1
|
Rodrigues T, Guardiola FA, Almeida D, Antunes A. Aquatic Invertebrate Antimicrobial Peptides in the Fight Against Aquaculture Pathogens. Microorganisms 2025; 13:156. [PMID: 39858924 PMCID: PMC11767717 DOI: 10.3390/microorganisms13010156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/07/2025] [Accepted: 01/11/2025] [Indexed: 01/27/2025] Open
Abstract
The intensification of aquaculture has escalated disease outbreaks and overuse of antibiotics, driving the global antimicrobial resistance (AMR) crisis. Antimicrobial peptides (AMPs) provide a promising alternative due to their rapid, broad-spectrum activity, low AMR risk, and additional bioactivities, including immunomodulatory, anticancer, and antifouling properties. AMPs derived from aquatic invertebrates, particularly marine-derived, are well-suited for aquaculture, offering enhanced stability in high-salinity environments. This study compiles and analyzes data from AMP databases and over 200 scientific sources, identifying approximately 350 AMPs derived from aquatic invertebrates, mostly cationic and α-helical, across 65 protein families. While in vitro assays highlight their potential, limited in vivo studies hinder practical application. These AMPs could serve as feed additives, therapeutic agents, or in genetic engineering approaches like CRISPR/Cas9-mediated transgenesis to enhance resilience of farmed species. Despite challenges such as stability, ecological impacts, and regulatory hurdles, advancements in peptidomimetics and genetic engineering hold significant promise. Future research should emphasize refining AMP enhancement techniques, expanding their diversity and bioactivity profiles, and prioritizing comprehensive in vivo evaluations. Harnessing the potential of AMPs represents a significant step forward on the path to aquaculture sustainability, reducing antibiotic dependency, and combating AMR, ultimately safeguarding public health and ecosystem resilience.
Collapse
Affiliation(s)
- Tomás Rodrigues
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal;
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal
| | - Francisco Antonio Guardiola
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, 30100 Murcia, Spain;
| | - Daniela Almeida
- Department of Zoology and Physical Anthropology, Faculty of Biology, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, 30100 Murcia, Spain;
| | - Agostinho Antunes
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal;
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal
| |
Collapse
|
2
|
Shi M, Sun L, Chen L, Qu K, Tan B, Xie S. Effects of hydroxyproline supplementation in low fish meal diet on growth, immunity and intestinal health of Litopenaeus vannamei. AQUACULTURE REPORTS 2024; 38:102323. [DOI: 10.1016/j.aqrep.2024.102323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
3
|
Ren Q, Huang X. The first report of a C-type lectin contains a CLIP domain involved in antibacterial defense in Macrobrachium nipponense. Int J Biol Macromol 2024; 275:133705. [PMID: 38972646 DOI: 10.1016/j.ijbiomac.2024.133705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 07/09/2024]
Abstract
We identified a novel C-type lectin (CTL) from Macrobrachium nipponense, designated as Mn-clip-Lec. It consists of 1315 bp with an open reading frame of 1098 bp, encoding a polypeptide of 365 amino acids. Mn-clip-Lec contains 6 exons and 5 introns. Mn-clip-Lec possessed a CLIP domain at the N-terminal and two carbohydrate recognition domains at the C-terminal. Interaction between Mn-clip-Lec and MnLec was found by Yeast two-hybrid analysis. The expressions of Mn-clip-Lec, MnLec, prophenoloxidase (proPO)-activating system-associated genes (MnPPAF, MnPPAE, and MnPO), and antimicrobial peptides (AMPs) (MnALF and MnCRU) were up-regulated after the challenge with Staphylococcus aureus. RNA interference (RNAi)-mediated suppression of the Mn-clip-Lec and MnLec genes in S. aureus-challenged prawns reduced the transcripts of MnPPAF, MnPPAE, MnPO, MnALF and MnCRU. Knockdown of Mn-clip-Lec and MnLec resulted in decrease in PO activity in M. nipponense infected with S. aureus. The recombinant Mn-clip-Lec (rMn-clip-Lec) protein bound all tested bacteria and agglutinated S. aureus. A sugar-binding assay revealed that rMn-clip-Lec could bind to LPS or PGN. rMn-clip-Lec accelerated the clearance of S. aureus in vivo. Our findings suggest that Mn-clip-Lec and its interacting MnLec play important roles in the induction of the proPO system and AMPs expression in M. nipponense during bacterial infection.
Collapse
Affiliation(s)
- Qian Ren
- School of Marine Sciences, Nanjing University of Information Science & Technology, Nanjing 210044, Jiangsu Province, PR China.
| | - Xin Huang
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, Jiangsu Province, PR China
| |
Collapse
|
4
|
Tran HTQ, Ho TH, Nan FH, Liu CH, Hu YF, Chong CM, de Cruz CR, Karim M, Liu TJ, Kuo IP, Lee PT. Assessment of fish protein hydrolysate as a substitute for fish meal in white shrimp diets: Impact on growth, immune response, and resistance against Vibrio parahaemolyticus infection. FISH & SHELLFISH IMMUNOLOGY 2024; 150:109597. [PMID: 38697373 DOI: 10.1016/j.fsi.2024.109597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/27/2024] [Accepted: 04/30/2024] [Indexed: 05/05/2024]
Abstract
This study investigated the effects of fish protein hydrolysate derived from barramundi on growth performance, muscle composition, immune response, disease resistance, histology and gene expression in white shrimp (Penaeus vannamei). In vitro studies demonstrated FPH enhanced mRNA expressions of key immune-related genes and stimulated reactive oxygen species (ROS) production and phagocytic activity in shrimp hemocytes. To evaluate the effects of substituting fish meal with FPH in vivo, four isoproteic (43 %), isolipidic (6 %), and isoenergetic diets (489 kcal/100 g) were formulated with fish meal substitution levels of 0 % (control), 30 % (FPH30), 65 % (FPH65), and 100 % (FPH100). After 8-week feeding, the growth performance of FPH65 and FPH100 were significantly lower than that of control and FPH30 (p < 0.05). Similarly, the midgut histological examination revealed the wall thickness and villi height of FPH100 were significantly lower than those of control (p < 0.05). The shrimps were received the challenge of AHPND + Vibrio parahaemolyticus at week 4 and 8. All FPH-fed groups significantly enhanced resistance against Vibrio parahaemolyticus at week 4 (p < 0.05). However, this protective effect diminished after long-period feeding. No significant difference of survival rate was observed among all groups at week 8 (p > 0.05). The expressions of immune-related genes were analyzed at week 4 before and after challenge. In control group, V. parahaemolyticus significantly elevated SOD in hepatopancreas and Muc 19, trypsin, Midline-fas, and GPx in foregut (p < 0.05). Moreover, hepatopancreatic SOD of FPH65 and FPH100 were significantly higher than that of control before challenge (p < 0.05). Immune parameters were measured at week 8. Compared with control, the phagocytic index of FPH 30 was significantly higher (p < 0.05). However, dietary FPH did not alter ROS production, phenoloxidase activity, phagocytic rate, and total hemocyte count (p > 0.05). These findings suggest that FPH30 holds promise as a feed without adverse impacts on growth performance while enhancing the immunological response of white shrimp.
Collapse
Affiliation(s)
| | - Thi Hang Ho
- Department of Aquaculture, National Taiwan Ocean University, Keelung City, Taiwan
| | - Fan-Hua Nan
- Department of Aquaculture, National Taiwan Ocean University, Keelung City, Taiwan
| | - Chun-Hung Liu
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Yeh-Fang Hu
- Department of Aquaculture, National Taiwan Ocean University, Keelung City, Taiwan
| | - Chou Min Chong
- International Institute of Aquaculture and Aquatic Sciences (I-AQUAS), Universiti Putra Malaysia, Port Dickson, Negeri Sembilan, Malaysia
| | - Clement R de Cruz
- International Institute of Aquaculture and Aquatic Sciences (I-AQUAS), Universiti Putra Malaysia, Port Dickson, Negeri Sembilan, Malaysia
| | - Murni Karim
- International Institute of Aquaculture and Aquatic Sciences (I-AQUAS), Universiti Putra Malaysia, Port Dickson, Negeri Sembilan, Malaysia
| | - Ting-Jui Liu
- Department of Aquaculture, National Taiwan Ocean University, Keelung City, Taiwan
| | - I-Pei Kuo
- Department of Aquaculture, National Taiwan Ocean University, Keelung City, Taiwan; Freshwater Aquaculture Research Center Chupei Station, Fisheries Research Institute, Ministry of Agriculture, Hsinchu, Taiwan.
| | - Po-Tsang Lee
- Department of Aquaculture, National Taiwan Ocean University, Keelung City, Taiwan.
| |
Collapse
|
5
|
Huang MY, Truong BN, Nguyen TP, Ju HJ, Lee PT. Synergistic effects of combined probiotics Bacillus pumilis D5 and Leuconostoc mesenteroide B4 on immune enhancement and disease resistance in Litopenaeus vannamei. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 155:105158. [PMID: 38467323 DOI: 10.1016/j.dci.2024.105158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/08/2024] [Accepted: 03/09/2024] [Indexed: 03/13/2024]
Abstract
This study investigated the effects of two distinct probiotics, Leuconostoc mesenteroides B4 (B4) and Bacillus pumilus D5 (D5), along with their combination, on the diet of white shrimp (Litopenaeus vannamei) during an eight-week feeding trial. The diets tested included B4 + dextran at 107 CFU/g feed (the B4 group), D5 alone at 107 CFU/g feed (the D5 group), and a combination of B4 + dextran and D5 at 5 × 106 CFU/g feed each (the B4+dextran + D5 group). Relative to the control group, those administered probiotics exhibited moderate enhancements in growth. By the eighth week, the weight gain for the B4, D5, and B4+D5 groups was 696.50 ± 78.15%, 718.53 ± 130.73%, and 693.05 ± 93.79%, respectively, outperforming the control group's 691.66 ± 31.10% gain. The feed conversion ratio was most efficient in the B4 group (2.16 ± 0.06), closely followed by B4+D5 (2.21 ± 0.03) and D5 (2.22 ± 0.06), with the control group having the highest ratio (2.27 ± 0.03). While phenoloxidase activity was somewhat elevated in the B4 and D5 groups, no significant differences were noted in respiratory burst activity or total hemocyte count across all groups. Challenge tests at weeks 4 and 8 showed that the B4 + D5 combination offered superior protection against AHPND-causing Vibrio parahaemolyticus. The 4-week cumulative survival rate was highest in shrimp treated with B4 + dextran + D5 (56.25%), followed by B4 + dextran (31.25%), control (18.75%), and lowest in D5 (12.5%). By week 8, the B4 + dextran + D5 (43.75%) and B4 + dextran (37.5%) groups significantly outperformed the control group (6.25%, p < 0.05), with no significant difference observed between the D5 group (37.5%) and the control group at day 56. Analysis of the shrimp's foregut microbiota revealed an increase in unique OTUs in the B4 and B4 + D5 groups. Compared to the control, Proteobacteria abundance was reduced in all probiotic groups. Potential pathogens like Vibrio, Bacteroides, Neisseria, Botrytis, Clostridioides, and Deltaentomopoxvirus were detected in the control but were reduced or absent in probiotic groups. Beneficial microbes such as Methanobrevibacter and Dictyostelium in the B4+D5 group, and Sugiyamaella in the B4 group, showed significant increases. Probiotics also led to higher transcript levels of nitric oxide synthase in the hemocytes, and lysozyme and transglutaminase in the midgut, along with lysozyme and α2-macroglobulin in the foregut. Notably, the combined B4 + D5 probiotics synergistically enhanced the expression of superoxide dismutase and prophenoloxidase in the foregut, indicating an improved immune response. In summary, this study demonstrates that the probiotics evaluated, especially when used in combination, significantly boost the expression of specific immune-related genes, enhance the bacterial diversity and richness of the intestine, and thus prevent the colonization and proliferation of Vibrio spp. in L. vannamei.
