1
|
Dacheux D, Martinez G, Broster Reix CE, Beurois J, Lores P, Tounkara M, Dupuy JW, Robinson DR, Loeuillet C, Lambert E, Wehbe Z, Escoffier J, Amiri-Yekta A, Daneshipour A, Hosseini SH, Zouari R, Mustapha SFB, Halouani L, Jiang X, Shen Y, Liu C, Thierry-Mieg N, Septier A, Bidart M, Satre V, Cazin C, Kherraf ZE, Arnoult C, Ray PF, Toure A, Bonhivers M, Coutton C. Novel axonemal protein ZMYND12 interacts with TTC29 and DNAH1, and is required for male fertility and flagellum function. eLife 2023; 12:RP87698. [PMID: 37934199 PMCID: PMC10629824 DOI: 10.7554/elife.87698] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023] Open
Abstract
Male infertility is common and complex, presenting a wide range of heterogeneous phenotypes. Although about 50% of cases are estimated to have a genetic component, the underlying cause often remains undetermined. Here, from whole-exome sequencing on samples from 168 infertile men with asthenoteratozoospermia due to severe sperm flagellum, we identified homozygous ZMYND12 variants in four unrelated patients. In sperm cells from these individuals, immunofluorescence revealed altered localization of DNAH1, DNALI1, WDR66, and TTC29. Axonemal localization of ZMYND12 ortholog TbTAX-1 was confirmed using the Trypanosoma brucei model. RNAi knock-down of TbTAX-1 dramatically affected flagellar motility, with a phenotype similar to the sperm from men bearing homozygous ZMYND12 variants. Co-immunoprecipitation and ultrastructure expansion microscopy in T. brucei revealed TbTAX-1 to form a complex with TTC29. Comparative proteomics with samples from Trypanosoma and Ttc29 KO mice identified a third member of this complex: DNAH1. The data presented revealed that ZMYND12 is part of the same axonemal complex as TTC29 and DNAH1, which is critical for flagellum function and assembly in humans, and Trypanosoma. ZMYND12 is thus a new asthenoteratozoospermia-associated gene, bi-allelic variants of which cause severe flagellum malformations and primary male infertility.
Collapse
Affiliation(s)
- Denis Dacheux
- University of Bordeaux, CNRSBordeauxFrance
- Bordeaux INP, Microbiologie Fondamentale et PathogénicitéBordeauxFrance
| | | | | | - Julie Beurois
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR 5309, Université Grenoble Alpes, Team Genetics Epigenetics and Therapies of InfertilityGrenobleFrance
| | - Patrick Lores
- Institut Cochin, INSERM U1016, CNRS UMR 8104, Université Paris CiteParisFrance
| | | | | | | | - Corinne Loeuillet
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR 5309, Université Grenoble Alpes, Team Genetics Epigenetics and Therapies of InfertilityGrenobleFrance
| | - Emeline Lambert
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR 5309, Université Grenoble Alpes, Team Genetics Epigenetics and Therapies of InfertilityGrenobleFrance
| | - Zeina Wehbe
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR 5309, Université Grenoble Alpes, Team Genetics Epigenetics and Therapies of InfertilityGrenobleFrance
| | - Jessica Escoffier
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR 5309, Université Grenoble Alpes, Team Genetics Epigenetics and Therapies of InfertilityGrenobleFrance
| | - Amir Amiri-Yekta
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECRTehranIslamic Republic of Iran
| | - Abbas Daneshipour
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECRTehranIslamic Republic of Iran
| | - Seyedeh-Hanieh Hosseini
- Department of Andrology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECRTehranIslamic Republic of Iran
| | - Raoudha Zouari
- Polyclinique les Jasmins, Centre d'Aide Médicale à la Procréation, Centre Urbain NordTunisTunisia
| | | | - Lazhar Halouani
- Polyclinique les Jasmins, Centre d'Aide Médicale à la Procréation, Centre Urbain NordTunisTunisia
| | - Xiaohui Jiang
- Human Sperm Bank, West China Second University Hospital of Sichuan UniversitySichuanChina
- NHC Key Laboratory of Chronobiology, Sichuan UniversitySichuanChina
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of EducationSichuanChina
| | - Ying Shen
- NHC Key Laboratory of Chronobiology, Sichuan UniversitySichuanChina
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of EducationSichuanChina
| | - Chunyu Liu
- Obstetrics and Gynecology Hospital, Fudan UniversityFudanChina
| | | | | | - Marie Bidart
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR 5309, Université Grenoble Alpes, Team Genetics Epigenetics and Therapies of InfertilityGrenobleFrance
- CHU Grenoble Alpes, Laboratoire de Génétique Moléculaire: Maladies Héréditaires et OncologieGrenobleFrance
| | - Véronique Satre
- CHU Grenoble-Alpes, UM de Génétique ChromosomiqueGrenobleFrance
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR 5309, Université Grenoble Alpes, Team Genetics Epigenetics and Therapies of InfertilityGrenobleFrance
| | - Caroline Cazin
- CHU Grenoble-Alpes, UM de Génétique ChromosomiqueGrenobleFrance
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR 5309, Université Grenoble Alpes, Team Genetics Epigenetics and Therapies of InfertilityGrenobleFrance
- CHU de Grenoble, UM GI-DPIGrenobleFrance
| | - Zine Eddine Kherraf
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR 5309, Université Grenoble Alpes, Team Genetics Epigenetics and Therapies of InfertilityGrenobleFrance
- CHU de Grenoble, UM GI-DPIGrenobleFrance
| | - Christophe Arnoult
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR 5309, Université Grenoble Alpes, Team Genetics Epigenetics and Therapies of InfertilityGrenobleFrance
| | - Pierre F Ray
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR 5309, Université Grenoble Alpes, Team Genetics Epigenetics and Therapies of InfertilityGrenobleFrance
- CHU de Grenoble, UM GI-DPIGrenobleFrance
| | - Aminata Toure
- Institute for Advanced Biosciences, INSERM U 1209, CNRS UMR 5309, Université Grenoble Alpes, Team Physiology and Pathophysiology of Sperm cellsGrenobleFrance
| | | | - Charles Coutton
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR 5309, Université Grenoble Alpes, Team Genetics Epigenetics and Therapies of InfertilityGrenobleFrance
| |
Collapse
|
2
|
Vizcaíno-Castillo A, Osorio-Méndez JF, Ambrosio JR, Hernández R, Cevallos AM. The complexity and diversity of the actin cytoskeleton of trypanosomatids. Mol Biochem Parasitol 2020; 237:111278. [PMID: 32353561 DOI: 10.1016/j.molbiopara.2020.111278] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 03/24/2020] [Accepted: 04/07/2020] [Indexed: 10/24/2022]
