sophia Antipolis and Centre National de la Recheche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, 06560 Valbonne, France.
| |
Collapse
|
16
|
Shiba Y, Luo R, Hinshaw JE, Szul T, Hayashi R, Sztul E, Nagashima K, Baxa U, Randazzo PA. ArfGAP1 promotes COPI vesicle formation by facilitating coatomer polymerization. CELLULAR LOGISTICS 2011; 1:139-154. [PMID: 22279613 PMCID: PMC3265926 DOI: 10.4161/cl.1.4.18896] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 11/21/2011] [Accepted: 11/29/2011] [Indexed: 12/31/2022]
Abstract
The role of ArfGAP1 in COPI vesicle biogenesis has been controversial. In work using isolated Golgi membranes, ArfGAP1 was found to promote COPI vesicle formation. In contrast, in studies using large unilamellar vesicles (LUVs) as model membranes, ArfGAP1 functioned as an uncoating factor inhibiting COPI vesicle formation. We set out to discriminate between these models. First, we reexamined the effect of ArfGAP1 on LUVs. We found that ArfGAP1 increased the efficiency of coatomer-induced deformation of LUVs. Second, ArfGAP1 and peptides from cargo facilitated self-assembly of coatomer into spherical structures in the absence of membranes, reminiscent of clathrin self-assembly. Third, in vivo, ArfGAP1 overexpression induced the accumulation of vesicles and allowed normal trafficking of a COPI cargo. Taken together, these data support the model in which ArfGAP1 promotes COPI vesicle formation and membrane traffic and identify a function for ArfGAP1 in the assembly of coatomer into COPI.
Collapse
Affiliation(s)
- Yoko Shiba
- Laboratory of Cellular and Molecular Biology; National Cancer Institute, Bethesda, MD USA
| | - Ruibai Luo
- Laboratory of Cellular and Molecular Biology; National Cancer Institute, Bethesda, MD USA
| | - Jenny E Hinshaw
- National Institute of Diabetes and Digestive and Kidney Disease; National Institutes of Health; Bethesda, MD USA
| | - Tomasz Szul
- Department of Cell Biology; The University of Alabama at Birmingham; Birmingham, AL USA
| | - Ryo Hayashi
- Laboratory of Cell Biology; National Cancer Institute; Bethesda, MD USA
| | - Elizabeth Sztul
- Department of Cell Biology; The University of Alabama at Birmingham; Birmingham, AL USA
| | - Kunio Nagashima
- Electron Microscopy Laboratory, ATP, SAIC-Frederick, Center for Cancer Research, National Cancer Institute; Frederick, MD USA
| | - Ulrich Baxa
- Electron Microscopy Laboratory, ATP, SAIC-Frederick, Center for Cancer Research, National Cancer Institute; Frederick, MD USA
| | - Paul A Randazzo
- Laboratory of Cellular and Molecular Biology; National Cancer Institute, Bethesda, MD USA
| |
Collapse
|
17
|
Böhlenius H, Mørch SM, Godfrey D, Nielsen ME, Thordal-Christensen H. The multivesicular body-localized GTPase ARFA1b/1c is important for callose deposition and ROR2 syntaxin-dependent preinvasive basal defense in barley. THE PLANT CELL 2010; 22:3831-44. [PMID: 21057060 PMCID: PMC3015129 DOI: 10.1105/tpc.110.078063] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Revised: 09/23/2010] [Accepted: 10/24/2010] [Indexed: 05/18/2023]
Abstract
Host cell vesicle traffic is essential for the interplay between plants and microbes. ADP-ribosylation factor (ARF) GTPases are required for vesicle budding, and we studied the role of these enzymes to identify important vesicle transport pathways in the plant-powdery mildew interaction. A combination of transient-induced gene silencing and transient expression of inactive forms of ARF GTPases provided evidence that barley (Hordeum vulgare) ARFA1b/1c function is important for preinvasive penetration resistance against powdery mildew, manifested by formation of a cell wall apposition, named a papilla. Mutant studies indicated that the plasma membrane-localized REQUIRED FOR MLO-SPECIFIED RESISTANCE2 (ROR2) syntaxin, also important for penetration resistance, and ARFA1b/1c function in the same vesicle transport pathway. This was substantiated by a requirement of ARFA1b/1c for ROR2 accumulation in the papilla. ARFA1b/1c is localized to multivesicular bodies, providing a functional link between ROR2 and these organelles in penetration resistance. During Blumeria graminis f sp hordei penetration attempts, ARFA1b/1c-positive multivesicular bodies assemble near the penetration site hours prior to the earliest detection of callose in papillae. Moreover, we showed that ARFA1b/1c is required for callose deposition in papillae and that the papilla structure is established independently of ARFA1b/1c. This raises the possibility that callose is loaded into papillae via multivesicular bodies, rather than being synthesized directly into this cell wall apposition.
Collapse
Affiliation(s)
| | | | | | | | - Hans Thordal-Christensen
- Department of Agriculture and Ecology, Faculty of Life Sciences, University of Copenhagen, 1871 Frederiksberg C, Copenhagen, Denmark
| |
Collapse
|
18
|
Kartberg F, Asp L, Dejgaard SY, Smedh M, Fernandez-Rodriguez J, Nilsson T, Presley JF. ARFGAP2 and ARFGAP3 are essential for COPI coat assembly on the Golgi membrane of living cells. J Biol Chem 2010; 285:36709-20. [PMID: 20858901 DOI: 10.1074/jbc.m110.180380] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Coat protein complex I (COPI) vesicles play a central role in the recycling of proteins in the early secretory pathway and transport of proteins within the Golgi stack. Vesicle formation is initiated by the exchange of GDP for GTP on ARF1 (ADP-ribosylation factor 1), which, in turn, recruits the coat protein coatomer to the membrane for selection of cargo and membrane deformation. ARFGAP1 (ARF1 GTPase-activating protein 1) regulates the dynamic cycling of ARF1 on the membrane that results in both cargo concentration and uncoating for the generation of a fusion-competent vesicle. Two human orthologues of the yeast ARFGAP Glo3p, termed ARFGAP2 and ARFGAP3, have been demonstrated to be present on COPI vesicles generated in vitro in the presence of guanosine 5'-3-O-(thio)triphosphate. Here, we investigate the function of these two proteins in living cells and compare it with that of ARFGAP1. We find that ARFGAP2 and ARFGAP3 follow the dynamic behavior of coatomer upon stimulation of vesicle budding in vivo more closely than does ARFGAP1. Electron microscopy of ARFGAP2 and ARFGAP3 knockdowns indicated Golgi unstacking and cisternal shortening similarly to conditions where vesicle uncoating was blocked. Furthermore, the knockdown of both ARFGAP2 and ARFGAP3 prevents proper assembly of the COPI coat lattice for which ARFGAP1 does not seem to play a major role. This suggests that ARFGAP2 and ARFGAP3 are key components of the COPI coat lattice and are necessary for proper vesicle formation.