Collapse
Affiliation(s)
- Mei-Ying Huang
- Aquaculture Division, Fisheries Research Institute, Ministry of Agriculture, Taiwan
| | - Bich Ngoc Truong
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
| | - Tan Phat Nguyen
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
| | - Huei-Jen Ju
- Aquaculture Division, Fisheries Research Institute, Ministry of Agriculture, Taiwan
| | - Po-Tsang Lee
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan.
| |
Collapse
|
6
|
Ghosh AK, Islam HMR, Banu GR, Panda SK, Schoofs L, Luyten W. Effects of Piper betle and Phyllanthus emblica leaf extracts on the growth and resistance of black tiger shrimp, Penaeus monodon, against pathogenic Vibrio parahaemolyticus. AQUACULTURE INTERNATIONAL 2024; 32:3689-3708. [DOI: 10.1007/s10499-023-01345-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/23/2023] [Indexed: 01/11/2025]
|
7
|
Sangklai N, Supungul P, Jaroenlak P, Tassanakajon A. Immune signaling of Litopenaeus vannamei c-type lysozyme and its role during microsporidian Enterocytozoon hepatopenaei (EHP) infection. PLoS Pathog 2024; 20:e1012199. [PMID: 38683868 PMCID: PMC11081493 DOI: 10.1371/journal.ppat.1012199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/09/2024] [Accepted: 04/16/2024] [Indexed: 05/02/2024] Open
Abstract
The microsporidian Enterocytozoon hepatopenaei (EHP) is a fungi-related, spore-forming parasite. EHP infection causes growth retardation and size variation in shrimp, resulting in severe economic losses. Studies on shrimp immune response have shown that several antimicrobial peptides (AMPs) were upregulated upon EHP infection. Among those highly upregulated AMPs is c-type lysozyme (LvLyz-c). However, the immune signaling pathway responsible for LvLyz-c production in shrimp as well as its function against the EHP infection are still poorly understood. Here, we characterized major shrimp immune signaling pathways and found that Toll and JAK/STAT pathways were up-regulated upon EHP infection. Knocking down of a Domeless (DOME) receptor in the JAK/STAT pathways resulted in a significant reduction of the LvLyz-c and the elevation of EHP copy number. We further elucidated the function of LvLyz-c by heterologously expressing a recombinant LvLyz-c (rLvLyz-c) in an Escherichia coli. rLvLyz-c exhibited antibacterial activity against several bacteria such as Bacillus subtilis and Vibrio parahaemolyticus. Interestingly, we found an antifungal activity of rLvLyz-c against Candida albican, which led us to further investigate the effects of rLvLyz-c on EHP spores. Incubation of the EHP spores with rLvLyz-c followed by a chitin staining showed that the signals were dramatically decreased in a dose-dependent manner, suggesting that rLvLyz-c possibly digest a chitin coat on the EHP spores. Transmission electron microscopy analysis revealed that an endospore layer, which is composed mainly of chitin, was digested by rLvLyz-c. Lastly, we observed that EHP spores that were treated with rLvLyz-c showed a significant reduction of the spore germination rate. We hypothesize that thinning of the endospore of EHP would result in altered permeability, hence affecting spore germination. This work provides insights into shrimp immune signaling pathways responsible for LvLyz-c production and its anti-EHP property. This knowledge will serve as important foundations for developing EHP control strategies.
Collapse
Affiliation(s)
- Nutthapon Sangklai
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Premruethai Supungul
- Aquatic Molecular Genetics and Biotechnology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, Thailand
| | - Pattana Jaroenlak
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Anchalee Tassanakajon
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
8
|
Ghosh AK, Ahmmed SS, Islam HMR, Hasan MA, Banu GR, Panda SK, Schoofs L, Luyten W. Oral administration of Zingiber officinale and Aegle marmelos extracts enhances growth and immune functions of the shrimp Penaeus monodon against the white spot syndrome virus (WSSV). AQUACULTURE INTERNATIONAL 2024; 32:613-632. [DOI: 10.1007/s10499-023-01177-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/07/2023] [Indexed: 07/15/2023]
|
9
|
Patkaew S, Direkbusarakom S, Hirono I, Wuthisuthimethavee S, Powtongsook S, Pooljun C. Effect of supersaturated dissolved oxygen on growth-, survival-, and immune-related gene expression of Pacific white shrimp ( Litopenaeus vannamei). Vet World 2024; 17:50-58. [PMID: 38406361 PMCID: PMC10884578 DOI: 10.14202/vetworld.2024.50-58] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/11/2023] [Indexed: 02/27/2024] Open
Abstract
Background and Aim Oxygen concentration is an essential water quality parameter for aquaculture systems. Recently, supersaturated dissolved oxygen (DO) has been widely used in aquaculture systems to prevent oxygen depletion; however, the long-term effects of supersaturated DO exposure on aquatic animals have not been studied. In this study, we examined the effects of supersaturated DO on the growth, survival, and gene expression of Pacific white shrimp (Litopenaeus vannamei). Materials and Methods Specific pathogen-free shrimp with a body weight of 8.22 ± 0.03 g were randomly assigned to two groups with four replicates at a density of 15 shrimps per tank. Shrimp were cultivated in recirculating tanks containing 50 L of 15 ppt seawater in each replicate. Oxygen was supplied at 5 mg/L to the control tanks using an air microbubble generator and at 15 mg/L to the treatment tanks using a pure oxygen microbubble generator. Shrimp were fed commercial feed pellets containing 39% protein at 4% of their body weight per day for 30 days. Average daily growth (ADG) and feed conversion ratio (FCR) were determined on days 15 and 30. Shrimp molting was measured every day. Individual hemolymph samples were obtained and analyzed for total hemocyte count, differential hemocyte count, and expression of growth- and immune-related genes at the end of the experiment. Results Long-term exposure to supersaturated DO significantly affected shrimp growth. After 30 days of supersaturated DO treatment, the final weight and ADG were 14.73 ± 0.16 g and 0.22 ± 0.04, respectively. Shrimp treated with normal aeration showed significantly lower weight (12.13 ± 0.13 g) and ADG (0.13 ± 0.00) compared with the control group. FCR was 1.55 ± 0.04 in the treatment group and 2.51 ± 0.09 in the control group. Notably, the shrimp molting count was 1.55-fold higher in the supersaturated DO treatment than in the supersaturated DO treatment. The expression of growth-related genes, such as alpha-amylase, cathepsin L, and chitotriosidase, was 1.40-, 1.48-, and 1.35-fold higher, respectively, after supersaturated DO treatment. Moreover, the treatment increased the expression of anti-lipopolysaccharide factor, crustin, penaeidin3, and heat shock protein 70 genes by 1.23-, 2.07-, 4.20-, and 679.04-fold, respectively, compared to the controls. Conclusion Supersaturated DO increased growth and ADG production and decreased FCR. Furthermore, enhanced immune-related gene expression by supersaturated DO may improve shrimp health and reduce disease risk during cultivation.
Collapse
Affiliation(s)
- Songwut Patkaew
- Center of Excellence for Aquaculture Technology and Innovation, School of Agricultural Technology and Food Industry, Walailak University, Nakhon Si Thammarat, Thailand
| | - Sataporn Direkbusarakom
- Center of Excellence for Aquaculture Technology and Innovation, School of Agricultural Technology and Food Industry, Walailak University, Nakhon Si Thammarat, Thailand
| | - Ikuo Hirono
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato-ku, Tokyo 108-8477, Japan
| | - Suwit Wuthisuthimethavee
- Center of Excellence for Aquaculture Technology and Innovation, School of Agricultural Technology and Food Industry, Walailak University, Nakhon Si Thammarat, Thailand
| | - Sorawit Powtongsook
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
- Department of Marine Science, Center of Excellence for Marine Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Chettupon Pooljun
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat, Thailand
- Research Center on One Health, Walailak University, Nakhon Si Thammarat, Thailand
| |
Collapse
|
10
|
Hossain MMM, Farjana N, Afroz R, Hasan-Uj-Jaman, Saha PK, Roy HS, Rahman MA, Farid MA. Genes expression in Penaeus monodon of Bangladesh; challenged with AHPND-causing Vibrio parahaemolyticus. FISH AND SHELLFISH IMMUNOLOGY REPORTS 2023; 4:100092. [PMID: 37091065 PMCID: PMC10114510 DOI: 10.1016/j.fsirep.2023.100092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 02/09/2023] [Accepted: 04/01/2023] [Indexed: 04/05/2023] Open
Abstract
Vibrio parahaemolyticus, the causative agent of Acute hepatopancreatic necrosis disease (AHPND), was discovered in 2013 as a unique isolate that produces toxins and kills penaeid shrimps in devasting nature in Bangladesh and causes severe economic losses. This research aimed to understand the expressions of immune genes in different stages of the host species, Penaeus monodon, against virulence and toxin genes upon being challenged with V. parahaemolyticus. Healthy post-larvae (PL) samples were collected from southwestern of Bangladesh from July 2021 to August 2022. The tryptic soy agar with 1.5% sodium chloride (NaCl) was used to inoculate the cells of V. parahaemolyticus, and the tryptic soy broth (TSB) with 1.5% NaCl was used to transfer the colonies. The spectrophotometry measured bacteria density. PCR, qPCR, SDS-PAGE, and Western blot measured gene expression and survivability after the immersion challenge. The 1 × 105CFU/mL of V. parahaemolyticus was used for 144 h.p.i (hours post-infection) challenge to six stages of post-larvae (PL) of P. monodon (PL20, PL25, PL30, PL35, PL40, and PL45), PL30 and PL35 showed 100% mortality by day 72 (h.p.i.) after exposure that indicated most vulnerable to V. parahaemolyticus. The expression of immune and toxic genes was confirmed by qPCR. The immune genes toll-like receptors (TLR), prophenoloxidase (ProPO), lysozyme (lyso), and penaeidin (PEN) of PL20 and PL25 of P. monodon were expressed robustly up-trends. PL30 and PL35 showed the lowest gene expression at the end of 72 (h.p.i.). At the end of the 144 (h.p.i.) exposure, the immune genes TLR, ProPO, lyso, and PEN expressed highest in PL45 than other post-larvae stages of P. monodon. The toxic genes (pirA, ToxR, ToxA, ToxB, tlh, tdh, and trh) in PL30 and PL35 of P. monodon after exposure of V. parahaemolyticus were expressed highest at the end of the 72 (h.p.i.). The lowest toxic genes expressions were revealed in PL20 and PL45 at the end of the 144 (h.p.i.). The SDS-PAGE analysis of proteins from the bacterium revealed identical protein profiles with toxic genes, and those toxins were further confirmed by Western blot. The 20 kDa, 78 kDa (ToxR), 20 kDa, 25 kDa (ToxA), 25 kDa (ToxB), 20 kDa, 27 kDa, 75 kDa (tdh), and 20 kDa, 27 kDa, 75 kDa, and 78 kDa (trh) proteins were strong responses in Western blot, indicating the crucial involvement of these immune-related genes in the defense and recovery of the first-line defense mechanisms during V. parahaemolyticus infection to shrimp. The all-toxic genes showed a unique homology and those derived from the common ancestor compared with V. parahaemolyticus (NCBI accession no. AP014859.1). All clades were derived with different traits with very low genetic distance, where the overall mean distance was 3.18 and showed a very uniform and homogenous pattern among the lineages. The V. parahaemolyticus infection process in different PL stages in P. monodon revealed novel insights into the immune responses. The responses may lead to the subsequent production of a DNA vaccine, enhancing shrimp health management to minimize the economic losses due to AHPND experiencing an outbreak of early mortality syndrome (EMS) toward sustainable production P. monodon (shrimp).
Collapse
Affiliation(s)
- Md. Mer Mosharraf Hossain
- Department of Fisheries and Marine Bioscience, Jashore University of Science and Technology (JUST), Bangladesh
| | - Nawshin Farjana
- Department of Fisheries and Marine Bioscience, Jashore University of Science and Technology (JUST), Bangladesh
| | - Rukaiya Afroz
- Department of Fisheries and Marine Bioscience, Jashore University of Science and Technology (JUST), Bangladesh
| | | | | | | | - Md. Anisur Rahman
- Department of Fisheries and Marine Bioscience, Jashore University of Science and Technology (JUST), Bangladesh
| | - Md. Almamun Farid
- Department of Fisheries and Marine Bioscience, Jashore University of Science and Technology (JUST), Bangladesh
| |
Collapse
|
11
|
Guryanova SV, Balandin SV, Belogurova-Ovchinnikova OY, Ovchinnikova TV. Marine Invertebrate Antimicrobial Peptides and Their Potential as Novel Peptide Antibiotics. Mar Drugs 2023; 21:503. [PMID: 37888438 PMCID: PMC10608444 DOI: 10.3390/md21100503] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/14/2023] [Accepted: 09/21/2023] [Indexed: 10/28/2023] Open
Abstract
Marine invertebrates constantly interact with a wide range of microorganisms in their aquatic environment and possess an effective defense system that has enabled their existence for millions of years. Their lack of acquired immunity sets marine invertebrates apart from other marine animals. Invertebrates could rely on their innate immunity, providing the first line of defense, survival, and thriving. The innate immune system of marine invertebrates includes various biologically active compounds, and specifically, antimicrobial peptides. Nowadays, there is a revive of interest in these peptides due to the urgent need to discover novel drugs against antibiotic-resistant bacterial strains, a pressing global concern in modern healthcare. Modern technologies offer extensive possibilities for the development of innovative drugs based on these compounds, which can act against bacteria, fungi, protozoa, and viruses. This review focuses on structural peculiarities, biological functions, gene expression, biosynthesis, mechanisms of antimicrobial action, regulatory activities, and prospects for the therapeutic use of antimicrobial peptides derived from marine invertebrates.
Collapse
Affiliation(s)
- Svetlana V. Guryanova
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (S.V.G.); (S.V.B.)
- Medical Institute, Peoples’ Friendship University of Russia, 117198 Moscow, Russia
| | - Sergey V. Balandin
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (S.V.G.); (S.V.B.)
| | | | - Tatiana V. Ovchinnikova
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (S.V.G.); (S.V.B.)