Abstract
Trypanosomatids are a monophyletic group of parasitic flagellated protists belonging to the order Kinetoplastida. Their cytoskeleton is primarily made up of microtubules in which no actin microfilaments have been detected. Although all these parasites contain actin, it is widely thought that their actin cytoskeleton is reduced when compared to most eukaryotic organisms. However, there is increasing evidence that it is more complex than previously thought. As in other eukaryotic organisms, trypanosomatids encode for a conventional actin that is expected to form microfilament-like structures, and for members of three conserved actin-related proteins probably involved in microfilament nucleation (ARP2, ARP3) and in gene expression regulation (ARP6). In addition to these canonical proteins, also encode for an expanded set of actins and actin-like proteins that seem to be restricted to kinetoplastids. Analysis of their amino acid sequences demonstrated that, although very diverse in primary sequence when compared to actins of model organisms, modelling of their tertiary structure predicted the presence of the actin fold in all of them. Experimental characterization has been done for only a few of the trypanosomatid actins and actin-binding proteins. The most studied is the conventional actin of Leishmania donovani (LdAct), which unusually requires both ATP and Mg2+ for polymerization, unlike other conventional actins that do not require ATP. Additionally, polymerized LdAct tends to assemble in bundles rather than in single filaments. Regulation of actin polymerization depends on their interaction with actin-binding proteins. In trypanosomatids, there is a reduced but sufficient core of actin-binding proteins to promote microfilament nucleation, turnover and stabilization. There are also genes encoding for members of two families of myosin motor proteins, including one lineage-specific. Homologues to all identified actin-family proteins and actin-binding proteins of trypanosomatids are also present in Paratrypanosoma confusum (an early branching trypanosomatid) and in Bodo saltans (a closely related free-living organism belonging to the trypanosomatid sister order of Bodonida) suggesting they were all present in their common ancestor. Secondary losses of these genes may have occurred during speciation within the trypanosomatids, with salivarian trypanosomes having lost many of them and stercorarian trypanosomes retaining most.
Collapse
Affiliation(s)
- Andrea Vizcaíno-Castillo
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Av. Universidad 3000, Ciudad Universitaria, Coyoacán, 04510, Ciudad de México, Mexico
| | - Juan Felipe Osorio-Méndez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Av. Universidad 3000, Ciudad Universitaria, Coyoacán, 04510, Ciudad de México, Mexico; Laboratorio de Microbiología y Biología Molecular, Programa de Medicina, Corporación Universitaria Empresarial Alexander von Humboldt, Armenia, Colombia
| | - Javier R Ambrosio
- Departamento de Microbiología y Parasitología de la Facultad de Medicina, Universidad Nacional Autónoma de México, Apartado Postal, 4510, D.F., Mexico
| | - Roberto Hernández
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Av. Universidad 3000, Ciudad Universitaria, Coyoacán, 04510, Ciudad de México, Mexico
| | - Ana María Cevallos
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Av. Universidad 3000, Ciudad Universitaria, Coyoacán, 04510, Ciudad de México, Mexico.
| |
Collapse
|
3
|
Antitrypanosomal Activities and Mechanisms of Action of Novel Tetracyclic Iridoids from Morinda lucida Benth. Antimicrob Agents Chemother 2016; 60:3283-90. [PMID: 26953191 PMCID: PMC4879371 DOI: 10.1128/aac.01916-15] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 03/02/2016] [Indexed: 11/20/2022] Open
Abstract
Trypanosoma brucei parasites are kinetoplastid protozoa that devastate the health and economic well-being of millions of people in Africa through the disease human African trypanosomiasis (HAT). New chemotherapy has been eagerly awaited due to severe side effects and the drug resistance issues plaguing current drugs. Recently, there has been an emphasis on the use of medicinal plants worldwide. Morinda lucida Benth. is a popular medicinal plant widely distributed in Africa, and several research groups have reported on the antiprotozoal activities of this plant. In this study, we identified three novel tetracyclic iridoids, molucidin, ML-2-3, and ML-F52, from the CHCl3 fraction of M. lucida leaves, which possess activity against the GUTat 3.1 strain of T. brucei brucei. The 50% inhibitory concentrations (IC50) of molucidin, ML-2-3, and ML-F52 were 1.27 μM, 3.75 μM, and 0.43 μM, respectively. ML-2-3 and ML-F52 suppressed the expression of paraflagellum rod protein subunit 2, PFR-2, and caused cell cycle alteration, which preceded apoptosis induction in the bloodstream form of Trypanosoma parasites. Novel tetracyclic iridoids may be promising lead compounds for the development of new chemotherapies for African trypanosomal infections in humans and animals.
Collapse
|
4
|
TbFlabarin, a flagellar protein of Trypanosoma brucei, highlights differences between Leishmania and Trypanosoma flagellar-targeting signals. Exp Parasitol 2016; 166:97-107. [PMID: 27060615 DOI: 10.1016/j.exppara.2016.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 03/26/2016] [Accepted: 04/05/2016] [Indexed: 12/17/2022]
Abstract
TbFlabarin is the Trypanosoma brucei orthologue of the Leishmania flagellar protein LdFlabarin but its sequence is 33% shorter than LdFlabarin, as it lacks a C-terminal domain that is indispensable for LdFlabarin to localize to the Leishmania flagellum. TbFlabarin is mainly expressed in the procyclic forms of the parasite and localized to the flagellum, but only when two palmitoylable cysteines at positions 3 and 4 are present. TbFlabarin is more strongly attached to the membrane fraction than its Leishmania counterpart, as it resists complete solubilization with as much as 0.5% NP-40. Expression ablation by RNA interference did not change parasite growth in culture, its morphology or apparent motility. Heterologous expression showed that neither TbFlabarin in L. amazonensis nor LdFlabarin in T. brucei localized to the flagellum, revealing non-cross-reacting targeting signals between the two species.