Collapse
Affiliation(s)
- Fredrik Kartberg
- Department of Medical and Clinical Genetics, Institute of Biomedicine, University of Gothenburg, 405 30 Göteborg, Sweden
| | | | | | | | | | | | | |
Collapse
|
19
|
Angers CG, Merz AJ. New links between vesicle coats and Rab-mediated vesicle targeting. Semin Cell Dev Biol 2010; 22:18-26. [PMID: 20643221 DOI: 10.1016/j.semcdb.2010.07.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Revised: 07/07/2010] [Accepted: 07/09/2010] [Indexed: 12/24/2022]
Abstract
Vesicle trafficking is a highly regulated process that transports proteins and other cargoes through eukaryotic cells while maintaining cellular organization and compartmental identity. In order for cargo to reach the correct destination, each step of trafficking must impart specificity. During vesicle formation, this is achieved by coat proteins, which selectively incorporate cargo into the nascent vesicle. Classically, vesicle coats are thought to dissociate shortly after budding. However, recent studies suggest that coat proteins can remain on the vesicle en route to their destination, imparting targeting specificity by physically and functionally interacting with Rab-regulated tethering systems. This review focuses on how interactions among Rab GTPases, tethering factors, SNARE proteins, and vesicle coats contribute to vesicle targeting, fusion, and coat dynamics.
Collapse
Affiliation(s)
- Cortney G Angers
- Department of Biochemistry, University of Washington School of Medicine, Seattle, WA 98195-3750, USA
| | | |
Collapse
|
20
|
East MP, Kahn RA. Models for the functions of Arf GAPs. Semin Cell Dev Biol 2010; 22:3-9. [PMID: 20637885 DOI: 10.1016/j.semcdb.2010.07.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Revised: 07/02/2010] [Accepted: 07/07/2010] [Indexed: 11/27/2022]
Abstract
Arf GAPs (ADP-ribosylation factor GTPase-activating proteins) are essential components of Arf (ADP-ribosylation factor) signaling pathways. Arf GAPs stimulate the hydrolysis of GTP to GDP to transition Arf from the active, GTP bound, state to the inactive, GDP bound, state. Based on this activity, Arf GAPs were initially proposed to function primarily or exclusively as terminators of Arf signaling. Further studies of Arf GAPs have revealed that they also function as effectors of Arf signaling in at least a few steps or processes in which Arfs are not directly involved. In this review we discuss the non-canonical functions of Arf GAPs and address several key questions in the field, including: whether (1) Arf GAPs are terminators or effectors of Arf signaling, (2) Arf GAPs positively or negatively regulate COPI assembly, (3) Arf GAPs are involved in vesicle fission, and (4) Arf GAPs regulate vesicle uncoating.
Collapse
Affiliation(s)
- Michael P East
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322-3050, USA.
| | | |
Collapse
|
21
|
Shiba Y, Römer W, Mardones GA, Burgos PV, Lamaze C, Johannes L. AGAP2 regulates retrograde transport between early endosomes and the TGN. J Cell Sci 2010; 123:2381-90. [PMID: 20551179 DOI: 10.1242/jcs.057778] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The retrograde transport route links early endosomes and the TGN. Several endogenous and exogenous cargo proteins use this pathway, one of which is the well-explored bacterial Shiga toxin. ADP-ribosylation factors (Arfs) are approximately 20 kDa GTP-binding proteins that are required for protein traffic at the level of the Golgi complex and early endosomes. In this study, we expressed mutants and protein fragments that bind to Arf-GTP to show that Arf1, but not Arf6 is required for transport of Shiga toxin from early endosomes to the TGN. We depleted six Arf1-specific ARF-GTPase-activating proteins and identified AGAP2 as a crucial regulator of retrograde transport for Shiga toxin, cholera toxin and the endogenous proteins TGN46 and mannose 6-phosphate receptor. In AGAP2-depleted cells, Shiga toxin accumulates in transferrin-receptor-positive early endosomes, suggesting that AGAP2 functions in the very early steps of retrograde sorting. A number of other intracellular trafficking pathways are not affected under these conditions. These results establish that Arf1 and AGAP2 have key trafficking functions at the interface between early endosomes and the TGN.
Collapse
Affiliation(s)
- Yoko Shiba
- Institut Curie - Centre de Recherche, Traffic, Signaling and Delivery Laboratory, 26 rue d'Ulm, 75248 Paris Cedex 05, France
| | | | | | | | | | | |
Collapse
|
22
|
Spang A, Shiba Y, Randazzo PA. Arf GAPs: gatekeepers of vesicle generation. FEBS Lett 2010; 584:2646-51. [PMID: 20394747 DOI: 10.1016/j.febslet.2010.04.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Revised: 03/26/2010] [Accepted: 04/03/2010] [Indexed: 11/17/2022]
Abstract
Arf GAP proteins are a versatile and diverse group of proteins. They control the activity of the GTP-binding proteins of the ARF family by inducing the hydrolysis of GTP that is bound to Arf proteins. The best-studied role of Arf GAPs is in intracellular traffic. In this review, we will focus mainly on the Arf GAPs that play a role in vesicle formation, Arf GAP1, Arf GAP2 and Arf GAP3 and their yeast homologues, Gcs1p and Glo3p. We discuss the roles of Arf GAPs as regulators and effectors for Arf GTP-binding proteins.
Collapse
Affiliation(s)
- Anne Spang
- University of Basel, Growth and Development, Biozentrum, Switzerland.
| | | | | |
Collapse
|
23
|
Bergeron JJM, Au CE, Desjardins M, McPherson PS, Nilsson T. Cell biology through proteomics--ad astra per alia porci. Trends Cell Biol 2010; 20:337-45. [PMID: 20227883 DOI: 10.1016/j.tcb.2010.02.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Revised: 02/12/2010] [Accepted: 02/17/2010] [Indexed: 01/10/2023]
Abstract
Isolated subcellular fractions have been instrumental in elucidating cell function. The use of such fractions for the identification and biochemical characterization of subcellular organelles, combined with cell- free systems, has provided key insights into the function and machineries of organelles, including those involved in vesicle transport, quality control and protein sorting. Despite their obvious utility, popular cell biology has come to regard in vitro-based approaches as inferior to in vivo-based approaches. Usual criticisms are contamination, non-representative processes and an inability to recreate the dynamic processes seen in vivo. In a similar way, proteomics has been viewed with reservation. Despite this, and building on the tradition of in vitro-based approaches, organelle proteomics based on liquid chromatography and tandem mass-spectrometry has recently made significant contributions to cell biology, and now allows the molecular machineries of organelles to be defined with high precision.