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia;
- Department of Biotechnology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| |
Collapse
|
12
|
Wanvimonsuk S, Somboonwiwat K. Peroxiredoxin-4 supplementation modulates the immune response, shapes the intestinal microbiome, and enhances AHPND resistance in Penaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2023:108915. [PMID: 37355217 DOI: 10.1016/j.fsi.2023.108915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/14/2023] [Accepted: 06/22/2023] [Indexed: 06/26/2023]
Abstract
Peroxiredoxin-4 from Penaeus vannamei (LvPrx4) is considered a damage-associated molecular pattern (DAMP) that can activate the expression of immune-related genes through the Toll pathway. We previously demonstrated that the recombinant LvPrx4 (rLvPrx4) can enhance shrimp resistance against Vibrio parahaemolyticus, causing acute hepatopancreatic necrosis disease (VPAHPND), which causes great production losses in shrimp farming. Herein, we showed that the rLvPrx4 had a thermal tolerance of around 60 °C and that the ionic strength had no noticeable effect on its activity. We discovered that feeding a diet containing rLvPrx4 to shrimp for three weeks increased the expression of the immune-related genes LvPEN4 and LvVago5. Furthermore, pre-treatment with rLvPrx4 feeding could significantly prolong shrimp survival following the VPAHPND challenge. The shrimp intestinal microbiome was then characterized using PCR amplification of the 16S rRNA gene and Illumina sequencing. Three weeks of rLvPrx4 supplementation altered the bacterial community structure (beta diversity) and revealed the induction of differentially abundant families, including Cryomorphaceae, Flavobacteriaceae, Pirellulaceae, Rhodobacteraceae, and Verrucomicrobiaceae, in the rLvPrx4 group. Metagenomic predictions indicated that some amino acid metabolism pathways, such as arginine and proline metabolism, and genetic information processing were significantly elevated in the rLvPrx4 group compared to the control group. This study is the first to describe the potential use of rLvPrx4 supplementation to enhance shrimp resistance to VPAHPND and alter the composition of a beneficial bacterial community in shrimp, making rLvPrx4 a promising feed supplement as an alternative to antibiotics for controlling VPAHPND infection in shrimp aquaculture.
Collapse
Affiliation(s)
- Supitcha Wanvimonsuk
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Kunlaya Somboonwiwat
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
13
|
Marino R, Melillo D, Italiani P, Boraschi D. Environmental stress and nanoplastics' effects on Ciona robusta: regulation of immune/stress-related genes and induction of innate memory in pharynx and gut. Front Immunol 2023; 14:1176982. [PMID: 37313415 PMCID: PMC10258323 DOI: 10.3389/fimmu.2023.1176982] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/19/2023] [Indexed: 06/15/2023] Open
Abstract
In addition to circulating haemocytes, the immune system of the solitary ascidian Ciona robusta relies on two organs, the pharynx and the gut, and encompasses a wide array of immune and stress-related genes. How the pharynx and the gut of C. robusta react and adapt to environmental stress was assessed upon short or long exposure to hypoxia/starvation in the absence or in the presence of polystyrene nanoplastics. We show that the immune response to stress is very different between the two organs, suggesting an organ-specific immune adaptation to the environmental changes. Notably, the presence of nanoplastics appears to alter the gene modulation induced by hypoxia/starvation in both organs, resulting in a partial increase in gene up-regulation in the pharynx and a less evident response to stress in the gut. We have also assessed whether the hypoxia/starvation stress could induce innate memory, measured as gene expression in response to a subsequent challenge with the bacterial agent LPS. Exposure to stress one week before challenge induced a substantial change in the response to LPS, with a general decrease of gene expression in the pharynx and a strong increase in the gut. Co-exposure with nanoplastics only partially modulated the stress-induced memory response to LPS, without substantially changing the stress-dependent gene expression profile in either organ. Overall, the presence of nanoplastics in the marine environment seems able to decrease the immune response of C. robusta to stressful conditions, hypothetically implying a reduced capacity to adapt to environmental changes, but only partially affects the stress-dependent induction of innate memory and subsequent responses to infectious challenges.
Collapse
Affiliation(s)
- Rita Marino
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn (SZN), Napoli, Italy
- Institute of Biochemistry and Cell Biology, National Research Council (CNR), Napoli, Italy
| | - Daniela Melillo
- Institute of Biochemistry and Cell Biology, National Research Council (CNR), Napoli, Italy
| | - Paola Italiani
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn (SZN), Napoli, Italy
- Institute of Biochemistry and Cell Biology, National Research Council (CNR), Napoli, Italy
- China-Italy Joint Laboratory of Pharmacobiotechnology for Medical Immunomodulation (CNR, SZN, SIAT), Shenzhen, China
| | - Diana Boraschi
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn (SZN), Napoli, Italy
- Institute of Biochemistry and Cell Biology, National Research Council (CNR), Napoli, Italy
- China-Italy Joint Laboratory of Pharmacobiotechnology for Medical Immunomodulation (CNR, SZN, SIAT), Shenzhen, China
- Laboratory of Inflammation and Vaccines, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
14
|
Cao Z, Gao Y, Xu J, Yang N, Li T, Chang L, Si L, Yan D. Transcriptome analysis of the hepatopancreas in Penaeus vannamei under experimental infection with Enterocytozoon hepatopenaei (EHP). FISH & SHELLFISH IMMUNOLOGY 2023; 134:108605. [PMID: 36758659 DOI: 10.1016/j.fsi.2023.108605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/19/2022] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Enterocytozoon hepatopenaei (EHP) is a specialized intracellular parasite that mainly resides in the hepatopancreas of shrimp, causing significant growth retardation in shrimp. In this study, Penaeus vannamei was infected with EHP through an artificial challenge experiment, and the different genes and pathways in the hepatopancreas between EHP-infected and healthy shrimp were analyzed by transcriptome sequencing. The results showed that a total of 240 significantly differentially expressed genes were obtained, including 99 up-regulated genes and 141 down-regulated genes. Immune-related genes such as Astakine, lysozyme, NACHT, LRR, and PYD domains-containing protein 3 (NLRP3), and macrophage mannose receptor 1-like (MMR) were up-regulated, and the expression levels of lipid metabolism-related genes pancreatic lipase-related protein 2 (PLRP2), lysosomal acid lipase (LIPA), and adiponectin receptor protein (AdipoR) were also increased. However, several genes were down-regulated in carbohydrate and protein metabolism, such as glyceraldehyde-3-phosphate dehydrogenase (GAPDH), trypsin-1, and delta-1-pyrroline-5-carboxylate synthase (ALDH18A1). The results suggested that EHP infection of shrimps could significantly activate the immune system, but the energy and material metabolism processes were disturbed. This study identified a substantial number of genes and pathways associated with EHP infection, providing a valuable resource for revealing the molecular mechanism of growth retardation in shrimp.
Collapse
Affiliation(s)
- Zheng Cao
- School of Agriculture, Ludong University, Yantai, 264025, PR China
| | - Yang Gao
- School of Agriculture, Ludong University, Yantai, 264025, PR China
| | - Jiahui Xu
- School of Agriculture, Ludong University, Yantai, 264025, PR China
| | - Ning Yang
- School of Agriculture, Ludong University, Yantai, 264025, PR China
| | - Ting Li
- School of Agriculture, Ludong University, Yantai, 264025, PR China
| | - Linrui Chang
- School of Agriculture, Ludong University, Yantai, 264025, PR China
| | - Lingjun Si
- School of Agriculture, Ludong University, Yantai, 264025, PR China.
| | - Dongchun Yan
- School of Agriculture, Ludong University, Yantai, 264025, PR China.
| |
Collapse
|
15
|
Zheng C, Cao J, Chi S, Dong X, Yang Q, Liu H, Zhang S, Xie S, Tan B. Dietary phosphorus supplementation in the diet of Pacific white shrimp (Litopenaeus vannamei) alleviated the adverse impacts caused by high Clostridium autoethanogenum protein. FISH & SHELLFISH IMMUNOLOGY 2022; 131:137-149. [PMID: 36206997 DOI: 10.1016/j.fsi.2022.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/30/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
The study evaluated the effects of dietary phosphorus supplementation on the fishmeal replacement with Clostridium autoethanogenum protein (CAP) in the diet of L. vannamei. Four isonitrogenous and isolipid diets were formulated: the PC diet contains 25% fishmeal, the NC, P1 and P2 diets were replaced 40% fishmeal with CAP and supplemented with 0, 0.8 and 1.6% NaH2PO4 respectively (equivalent to dietary phosphorus level of 0.96%, 1.12% and 1.27%). Sampling and V. parahaemolyticus challenge test were conducted after 50-day-feeding (initial shrimp weight 1.79 ± 0.02 g). The results showed that there were no significant differences in the growth performance of shrimp among the 4 groups. The expressions of dorsal in the gut were significantly lower in shrimp fed the P1 and P2 diets than shrimp fed the NC diet and the expression of peroxinectin in the gut was lower in shrimp fed the NC diet than others. The cumulative mortality of shrimp after V. parahaemolyticus challenge was significantly lower in shrimp fed the P2 diet than those fed the NC diet. After the challenge, genes expressions related to the prophenoloxidase activating system (proPO, lgbp, ppaf) were inhibited in the hepatopancreas of shrimp fed NC diet but activated in shrimp fed the P1 diet compared to those fed the PC diet. The AKP and T-AOC activities were higher in shrimp fed the P2 diet than those fed the other diets. The thickness of muscle layer of shrimp fed the P1 diet was thicker than that in the other groups, and significant stress damage happened in the midgut of the shrimp fed the NC diet. The abundance of Pseudoalteromonas, Haloferula and Ruegeria in shrimp fed the P1 diet was higher than those fed the other diets, while Vibrio in shrimp fed the P2 diet was higher than those fed the other diets. This indicated that a low fishmeal diet with dietary phosphorus level of 1.12% could improve the histology, enhance immune response, and increase the abundance of beneficial bacteria in the gut of shrimp. The low fishmeal diet with dietary phosphorus level of 1.27% could improve disease resistance and antioxidant capacity, but there was a possibility of damage to the gut histology as well as increasing abundance of Vibrio in the gut microbiota of shrimp.
Collapse
Affiliation(s)
- Chaozhong Zheng
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, PR China
| | - Junming Cao
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, PR China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, PR China; Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, PR China
| | - Shuyan Chi
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, PR China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, PR China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, PR China
| | - Xiaohui Dong
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, PR China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, PR China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, PR China
| | - Qihui Yang
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, PR China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, PR China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, PR China
| | - Hongyu Liu
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, PR China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, PR China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, PR China
| | - Shuang Zhang
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, PR China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, PR China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, PR China
| | - Shiwei Xie
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, PR China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, PR China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, PR China.
| | - Beiping Tan
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, PR China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, PR China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, PR China.
| |
Collapse
|
16
|
Shrimp Antimicrobial Peptides: A Multitude of Possibilities. Int J Pept Res Ther 2022. [DOI: 10.1007/s10989-022-10459-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
17
|
Kongchum P, Chimtong S, Prapaiwong N. Association between single nucleotide polymorphisms of nLvALF1 and PEN2-1 genes and resistance to Vibrio parahaemolyticus in the Pacific white shrimp Litopenaeus vannamei. AQUACULTURE AND FISHERIES 2022. [DOI: 10.1016/j.aaf.2021.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Ramírez M, Debut A. Control of vibriosis in shrimp through the management of the microbiota and the immune system. BIONATURA 2022. [DOI: 10.21931/rb/2022.07.02.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Shrimp aquaculture is constantly threatened by recurrent outbreaks of diseases caused by pathogenic bacteria of the genus Vibrio. Acute hepatopancreatic necrosis disease (AHPND) is one of the most aggressive vibriosis reported to date in the shrimp industry. AHPND provokes massive mortalities, causing economic losses with strong social impacts. Control of vibriosis requires the application of multifactorial strategies. This includes vibrio exclusion, shrimp microbiota, particularly in the digestive tract, and shrimp health management through immune stimulation. This paper reviews these two strategies for the prophylactic control of vibriosis. First, we describe the devastating effects of AHPND and the cellular and humoral effectors of the shrimp immune system to cope with this pathology. Secondly, the mechanisms of action of probiotics and their positive impacts are highlighted, including their immunostimulant effects and their role in the balance of the shrimp microbiota. Finally, we reviewed immunostimulants and prebiotics polysaccharides that together with probiotics act benefiting growth, feed efficiency and the microbiota of the digestive tract of farmed shrimp.
Collapse
Affiliation(s)
- Mery Ramírez
- Escuela Superior Politécnica del Litoral, ESPOL, Centro Nacional de Investigaciones Marinas (CENAIM), Campus Gustavo Galindo Km. 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
| | - Alexis Debut
- Universidad de las Fuerzas Armadas ESPE, Centro de Nanociencia y Nanotecnología, Avenida General Rumiñahui S/N y Ambato, P.O. Box 171-5-231B, Sangolquí, Ecuador
| |
Collapse
|
19
|
Du J, Yue K, Peng Y, Ning Q. Crucial roles of a novel exoskeletal-derived lectin in innate immunity of the oriental river prawn, Macrobrachium nipponense. JOURNAL OF FISH DISEASES 2022; 45:717-728. [PMID: 35253248 DOI: 10.1111/jfd.13597] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/06/2022] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
As important pattern recognition receptors (PRRs), C-type lectins play crucial roles in the crustacean innate immune system. In this study, a novel C-type lectin, designated as MnLec1, was obtained from the exoskeleton of the oriental river prawn Macrobrachium nipponense for the first time. The full-length cDNA of MnLec1 was 1329 bp with an open reading frame of 774 bp. The predicted MnLec1 protein contains a single carbohydrate-recognition domain with an EPN/LND motif and one Ca2+ binding site-2. MnLec1 transcripts were widely detected in the tested tissues of M. nipponense and significantly up-regulated after Aeromonas hydrophila challenge. The recombinant MnLec1 protein was found to have a wide spectrum of binding activities towards various microorganisms, agglutinate two kinds of Gram-negative bacteria (Escherichia coli and A. hydrophila) in a Ca2+ -independent manner. What's more, the survivability of prawns was significantly down-regulated after RNAi of MnLec1 when infected with A. hydrophila. Collectively, these findings suggest that MnLec1 from the exoskeleton might function as a PRR and play a crucial role in immune defense against invading pathogens in M. nipponense.