Collapse
|
5
|
Functional role of lysine 12 in Leishmania major AQP1. Mol Biochem Parasitol 2015; 201:139-45. [PMID: 26259900 DOI: 10.1016/j.molbiopara.2015.07.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 07/29/2015] [Accepted: 07/30/2015] [Indexed: 11/22/2022]
Abstract
Leishmania major aquaglyceroporin (AQP1) is an adventitious metalloid channel that allows the bidirectional movement of arsenite and antimonite. Here we demonstrate that AQP1 is subjected to proteasome-dependent degradation. Treatment of Leishmania promastigotes with the proteasome inhibitor MG132 resulted in increased AQP1 accumulation. Site-directed mutagenesis in AQP1 revealed that alteration of lysine 12 to either alanine or arginine improves protein stability. AQP1 expression is stabilized by mitogen-activated protein kinase 2 (MPK2). Cells expressing a dominant-negative MPK2 mutant exhibited severely reduced AQP1 expression, which could be reversed upon addition of MG132. Interestingly, the dominant-negative MPK2 mutant could not destabilize either AQP1K12A or AQP1K12R. While stabilization of AQP1 by MPK2 leads to its relocalization from flagellum to the entire surface of the parasite, altered AQP1K12A or AQP1K12R was restricted to flagellum only. Our data demonstrate that lysine 12 is targeted for proteasomal degradation of AQP1 and plays an integral role in subcellular localization of AQP1 as well as its interaction with MPK2. This work also raises the possibility that a strategy combining antimonial with a proteasome inhibitor may be an effective combination regimen against diverse forms of leishmaniasis.
Collapse
|
6
|
Singh K, Veluru NK, Trivedi V, Gupta CM, Sahasrabuddhe AA. An actin-like protein is involved in regulation of mitochondrial and flagellar functions as well as in intramacrophage survival of Leishmania donovani. Mol Microbiol 2014; 91:562-78. [PMID: 24354789 DOI: 10.1111/mmi.12477] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2013] [Indexed: 11/30/2022]
Abstract
Actin-related proteins are ubiquitous actin-like proteins that show high similarity with actin in terms of their amino acid sequence and three-dimensional structure. However, in lower eukaryotes, such as trypanosomatids, their functions have not yet been explored. Here, we show that a novel actin-related protein (ORF LmjF.13.0950) is localized mainly in the Leishmania mitochondrion. We further reveal that depletion of the intracellular levels of this protein leads to an appreciable decrease in the mitochondrial membrane potential as well as in the ATP production, which appears to be accompanied with impairment in the flagellum assembly and motility. Additionally, we report that the mutants so generated fail to survive inside the mouse peritoneal macrophages. These abnormalities are, however, reversed by the episomal gene complementation. Our results, for the first time indicate that apart from their classical roles in the cytoplasm and nucleus, actin-related proteins may also regulate the mitochondrial function, and in case of Leishmania donovani they may also serve as the essential factor for their survival in the host cells.
Collapse
Affiliation(s)
- Kuldeep Singh
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow, PIN-226031, Uttar Pradesh, India
| | | | | | | | | |
Collapse
|
7
|
Lefebvre M, Tetaud E, Thonnus M, Salin B, Boissier F, Blancard C, Sauvanet C, Metzler C, Espiau B, Sahin A, Merlin G. LdFlabarin, a new BAR domain membrane protein of Leishmania flagellum. PLoS One 2013; 8:e76380. [PMID: 24086735 PMCID: PMC3785460 DOI: 10.1371/journal.pone.0076380] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 08/23/2013] [Indexed: 11/18/2022] Open
Abstract
During the Leishmania life cycle, the flagellum undergoes successive assembly and disassembly of hundreds of proteins. Understanding these processes necessitates the study of individual components. Here, we investigated LdFlabarin, an uncharacterized L. donovani flagellar protein. The gene is conserved within the Leishmania genus and orthologous genes only exist in the Trypanosoma genus. LdFlabarin associates with the flagellar plasma membrane, extending from the base to the tip of the flagellum as a helicoidal structure. Site-directed mutagenesis, deletions and chimera constructs showed that LdFlabarin flagellar addressing necessitates three determinants: an N-terminal potential acylation site and a central BAR domain for membrane targeting and the C-terminal domain for flagellar specificity. In vitro, the protein spontaneously associates with liposomes, triggering tubule formation, which suggests a structural/morphogenetic function. LdFlabarin is the first characterized Leishmania BAR domain protein, and the first flagellum-specific BAR domain protein.