Collapse
Affiliation(s)
- John J M Bergeron
- The Research Institute of the McGill University Health Centre, Department of Medicine, McGill University, 687 Pine Avenue West, Montreal, Quebec H3A 1A1, Canada.
| | | | | | | | | |
Collapse
|
24
|
Beck R, Ravet M, Wieland F, Cassel D. The COPI system: Molecular mechanisms and function. FEBS Lett 2009; 583:2701-9. [DOI: 10.1016/j.febslet.2009.07.032] [Citation(s) in RCA: 214] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Revised: 07/07/2009] [Accepted: 07/13/2009] [Indexed: 02/03/2023]
|
25
|
Rutz C, Satoh A, Ronchi P, Brügger B, Warren G, Wieland FT. Following the fate in vivo of COPI vesicles generated in vitro. Traffic 2009; 10:994-1005. [PMID: 19497049 DOI: 10.1111/j.1600-0854.2009.00934.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
COPI vesicles are a class of transport carriers that function in the early secretory pathway. Their fate and function are still controversial. This includes their contribution to bidirectional transport within the Golgi apparatus and their role during cell division. Here we describe a method that should address several open questions about the fate and function of COPI vesicles in vivo. To this end, fluorescently labeled COPI vesicles were generated in vitro from isolated rat liver Golgi membranes, labeled with the fluorescent dyes Alexa-488 or Alexa-568. These vesicles appeared to be active and colocalized with endogenous Golgi membranes within 30 min after microinjection into mammalian cells. The COPI vesicle-derived labeled membrane proteins could be classified into two types that behaved like endogenous proteins after Brefeldin A treatment.
Collapse
Affiliation(s)
- Christoph Rutz
- Heidelberg University Biochemistry Center, Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
26
|
Saitoh A, Shin HW, Yamada A, Waguri S, Nakayama K. Three homologous ArfGAPs participate in coat protein I-mediated transport. J Biol Chem 2009; 284:13948-13957. [PMID: 19299515 DOI: 10.1074/jbc.m900749200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ArfGAP1 is a prototype of GTPase-activating proteins for ADP-ribosylation factors (ARFs) and has been proposed to be involved in retrograde transport from the Golgi apparatus to the endoplasmic reticulum (ER) by regulating the uncoating of coat protein I (COPI)-coated vesicles. Depletion of ArfGAP1 by RNA interference, however, causes neither a discernible phenotypic change in the COPI localization nor a change in the Golgi-to-ER retrograde transport. Therefore, we also examined ArfGAP2 and ArfGAP3, closely related homologues of ArfGAP1. Cells in which ArfGAP1, ArfGAP2, and ArfGAP3 are simultaneously knocked down show an increase in the GTP-bound ARF level. Furthermore, in these cells proteins resident in or cycling through the cis-Golgi, including ERGIC-53, beta-COP, and GM130, accumulate in the ER-Golgi intermediate compartment, and Golgi-to-ER retrograde transport is blocked. The phenotypes observed in the triple ArfGAP knockdown cells are similar to those seen in beta-COP-depleted cells. Both the triple ArfGAP- and beta-COP-depleted cells accumulate characteristic vacuolar structures that are visible under electron microscope. Furthermore, COPI is concentrated at rims of the vacuolar structures in the ArfGAP-depleted cells. On the basis of these observations, we conclude that ArfGAP1, ArfGAP2, and ArfGAP3 have overlapping roles in regulating COPI function in Golgi-to-ER retrograde transport.
Collapse
Affiliation(s)
- Akina Saitoh
- Graduate School of Pharmaceutical Sciences and Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hye-Won Shin
- Graduate School of Pharmaceutical Sciences and Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan; Career-Path Promotion Unit for Young Life Scientists, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Akane Yamada
- Department of Anatomy and Histology, Fukushima Medical University, School of Medicine, Fukushima City, Fukushima 960-1295, Japan
| | - Satoshi Waguri
- Department of Anatomy and Histology, Fukushima Medical University, School of Medicine, Fukushima City, Fukushima 960-1295, Japan
| | - Kazuhisa Nakayama
- Graduate School of Pharmaceutical Sciences and Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan.
| |
Collapse
|
27
|
Abstract
The coat protein I (COPI) complex is considered to be one of the best-characterized coat complexes. Studies on how it functions in vesicle formation have provided seminal contributions to the general paradigm in vesicular transport that the ADP-ribosylation factor (ARF) small GTPases are key regulators of coat complexes. Here, we discuss emerging evidence that suggests the need to revise some long-held views on how COPI vesicle formation is achieved.
Collapse
|
28
|
Beck R, Adolf F, Weimer C, Bruegger B, Wieland FT. ArfGAP1 Activity and COPI Vesicle Biogenesis. Traffic 2009; 10:307-15. [DOI: 10.1111/j.1600-0854.2008.00865.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
29
|
Weimer C, Beck R, Eckert P, Reckmann I, Moelleken J, Brügger B, Wieland F. Differential roles of ArfGAP1, ArfGAP2, and ArfGAP3 in COPI trafficking. ACTA ACUST UNITED AC 2008; 183:725-35. [PMID: 19015319 PMCID: PMC2582887 DOI: 10.1083/jcb.200806140] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The formation of coat protein complex I (COPI)–coated vesicles is regulated by the small guanosine triphosphatase (GTPase) adenosine diphosphate ribosylation factor 1 (Arf1), which in its GTP-bound form recruits coatomer to the Golgi membrane. Arf GTPase-activating protein (GAP) catalyzed GTP hydrolysis in Arf1 triggers uncoating and is required for uptake of cargo molecules into vesicles. Three mammalian ArfGAPs are involved in COPI vesicle trafficking; however, their individual functions remain obscure. ArfGAP1 binds to membranes depending on their curvature. In this study, we show that ArfGAP2 and ArfGAP3 do not bind directly to membranes but are recruited via interactions with coatomer. In the presence of coatomer, ArfGAP2 and ArfGAP3 activities are comparable with or even higher than ArfGAP1 activity. Although previously speculated, our results now demonstrate a function for coatomer in ArfGAP-catalyzed GTP hydrolysis by Arf1. We suggest that ArfGAP2 and ArfGAP3 are coat protein–dependent ArfGAPs, whereas ArfGAP1 has a more general function.