Collapse
Affiliation(s)
- Juan Du
- College of Life Sciences, Henan Normal University, Xinxiang, China
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Kaidi Yue
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Yanxin Peng
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Qianji Ning
- College of Life Sciences, Henan Normal University, Xinxiang, China
| |
Collapse
|
20
|
Punginelli D, Schillaci D, Mauro M, Deidun A, Barone G, Arizza V, Vazzana M. The potential of antimicrobial peptides isolated from freshwater crayfish species in new drug development: A review. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 126:104258. [PMID: 34530039 DOI: 10.1016/j.dci.2021.104258] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 09/10/2021] [Accepted: 09/12/2021] [Indexed: 06/13/2023]
Abstract
The much-publicised increased resistance of pathogenic bacteria to conventional antibiotics has focused research effort on the characterization of new antimicrobial drugs. In this context, antimicrobial peptides (AMPs) extracted from animals are considered a promising alternative to conventional antibiotics. In recent years, freshwater crayfish species have emerged as an important source of bioactive compounds. In fact, these invertebrates rely on an innate immune system based on cellular responses and on the production of important effectors in the haemolymph, such as AMPs, which are produced and stored in granules in haemocytes and released after stimulation. These effectors are active against both Gram-positive and Gram-negative bacteria. In this review, we summarise the recent progress on AMPs isolated from the several species of freshwater crayfish and their prospects for future pharmaceutical applications to combat infectious agents.
Collapse
Affiliation(s)
- Diletta Punginelli
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi, 18, 90123, Palermo, Italy
| | - Domenico Schillaci
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi, 18, 90123, Palermo, Italy
| | - Manuela Mauro
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi, 18, 90123, Palermo, Italy
| | - Alan Deidun
- Department of Geosciences, Faculty of Science, University of Malta, Msida MSD, 2080, Malta
| | - Giampaolo Barone
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi, 18, 90123, Palermo, Italy
| | - Vincenzo Arizza
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi, 18, 90123, Palermo, Italy
| | - Mirella Vazzana
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi, 18, 90123, Palermo, Italy.
| |
Collapse
|
21
|
Cheng AC, Shiu YL, Chiu ST, Ballantyne R, Liu CH. Effects of chitin from Daphnia similis and its derivative, chitosan on the immune response and disease resistance of white shrimp, Litopenaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2021; 119:329-338. [PMID: 34662729 DOI: 10.1016/j.fsi.2021.10.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/12/2021] [Accepted: 10/14/2021] [Indexed: 06/13/2023]
Abstract
Daphnia similis chitin and its derivative chitosan were prepared as immunostimulants to boost the immune response and determine the ability to control infectious disease caused by Vibrio alginolyticus in white shrimp, Litopenaeus vannamei. Three experimental diets supplemented with 0% chitin or chitosan (control) and 0.4% chitin or 0.4% chitosan were fed to shrimp for 56 days. Dietary inclusion of 0.4% chitosan accelerated shrimp growth compared to chitin and control. The survival and disease resistance of shrimp increased significantly when fed chitin and chitosan diets, after pathogenic injection, as indicated by the up-regulated immune responses in respiratory burst (RB), superoxide dismutase (SOD), and phagocytic activity (PA). There were no significant differences in the total haemocyte count (THC), phenoloxidase (PO)activity, and lysozyme (LYZ) activity among the groups. No significant differences were observed for prophenoloxidase system-related gene expressions among groups. However, shrimp fed chitin, and chitosan expressed significantly higher levels of antimicrobial proteins (penaeidin 3a, crustin, and anti-lipopolysaccharide factor 2) in the haemocytes than in control. The gene expressions of catalase and heat shock protein 70 increased in the hepatopancreas of shrimp fed chitosan diet compared to the chitin and control diet. The O-linked N-acetylglucosamine transferase (ogt) was significantly higher in the haemocytes of shrimp fed chitosan and chitin than the control, but ogt was only significantly higher in the hepatopancreas of shrimp fed chitosan. Dietary chitin and chitosan also showed positive effects on the transcription of peritrophin-like protein. These findings suggest that both chitin and chitosan from D. similis are efficacious at boosting the immunity of shrimp by preventing and controlling infectious diseases caused by Vibrio and have great potential to be used as a feasible immunostimulant that significantly contributes to the circular economy.
Collapse
Affiliation(s)
- Ann-Chang Cheng
- Department and Graduate Institute of Aquaculture, National Kaohsiung University of Science and Technology, Kaohsiung, 811, Taiwan
| | - Ya-Li Shiu
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung, 912, Taiwan
| | - Shieh-Tsung Chiu
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung, 912, Taiwan
| | - Rolissa Ballantyne
- Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology, Pingtung, 912, Taiwan
| | - Chun-Hung Liu
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung, 912, Taiwan; Research Center for Animal Biologics, National Pingtung University of Science and Technology, Pingtung, 912, Taiwan.
| |
Collapse
|
22
|
Butt UD, Lin N, Akhter N, Siddiqui T, Li S, Wu B. Overview of the latest developments in the role of probiotics, prebiotics and synbiotics in shrimp aquaculture. FISH & SHELLFISH IMMUNOLOGY 2021; 114:263-281. [PMID: 33971259 DOI: 10.1016/j.fsi.2021.05.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 04/04/2021] [Accepted: 05/03/2021] [Indexed: 06/12/2023]
Abstract
With the growing world population, the demand for food has increased, leading to excessive and intensive breeding and cultivation of fisheries, simultaneously exacerbating the risk of disease. Recently, shrimp producers have faced major losses of stocks due to the prevalence of periodical diseases and inappropriate use of antibiotics for disease prevention and treatment, leading to bacterial resistance in shrimp, along with imposing health hazards on human consumers. Strict regulations have been placed to ban or reduce the use of prophylactic antibiotics to lessen their detrimental effects on aquatic life. Dietary and water supplements have been used as substitutes, among which probiotics, prebiotics, and synbiotics have been the most beneficial for controlling or treating bacterial, viral, and parasitic diseases in shrimp. The present analysis addresses the issues and current progress in the administration of pro-, pre-, and synbiotics as disease controlling agents in the field of shrimp farming. Furthermore, the benefits of pro-, pre-, and synbiotics and their mechanism of action have been identified such as; strengthening of immune responses, growth of antibacterial agents, alteration in gut microflora, competition for nutrients and binding sites, and enzymes related activities. Overall, this study aims to depict the antagonistic action of these supplements against a variety of pathogens and their mode of action to counter diseases and benefit shrimp species.
Collapse
Affiliation(s)
| | - Na Lin
- Lishui Hospital of Traditional Chinese Medicine, Lishui, 323000, China.
| | - Najeeb Akhter
- Centre of Excellence in Marine Biology, University of Karachi, Karachi, 75270, Pakistan.
| | - Tooba Siddiqui
- Institute of Marine Science, University of Karachi, Karachi, 75270, Pakistan.
| | - Sihui Li
- Ocean College, Zhejiang University, Zhoushan, 316021, China.
| | - Bin Wu
- Ocean College, Zhejiang University, Zhoushan, 316021, China.
| |
Collapse
|
23
|
Anirudhan A, Okomoda VT, Mimi Iryani MT, Andriani Y, Abd Wahid ME, Tan MP, Danish-Daniel M, Wong LL, Tengku-Muhammad TS, Mok WJ, Sorgeloos P, Sung YY. Pandanus tectorius fruit extract promotes Hsp70 accumulation, immune-related genes expression and Vibrio parahaemolyticus tolerance in the white-leg shrimp Penaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2021; 109:97-105. [PMID: 33352338 DOI: 10.1016/j.fsi.2020.12.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/12/2020] [Accepted: 12/17/2020] [Indexed: 05/27/2023]
Abstract
Plants and herbal extracts are indispensable for controlling the spread of disease-causing bacteria, including those that infect aquatic organisms used in aquaculture. The use of plant or herbal extract is expected to be safe for aquatic animals and less harmful to the environment, as opposed to conventional therapeutic alternatives such as antibiotics that promote the occurrence of potential antibiotic-resistant bacteria when used improperly. The efficacy of Pandanus tectorius fruit extract in the regulation of Hsp70 expression, pro-phenoloxidase (ProPO), peroxinectin, penaeidin, crustin and transglutaminase, all immune peptides essential for Vibrio tolerance in white leg shrimp, Penaeus vannamei, was investigated in this study, which included the determination of the safety levels of the extract. Tolerance of shrimp against Vibrio parahaemolyticus, a pathogenic bacteria that causes Acute Hepatopancreas Necrosis Disease (AHPND), was assessed on the basis of median lethal dose challenge survival (LD50 = 106 cells/ml). Mortality was not observed 24 h after exposure of 0.5-6 g/L of the fruit extract, indicating that P. tectorius was not toxic to shrimp at these concentrations. A 24-h incubation of 2-6 g/L of the fruit extract increased shrimp tolerance to V. parahaemolyticus, with survival doubled when the maximum dose tested in this study was used. Concomitant with a rise in survival was the increase in immune-related proteins, with Hsp70, ProPO, peroxinectin, penaeidin, crustin and transglutaminase increased 10, 11, 11, 0.4, 8 and 13-fold respectively. Histological examination of the hepatopancreas and muscle tissues of Vibrio-infected shrimp primed with P. tectorius extract revealed reduced signs of histopathological degeneration, possibly due to the accumulation of Hsp70, a molecular chaperone crucial to cellular protein folding, tissue repair and immune response of living organisms, including Penaeid shrimp.
Collapse
Affiliation(s)
- Anupa Anirudhan
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Victor Tosin Okomoda
- Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Mat Taib Mimi Iryani
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Yosie Andriani
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Mohd Effendy Abd Wahid
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Min Pau Tan
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Muhd Danish-Daniel
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Li Lian Wong
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | | | - Wen Jye Mok
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Patrick Sorgeloos
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Laboratory of Aquaculture and Artemia Reference Center, Department of Animal Sciences and Aquatic Ecology, Campus Coupure - Blok F, Ghent University, Coupure Links 653, B-9000 Gent, Belgium
| | - Yeong Yik Sung
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia.
| |
Collapse
|
24
|
Portelinha J, Duay SS, Yu SI, Heilemann K, Libardo MDJ, Juliano SA, Klassen JL, Angeles-Boza AM. Antimicrobial Peptides and Copper(II) Ions: Novel Therapeutic Opportunities. Chem Rev 2021; 121:2648-2712. [PMID: 33524257 DOI: 10.1021/acs.chemrev.0c00921] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The emergence of new pathogens and multidrug resistant bacteria is an important public health issue that requires the development of novel classes of antibiotics. Antimicrobial peptides (AMPs) are a promising platform with great potential for the identification of new lead compounds that can combat the aforementioned pathogens due to their broad-spectrum antimicrobial activity and relatively low rate of resistance emergence. AMPs of multicellular organisms made their debut four decades ago thanks to ingenious researchers who asked simple questions about the resistance to bacterial infections of insects. Questions such as "Do fruit flies ever get sick?", combined with pioneering studies, have led to an understanding of AMPs as universal weapons of the immune system. This review focuses on a subclass of AMPs that feature a metal binding motif known as the amino terminal copper and nickel (ATCUN) motif. One of the metal-based strategies of hosts facing a pathogen, it includes wielding the inherent toxicity of copper and deliberately trafficking this metal ion into sites of infection. The sudden increase in the concentration of copper ions in the presence of ATCUN-containing AMPs (ATCUN-AMPs) likely results in a synergistic interaction. Herein, we examine common structural features in ATCUN-AMPs that exist across species, and we highlight unique features that deserve additional attention. We also present the current state of knowledge about the molecular mechanisms behind their antimicrobial activity and the methods available to study this promising class of AMPs.
Collapse
Affiliation(s)
- Jasmin Portelinha
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, United States
| | - Searle S Duay
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, United States.,Chemistry Department, Adamson University, 900 San Marcelino Street, Ermita, Manila 1000, Philippines
| | - Seung I Yu
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, Connecticut 06269, United States
| | - Kara Heilemann
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, United States
| | - M Daben J Libardo
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, United States
| | - Samuel A Juliano
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, United States
| | - Jonathan L Klassen
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, Connecticut 06269, United States
| | - Alfredo M Angeles-Boza
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, United States.,Institute of Material Science, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, United States
| |
Collapse
|
25
|
Joo MS, Choi KM, Cho DH, Choi HS, Min EY, Han HJ, Cho MY, Bae JS, Park CI. The molecular characterization, expression analysis and antimicrobial activity of theromacin from Asian polychaeta (Perinereis linea). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 112:103773. [PMID: 32634521 DOI: 10.1016/j.dci.2020.103773] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/14/2020] [Accepted: 06/16/2020] [Indexed: 06/11/2023]
Abstract
Antimicrobial peptides (AMPs) are molecular factors in innate immunity and are believed to play a key role in invertebrate host defence. We identified theromacin (TM) from an Asian polychaeta, Perinereis linea, using de novo RNA-seq analysis. TM, a typical AMP of invertebrates, is a cysteine-rich AMP with five disulfide bonds consisting of ten cysteine residues. In gene expression analysis, TM genes were constantly upregulated after lipopolysaccharide (LPS) stimulation. In contrast, after peptidoglycan (PGN) stimulation, it was upregulated initially and downregulated after 12 h. We synthesized a peptide based on the macin AMP in the TM amino acid sequence. The synthetic peptide showed antibacterial activity against some Gram-positive and Gram-negative bacteria. Therefore, the AMPs of P. linea might have broad roles in host defence and exhibit different degrees of activity.