Collapse
Affiliation(s)
- Michèle Lefebvre
- CNRS UMR 5290, Montpellier, France
- Université Montpellier 1, Montpellier, France
- Centre Hospitalier Universitaire La Colombière, Montpellier, France
- IRD 224, Montpellier, France
| | - Emmanuel Tetaud
- CNRS UMR 5095, Institut de Biochimie Génétique et Cellulaire, Bordeaux, France
- Université Bordeaux Segalen, Bordeaux, France
| | - Magali Thonnus
- CNRS UMR 5234, Bordeaux, France
- Université Bordeaux Segalen, Bordeaux, France
| | - Bénédicte Salin
- CNRS UMR 5095, Institut de Biochimie Génétique et Cellulaire, Bordeaux, France
- Université Bordeaux Segalen, Bordeaux, France
| | - Fanny Boissier
- CNRS UMR 5095, Institut de Biochimie Génétique et Cellulaire, Bordeaux, France
- Université Bordeaux Segalen, Bordeaux, France
| | - Corinne Blancard
- CNRS UMR 5095, Institut de Biochimie Génétique et Cellulaire, Bordeaux, France
- Université Bordeaux Segalen, Bordeaux, France
| | - Cécile Sauvanet
- CNRS UMR 5095, Institut de Biochimie Génétique et Cellulaire, Bordeaux, France
- Université Bordeaux Segalen, Bordeaux, France
| | | | - Benoît Espiau
- CNRS-EPHE USR 3278, Papetoai, Moorea, Polynésie Française
| | - Annelise Sahin
- CNRS UMR 5234, Bordeaux, France
- Université Bordeaux Segalen, Bordeaux, France
| | - Gilles Merlin
- CNRS UMR 5290, Montpellier, France
- Université Montpellier 1, Montpellier, France
- Centre Hospitalier Universitaire La Colombière, Montpellier, France
- IRD 224, Montpellier, France
- * E-mail:
| |
Collapse
|
8
|
Prestes EB, Bayer-Santos E, Hermes Stoco P, Sincero TCM, Wagner G, Umaki A, Fragoso SP, Bordignon J, Steindel M, Grisard EC. Trypanosoma rangeli protein tyrosine phosphatase is associated with the parasite's flagellum. Mem Inst Oswaldo Cruz 2013; 107:713-9. [PMID: 22990958 DOI: 10.1590/s0074-02762012000600002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 05/27/2012] [Indexed: 12/11/2022] Open
Abstract
Protein tyrosine phosphatases (PTPs) play an essential role in the regulation of cell differentiation in pathogenic trypanosomatids. In this study, we describe a PTP expressed by the non-pathogenic protozoan Trypanosoma rangeli (TrPTP2). The gene for this PTP is orthologous to the T. brucei TbPTP1 and Trypanosoma cruzi (TcPTP2) genes. Cloning and expression of the TrPTP2 and TcPTP2 proteins allowed anti-PTP2 monoclonal antibodies to be generated in BALB/c mice. When expressed by T. rangeli epimastigotes and trypomastigotes, native TrPTP2 is detected as a ~65 kDa protein associated with the parasite's flagellum. Given that the flagellum is an important structure for cell differentiation in trypanosomatids, the presence of a protein responsible for tyrosine dephosphorylation in the T. rangeli flagellum could represent an interesting mechanism of regulation in this structure.
Collapse
Affiliation(s)
- Elisa Beatriz Prestes
- Laboratórios de Protozoologia e de Bioinformática, Departamento de Microbiologia, Imunologia e Parasitologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brasil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Overexpression of S4D mutant of Leishmania donovani ADF/cofilin impairs flagellum assembly by affecting actin dynamics. EUKARYOTIC CELL 2012; 11:752-60. [PMID: 22492507 DOI: 10.1128/ec.00013-12] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Leishmania, like other eukaryotes, contains large amounts of actin and a number of actin-related and actin binding proteins. Our earlier studies have shown that deletion of the gene corresponding to Leishmania actin-depolymerizing protein (ADF/cofilin) adversely affects flagellum assembly, intracellular trafficking, and cell division. To further analyze this, we have now created ADF/cofilin site-specific point mutants and then examined (i) the actin-depolymerizing, G-actin binding, and actin-bound nucleotide exchange activities of the mutant proteins and (ii) the effect of overexpression of these proteins in wild-type cells. Here we show that S4D mutant protein failed to depolymerize F-actin but weakly bound G-actin and inhibited the exchange of G-actin-bound nucleotide. We further observed that overexpression of this protein impaired flagellum assembly and consequently cell motility by severely impairing the assembly of the paraflagellar rod, without significantly affecting vesicular trafficking or cell growth. Taken together, these results indicate that dynamic actin is essentially required in assembly of the eukaryotic flagellum.
Collapse
|
10
|
|
11
|
Vincensini L, Blisnick T, Bastin P. [The importance of model organisms to study cilia and flagella biology]. Biol Aujourdhui 2011; 205:5-28. [PMID: 21501571 DOI: 10.1051/jbio/2011005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Indexed: 12/24/2022]
Abstract
Cilia and flagella are ubiquitous organelles that protrude from the surfaces of many cells, and whose architecture is highly conserved from protists to humans. These complex organelles, composed of over 500 proteins, can be either immotile or motile. They are involved in a myriad of biological processes, including sensing (non-motile cilia) and/or cell motility or movement of extracellular fluids (motile cilia). The ever-expanding list of human diseases linked to defective cilia illustrates the functional importance of cilia and flagella. These ciliopathies are characterised by an impressive diversity of symptoms and an often complex genetic etiology. A precise knowledge of cilia and flagella biology is thus critical to better understand these pathologies. However, multi-ciliated cells are terminally differentiated and difficult to manipulate, and a primary cilium is assembled only when the cell exits from the cell cycle. In this context the use of model organisms, that relies on the high degree of structural but also of molecular conservation of these organelles across evolution, is instrumental to decipher the many facets of cilia and flagella biology. In this review, we highlight the specific strengths of the main model organisms to investigate the molecular composition, mode of assembly, sensing and motility mechanisms and functions of cilia and flagella. Pioneering studies carried out in the green alga Chlamydomonas established the link between cilia and several genetic diseases. Moreover, multicellular organisms such as mouse, zebrafish, Xenopus, C. elegans or Drosophila, and protists like Paramecium, Tetrahymena and Trypanosoma or Leishmania each bring specific advantages to the study of cilium biology. For example, the function of genes involved in primary ciliary dyskinesia (due to defects in ciliary motility) can be efficiently assessed in trypanosomes.