Collapse
Affiliation(s)
- Carolin Weimer
- Heidelberg University Biochemistry Center, Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
The secretion of vesicles for intracellular transport often relies on the aggregation of specialized membrane-bound proteins into a coat able to curve cell membranes. The nucleation and growth of a protein coat is a kinetic process that competes with the energy-consuming turnover of coat components between the membrane and the cytosol. We propose a generic kinetic description of coat assembly and the formation of coated vesicles and discuss its implication to the dynamics of COP vesicles that traffic within the Golgi and with the endoplasmic reticulum. We show that stationary coats of fixed area emerge from the competition between coat growth and the recycling of coat components, in a fashion resembling the treadmilling of cytoskeletal filaments. We further show that the turnover of coat components allows for a highly sensitive switching mechanism between a quiescent and a vesicle producing membrane, upon a slowing down of the exchange kinetics. We claim that the existence of this switching behavior, also triggered by factors, such as the presence of cargo and variation of the membrane mechanical tension, allows for efficient regulation of vesicle secretion. We propose a model, supported by different experimental observations, in which vesiculation of secretory membranes is impaired by the energy-consuming desorption of coat proteins, until the presence of cargo or other factors triggers a dynamical switch into a vesicle producing state.
Collapse
|
31
|
Zeigerer A, Rodeheffer MS, McGraw TE, Friedman JM. Insulin regulates leptin secretion from 3T3-L1 adipocytes by a PI 3 kinase independent mechanism. Exp Cell Res 2008; 314:2249-56. [PMID: 18501893 PMCID: PMC2997521 DOI: 10.1016/j.yexcr.2008.04.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Revised: 04/07/2008] [Accepted: 04/08/2008] [Indexed: 11/29/2022]
Abstract
To better define the molecular mechanisms underlying leptin release from adipocytes, we developed a novel protocol that maximizes leptin production from 3T3-L1 adipocytes. The addition of a PPARgamma agonist to the Isobutylmethylxanthine/Dexamethasone/Insulin differentiation cocktail increased leptin mRNA levels by 5-fold, maintained insulin sensitivity, and yielded mature phenotype in cultured adipocytes. Under these conditions, acute insulin stimulation for 2 h induced a two-fold increase in leptin secretion, which was independent of new protein synthesis, and was not due to alterations in glucose metabolism. Stimulation with insulin for 15 min induced the same level of leptin release and was blocked by Brefeldin A. Inhibiting PI 3-kinase with wortmannin had no effect on insulin stimulation of leptin secretion. These studies show that insulin can stimulate leptin release via a PI3K independent mechanism and provide a cellular system for studying the effect of insulin and potentially other mediators on leptin secretion.
Collapse
Affiliation(s)
- Anja Zeigerer
- Department of Molecular Genetics, The Rockefeller University, New York, NY 10021, USA
| | - Matthew S. Rodeheffer
- Department of Molecular Genetics, The Rockefeller University, New York, NY 10021, USA
| | - Timothy E. McGraw
- Department of Biochemistry, Weill Medical College of Cornell University, New York, NY 10021, USA
| | - Jeffrey M. Friedman
- Department of Molecular Genetics, The Rockefeller University, New York, NY 10021, USA
| |
Collapse
|
32
|
Rennolds J, Tower C, Musgrove L, Fan L, Maloney K, Clancy JP, Kirk KL, Sztul E, Cormet-Boyaka E. Cystic Fibrosis Transmembrane Conductance Regulator Trafficking Is Mediated by the COPI Coat in Epithelial Cells. J Biol Chem 2008; 283:833-9. [DOI: 10.1074/jbc.m706504200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
33
|
Abstract
ADP-ribosylation factors (ARFs) are critical regulators of vesicular trafficking pathways and act at multiple intracellular sites. ADP-ribosylation factor-GTPase-activating proteins (ARFGAPs) are proposed to contribute to site-specific regulation. In yeast, two distinct proteins, Glo3p and Gcs1p, together provide overlapping, essential ARFGAP function required for coat protein (COP)-I-dependent trafficking. In mammalian cells, only the Gcs1p orthologue, named ARFGAP1, has been characterized in detail. However, Glo3p is known to make the stronger contribution to COP I traffic in yeast. Here, based on a conserved signature motif close to the carboxy terminus, we identify ARFGAP2 and ARFGAP3 as the human orthologues of yeast Glo3p. By immunofluorescence (IF), ARFGAP2 and ARFGAP3 are closely colocalized with coatomer subunits in NRK cells in the Golgi complex and peripheral punctate structures. In contrast to ARFGAP1, both ARFGAP2 and ARFGAP3 are associated with COP-I-coated vesicles generated from Golgi membranes in the presence of GTP-γ-S in vitro. ARFGAP2 lacking its zinc finger domain directly binds to coatomer. Expression of this truncated mutant (ΔN-ARFGAP2) inhibits COP-I-dependent Golgi-to-endoplasmic reticulum transport of cholera toxin (CTX-K63) in vivo. Silencing of ARFGAP1 or a combination of ARFGAP2 and ARFGAP3 in HeLa cells does not decrease cell viability. However, silencing all three ARFGAPs causes cell death. Our data provide strong evidence that ARFGAP2 and ARFGAP3 function in COP I traffic.