Collapse
Affiliation(s)
- Min-Soo Joo
- Department of Marine Biology & Aquaculture, College of Marine Science, Gyeongsang National University, 455, Tongyeong, 650-160, Republic of Korea
| | - Kwang-Min Choi
- Department of Marine Biology & Aquaculture, College of Marine Science, Gyeongsang National University, 455, Tongyeong, 650-160, Republic of Korea
| | - Dong-Hee Cho
- Department of Marine Biology & Aquaculture, College of Marine Science, Gyeongsang National University, 455, Tongyeong, 650-160, Republic of Korea
| | - Hye-Sung Choi
- Pathology Research Division, National Institute of Fisheries Science, 408-1 Sirang-ri, Gijang-up, Gijang-gun, Busan, 46083, Republic of Korea
| | - Eun Young Min
- Pathology Research Division, National Institute of Fisheries Science, 408-1 Sirang-ri, Gijang-up, Gijang-gun, Busan, 46083, Republic of Korea
| | - Hyun-Ja Han
- Pathology Research Division, National Institute of Fisheries Science, 408-1 Sirang-ri, Gijang-up, Gijang-gun, Busan, 46083, Republic of Korea
| | - Mi Young Cho
- Pathology Research Division, National Institute of Fisheries Science, 408-1 Sirang-ri, Gijang-up, Gijang-gun, Busan, 46083, Republic of Korea
| | - Jin-Sol Bae
- National Fishery Products Quality Management Service (NFQS), 337, Yeongdo-gu, Busan, Republic of Korea
| | - Chan-Il Park
- Department of Marine Biology & Aquaculture, College of Marine Science, Gyeongsang National University, 455, Tongyeong, 650-160, Republic of Korea.
| |
Collapse
|
26
|
Bandeira PT, Vernal J, Matos GM, Farias ND, Terenzi H, Pinto AR, Barracco MA, Rosa RD. A Type IIa crustin from the pink shrimp Farfantepenaeus paulensis (crusFpau) is constitutively synthesized and stored by specific granule-containing hemocyte subpopulations. FISH & SHELLFISH IMMUNOLOGY 2020; 97:294-299. [PMID: 31863905 DOI: 10.1016/j.fsi.2019.12.055] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/13/2019] [Accepted: 12/18/2019] [Indexed: 06/10/2023]
Abstract
Crustins are cysteine-rich antimicrobial peptides (AMPs) widely distributed across crustaceans. From the four described crustin Types (I to IV), crustins from the subtype IIa are the most abundant and diverse members found in penaeid shrimp. Despite the critical role of Type IIa crustins in shrimp antimicrobial defenses, there is still limited information about their synthesis and antimicrobial properties. Here, we report the subcellular localization and the antibacterial spectrum of crusFpau, a Type IIa crustin from the pink shrimp Farfantepenaeus paulensis. The recombinantly expressed crusFpau showed antimicrobial activity against both Gram-positive and Gram-negative bacteria at low concentrations. Results from immunofluorescence using anti-rcrusFpau antiserum revealed that crusFpau is synthetized and stored by both granular and semigranular hemocytes, but not by hyaline cells. Interestingly, not all granular and semigranular hemocytes stained for crusFpau, revealing that this crustin is produced by specific granule-containing hemocyte subpopulations. Finally, we showed that the granule-stored peptides are not constitutively secreted into the plasma of healthy animals.
Collapse
Affiliation(s)
- Paula Terra Bandeira
- Laboratory of Immunology Applied to Aquaculture, Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, 88040-900, Florianópolis, SC, Brazil
| | - Javier Vernal
- Center for Structural Molecular Biology, Department of Biochemistry, Federal University of Santa Catarina, 88040-900, Florianópolis, SC, Brazil
| | - Gabriel Machado Matos
- Laboratory of Immunology Applied to Aquaculture, Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, 88040-900, Florianópolis, SC, Brazil
| | - Natanael Dantas Farias
- Laboratory of Immunology Applied to Aquaculture, Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, 88040-900, Florianópolis, SC, Brazil
| | - Hernán Terenzi
- Center for Structural Molecular Biology, Department of Biochemistry, Federal University of Santa Catarina, 88040-900, Florianópolis, SC, Brazil
| | - Aguinaldo Roberto Pinto
- Laboratory of Applied Immunology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, 88040-900, Florianópolis, SC, Brazil
| | - Margherita Anna Barracco
- Laboratory of Immunology Applied to Aquaculture, Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, 88040-900, Florianópolis, SC, Brazil
| | - Rafael Diego Rosa
- Laboratory of Immunology Applied to Aquaculture, Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, 88040-900, Florianópolis, SC, Brazil.
| |
Collapse
|
27
|
Thery T, Lynch KM, Arendt EK. Natural Antifungal Peptides/Proteins as Model for Novel Food Preservatives. Compr Rev Food Sci Food Saf 2019; 18:1327-1360. [DOI: 10.1111/1541-4337.12480] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 05/17/2019] [Accepted: 07/04/2019] [Indexed: 01/08/2023]
Affiliation(s)
- Thibaut Thery
- School of Food and Nutritional SciencesUniv. College Cork Ireland
| | - Kieran M. Lynch
- School of Food and Nutritional SciencesUniv. College Cork Ireland
| | - Elke K. Arendt
- School of Food and Nutritional SciencesUniv. College Cork Ireland
- Microbiome IrelandUniv. College Cork Ireland
| |
Collapse
|
28
|
Wu B, Zhang C, Qin X, Shi L, Zhao M. Identification and function of penaeidin 3 and penaeidin 5 in Fenneropenaeus merguiensis. FISH & SHELLFISH IMMUNOLOGY 2019; 89:623-631. [PMID: 30991151 DOI: 10.1016/j.fsi.2019.04.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 03/31/2019] [Accepted: 04/10/2019] [Indexed: 06/09/2023]
Abstract
Antimicrobial peptides (AMPs) participate in immune defenses of invertebrate, vertebrate and plant species. As a kind of AMPs, penaeidins play important roles in innate immunity of shrimp. In this study, two penaeidin homologues termed FmPEN3 and FmPEN5 were cloned and identified from Fenneropenaeus merguiensis for the first time. The complete open reading frames (ORFs) of FmPEN3 and FmPEN5 were 216 bp and 240 bp, encoding 71 and 79 amino acids, respectively. Both FmPEN3 and FmPEN5 contain an N-terminal proline-rich domain (PRD) and a C-terminal cysteine-rich domain (CRD). The genome structure of FmPEN3 and FmPEN5 genes both consist of 2 exons and 1 intron. qPCR analysis showed that FmPEN3 was constitutively expressed but FmPEN5 transcripts were found only in hemocytes, gills, epidermis, nerve and pyloric cecum. The FmPEN3 and FmPEN5 expression were responsive to Vibrio parahaemolyticus and Micrococcus lysodeikticus infection and their transcription levels were downregulated by RNAi silencing of the transcription factors FmDorsal and FmRelish. In addition, recombinant proteins of FmPEN3 (rFmPEN3) and FmPEN5 (rFmPEN5) were successfully expressed in E. coli. The antibacterial assays revealed that rFmPEN3 and rFmPEN5 could inhibit the growth of M. lysodeikticus but only rFmPEN5 could inhibit the growth of V. parahaemolyticus in vitro. In summary, the results presented in this study indicated the functions of FmPEN3 and FmPEN5 played in anti-bacterial immunity of F. merguiensis, providing some insights into the function of AMPs in shrimp.
Collapse
Affiliation(s)
- Bin Wu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, PR China
| | - Chaohua Zhang
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Xiaoming Qin
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Lili Shi
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, PR China.
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, PR China.
| |
Collapse
|
29
|
Farias ND, Falchetti M, Matos GM, Schmitt P, Barreto C, Argenta N, Rolland JL, Bachère E, Perazzolo LM, Rosa RD. Litopenaeus vannamei stylicins are constitutively produced by hemocytes and intestinal cells and are differentially modulated upon infections. FISH & SHELLFISH IMMUNOLOGY 2019; 86:82-92. [PMID: 30439499 DOI: 10.1016/j.fsi.2018.11.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/24/2018] [Accepted: 11/07/2018] [Indexed: 06/09/2023]
Abstract
Stylicins are anionic antimicrobial host defense peptides (AAMPs) composed of a proline-rich N-terminal region and a C-terminal portion containing 13 conserved cysteine residues. Here, we have increased our knowledge about these unexplored crustacean AAMPs by the characterization of novel stylicin members in the most cultivated penaeid shrimp, Litopenaeus vannamei. We showed that the L. vannamei stylicin family is composed of two members (Lvan-Stylicin1 and Lvan-Stylicin2) encoded by different loci which vary in gene copy number. Unlike the other three gene-encoded antimicrobial peptide families from penaeid shrimp, the expression of Lvan-Stylicins is not restricted to hemocytes. Indeed, they are also produced by the columnar epithelial cells lining the midgut and its anterior caecum. Interestingly, Lvan-Stylicins are simultaneously transcribed at different transcriptional levels in a single shrimp and are differentially modulated in hemocytes after infections. While the expression of both genes showed to be responsive to damage-associated molecular patterns, only Lvan-Stylicin2 was induced after a Vibrio infection. Besides, Lvan-Stylicins also showed a distinct pattern of gene expression in the three portions of the midgut (anterior, middle and posterior) and during shrimp development. We provide here the first evidence of the diversity of the stylicin antimicrobial peptide family in terms of sequence and gene expression distribution and regulation.
Collapse
Affiliation(s)
- Natanael Dantas Farias
- Laboratory of Immunology Applied to Aquaculture, Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, 88040-900, Florianópolis, SC, Brazil
| | - Marcelo Falchetti
- Laboratory of Immunology Applied to Aquaculture, Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, 88040-900, Florianópolis, SC, Brazil
| | - Gabriel Machado Matos
- Laboratory of Immunology Applied to Aquaculture, Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, 88040-900, Florianópolis, SC, Brazil
| | - Paulina Schmitt
- Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, 2373223, Valparaíso, Chile
| | - Cairé Barreto
- Laboratory of Immunology Applied to Aquaculture, Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, 88040-900, Florianópolis, SC, Brazil
| | - Nicolas Argenta
- Laboratory of Immunology Applied to Aquaculture, Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, 88040-900, Florianópolis, SC, Brazil
| | - Jean-Luc Rolland
- Interactions Hôtes-Pathogènes-Environnements, Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, 34090, Montpellier Cedex 5, France
| | - Evelyne Bachère
- Interactions Hôtes-Pathogènes-Environnements, Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, 34090, Montpellier Cedex 5, France
| | - Luciane Maria Perazzolo
- Laboratory of Immunology Applied to Aquaculture, Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, 88040-900, Florianópolis, SC, Brazil
| | - Rafael Diego Rosa
- Laboratory of Immunology Applied to Aquaculture, Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, 88040-900, Florianópolis, SC, Brazil.
| |
Collapse
|
30
|
Huang W, Li H, Cheng C, Ren C, Chen T, Jiang X, Cheng K, Luo P, Hu C. Analysis of the transcriptome data in Litopenaeus vannamei reveals the immune basis and predicts the hub regulation-genes in response to high-pH stress. PLoS One 2018; 13:e0207771. [PMID: 30517152 PMCID: PMC6281221 DOI: 10.1371/journal.pone.0207771] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 11/06/2018] [Indexed: 11/18/2022] Open
Abstract
Soil salinization erodes the farmlands and poses a serious threat to human life, reuse of the saline-alkali lands as cultivated resources becomes increasingly prominent. Pacific white shrimp (Litopenaeus vannamei) is an important farmed aquatic species for the development and utilization of the saline-alkali areas. However, little is known about the adaptation mechanism of this species in terms of high-pH stress. In the present study, a transcriptome analysis on the gill tissues of L. vannamei in response to high-pH stress (pH 9.3 ± 0.1) was conducted. After analyzing, the cyclic nucleotide gated channel-Ca2+ (CNGC-Ca2+) and patched 1 (Ptc1) were detected as the majority annotated components in the cAMP signaling pathway (KO04024), indicating that the CNGC-Ca2+ and Ptc1 might be the candidate components for transducing and maintaining the high-pH stress signals, respectively. The immunoglobulin superfamily (IgSF), heat shock protein (HSP), glutathione s-transferase (GST), prophenoloxidase/phenoloxidase (proPO/PO), superoxide dismutase (SOD), anti-lipopolysaccharide factor (ALF) and lipoprotein were discovered as the major transcribed immune factors in response to high-pH stress. To further detect hub regulation-genes, protein-protein interaction (PPI) networks were constructed; the genes/proteins "Polymerase (RNA) II (DNA directed) polypeptide A" (POLR2A), "Histone acetyltransferase p300" (EP300) and "Heat shock 70kDa protein 8" (HSPA8) were suggested as the top three hub regulation-genes in response to acute high-pH stress; the genes/proteins "Heat shock 70kDa protein 4" (HSPA4), "FBJ murine osteosarcoma viral oncogene homolog" (FOS) and "Nucleoporin 54kDa" (NUP54) were proposed as the top three hub regulation-genes involved in adapting endurance high-pH stress; the protein-interactions of "EP300-HSPA8" and "HSPA4-NUP54" were detected as the most important biological interactions in response to the high-pH stress; and the HSP70 family genes might play essential roles in the adaptation of the high-pH stress environment in L. vannamei. These findings provide the first insight into the molecular and immune basis of L. vannamei in terms of high-pH environments, and the construction of a PPI network might improve our understanding in revealing the hub regulation-genes in response to abiotic stress in shrimp species and might be beneficial for further studies.