Collapse
Affiliation(s)
- Laetitia Vincensini
- Unité de Biologie Cellulaire des Trypanosomes, Institut Pasteur et CNRS URA 2581, 25 rue du Docteur Roux, 75724 Paris Cedex 15, France.
| | | | | |
Collapse
|
12
|
Cevallos AM, Segura-Kato YX, Merchant-Larios H, Manning-Cela R, Alberto Hernández-Osorio L, Márquez-Dueñas C, Ambrosio JR, Reynoso-Ducoing O, Hernández R. Trypanosoma cruzi: multiple actin isovariants are observed along different developmental stages. Exp Parasitol 2010; 127:249-59. [PMID: 20705070 DOI: 10.1016/j.exppara.2010.08.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Revised: 07/12/2010] [Accepted: 08/03/2010] [Indexed: 01/12/2023]
Abstract
The expression and biological role of actin during the Trypanosoma cruzi life cycle remains largely unknown. Polyclonal antibodies against a recombinant T. cruzi actin protein were used to confirm its expression in epimastigotes, trypomastigotes, and amastigotes. Although the overall levels of expression were similar, clear differences in the subcellular distribution of actin among the developmental stages were identified. The existence of five actin variants in each developmental stage with distinct patterns of expression were uncovered by immunoblotting of protein extracts separated 2D-SDS gels. The isoelectric points of the actin variants in epimastigotes ranged from 4.45 to 4.9, whereas they ranged from 4.9 to 5.24 in trypomastigotes and amastigotes. To determine if the actin variants found could represent previously unidentified actins, we performed a genomic survey of the T.cruzi GeneDB database and found 12 independent loci encoding for a diverse group of actins and actin-like proteins that are conserved among trypanosomatids.
Collapse
Affiliation(s)
- Ana María Cevallos
- Departamento de Biología Molecular y Biotecnología, Universidad Nacional Autónoma de México, Apartado Postal 70-228, México, DF, Mexico.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
The N terminus of phosphodiesterase TbrPDEB1 of Trypanosoma brucei contains the signal for integration into the flagellar skeleton. EUKARYOTIC CELL 2010; 9:1466-75. [PMID: 20693305 DOI: 10.1128/ec.00112-10] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The precise subcellular localization of the components of the cyclic AMP (cAMP) signaling pathways is a crucial aspect of eukaryotic intracellular signaling. In the human pathogen Trypanosoma brucei, the strict control of cAMP levels by cAMP-specific phosphodiesterases is essential for parasite survival, both in cell culture and in the infected host. Among the five cyclic nucleotide phosphodiesterases identified in this organism, two closely related isoenzymes, T. brucei PDEB1 (TbrPDEB1) (PDEB1) and TbrPDEB2 (PDEB2) are predominantly responsible for the maintenance of cAMP levels. Despite their close sequence similarity, they are distinctly localized in the cell. PDEB1 is mostly located in the flagellum, where it forms an integral part of the flagellar skeleton. PDEB2 is mainly located in the cell body, and only a minor part of the protein localizes to the flagellum. The current study, using transfection of procyclic trypanosomes with green fluorescent protein (GFP) reporters, demonstrates that the N termini of the two enzymes are essential for determining their final subcellular localization. The first 70 amino acids of PDEB1 are sufficient to specifically direct a GFP reporter to the flagellum and to lead to its detergent-resistant integration into the flagellar skeleton. In contrast, the analogous region of PDEB2 causes the GFP reporter to reside predominantly in the cell body. Mutagenesis of selected residues in the N-terminal region of PDEB2 demonstrated that single amino acid changes are sufficient to redirect the reporter from a cell body location to stable integration into the flagellar skeleton.
Collapse
|
14
|
Katta SS, Tammana TVS, Sahasrabuddhe AA, Bajpai VK, Gupta CM. Trafficking activity of myosin XXI is required in assembly of Leishmania flagellum. J Cell Sci 2010; 123:2035-44. [PMID: 20501700 DOI: 10.1242/jcs.064725] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Actin-based myosin motors have a pivotal role in intracellular trafficking in eukaryotic cells. The parasitic protozoan organism Leishmania expresses a novel class of myosin, myosin XXI (Myo21), which is preferentially localized at the proximal region of the flagellum. However, its function in this organism remains largely unknown. Here, we show that Myo21 interacts with actin, and its expression is dependent of the growth stage. We further reveal that depletion of Myo21 levels results in impairment of the flagellar assembly and intracellular trafficking. These defects are, however, reversed by episomal complementation. Additionally, it is shown that deletion of the Myo21 gene leads to generation of ploidy, suggesting an essential role of Myo21 in survival of Leishmania cells. Together, these results indicate that actin-dependent trafficking activity of Myo21 is essentially required during assembly of the Leishmania flagellum.
Collapse
Affiliation(s)
- Santharam S Katta
- Molecular and Structural Biology Division, Central Drug Research Institute, CSIR, Uttar Pradesh, Lucknow, India
| | | | | | | | | |
Collapse
|
15
|
Portman N, Gull K. The paraflagellar rod of kinetoplastid parasites: from structure to components and function. Int J Parasitol 2009; 40:135-48. [PMID: 19879876 PMCID: PMC2813431 DOI: 10.1016/j.ijpara.2009.10.005] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Revised: 10/13/2009] [Accepted: 10/16/2009] [Indexed: 01/06/2023]
Abstract
The role of the eukaryotic flagellum in cell motility is well established but its importance in many other aspects of cell biology, from cell signalling to developmental regulation, is becoming increasingly apparent. In addition to this diversity of function the core structure of the flagellum, which has been inherited from the earliest ancestor of all eukaryotes, is embellished with a range of extra-axonemal structures in many organisms. One of the best studied of these structures is the paraflagellar rod of kinetoplastid protozoa in which the morphological characteristics have been well defined and some of the major protein constituents have been identified. Here we discuss recent advances in the identification of further molecular components of the paraflagellar rod, how these impact on our understanding of its function and regulation and the implications for therapeutic intervention in a number of devastating human pathologies.