Collapse
Affiliation(s)
- Gabriella Frigerio
- Department of Clinical Biochemistry, Cambridge Institute for Medical Research, University of CambridgeHills Road, Cambridge CB2 2XY, United Kingdom
- European Bioinformatics Institute, Wellcome Trust Genome CampusHinxton, Cambridge CB10 1SD, United Kingdom
| | - Neil Grimsey
- Department of Clinical Biochemistry, Cambridge Institute for Medical Research, University of CambridgeHills Road, Cambridge CB2 2XY, United Kingdom
| | - Martin Dale
- Department of Clinical Biochemistry, Cambridge Institute for Medical Research, University of CambridgeHills Road, Cambridge CB2 2XY, United Kingdom
| | - Irina Majoul
- Department of Clinical Biochemistry, Cambridge Institute for Medical Research, University of CambridgeHills Road, Cambridge CB2 2XY, United Kingdom
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of LondonEgham TW20 0EX, United Kingdom
| | - Rainer Duden
- Department of Clinical Biochemistry, Cambridge Institute for Medical Research, University of CambridgeHills Road, Cambridge CB2 2XY, United Kingdom
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of LondonEgham TW20 0EX, United Kingdom
- Rainer Duden,
| |
Collapse
|
34
|
Moelleken J, Malsam J, Betts MJ, Movafeghi A, Reckmann I, Meissner I, Hellwig A, Russell RB, Söllner T, Brügger B, Wieland FT. Differential localization of coatomer complex isoforms within the Golgi apparatus. Proc Natl Acad Sci U S A 2007; 104:4425-30. [PMID: 17360540 DOI: 10.1073/pnas.0611360104] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Coatomer, the coat protein of coat protein complex (COP)I-vesicles, is a soluble protein complex made up of seven subunits, alpha-, beta-, beta'-, gamma-, delta-, epsilon-, and zeta-COP. Higher eukaryotes have two paralogous versions of the gamma- and zeta- subunits, termed gamma1- and gamma2-COP and zeta1- and zeta2-COP. Different combinations of these subunits are known to exist within coatomer complexes, and gamma1/zeta1-, gamma1/zeta2-, and gamma2/zeta1-COP represent the major coatomer populations in mammals. The role of COPI vesicles in the early secretory pathway is the subject of considerable debate. To help to resolve this discussion, we used quantitative immunoelectron microscopy and found that significant localization differences for COPI-isoforms do exist, with a preference for gamma1zeta1- and gamma1zeta2-coatomer in the early Golgi apparatus and gamma2zeta1-coatomer in the late Golgi apparatus. These differences suggest distinct functions for coatomer isoforms in a manner similar to clathrin/adaptor vesicles, where different adaptor proteins serve particular transport routes.
Collapse
Affiliation(s)
- Jörg Moelleken
- Biochemistry Center and Department of Neurobiology, University of Heidelberg, 69120 Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Béthune J, Wieland F, Moelleken J. COPI-mediated Transport. J Membr Biol 2006; 211:65-79. [PMID: 17041781 DOI: 10.1007/s00232-006-0859-7] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2005] [Revised: 03/18/2006] [Indexed: 12/27/2022]
Abstract
COPI-coated vesicles are protein and liquid carriers that mediate transport within the early secretory pathway. In this Topical Review, we present their main protein components and discuss current models for cargo sorting. Finally, we describe the striking similarities that exist between the COPI system and the two other characterized types of vesicular carriers: COPII- and clathrin-coated vesicles.
Collapse
Affiliation(s)
- J Béthune
- Biochemie Zentrum, University of Heidelberg, Im Neuenheimer Feld 328, D-69120, Heidelberg, Germany.
| | | | | |
Collapse
|
36
|
Béthune J, Kol M, Hoffmann J, Reckmann I, Brügger B, Wieland F. Coatomer, the coat protein of COPI transport vesicles, discriminates endoplasmic reticulum residents from p24 proteins. Mol Cell Biol 2006; 26:8011-21. [PMID: 16940185 PMCID: PMC1636745 DOI: 10.1128/mcb.01055-06] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
In the formation of COPI vesicles, interactions take place between the coat protein coatomer and membrane proteins: either cargo proteins for retrieval to the endoplasmic reticulum (ER) or proteins that cycle between the ER and the Golgi. While the binding sites on coatomer for ER residents have been characterized, how cycling proteins bind to the COPI coat is still not clear. In order to understand at a molecular level the mechanism of uptake of such proteins, we have investigated the binding to coatomer of p24 proteins as examples of cycling proteins as well as that of ER-resident cargos. The p24 proteins required dimerization to interact with coatomer at two independent binding sites in gamma-COP. In contrast, ER-resident cargos bind to coatomer as monomers and to sites other than gamma-COP. The COPI coat therefore discriminates between p24 proteins and ER-resident proteins by differential binding involving distinct subunits.
Collapse
Affiliation(s)
- Julien Béthune
- Biochemie-Zentrum der Universität Heidelberg, Im Neuenheimer Feld 328, D-69120 Heidelberg, Germany.
| | | | | | | | | | | |
Collapse
|
37
|
Frankland S, Adisa A, Horrocks P, Taraschi TF, Schneider T, Elliott SR, Rogerson SJ, Knuepfer E, Cowman AF, Newbold CI, Tilley L. Delivery of the malaria virulence protein PfEMP1 to the erythrocyte surface requires cholesterol-rich domains. EUKARYOTIC CELL 2006; 5:849-60. [PMID: 16682462 PMCID: PMC1459682 DOI: 10.1128/ec.5.5.849-860.2006] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The particular virulence of the human malaria parasite Plasmodium falciparum derives from export of parasite-encoded proteins to the surface of the mature erythrocytes in which it resides. The mechanisms and machinery for the export of proteins to the erythrocyte membrane are largely unknown. In other eukaryotic cells, cholesterol-rich membrane microdomains or "rafts" have been shown to play an important role in the export of proteins to the cell surface. Our data suggest that depletion of cholesterol from the erythrocyte membrane with methyl-beta-cyclodextrin significantly inhibits the delivery of the major virulence factor P. falciparum erythrocyte membrane protein 1 (PfEMP1). The trafficking defect appears to lie at the level of transfer of PfEMP1 from parasite-derived membranous structures within the infected erythrocyte cytoplasm, known as the Maurer's clefts, to the erythrocyte membrane. Thus our data suggest that delivery of this key cytoadherence-mediating protein to the host erythrocyte membrane involves insertion of PfEMP1 at cholesterol-rich microdomains. GTP-dependent vesicle budding and fusion events are also involved in many trafficking processes. To determine whether GTP-dependent events are involved in PfEMP1 trafficking, we have incorporated non-membrane-permeating GTP analogs inside resealed erythrocytes. Although these nonhydrolyzable GTP analogs reduced erythrocyte invasion efficiency and partially retarded growth of the intracellular parasite, they appeared to have little direct effect on PfEMP1 trafficking.