Collapse
Affiliation(s)
- Wen Huang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou, China
| | - Hongmei Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chuhang Cheng
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chunhua Ren
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou, China
| | - Ting Chen
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou, China
| | - Xiao Jiang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou, China
| | | | - Peng Luo
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- * E-mail: (CH); (PL)
| | - Chaoqun Hu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- * E-mail: (CH); (PL)
| |
Collapse
|
31
|
Jin M, Xiong J, Zhou QC, Yuan Y, Wang XX, Sun P. Dietary yeast hydrolysate and brewer's yeast supplementation could enhance growth performance, innate immunity capacity and ammonia nitrogen stress resistance ability of Pacific white shrimp (Litopenaeus vannamei). FISH & SHELLFISH IMMUNOLOGY 2018; 82:121-129. [PMID: 30099143 DOI: 10.1016/j.fsi.2018.08.020] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 08/06/2018] [Accepted: 08/08/2018] [Indexed: 06/08/2023]
Abstract
An 8-week feeding trial was conducted to evaluate the effects of dietary yeast hydrolysate and brewer's yeast supplementation on growth, immune-related genes expression and ammonia nitrogen stress resistance of Pacific white shrimp (Litopenaeus vannamei). Three isonitrogenous and isolipidic practical diets were formulated to contain 0% (control diet), 1% yeast hydrolysate and 1% brewer's yeast, respectively. 360 juvenile L. vannamei with an initial weight (0.88 ± 0.01 g) was randomly divided into 3 treatments in four replicates (30 shrimp per replicate). The results indicated that shrimp fed the diet containing 1% yeast hydrolysate had a significantly higher weight gain (WG), and specific growth rate (SGR) than that fed the control diet, and the lowest feed conversion ratio (FCR) was occurred in the 1% yeast hydrolysate supplementation group. Proximate composition in whole body and muscle among all treatments was not significantly influenced by the dietary yeast hydrolysate or brewer's yeast supplementation. The challenge test with ammonia nitrogen showed that lower cumulative survival was observed in those fed the control diet, and the highest cumulative survival was occurred at shrimp fed the 1% yeast hydrolysate supplementation. Shrimp fed the control diet had higher inflammation-related genes expression levels of tnf-α and il-1β in the intestine than those fed the diets supplemented with 1% yeast hydrolysate or 1% brewer's yeast, however, there was no significant difference in expression level of alp in intestine among all treatments. The relative expression levels of mTOR signal pathway genes (eif4ebp, eif4e1a, eif4e2 and p70s6k) were significantly up-regulated in the shrimp fed the diets supplemented with 1% yeast hydrolysate, and the lowest gene expression levels of eif4ebp, eif4e1a, eif4e2 and p70s6k in the intestine were occurred at the control diet. The highest expression levels of the immune-related genes (dorsal, relish, and proPO) in the intestine were observed at shrimp fed the 1% yeast hydrolysate supplementation, and the lowest expression levels of these genes were occurred at shrimp fed the control diet, however, there was no significant difference in gene expression of lysozyme among all treatments. The expression levels of penaeidin3a, crustin, proPO, and IMD in the hepatopancreas were significantly influenced by the dietary yeast hydrolysate, brewer's yeast or no yeast product supplementation, shrimp fed the 1% yeast hydrolysate supplementation had higher expression levels of these genes than those fed the control diet. The present study indicated that dietary 1% yeast hydrolysate or brewer's yeast supplementation could improve growth performance, enhance innate immunity, and strengthen resistance of ammonia nitrogen stress, and dietary 1% yeast hydrolysate supplementation provides better immunostimulatory effects than brewer's yeast of L. vannamei.
Collapse
Affiliation(s)
- Min Jin
- Laboratory of Fish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, PR China
| | - Jia Xiong
- Laboratory of Fish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, PR China
| | - Qi-Cun Zhou
- Laboratory of Fish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, PR China.
| | - Ye Yuan
- Laboratory of Fish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, PR China
| | - Xue-Xi Wang
- Laboratory of Fish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, PR China
| | - Peng Sun
- Laboratory of Fish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, PR China
| |
Collapse
|
32
|
Zhang K, Koiwai K, Kondo H, Hirono I. White spot syndrome virus (WSSV) suppresses penaeidin expression in Marsupenaeus japonicus hemocytes. FISH & SHELLFISH IMMUNOLOGY 2018; 78:233-237. [PMID: 29684609 DOI: 10.1016/j.fsi.2018.04.045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 04/16/2018] [Accepted: 04/19/2018] [Indexed: 06/08/2023]
Abstract
Penaeidins are a unique family of antimicrobial peptides specific to penaeid shrimp and have been reported mainly function as anti-bacterial and anti-fungal. In order to investigate whether penaeidins could also respond to virus or not, we examined the effect of WSSV on MjPen-II (penaeidin in kuruma shrimp, Marsupenaeus japonicus) expression. In the control group, MjPen-II transcript level can be detected in almost all test tissues but was expressed most strongly in hemocytes. After WSSV infection, MjPen-II transcript level was significantly downregulated in hemocytes. Moreover, the proportion of MjPen-II+ hemocytes was not significantly different between non-infected and WSSV-infected shrimp, but the number of MjPen-II+ highly expressing hemocytes decreased after infection. In addition, MjPen-II was observed in the cytoplasm of granule-containing hemocytes. These results suggest that WSSV suppresses MjPen-II expression in hemocytes.
Collapse
Affiliation(s)
- Kehong Zhang
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato-ku, Tokyo 108-8477, Japan; Key Laboratory of Exploproportionn and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Keiichiro Koiwai
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato-ku, Tokyo 108-8477, Japan
| | - Hidehiro Kondo
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato-ku, Tokyo 108-8477, Japan
| | - Ikuo Hirono
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato-ku, Tokyo 108-8477, Japan.
| |
Collapse
|
33
|
Silveira AS, Matos GM, Falchetti M, Ribeiro FS, Bressan A, Bachère E, Perazzolo LM, Rosa RD. An immune-related gene expression atlas of the shrimp digestive system in response to two major pathogens brings insights into the involvement of hemocytes in gut immunity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 79:44-50. [PMID: 29042192 DOI: 10.1016/j.dci.2017.10.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 10/12/2017] [Accepted: 10/13/2017] [Indexed: 06/07/2023]
Abstract
Much of our current knowledge on shrimp immune system is restricted to the defense reactions mediated by the hemocytes and little is known about gut immunity. Here, we have investigated the transcriptional profile of immune-related genes in different organs of the digestive system of the shrimp Litopenaeus vannamei. First, the tissue distribution of 52 well-known immune-related genes has been assessed by semiquantitative analysis in the gastrointestinal tract (foregut, midgut and hindgut) and in the hepatopancreas and circulating hemocytes of shrimp stimulated or not with heat-killed bacteria. Then, the expression levels of 18 genes from key immune functional categories were quantified by fluorescence-based quantitative PCR in the midgut of animals experimentally infected with the Gram-negative Vibrio harveyi or the White spot syndrome virus (WSSV). Whereas the expression of some genes was induced at 48 h after the bacterial infection, any of the analyzed genes showed to be modulated in response to the virus. Whole-mount immunofluorescence assays confirmed the presence of infiltrating hemocytes in the intestines, indicating that the expression of some immune-related genes in gut is probably due to the migratory behavior of these circulating cells. This evidence suggests the participation of hemocytes in the delivery of antimicrobial molecules into different portions of the digestive system. Taken all together, our results revealed that gut is an important immune organ in L. vannamei with intimate association with hemocytes.
Collapse
Affiliation(s)
- Amanda S Silveira
- Laboratory of Immunology Applied to Aquaculture, Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Gabriel M Matos
- Laboratory of Immunology Applied to Aquaculture, Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Marcelo Falchetti
- Laboratory of Immunology Applied to Aquaculture, Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Fabio S Ribeiro
- Laboratory of Immunology Applied to Aquaculture, Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Albert Bressan
- Laboratory of Immunology Applied to Aquaculture, Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Evelyne Bachère
- Ifremer, UMR 5244, IHPE Interactions-Hosts-Pathogens-Environment, UPVD, CNRS, Université de Montpellier, CC 080, F-34095 Montpellier, France
| | - Luciane M Perazzolo
- Laboratory of Immunology Applied to Aquaculture, Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Rafael D Rosa
- Laboratory of Immunology Applied to Aquaculture, Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil.
| |
Collapse
|
34
|
Destoumieux-Garzón D, Rosa RD, Schmitt P, Barreto C, Vidal-Dupiol J, Mitta G, Gueguen Y, Bachère E. Antimicrobial peptides in marine invertebrate health and disease. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0300. [PMID: 27160602 DOI: 10.1098/rstb.2015.0300] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2016] [Indexed: 12/11/2022] Open
Abstract
Aquaculture contributes more than one-third of the animal protein from marine sources worldwide. A significant proportion of aquaculture products are derived from marine protostomes that are commonly referred to as 'marine invertebrates'. Among them, penaeid shrimp (Ecdysozosoa, Arthropoda) and bivalve molluscs (Lophotrochozoa, Mollusca) are economically important. Mass rearing of arthropods and molluscs causes problems with pathogens in aquatic ecosystems that are exploited by humans. Remarkably, species of corals (Cnidaria) living in non-exploited ecosystems also suffer from devastating infectious diseases that display intriguing similarities with those affecting farmed animals. Infectious diseases affecting wild and farmed animals that are present in marine environments are predicted to increase in the future. This paper summarizes the role of the main pathogens and their interaction with host immunity, with a specific focus on antimicrobial peptides (AMPs) and pathogen resistance against AMPs. We provide a detailed review of penaeid shrimp AMPs and their role at the interface between the host and its resident/pathogenic microbiota. We also briefly describe the relevance of marine invertebrate AMPs in an applied context.This article is part of the themed issue 'Evolutionary ecology of arthropod antimicrobial peptides'.
Collapse
Affiliation(s)
- Delphine Destoumieux-Garzón
- CNRS, Université de Montpellier, Interactions Hôtes-Pathogènes-Environnements (IHPE, UMR5244), Place Eugène Bataillon, 34090 Montpellier cedex, France Ifremer, Université de Montpellier, Interactions Hôtes-Pathogènes-Environnements (IHPE, UMR5244), Place Eugène Bataillon, 34090 Montpellier cedex, France UPVD, Université de Montpellier, Interactions Hôtes-Pathogènes-Environnements (IHPE, UMR5244), Place Eugène Bataillon, 34090 Montpellier cedex, France Université de Montpellier, Interactions Hôtes-Pathogènes-Environnements (IHPE, UMR5244), Place Eugène Bataillon, 34090 Montpellier cedex, France
| | - Rafael Diego Rosa
- Laboratory of Immunology Applied to Aquaculture, Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, 88040-900 Florianópolis, Santa Catarina, Brazil
| | - Paulina Schmitt
- Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Avenida Universidad 330, 2373223 Valparaíso, Chile
| | - Cairé Barreto
- Laboratory of Immunology Applied to Aquaculture, Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, 88040-900 Florianópolis, Santa Catarina, Brazil
| | - Jeremie Vidal-Dupiol
- Ifremer, UMR 241 EIO, LabexCorail, BP 7004, 98719 Taravao, Tahiti, French Polynesia
| | - Guillaume Mitta
- CNRS, Université de Montpellier, Interactions Hôtes-Pathogènes-Environnements (IHPE, UMR5244), Place Eugène Bataillon, 34090 Montpellier cedex, France Ifremer, Université de Montpellier, Interactions Hôtes-Pathogènes-Environnements (IHPE, UMR5244), Place Eugène Bataillon, 34090 Montpellier cedex, France UPVD, Université de Montpellier, Interactions Hôtes-Pathogènes-Environnements (IHPE, UMR5244), Place Eugène Bataillon, 34090 Montpellier cedex, France Université de Montpellier, Interactions Hôtes-Pathogènes-Environnements (IHPE, UMR5244), Place Eugène Bataillon, 34090 Montpellier cedex, France
| | - Yannick Gueguen
- CNRS, Université de Montpellier, Interactions Hôtes-Pathogènes-Environnements (IHPE, UMR5244), Place Eugène Bataillon, 34090 Montpellier cedex, France Ifremer, Université de Montpellier, Interactions Hôtes-Pathogènes-Environnements (IHPE, UMR5244), Place Eugène Bataillon, 34090 Montpellier cedex, France UPVD, Université de Montpellier, Interactions Hôtes-Pathogènes-Environnements (IHPE, UMR5244), Place Eugène Bataillon, 34090 Montpellier cedex, France Université de Montpellier, Interactions Hôtes-Pathogènes-Environnements (IHPE, UMR5244), Place Eugène Bataillon, 34090 Montpellier cedex, France
| | - Evelyne Bachère
- CNRS, Université de Montpellier, Interactions Hôtes-Pathogènes-Environnements (IHPE, UMR5244), Place Eugène Bataillon, 34090 Montpellier cedex, France Ifremer, Université de Montpellier, Interactions Hôtes-Pathogènes-Environnements (IHPE, UMR5244), Place Eugène Bataillon, 34090 Montpellier cedex, France UPVD, Université de Montpellier, Interactions Hôtes-Pathogènes-Environnements (IHPE, UMR5244), Place Eugène Bataillon, 34090 Montpellier cedex, France Université de Montpellier, Interactions Hôtes-Pathogènes-Environnements (IHPE, UMR5244), Place Eugène Bataillon, 34090 Montpellier cedex, France
| |
Collapse
|
35
|
Peptides, Peptidomimetics, and Polypeptides from Marine Sources: A Wealth of Natural Sources for Pharmaceutical Applications. Mar Drugs 2017; 15:md15040124. [PMID: 28441741 PMCID: PMC5408270 DOI: 10.3390/md15040124] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 04/11/2017] [Accepted: 04/18/2017] [Indexed: 01/07/2023] Open
Abstract
Nature provides a variety of peptides that are expressed in most living species. Evolutionary pressure and natural selection have created and optimized these peptides to bind to receptors with high affinity. Hence, natural resources provide an abundant chemical space to be explored in peptide-based drug discovery. Marine peptides can be extracted by simple solvent extraction techniques. The advancement of analytical techniques has made it possible to obtain pure peptides from natural resources. Extracted peptides have been evaluated as possible therapeutic agents for a wide range of diseases, including antibacterial, antifungal, antidiabetic and anticancer activity as well as cardiovascular and neurotoxin activity. Although marine resources provide thousands of possible peptides, only a few peptides derived from marine sources have reached the pharmaceutical market. This review focuses on some of the peptides derived from marine sources in the past ten years and gives a brief review of those that are currently in clinical trials or on the market.