Collapse
Affiliation(s)
- Neil Portman
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX13RE, UK
| | | |
Collapse
|
16
|
Bell AJ, Guerra C, Phung V, Nair S, Seetharam R, Satir P. GEF1 is a ciliary Sec7 GEF of Tetrahymena thermophila. CELL MOTILITY AND THE CYTOSKELETON 2009; 66:483-99. [PMID: 19267341 DOI: 10.1002/cm.20348] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Ciliary guanine nucleotide exchange factors (GEFs) potentially activate G proteins in intraflagellar transport (IFT) cargo release. Several classes of GEFs have been localized to cilia or basal bodies and shown to be functionally important in the prevention of ciliopathies, but ciliary Arl-type Sec 7 related GEFs have not been well characterized. Nair et al. [ 1999] identified a Paramecium ciliary Sec7 GEF, PSec7. In Tetrahymena, Gef1p (GEF1), tentatively identified by PSec7 antibody, possesses ciliary and nuclear targeting sequences and like PSec7 localizes to cilia and macronuclei. Upregulation of GEF1 RNA followed deciliation and subsequent ciliary regrowth. Corresponding to similar Psec7 domains, GEF1domains contain IQ-like motifs and putative PH domains, in addition to GBF/BIG canonical motifs. Genomic analysis identified two additional Tetrahymena GBF/BIG Sec7 family GEFs (GEF2, GEF3), which do not possess ciliary targeting sequences. GEF1 and GEF2 were HA modified to determine cellular localization. Cells transformed to produce appropriately truncated GEF1-HA showed localization to somatic and oral cilia, but not to macronuclei. Subtle defects in ciliary stability and function were detected. GEF2-HA localized near basal bodies but not to cilia. These results indicate that GEF1 is the resident Tetrahymena ciliary protein orthologous to PSec7. Cell Motil. Cytoskeleton 2009. (c) 2009 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Aaron J Bell
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York, USA.
| | | | | | | | | | | |
Collapse
|
17
|
Field MC, Lumb JH, Adung'a VO, Jones NG, Engstler M. Chapter 1 Macromolecular Trafficking and Immune Evasion in African Trypanosomes. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2009; 278:1-67. [DOI: 10.1016/s1937-6448(09)78001-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
18
|
Abstract
In unicellular and multicellular eukaryotes, fast cell motility and rapid movement of material over cell surfaces are often mediated by ciliary or flagellar beating. The conserved defining structure in most motile cilia and flagella is the '9+2' microtubule axoneme. Our general understanding of flagellum assembly and the regulation of flagellar motility has been led by results from seminal studies of flagellate protozoa and algae. Here we review recent work relating to various aspects of protist physiology and cell biology. In particular, we discuss energy metabolism in eukaryotic flagella, modifications to the canonical assembly pathway and flagellum function in parasite virulence.
Collapse
|
19
|
Molecular dissection of ODF2/Cenexin revealed a short stretch of amino acids necessary for targeting to the centrosome and the primary cilium. Eur J Cell Biol 2008; 87:137-46. [DOI: 10.1016/j.ejcb.2007.10.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2007] [Revised: 09/20/2007] [Accepted: 10/19/2007] [Indexed: 11/19/2022] Open
|
20
|
Fridberg A, Buchanan KT, Engman DM. Flagellar membrane trafficking in kinetoplastids. Parasitol Res 2006; 100:205-12. [PMID: 17058110 DOI: 10.1007/s00436-006-0329-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2006] [Accepted: 08/29/2006] [Indexed: 10/24/2022]
Affiliation(s)
- Alina Fridberg
- Department of Pathology, Northwestern University Feinberg School of Medicine, Ward Building 6-140, Chicago, IL 60611, USA.
| | | | | |
Collapse
|
21
|
Kuribara S, Kato M, Kato-Minoura T, Numata O. Identification of a novel actin-related protein in Tetrahymena cilia. ACTA ACUST UNITED AC 2006; 63:437-46. [PMID: 16732560 DOI: 10.1002/cm.20136] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Actin is an ancient cytoskeletal protein that plays many essential roles in cell motility. In eukaryotes, its gene belongs to a highly conserved gene family, while the protein is also a member of an actin superfamily comprising various kinds of actin-related proteins (Arps). A ciliate, Tetrahymena, has a unique conventional actin. Data from the TIGR Tetrahymena genome project and our own research suggest the existence of 12 actin-like sequences: four conventional actins, two of Arp4, one each of Arp1, Arp2, Arp3, Arp5, and Arp6, and a novel actin-related protein, tArp. We cloned the entire cDNA sequences of Tetrahymena Arp2 (tArp2), Tetrahymena Arp3 (tArp3), and tArp for the work described herein. In phylogenetic analyses, tArp was not included in any Arp subfamily. Unlike other known Arps, tArp localizes in cilia, and its expression was upregulated after deciliation. To see the precise localization of tArp, cilia were fractionated and analyzed using specific antibodies. tArp was observed preferentially in the "outer-doublet" fraction, while actin was found in the "crude-dynein" fraction. In immunoelectron microscopy, most of the gold particles were found either on the outer-doublet or central-pair microtubules. These results suggest that tArp is a ciliary component and that it has a unique function in the formation and maintenance of cilia.
Collapse
Affiliation(s)
- Sayaka Kuribara
- Institute of Biological Sciences, University of Tsukuba, Tsukuba, Japan
| | | | | | | |
Collapse
|
22
|
Geng L, Okuhara D, Yu Z, Tian X, Cai Y, Shibazaki S, Somlo S. Polycystin-2 traffics to cilia independently of polycystin-1 by using an N-terminal RVxP motif. J Cell Sci 2006; 119:1383-95. [PMID: 16537653 DOI: 10.1242/jcs.02818] [Citation(s) in RCA: 217] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Primary cilia play a key role in the pathogenesis of autosomal dominant polycystic kidney disease (ADPKD). The affected proteins, polycystin-1 (PC1) and polycystin-2 (PC2), interact with each other and are expressed in cilia. We found that COOH-terminal truncated PC2 (PC2-L703X), lacking the PC1 interaction region, still traffics to cilia. We examined PC2 expression in several tissues and cells lacking PC1 and found that PC2 is expressed in cilia independently of PC1. We used N-terminal deletion constructs to narrow the domain necessary for cilia trafficking to the first 15 amino acids of PC2 and identified a conserved motif, R6VxP, that is required for cilial localization. The N-terminal 15 amino acids are also sufficient to localize heterologous proteins in cilia. PC2 has endogenous cilia trafficking information and is present in cilia of cells lining cysts that result from mutations in PKD1.