Collapse
Affiliation(s)
- Sarah Frankland
- Department of Biochemistry, La Trobe University, Melbourne 3086, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
The selective transfer of material between membrane-delimited organelles is mediated by protein-coated vesicles. In many instances, formation of membrane trafficking intermediates is regulated by the GTP-binding protein Arf. Binding and hydrolysis of GTP by Arf was originally linked to the assembly and disassembly of vesicle coats. Arf GTPase-activating proteins (GAPs), a family of proteins that induce hydrolysis of GTP bound to Arf, were therefore proposed to regulate the disassembly and dissociation of vesicle coats. Following the molecular identification of Arf GAPs, the roles for GAPs and GTP hydrolysis have been directly examined. GAPs have been found to bind cargo and known coat proteins as well as directly contribute to vesicle formation, which is consistent with the idea that GAPs function as subunits of coat proteins rather than simply Arf inactivators. In addition, GTP hydrolysis induced by GAPs occurs largely before vesicle formation and is required for sorting. These results are the primary basis for modifications to the classical model for the function of Arf in transport vesicle formation, including a recent proposal that Arf has a proofreading, rather than a structural, role.
Collapse
Affiliation(s)
- Zhongzhen Nie
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA
| | | |
Collapse
|
39
|
Abstract
The ADP-ribosylation factor (ARF) small GTPases regulate vesicular traffic and organelle structure by recruiting coat proteins, regulating phospholipid metabolism and modulating the structure of actin at membrane surfaces. Recent advances in our understanding of the signalling pathways that are regulated by ARF1 and ARF6, two of the best characterized ARF proteins, provide a molecular context for ARF protein function in fundamental biological processes, such as secretion, endocytosis, phagocytosis, cytokinesis, cell adhesion and tumour-cell invasion.
Collapse
Affiliation(s)
- Crislyn D'Souza-Schorey
- Department of Biological Sciences and the Walther Cancer Institute, University of Notre Dame, Notre Dame, Indiana, USA.
| | | |
Collapse
|
40
|
Yahara N, Sato K, Nakano A. The Arf1p GTPase-activating protein Glo3p executes its regulatory function through a conserved repeat motif at its C-terminus. J Cell Sci 2006; 119:2604-12. [PMID: 16735437 DOI: 10.1242/jcs.02997] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ADP-ribosylation factors (Arfs), key regulators of intracellular membrane traffic, are known to exert multiple roles in vesicular transport. We previously isolated eight temperature-sensitive (ts) mutants of the yeast ARF1 gene, which showed allele-specific defects in protein transport, and classified them into three groups of intragenic complementation. In this study, we show that the overexpression of Glo3p, one of the GTPase-activating proteins of Arf1p (ArfGAP), suppresses the ts growth of a particular group of the arf1 mutants (arf1-16 and arf1-17). Other ArfGAPs do not show such a suppression activity. All these ArfGAPs show sequence similarity in the ArfGAP catalytic domain, but are divergent in the rest of molecules. By domain swapping analysis of Glo3p and another ArfGAP, Gcs1p, we have shown that the non-catalytic C-terminal region of Glo3p is required for the suppression of the growth defect in the arf1 ts mutants. Interestingly, Glo3p and its homologues from other eukaryotes harbor a well-conserved repeated ISSxxxFG sequence near the C-terminus, which is not found in Gcs1p and its homologues. We name this region the Glo3 motif and present evidence that the motif is required for the function of Glo3p in vivo.
Collapse
Affiliation(s)
- Natsuko Yahara
- Molecular Membrane Biology Laboratory, RIKEN Discovery Research Institute, Hirosawa, Wako, Saitama 351-0198, Japan
| | | | | |
Collapse
|
41
|
Robinson M, Poon PP, Schindler C, Murray LE, Kama R, Gabriely G, Singer RA, Spang A, Johnston GC, Gerst JE. The Gcs1 Arf-GAP mediates Snc1,2 v-SNARE retrieval to the Golgi in yeast. Mol Biol Cell 2006; 17:1845-58. [PMID: 16452633 PMCID: PMC1415299 DOI: 10.1091/mbc.e05-09-0832] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Gcs1 is an Arf GTPase-activating protein (Arf-GAP) that mediates Golgi-ER and post-Golgi vesicle transport in yeast. Here we show that the Snc1,2 v-SNAREs, which mediate endocytosis and exocytosis, interact physically and genetically with Gcs1. Moreover, Gcs1 and the Snc v-SNAREs colocalize to subcellular structures that correspond to the trans-Golgi and endosomal compartments. Studies performed in vitro demonstrate that the Snc-Gcs1 interaction results in the efficient binding of recombinant Arf1Delta17N-Q71L to the v-SNARE and the recruitment of purified coatomer. In contrast, the presence of Snc had no effect on Gcs1 Arf-GAP activity in vitro, suggesting that v-SNARE binding does not attenuate Arf1 function. Disruption of both the SNC and GCS1 genes results in synthetic lethality, whereas overexpression of either SNC gene inhibits the growth of a distinct subset of COPI mutants. We show that GFP-Snc1 recycling to the trans-Golgi is impaired in gcs1Delta cells and these COPI mutants. Together, these results suggest that Gcs1 facilitates the incorporation of the Snc v-SNAREs into COPI recycling vesicles and subsequent endosome-Golgi sorting in yeast.
Collapse
Affiliation(s)
- Micah Robinson
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Rabouille C, Klumperman J. Opinion: The maturing role of COPI vesicles in intra-Golgi transport. Nat Rev Mol Cell Biol 2005; 6:812-7. [PMID: 16167055 DOI: 10.1038/nrm1735] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
COPI vesicles that surround the Golgi stack were first implicated in the anterograde movement of cargo, and then in the retrograde movement of Golgi enzymes. Recently, their role has been challenged again, and we discuss new data that both confirm and modify our view of these carriers.