Collapse
|
36
|
Denis M, Ramasamy SM, Kamalanathan T, Thayappan K, Mannarreddy P, Doss BS, Munusamy A. Activation of phenoloxidase activity by humoral lectin in hemocytes of freshwater crab Paratelphusa jacquemontii. Int J Biol Macromol 2017; 97:258-263. [DOI: 10.1016/j.ijbiomac.2017.01.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 01/05/2017] [Accepted: 01/06/2017] [Indexed: 10/20/2022]
|
37
|
Carbohydrate Moieties and Cytoenzymatic Characterization of Hemocytes in Whiteleg Shrimp Litopenaeus vannamei. Int J Cell Biol 2016; 2016:9032181. [PMID: 27833641 PMCID: PMC5090093 DOI: 10.1155/2016/9032181] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 08/01/2016] [Indexed: 11/18/2022] Open
Abstract
Hemocytes represent one of the most important defense mechanisms against foreign material in Crustacea and are also involved in a variety of other physiological responses. Fluorescent lectin-binding assays and cytochemical reactions were used to identify specificity and distribution of carbohydrate moieties and presence of several hydrolytic enzymes, in hemocytes of whiteleg shrimp Litopenaeus vannamei. Two general classes of circulating hemocytes (granular and agranular) exist in L. vannamei, which express carbohydrates residues for FITC-conjugated lectins WGA, LEA, and PNA; UEA and Con-A were not observed. Enzymatic studies indicated that acid phosphatase, nonspecific esterase, and specific esterases were present; alkaline phosphatase was not observed. The enzymes and carbohydrates are useful tools in hemocyte classification and cellular defense mechanism studies.
Collapse
|
38
|
Balandin SV, Ovchinnikova TV. Antimicrobial peptides of invertebrates. Part 2. biological functions and mechanisms of action. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2016. [DOI: 10.1134/s106816201604004x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
39
|
Shan Z, Zhu K, Peng H, Chen B, Liu J, Chen F, Ma X, Wang S, Qiao K, Wang K. The New Antimicrobial Peptide SpHyastatin from the Mud Crab Scylla paramamosain with Multiple Antimicrobial Mechanisms and High Effect on Bacterial Infection. Front Microbiol 2016; 7:1140. [PMID: 27493644 PMCID: PMC4954822 DOI: 10.3389/fmicb.2016.01140] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 07/07/2016] [Indexed: 12/21/2022] Open
Abstract
SpHyastatin was first identified as a new cationic antimicrobial peptide in hemocytes of the mud crab Scylla paramamosain. Based on the amino acid sequences deduced, it was predicted that this peptide was composed of two different functional domains, a proline-rich domain (PRD) and a cysteine-rich domain (CRD). The recombinant product of SpHyastatin displayed potent antimicrobial activities against the human pathogen Staphylococcus aureus and the aquatic animal pathogens Aeromonas hydrophila and Pseudomonas fluorescens. Compared with the CRD of SpHyastatin, the PRD presented better antimicrobial and chitin binding activities, but both regions were essential for allowing SpHyastatin complete antimicrobial activity. The binding properties of SpHyastatin to different microbial surface molecules suggested that this might be an initial and crucial step for performing its antimicrobial activities. Evaluated using propidium iodide uptake assays and scanning electron microscopy images, the antimicrobial mechanism of SpHyastatin was found to be prone to disrupt cell membrane integrity. Interestingly, SpHyastatin exerted its role specifically on the surface of S. aureus and Pichia pastoris whereas it directly killed P. fluorescens through simultaneous targeting the membrane and the cytoplasm, indicating that SpHyastatin could use different antimicrobial mechanisms to kill different species of microbes. As expected, the recombinant SpHyastatin increased the survival rate of crabs challenged with Vibrio parahaemolyticus. In addition, SpHyastatin could modulate some V. parahaemolyticus-responsive genes in S. paramamosain.
Collapse
Affiliation(s)
- Zhongguo Shan
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Science, Xiamen University Xiamen, China
| | - Kexin Zhu
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Science, Xiamen University Xiamen, China
| | - Hui Peng
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Science, Xiamen UniversityXiamen, China; Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen UniversityXiamen, China; State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen UniversityXiamen, China
| | - Bei Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Science, Xiamen University Xiamen, China
| | - Jie Liu
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Science, Xiamen University Xiamen, China
| | - Fangyi Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Science, Xiamen UniversityXiamen, China; Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen UniversityXiamen, China; State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen UniversityXiamen, China
| | - Xiaowan Ma
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Science, Xiamen University Xiamen, China
| | - Shuping Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Science, Xiamen University Xiamen, China
| | - Kun Qiao
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Science, Xiamen University Xiamen, China
| | - Kejian Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Science, Xiamen UniversityXiamen, China; Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen UniversityXiamen, China; State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen UniversityXiamen, China
| |
Collapse
|
40
|
Thomas A, Sudheer NS, Kiron V, Bright Singh IS, Narayanan RB. Expression profile of key immune-related genes in Penaeus monodon juveniles after oral administration of recombinant envelope protein VP28 of white spot syndrome virus. Microb Pathog 2016; 96:72-9. [DOI: 10.1016/j.micpath.2016.05.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 04/28/2016] [Accepted: 05/02/2016] [Indexed: 12/23/2022]
|
41
|
Balandin SV, Ovchinnikova TV. Antimicrobial peptides of invertebrates. Part 1. structure, biosynthesis, and evolution. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2016. [DOI: 10.1134/s1068162016030055] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
42
|
Natarajan SB, Kim YS, Hwang JW, Park PJ. Immunomodulatory properties of shellfish derivatives associated with human health. RSC Adv 2016. [DOI: 10.1039/c5ra26375a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Some vital components of marine shellfish are documented as an important source for both nutritional and pharmacological applications.
Collapse
Affiliation(s)
| | - Yon-Suk Kim
- Department of Biotechnology
- Konkuk University
- Chungju 380-701
- Republic of Korea
- Nokyong Research Centre
| | - Jin-Woo Hwang
- Department of Biotechnology
- Konkuk University
- Chungju 380-701
- Republic of Korea
- Nokyong Research Centre
| | - Pyo-Jam Park
- Department of Biotechnology
- Konkuk University
- Chungju 380-701
- Republic of Korea
- Nokyong Research Centre
| |
Collapse
|
43
|
Petit VW, Rolland JL, Blond A, Cazevieille C, Djediat C, Peduzzi J, Goulard C, Bachère E, Dupont J, Destoumieux-Garzón D, Rebuffat S. A hemocyanin-derived antimicrobial peptide from the penaeid shrimp adopts an alpha-helical structure that specifically permeabilizes fungal membranes. Biochim Biophys Acta Gen Subj 2015; 1860:557-68. [PMID: 26708991 DOI: 10.1016/j.bbagen.2015.12.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 11/27/2015] [Accepted: 12/16/2015] [Indexed: 10/22/2022]
Abstract
BACKGROUND Hemocyanins are respiratory proteins with multiple functions. In diverse crustaceans hemocyanins can release histidine-rich antimicrobial peptides in response to microbial challenge. In penaeid shrimp, strictly antifungal peptides are released from the C-terminus of hemocyanins. METHODS The three-dimensional structure of the antifungal peptide PvHCt from Litopenaeus vannamei was determined by NMR. Its mechanism of action against the shrimp pathogen Fusarium oxysporum was investigated using immunochemistry, fluorescence and transmission electron microscopy. RESULTS PvHCt folded into an amphipathic α-helix in membrane-mimicking media and displayed a random conformation in aqueous environment. In contact with F. oxysporum, PvHCt bound massively to the surface of fungal hyphae without being imported into the cytoplasm. At minimal inhibitory concentrations, PvHCt made the fungal membrane permeable to SYTOX-green and fluorescent dextran beads of 4 kDa. Higher size beads could not enter the cytoplasm. Therefore, PvHCt likely creates local damages to the fungal membrane. While the fungal cell wall appeared preserved, gradual degeneration of the cytoplasm most often resulting in cell lysis was observed in fungal spores and hyphae. In the remaining fungal cells, PvHCt induced a protective response by the formation of daughter hyphae. CONCLUSION The massive accumulation of PvHCt at the surface of fungal hyphae and subsequent insertion into the plasma membrane disrupt its integrity as a permeability barrier, leading to disruption of internal homeostasis and fungal death. GENERAL SIGNIFICANCE The histidine-rich antimicrobial peptide PvHCt derived from shrimp hemocyanin is a strictly antifungal peptide, which adopts an amphipathic α-helical structure, and selectively binds to and permeabilizes fungal cells.
Collapse
Affiliation(s)
- Vanessa W Petit
- Laboratory Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR 7245), Muséum national d'Histoire naturelle (MNHN), Centre national de la Recherche scientifique (CNRS), Sorbonne Universités, 75005 Paris, France
| | - Jean-Luc Rolland
- Interactions Hôtes-Pathogènes-Environnements (IHPE), Ifremer, CNRS, UPVD, Université de Montpellier, UMR 5244, 34090 Montpellier, France
| | - Alain Blond
- Laboratory Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR 7245), Muséum national d'Histoire naturelle (MNHN), Centre national de la Recherche scientifique (CNRS), Sorbonne Universités, 75005 Paris, France
| | - Chantal Cazevieille
- COMET, Plateau de microscopie électronique, Plateforme Montpellier RIO Imaging, 34091 Montpellier, France
| | - Chakib Djediat
- Laboratory Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR 7245), Muséum national d'Histoire naturelle (MNHN), Centre national de la Recherche scientifique (CNRS), Sorbonne Universités, 75005 Paris, France
| | - Jean Peduzzi
- Laboratory Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR 7245), Muséum national d'Histoire naturelle (MNHN), Centre national de la Recherche scientifique (CNRS), Sorbonne Universités, 75005 Paris, France
| | - Christophe Goulard
- Laboratory Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR 7245), Muséum national d'Histoire naturelle (MNHN), Centre national de la Recherche scientifique (CNRS), Sorbonne Universités, 75005 Paris, France
| | - Evelyne Bachère
- Interactions Hôtes-Pathogènes-Environnements (IHPE), Ifremer, CNRS, UPVD, Université de Montpellier, UMR 5244, 34090 Montpellier, France
| | - Joëlle Dupont
- Institut de Systématique, Evolution, Biodiversité (ISYEB, UMR 7205), MNHN, Université Pierre et Marie Curie (UPMC), CNRS, Sorbonne Universités, 75005 Paris, France
| | - Delphine Destoumieux-Garzón
- Interactions Hôtes-Pathogènes-Environnements (IHPE), Ifremer, CNRS, UPVD, Université de Montpellier, UMR 5244, 34090 Montpellier, France
| | - Sylvie Rebuffat
- Laboratory Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR 7245), Muséum national d'Histoire naturelle (MNHN), Centre national de la Recherche scientifique (CNRS), Sorbonne Universités, 75005 Paris, France.
| |
Collapse
|
44
|
Chen YY, Chen JC, Tseng KC, Lin YC, Huang CL. Activation of immunity, immune response, antioxidant ability, and resistance against Vibrio alginolyticus in white shrimp Litopenaeus vannamei decrease under long-term culture at low pH. FISH & SHELLFISH IMMUNOLOGY 2015; 46:192-199. [PMID: 26093205 DOI: 10.1016/j.fsi.2015.05.055] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 05/17/2015] [Accepted: 05/20/2015] [Indexed: 06/04/2023]
Abstract
The growth, activation of immunity, immune parameters, and transcript levels of cytMnSOD, mtMnSOD, ecCuZnSOD, glutathione peroxidase (GPx), catalase, lysozyme, and penaeidin 3a were examined in white shrimp Litopenaeus vannamei reared at pH 6.8 and 8.1 after 24 weeks. No significant difference in growth was observed between the two groups. An in vitro study indicated that phenoloxidase activity and respiratory bursts (RB, release of the superoxide anion) were significantly higher in the haemocytes of pH 8.1 shrimp (shrimp reared at pH 8.1) than in pH 6.8 shrimp (shrimp reared at pH 6.8). An in vivo study indicated that the levels of immune parameters of pH 8.1 shrimp were significantly higher than in pH 6.8 shrimp, and the transcript levels of cytMnSOD, ecCuZnSOD, glutathione peroxidase, lysozyme, and penaeidin 3a were down-regulated in pH 6.8 shrimp. In another experiment, shrimp reared at pH 6.8 and 8.1 for 24 weeks were challenged with Vibrio alginolyticus. The mortality rate of pH 6.8 shrimp was significantly higher than in pH 8.1 shrimp over 12-168 h. Phagocytic activity, phagocytic index, and clearance efficiency to V. alginolyticus were significantly lower in pH 6.8 shrimp. We concluded that shrimp under long-term culture at pH 6.8 exhibited decreased resistance against V. alginolyticus as evidenced by reductions in the activation of immunity and immune parameters together with decreased transcript levels of cytMnSOD, ecCuZnSOD, GPx, lysozyme, and penaeidin 3a.