Collapse
Affiliation(s)
- Lin Geng
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
Trypanosoma brucei provides an excellent system for studies of many aspects of cell biology, including cell structure and morphology, organelle positioning, cell division and protein trafficking. However, the trypanosome has a complex life cycle in which it must adapt either to the mammalian bloodstream or to different compartments within the tsetse fly. These differentiation events require stage-specific changes to basic cell biological processes and reflect responses to environmental stimuli and programmed differentiation events that must occur within a single cell. The organization of cell structure is fundamental to the trypanosome throughout its life cycle. Modulations of the overall cell morphology and positioning of the specialized mitochondrial genome, flagellum and associated basal body provide the classical descriptions of the different life cycle stages of the parasite. The dependency relationships that govern these morphological changes are now beginning to be understood and their molecular basis identified. The overall picture emerging is of a highly organized cell in which the rules established for cell division and morphogenesis in organisms such as yeast and mammalian cells do not necessarily apply. Therefore, understanding the developmental cell biology of the African trypanosome is providing insight into both fundamentally conserved and fundamentally different aspects of the organization of the eukaryotic cell.
Collapse
Affiliation(s)
- Keith R Matthews
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, West Mains Road, Edinburgh, EH9 3JT, UK.
| |
Collapse
|
24
|
Clark AK, Kovtunovych G, Kandlikar S, Lal S, Stryker GA. Cloning and expression analysis of two novel paraflagellar rod domain genes found in Trypanosoma cruzi. Parasitol Res 2005; 96:312-20. [PMID: 15918067 DOI: 10.1007/s00436-005-1370-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2005] [Accepted: 03/18/2005] [Indexed: 11/29/2022]
Abstract
The eukaryotic flagellum is one of the most complex macromolecular structures found in cells, containing more than 250 proteins. One unique structure in the flagella of trypanomastids is the paraflagellar rod (PFR). The PFR constitutes a lattice of cytoskeletal filaments that lies alongside the axoneme in the flagella. This unique and complex structure is critical for cell motility, though little is known about its molecular assembly or its role in the lifecycle of trypanosomatids. These proteins are of particular importance in Trypanosoma cruzi, as purified or recombinant PFR proteins have been demonstrated to be immunogenic, protecting mice from a lethal challenge with the parasite. We have searched the T. cruzi databases and discovered two novel genes containing PFR domains. Both these genes are transcribed in vivo and are significantly larger than the previously described PFR genes identified in T. cruzi (>2 Kb). Real-time PCR was used to examine the relative expression levels of six PFR genes, including the two we describe here, in all three stages of T. cruzi's lifecycle. Database searches have further provided EST and genomic sequence support for the presence of these genes in two other pathogenic trypanosomatids, Trypanosoma brucei and Leishmania spp. One of these genes, designated PFR5 contains a carboxy terminal SH3 domain not previously seen in PFR family genes. We propose that this proline-binding SH3 domain may play an important role in the assembly of the PFR.
Collapse
Affiliation(s)
- April K Clark
- Department of Biological Sciences, Oakland University, Rochester, MI 48309-4401, USA
| | | | | | | | | |
Collapse
|
25
|
Abstract
Eukaryotic cilia and flagella are cytoskeletal organelles that are remarkably conserved from protists to mammals. Their basic unit is the axoneme, a well-defined cylindrical structure composed of microtubules and up to 250 associated proteins. These complex organelles are assembled by a dynamic process called intraflagellar transport. Flagella and cilia perform diverse motility and sensitivity functions in many different organisms. Trypanosomes are flagellated protozoa, responsible for various tropical diseases such as sleeping sickness and Chagas disease. In this review, we first describe general knowledge on the flagellum: its occurrence in the living world, its molecular composition, and its mode of assembly, with special emphasis on the exciting developments that followed the discovery of intraflagellar transport. We then present recent progress regarding the characteristics of the trypanosome flagellum, highlighting the original contributions brought by this organism. The most striking phenomenon is the involvement of the flagellum in several aspects of the trypanosome cell cycle, including cell morphogenesis, basal body migration, and cytokinesis.
Collapse
Affiliation(s)
- Linda Kohl
- INSERM U565, CNRS UMR5153, and MNHN USM 0503, Muséum National d'Histoire Naturelle, 75231 Paris, France
| | | |
Collapse
|
26
|
Pullen TJ, Ginger ML, Gaskell SJ, Gull K. Protein targeting of an unusual, evolutionarily conserved adenylate kinase to a eukaryotic flagellum. Mol Biol Cell 2004; 15:3257-65. [PMID: 15146060 PMCID: PMC452581 DOI: 10.1091/mbc.e04-03-0217] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The eukaryotic flagellum is a large structure into which specific constituent proteins must be targeted, transported and assembled after their synthesis in the cytoplasm. Using Trypanosoma brucei and a proteomic approach, we have identified and characterized a novel set of adenylate kinase proteins that are localized to the flagellum. These proteins represent unique isoforms that are targeted to the flagellum by an N-terminal extension to the protein and are incorporated into an extraaxonemal structure (the paraflagellar rod). We show that the N-terminal extension is both necessary for isoform location in the flagellum and sufficient for targeting of a green fluorescent protein reporter protein to the flagellum. Moreover, these N-terminal extension sequences are conserved in evolution and we find that they allow the identification of novel adenylate kinases in the genomes of humans and worms. Given the existence of specific isoforms of certain central metabolic enzymes, and targeting sequences for these isoforms, we suggest that these isoforms form part of a complex, "solid-phase" metabolic capability that is built into the eukaryotic flagellum.