Collapse
Affiliation(s)
- Catherine Rabouille
- The Cell Microscopy Center, Department of Cell Biology and Institute of Biomembranes, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | | |
Collapse
|
43
|
McCartney AW, Greenwood JS, Fabian MR, White KA, Mullen RT. Localization of the tomato bushy stunt virus replication protein p33 reveals a peroxisome-to-endoplasmic reticulum sorting pathway. THE PLANT CELL 2005; 17:3513-31. [PMID: 16284309 PMCID: PMC1315385 DOI: 10.1105/tpc.105.036350] [Citation(s) in RCA: 211] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2005] [Revised: 09/26/2005] [Accepted: 10/12/2005] [Indexed: 05/05/2023]
Abstract
Tomato bushy stunt virus (TBSV), a positive-strand RNA virus, causes extensive inward vesiculations of the peroxisomal boundary membrane and formation of peroxisomal multivesicular bodies (pMVBs). Although pMVBs are known to contain protein components of the viral membrane-bound RNA replication complex, the mechanisms of protein targeting to peroxisomal membranes and participation in pMVB biogenesis are not well understood. We show that the TBSV 33-kD replication protein (p33), expressed on its own, targets initially from the cytosol to peroxisomes, causing their progressive aggregation and eventually the formation of peroxisomal ghosts. These altered peroxisomes are distinct from pMVBs; they lack internal vesicles and are surrounded by novel cytosolic vesicles that contain p33 and appear to be derived from evaginations of the peroxisomal boundary membrane. Concomitant with these changes in peroxisomes, p33 and resident peroxisomal membrane proteins are relocalized to the peroxisomal endoplasmic reticulum (pER) subdomain. This sorting of p33 is disrupted by the coexpression of a dominant-negative mutant of ADP-ribosylation factor1, implicating coatomer in vesicle formation at peroxisomes. Mutational analysis of p33 revealed that its intracellular sorting is also mediated by several targeting signals, including three peroxisomal targeting elements that function cooperatively, plus a pER targeting signal resembling an Arg-based motif responsible for vesicle-mediated retrieval of escaped ER membrane proteins from the Golgi. These results provide insight into virus-induced intracellular rearrangements and reveal a peroxisome-to-pER sorting pathway, raising new mechanistic questions regarding the biogenesis of peroxisomes in plants.
Collapse
Affiliation(s)
- Andrew W McCartney
- Department of Molecular and Cellular Biology, University of Guelph, Ontario, Canada
| | | | | | | | | |
Collapse
|
44
|
Hanton SL, Bortolotti LE, Renna L, Stefano G, Brandizzi F. Crossing the divide--transport between the endoplasmic reticulum and Golgi apparatus in plants. Traffic 2005; 6:267-77. [PMID: 15752133 DOI: 10.1111/j.1600-0854.2005.00278.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The transport of proteins between the endoplasmic reticulum (ER) and the Golgi apparatus in plants is an exciting and constantly expanding topic, which has attracted much attention in recent years. The study of protein transport within the secretory pathway is a relatively new field, dating back to the 1970s for mammalian cells and considerably later for plants. This may explain why COPI- and COPII-mediated transport between the ER and the Golgi in plants is only now becoming clear, while the existence of these pathways in other organisms is relatively well documented. We summarize current knowledge of these protein transport routes, as well as highlighting key differences between those of plant systems and those of mammals and yeast. These differences have necessitated the study of plant-specific aspects of protein transport in the early secretory pathway, and this review discusses recent developments in this area. Advances in live-cell-imaging technology have allowed the observation of protein movement in vivo, giving a new insight into many of the processes involved in vesicle formation and protein trafficking. The use of these new technologies has been combined with more traditional methods, such as protein biochemistry and electron microscopy, to increase our understanding of the transport routes in the cell.
Collapse
Affiliation(s)
- Sally L Hanton
- Department of Biology, 112 Science Place, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E2, Canada.
| | | | | | | | | |
Collapse
|
45
|
Meyer DM, Crottet P, Maco B, Degtyar E, Cassel D, Spiess M. Oligomerization and dissociation of AP-1 adaptors are regulated by cargo signals and by ArfGAP1-induced GTP hydrolysis. Mol Biol Cell 2005; 16:4745-54. [PMID: 16093346 PMCID: PMC1237080 DOI: 10.1091/mbc.e05-06-0568] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The mechanism of AP-1/clathrin coat formation was analyzed using purified adaptor proteins and synthetic liposomes presenting tyrosine sorting signals. AP-1 adaptors recruited in the presence of Arf1.GTP and sorting signals were found to oligomerize to high-molecular-weight complexes even in the absence of clathrin. The appendage domains of the AP-1 adaptins were not required for oligomerization. On GTP hydrolysis induced by the GTPase-activating protein ArfGAP1, the complexes were disassembled and AP-1 dissociated from the membrane. AP-1 stimulated ArfGAP1 activity, suggesting a role of AP-1 in the regulation of the Arf1 "GTPase timer." In the presence of cytosol, AP-1 could be recruited to liposomes without sorting signals, consistent with the existence of docking factors in the cytosol. Under these conditions, however, AP-1 remained monomeric, and recruitment in the presence of GTP was short-lived. Sorting signals allowed stable recruitment and oligomerization also in the presence of cytosol. These results suggest a mechanism whereby initial assembly of AP-1 with Arf1.GTP and ArfGAP1 on the membrane stimulates Arf1 GTPase activity, whereas interaction with cargo induces oligomerization and reduces the rate of GTP hydrolysis, thus contributing to efficient cargo sorting.
Collapse
Affiliation(s)
- Daniel M Meyer
- Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
46
|
Szul T, Garcia-Mata R, Brandon E, Shestopal S, Alvarez C, Sztul E. Dissection of membrane dynamics of the ARF-guanine nucleotide exchange factor GBF1. Traffic 2005; 6:374-85. [PMID: 15813748 DOI: 10.1111/j.1600-0854.2005.00282.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
ADP-ribosylation factor (ARF)-facilitated recruitment of COP I to membranes is required for secretory traffic. The guanine nucleotide exchange factor GBF1 activates ARF and regulates ARF/COP I dynamics at the endoplasmic reticulum (ER)-Golgi interface. Like ARF and coatomer, GBF1 peripherally associates with membranes. ADP-ribosylation factor and coatomer have been shown to rapidly cycle between membranes and cytosol, but the membrane dynamics of GBF1 are unknown. Here, we used fluorescence recovery after photobleaching to characterize the behavior of GFP-tagged GBF1. We report that GBF1 rapidly cycles between membranes and the cytosol (t1/2 is approximately 17 +/- 1 seconds). GBF1 cycles faster than GFP-tagged ARF, suggesting that in each round of association/dissociation, GBF1 catalyzes a single event of ARF activation, and that the activated ARF remains on membrane after GBF1 dissociation. Using three different approaches [expression of an inactive (E794K) GBF1 mutant, expression of the ARF1 (T31N) mutant with decreased affinity for GTP and Brefeldin A treatment], we show that GBF1 is stabilized on membranes when in a complex with ARF-GDP. GBF1 dissociation from ARF and membranes is triggered by its catalytic activity, i.e. the displacement of GDP and the subsequent binding of GTP to ARF. Our findings imply that continuous cycles of recruitment and dissociation of GBF1 to membranes are required for sustained ARF activation and COP I recruitment that underlies ER-Golgi traffic.