Collapse
Affiliation(s)
- Yu-Yuan Chen
- Department of Aquaculture, National Taiwan Ocean University, Keelung 202, Taiwan, ROC
| | - Jiann-Chu Chen
- Department of Aquaculture, National Taiwan Ocean University, Keelung 202, Taiwan, ROC.
| | - Kuei-Chi Tseng
- Department of Aquaculture, National Taiwan Ocean University, Keelung 202, Taiwan, ROC
| | - Yong-Chin Lin
- Department of Aquaculture, National Taiwan Ocean University, Keelung 202, Taiwan, ROC
| | - Chien-Lun Huang
- Department of Aquaculture, National Taiwan Ocean University, Keelung 202, Taiwan, ROC
| |
Collapse
|
45
|
Molecular Characterization and Antibacterial Activity Analysis of Two Novel Penaeidin Isoforms from Pacific White Shrimp, Litopenaeus vannamei. Appl Biochem Biotechnol 2015; 177:1607-20. [DOI: 10.1007/s12010-015-1840-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 09/08/2015] [Indexed: 11/27/2022]
|
46
|
Smith VJ, Dyrynda EA. Antimicrobial proteins: From old proteins, new tricks. Mol Immunol 2015; 68:383-98. [PMID: 26320628 DOI: 10.1016/j.molimm.2015.08.009] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 08/07/2015] [Accepted: 08/10/2015] [Indexed: 01/19/2023]
Abstract
This review describes the main types of antimicrobial peptides (AMPs) synthesised by crustaceans, primarily those identified in shrimp, crayfish, crab and lobster. It includes an overview of their range of microbicidal activities and the current landscape of our understanding of their gene expression patterns in different body tissues. It further summarises how their expression might change following various types of immune challenges. The review further considers proteins or protein fragments from crustaceans that have antimicrobial properties but are more usually associated with other biological functions, or are derived from such proteins. It discusses how these unconventional AMPs might be generated at, or delivered to, sites of infection and how they might contribute to crustacean host defence in vivo. It also highlights recent work that is starting to reveal the extent of multi-functionality displayed by some decapod AMPs, particularly their participation in other aspects of host protection. Examples of such activities include proteinase inhibition, phagocytosis, antiviral activity and haematopoiesis.
Collapse
Affiliation(s)
- Valerie J Smith
- Scottish Oceans Institute, School of Biology, University of St Andrews, St Andrews, Fife, KY16 8LB Scotland, UK.
| | - Elisabeth A Dyrynda
- Centre for Marine Biodiversity & Biotechnology, School of Life Sciences, Heriot Watt University, Edinburgh, EH14 4AS Scotland, UK
| |
Collapse
|
47
|
Charoensapsri W, Sangsuriya P, Lertwimol T, Gangnonngiw W, Phiwsaiya K, Senapin S. Laminin receptor protein is implicated in hemocyte homeostasis for the whiteleg shrimp Penaeus (Litopenaeus) vannamei. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 51:39-47. [PMID: 25720979 DOI: 10.1016/j.dci.2015.02.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 02/15/2015] [Accepted: 02/16/2015] [Indexed: 06/04/2023]
Abstract
Here we show that knockdown of laminin receptor (Lamr) with PvLamr dsRNA in the whiteleg shrimp Penaeus (Litopenaeus) vannamei (Pv) caused a dramatic reduction specifically in hyaline hemocytes prior to death. Since apoptosis was not detected in hemocytes or hematopoietic cells, other possible causes of hemocyte loss were investigated. Reports that suppression of crustacean hematopoietic factor (CHF)-like protein or hemocyte homeostasis-associated protein (HHAP) also reduced shrimp hemocyte counts led us to carry out yeast two-hybrid (Y2H) and co-immunoprecipitation (co-IP) assays to test for interactions between Lamr and Pv homologues to these proteins (PvCHF-like and PvHHAP). The assays revealed that Lamr bound to both these homologues, but that the homologues did not bind to each other. Subsequent RT-PCR assays confirmed that PvLamr dsRNA injection significantly reduced expression levels for both PvCHF-like and PvHHAP genes. Further work is needed to determine how interaction among these three proteins can regulate shrimp hemocyte homeostasis.
Collapse
Affiliation(s)
- Walaiporn Charoensapsri
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathumthani 12120, Thailand; Center of Excellence for Shrimp Molecular Biology and Biotechnology, Mahidol University, 272 Rama VI Road, Bangkok 10400, Thailand
| | - Pakkakul Sangsuriya
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathumthani 12120, Thailand; Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Bangkok 10330, Thailand
| | - Tareerat Lertwimol
- Center of Excellence for Shrimp Molecular Biology and Biotechnology, Mahidol University, 272 Rama VI Road, Bangkok 10400, Thailand; Department of Biotechnology, Faculty of Science, Mahidol University, 272 Rama VI Road, Bangkok 10400, Thailand
| | - Warachin Gangnonngiw
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathumthani 12120, Thailand; Center of Excellence for Shrimp Molecular Biology and Biotechnology, Mahidol University, 272 Rama VI Road, Bangkok 10400, Thailand
| | - Kornsunee Phiwsaiya
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathumthani 12120, Thailand; Center of Excellence for Shrimp Molecular Biology and Biotechnology, Mahidol University, 272 Rama VI Road, Bangkok 10400, Thailand
| | - Saengchan Senapin
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathumthani 12120, Thailand; Center of Excellence for Shrimp Molecular Biology and Biotechnology, Mahidol University, 272 Rama VI Road, Bangkok 10400, Thailand; Department of Biotechnology, Faculty of Science, Mahidol University, 272 Rama VI Road, Bangkok 10400, Thailand.
| |
Collapse
|
48
|
Lin YC, Chen JC, Chen YY, Yeh ST, Chen LL, Huang CL, Hsieh JF, Li CC. Crowding of white shrimp Litopenaeus vananmei depresses their immunity to and resistance against Vibrio alginolyticus and white spot syndrome virus. FISH & SHELLFISH IMMUNOLOGY 2015; 45:104-111. [PMID: 25700787 DOI: 10.1016/j.fsi.2015.02.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 02/07/2015] [Accepted: 02/09/2015] [Indexed: 06/04/2023]
Abstract
Immunity parameters and the expression levels of several immune-related proteins, including lipopolysaccharide and β-glucan binding protein (LGBP), peroxinectin (PX), intergin β (IB), prophenoloxidase (proPO) I, proPO II, α2-macroglobulin (α2-M), cytosolic mangangese superoxide dismutase (cytMnSOD), mitochondria manganese superoxide dismutase (mtMnSOD), catalase, glutathione peroxidase (GPx), lysozyme, and penaeidin 3a were examined in white shrimp Litopenaeus vannamei reared at stocking densities of 2, 10, 20, 30, and 40 shrimp L(-1) after 3, 6, and 12 h. All immune parameters including haemocyte count, phenoloxidase (PO) activity, respiratory burst (RB), superoxide dismutase (SOD) activity, lysozyme activity, and haemolymph protein were negatively related to density and time. The PO activity, SOD activity, and lysozyme activity of shrimp reared at 10 shrimp L(-1) after 12 h significantly decreased. The transcript levels of these immune-related proteins were down-regulated in shrimp reared at 20, 30, and 40 shrimp L(-1) after 12 h. Phagocytic activity and clearance efficiency to Vibrio alginolyticus were significantly lower in shrimp reared at 30 and 40 shrimp L(-1) after 12 h. The mortality rates of shrimp reared at 20 and 40 shrimp L(-1) were significantly higher than shrimp reared at 2 shrimp L(-1) over 12-144 h and 12-48 h, respectively. Shrimp reared at high densities (>10 shrimp L(-1)) exhibited decreased resistance against pathogens as evidenced by reductions in immune parameters together with decreased expression levels of immune-related proteins, indicating perturbations of the immune system.
Collapse
Affiliation(s)
- Yong-Chin Lin
- Department of Aquaculture, College of Life Sciences, National Taiwan Ocean University, Keelung 202, Taiwan, ROC
| | - Jiann-Chu Chen
- Department of Aquaculture, College of Life Sciences, National Taiwan Ocean University, Keelung 202, Taiwan, ROC.
| | - Yu-Yuan Chen
- Department of Aquaculture, College of Life Sciences, National Taiwan Ocean University, Keelung 202, Taiwan, ROC
| | - Su-Tuen Yeh
- Department of Aquaculture, College of Life Sciences, National Taiwan Ocean University, Keelung 202, Taiwan, ROC
| | - Li-Li Chen
- Institute of Marine Biology, College of Life Sciences, National Taiwan Ocean University, Keelung 202, Taiwan, ROC
| | - Chien-Lun Huang
- Department of Aquaculture, College of Life Sciences, National Taiwan Ocean University, Keelung 202, Taiwan, ROC
| | - Jen-Fang Hsieh
- Department of Aquaculture, College of Life Sciences, National Taiwan Ocean University, Keelung 202, Taiwan, ROC
| | - Chang-Che Li
- Department of Aquaculture, College of Life Sciences, National Taiwan Ocean University, Keelung 202, Taiwan, ROC
| |
Collapse
|
49
|
Mars Brisbin M, McElroy AE, Pales Espinosa E, Allam B. Antimicrobial activity in the cuticle of the American lobster, Homarus americanus. FISH & SHELLFISH IMMUNOLOGY 2015; 44:542-546. [PMID: 25804485 DOI: 10.1016/j.fsi.2015.03.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 03/05/2015] [Accepted: 03/06/2015] [Indexed: 06/04/2023]
Abstract
American lobster, Homarus americanus, continues to be an ecologically and socioeconomically important species despite a severe decline in catches from Southern New England and Long Island Sound (USA) and a high prevalence of epizootic shell disease in these populations. A better understanding of lobster immune defenses remains necessary. Cuticle material collected from Long Island Sound lobsters was found to be active against a broad spectrum of bacteria, including Gram-negative and -positive species. The antimicrobial activity was characterized by boiling, muffling, and size fractioning. Boiling did not significantly reduce activity, while muffling did have a significant effect, suggesting that the active component is organic and heat stable. Size fractioning with 3 and 10 kDa filters did not significantly affect activity. Fast protein liquid chromatography fractions were also tested for antimicrobial activity, and fractions exhibiting protein peaks remained active. MALDI mass spectrometry revealed peptide peaks at 1.6, 2.8, 4.6, and 5.6 kDa. The data presented suggest that one or several antimicrobial peptides contribute to antimicrobial activity present in the American lobster cuticle.
Collapse
Affiliation(s)
- Margaret Mars Brisbin
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11794-5000, USA
| | - Anne E McElroy
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11794-5000, USA
| | | | - Bassem Allam
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11794-5000, USA.
| |
Collapse
|
50
|
Yang CC, Lu CL, Chen S, Liao WL, Chen SN. Immune gene expression for diverse haemocytes derived from pacific white shrimp, Litopenaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2015; 44:265-271. [PMID: 25681751 DOI: 10.1016/j.fsi.2015.02.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 02/03/2015] [Accepted: 02/03/2015] [Indexed: 06/04/2023]
Abstract
In this study, diverse haemocytes from Pacific white shrimp Litopenaeus vannamei were spread by flow cytometer sorting system. Using the two commonly flow cytometric parameters FSC and SSC, the haemocytes could be divided into three populations. Microscopy observation of L. vannamei haemocytes in anticoagulant buffer revealed three morphologically distinct cell types designated as granular cell, hyaline cell and semigranular cell. Immune genes, which includes prophenoloxidase (proPO), lipopolysaccharide-β-glucan binding protein (LGBP), peroxinectin, crustin, lysozyme, penaeid-3a and transglutaminase (TGase), expressed from different haemocyte were analysed by quantitative real time PCR (qPCR). Results from the mRNA expression was estimated by relative level of each gene to β-actin gene. Finally, the seven genes could be grouped by their dominant expression sites. ProPO, LGBP and peroxinectin were highly expressed in granular cells, while LGBP, crustin, lysozyme and P-3a were highly expressed in semigranular cells and TGase was highly expressed in hyaline cells. In this study, L. vannamei haemocytes were firstly grouped into three different types and the immune related genes expression in grouped haemocytes were estimated.
Collapse
Affiliation(s)
- Chih-Chiu Yang
- Institute of Fisheries Science, National Taiwan University, Taipei, Taiwan, ROC
| | - Chung-Lun Lu
- Institute of Fisheries Science, National Taiwan University, Taipei, Taiwan, ROC
| | - Sherwin Chen
- College of Life Science, National Taiwan University, Taipei, Taiwan, ROC
| | - Wen-Liang Liao
- Institute of Fisheries Science, National Taiwan University, Taipei, Taiwan, ROC.
| | - Shiu-Nan Chen
- College of Life Science, National Taiwan University, Taipei, Taiwan, ROC.
| |
Collapse
|