Collapse
Affiliation(s)
- Tomasz Szul
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, AL 35924, USA
| | | | | | | | | | | |
Collapse
|
47
|
Kartberg F, Elsner M, Fröderberg L, Asp L, Nilsson T. Commuting between Golgi cisternae—Mind the GAP! BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2005; 1744:351-63. [PMID: 15939491 DOI: 10.1016/j.bbamcr.2005.05.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2005] [Revised: 04/29/2005] [Accepted: 05/03/2005] [Indexed: 11/18/2022]
Abstract
Intracellular transport has remained central to cell biology now for more than 40 years. Despite this, we still lack an overall mechanistic framework that describes transport in different parts of the cell. In the secretory pathway, basic questions, such as how biosynthetic cargo traverses the pathway, are still debated. Historically, emphasis was first put on interpreting function from morphology at the ultrastructural level revealing membrane structures such as the transitional ER, vesicular carriers, vesicular tubular clusters, Golgi cisternae, Golgi stacks and the Golgi ribbon. This emphasis on morphology later switched to biochemistry and yeast genetics yielding many of the key molecular players and their associated functions that we know today. More recently, microscopy studies of living cells incorporating biophysics and system analysis has proven useful and is often used to readdress earlier findings, sometimes with surprising outcomes.
Collapse
Affiliation(s)
- Fredrik Kartberg
- Department of Medical Biochemistry, Göteborg University, 413 90 Göteborg, Sweden
| | | | | | | | | |
Collapse
|
48
|
Lee SY, Yang JS, Hong W, Premont RT, Hsu VW. ARFGAP1 plays a central role in coupling COPI cargo sorting with vesicle formation. ACTA ACUST UNITED AC 2005; 168:281-90. [PMID: 15657398 PMCID: PMC2171589 DOI: 10.1083/jcb.200404008] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Examining how key components of coat protein I (COPI) transport participate in cargo sorting, we find that, instead of ADP ribosylation factor 1 (ARF1), its GTPase-activating protein (GAP) plays a direct role in promoting the binding of cargo proteins by coatomer (the core COPI complex). Activated ARF1 binds selectively to SNARE cargo proteins, with this binding likely to represent at least a mechanism by which activated ARF1 is stabilized on Golgi membrane to propagate its effector functions. We also find that the GAP catalytic activity plays a critical role in the formation of COPI vesicles from Golgi membrane, in contrast to the prevailing view that this activity antagonizes vesicle formation. Together, these findings indicate that GAP plays a central role in coupling cargo sorting and vesicle formation, with implications for simplifying models to describe how these two processes are coupled during COPI transport.
Collapse
Affiliation(s)
- Stella Y Lee
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, and Department of Medicine, Harvard Medical School, Boston, MA 02115
| | | | | | | | | |
Collapse
|
49
|
Stephens DJ, Pepperkok R. Differential effects of a GTP-restricted mutant of Sar1p on segregation of cargo during export from the endoplasmic reticulum. J Cell Sci 2005; 117:3635-44. [PMID: 15252131 DOI: 10.1242/jcs.01269] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Export of cargo from the endoplasmic reticulum (ER) is the first membrane trafficking step in the secretory pathway. To date, all cargo proteins appear to use a common set of machinery for the initial stages of export, namely the COPII coat complex. Recent data from both yeast and mammalian systems have emerged suggesting that specific cargoes could be sorted from one another at the point of exit from the endoplasmic reticulum or immediately afterwards. Here, we have examined the mechanisms used for export of different types of cargo molecule from the endoplasmic reticulum. All cargoes examined utilise the COPII machinery, but specific differences are seen in the accumulation of cargo into ER-derived pre-budding complexes following expression of a GTP-restricted mutant of the Sar1p GTPase. Glycosylphosphatidylinositol (GPI)-anchored GFP is seen to be restricted to the ER under these conditions whereas other cargoes, including ts045-G and lumFP accumulate in pre-budding complexes. Following exit, GPI-FP, lumFP and ts045-G-FP all travel to the Golgi in the same vesicular tubular clusters (VTCs). These data show a differential requirement for efficient GTP hydrolysis by the Sar1p GTPase in export of cargo from the ER.
Collapse
Affiliation(s)
- David J Stephens
- Department of Biochemistry, University of Bristol, School of Medical Sciences, University Walk, Bristol BS8 1TD, UK.
| | | |
Collapse
|
50
|
Porter-Kelley JM, Gerald NJ, Engel JC, Ghedin E, Dwyer DM. LdARF1 in trafficking and structural maintenance of the trans-Golgi cisternal network in the protozoan pathogen Leishmania donovani. Traffic 2005; 5:868-83. [PMID: 15479452 DOI: 10.1111/j.1600-0854.2004.00229.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Adenosine diphosphate ribosylation factors (ARFs) are small guanosine-5'-triphosphatases that are essential in vesicular trafficking and in the maintenance of the Golgi network. In this report, we identified a homolog of the mammalian ARF1 in the human pathogenic protozoan parasite, Leishmania donovani (Ld). Ld ARF1 is a 549 bp gene encoding a 183-amino acid deduced protein of approximately 20 kDa. We demonstrated by Southern blot analysis that there are at least two copies of ARF1 in the Ld genome. Moreover, Northern blot analysis revealed that Ld ARF1 is expressed on a 1.35 kb transcript in both the insect vector (promastigotes) and mammalian host (amastigotes) forms of this parasite. Fluorescent microscopy studies using Ld promastigotes episomally transfected with an ARF1::GFP (green fluorescent protein) chimeric construct showed that such chimeras appeared to localize to the Golgi region of these organisms. This observation was verified by immunoelectron microscopy using an anti-GFP antibody. Such studies also revealed that Ld ARF1::GFP chimeras localized to trans-Golgi vesicles, the flagellar pocket/reservoir and other vesicles located between the trans-Golgi network and flagellar pocket in these apically polarized cells. Fluorescence recovery after photobleaching and fluorescence loss in photobleaching experiments revealed both the dynamic binding and releasing activity of Ld ARF1 from the Golgi network in these parasites. Further, episomal expression of a constitutively active ("on") ARF1 (Q71L mutation) resulted in the aberrant swelling and distended-structure of the trans-Golgi cisternae in these cells. These results show that Ld ARF1 is transiently associated with the Golgi network and plays a role in the structural maintenance of this organelle in these important human pathogens.
Collapse
Affiliation(s)
- Johanna M Porter-Kelley
- Cell Biology Section, Laboratory of Parasitic Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-0425, USA
| | | | | | | | | |
Collapse
|