Collapse
Affiliation(s)
- Timothy J Pullen
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | | | | | | |
Collapse
|
27
|
Nasser MIA, Landfear SM. Sequences required for the flagellar targeting of an integral membrane protein. Mol Biochem Parasitol 2004; 135:89-100. [PMID: 15287590 DOI: 10.1016/j.molbiopara.2004.01.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Previous studies have established that the ISO1 glucose transporter of Leishmania enriettii resides primarily in the flagellar membrane, whereas the ISO2 glucose transporter is located in the pellicular plasma membrane surrounding the cell body. This pronounced difference in subcellular targeting is conferred by the NH2-terminal domain of the transporters, since this is the only region of the two permeases that differs in sequence. Analysis of the 130 residue NH2-terminal domain of ISO1 using multiple terminal deletion mutants and various internal deletion mutants established that a sequence located between amino acids 84 and 100 of this domain is required for flagellar trafficking. In addition, chimeras between ISO1 and ISO2 indicated that the region between residues 110 and 118 of ISO1 is also required for flagellar targeting. These results imply that flagellar targeting information for this integral membrane protein does not constitute a simple linear sequence of amino acids but is at least bipartite in structure.
Collapse
Affiliation(s)
- Marina Ignatushchenko Abdel Nasser
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239-3098, USA
| | | |
Collapse
|
28
|
Escalier D. New insights into the assembly of the periaxonemal structures in mammalian spermatozoa. Biol Reprod 2003; 69:373-8. [PMID: 12672659 DOI: 10.1095/biolreprod.103.015719] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Disruption of Ube2b in the mouse has revealed that the regular and symmetric organization of the fibrous sheath of the sperm flagella is dependent on expression of the ubiquitin-conjugating enzyme UBE2B. These data could cast light on how a component of the ubiquitin-proteasome pathway participates in the assembly of flagellar periaxonemal structures. Data in the literature support the notion of involvement of ubiquitin-proteasome pathways in the assembly of cytoskeletal components in somatic cells. This review attempts to integrate recent knowledge regarding flagellar components that could be related to proteasome components and, therefore, could be targets of UBE2B in the spermatid. An attempt is made to characterize the human flagellar anomalies of infertile patients, which are the closest to those of Ube2b-deficient mice. These new insights regarding the assembly of mammalian sperm flagella provide a basis for studying the ontogenesis of flagellar accessory structures and suggest leads for medical and genetic investigations.
Collapse
Affiliation(s)
- Denise Escalier
- Histologie Fonctionnelle et Moléculaire, Université Paris 5, 75270 Paris, France.
| |
Collapse
|
29
|
Pan J, Snell WJ. Kinesin II and regulated intraflagellar transport of Chlamydomonas aurora protein kinase. J Cell Sci 2003; 116:2179-86. [PMID: 12692152 DOI: 10.1242/jcs.00438] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The assembly and functioning of cilia and flagella depend on a complex system of traffic between the organelles and the cell body. Two types of transport into these organelles have been identified. The best characterized is constitutive: in a process termed intraflagellar transport (IFT), flagellar structural components are continuously carried into cilia and flagella on transport complexes termed IFT particles via the microtubule motor protein kinesin II. Previous studies have shown that the flagella of the unicellular green alga Chlamydomonas exhibit a second type of protein import that is regulated. During fertilization, the Chlamydomonas aurora protein kinase CALK undergoes regulated translocation from the cell body into the flagella. The motor that powers this second, regulated type of movement is unknown. Here, we have examined the cellular properties of the CALK in Chlamydomonas and used a kinesin II mutant to test the idea that the motor protein is essential for regulated translocation of proteins into flagella. We found that the CALK that is transported into flagella of wild-type gametes becomes part of a membrane-associated complex, that kinesin II is essential for the normal localization of this Chlamydomonas aurora protein kinase in unactivated gametes and that the cAMP-induced translocation of the protein kinase into flagella is disrupted in the fla10 mutants. Our results indicate that, in addition to its role in the constitutive transport of IFT particles and their cargo, kinesin II is essential for regulated translocation of proteins into flagella.
Collapse
Affiliation(s)
- Junmin Pan
- University of Texas Southwestern Medical School, 5323 Harry Hines Blvd, Dallas, TX 75235-9039, USA
| | | |
Collapse
|
30
|
Deane JA, Cole DG, Seeley ES, Diener DR, Rosenbaum JL. Localization of intraflagellar transport protein IFT52 identifies basal body transitional fibers as the docking site for IFT particles. Curr Biol 2001; 11:1586-90. [PMID: 11676918 DOI: 10.1016/s0960-9822(01)00484-5] [Citation(s) in RCA: 308] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Intraflagellar transport (IFT) is a motility in which particles composed of at least 17 polypeptides move underneath the flagellar membrane. Anterograde (outward) and retrograde (inward) movements of these IFT particles are mediated by FLA10 kinesin-II and cytoplasmic dynein DHC1b, respectively. Mutations affecting IFT particle polypeptides or motors result in the inability to assemble flagella. IFT particles and the motors moving them are located principally around the basal bodies as well as in the flagella. Here, we clone the cDNA encoding one of the IFT particle proteins, IFT52, and show by immunofluorescence that while some IFT52 is in the flagella, the majority is found in two horseshoe-shaped rings around the basal bodies. Immunoelectron microscopy indicates that IFT52 is associated with the periphery of the transitional fibers, which extend from the distal portion of the basal body to the cell membrane and demarcate the entrance to the flagellar compartment. This localization suggests that the transitional fibers form a docking complex for the IFT particles destined for the flagellum. Finally, the flagellaless mutant bld1 completely lacks IFT52 due to a deletion in the gene encoding IFT52.
Collapse
Affiliation(s)
- J A Deane
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | | | | | | | | |
Collapse
|
31
|
Abstract
The flagellum and flagellar pocket are distinctive organelles present among all of the trypanosomatid protozoa. Currently, recognized functions for these organelles include generation of motility for the flagellum and dedicated secretory and endocytic activities for the flagellar pocket. The flagellar and flagellar pocket membranes have long been recognized as morphologically separate domains that are component parts of the plasma membrane that surrounds the entire cell. The structural and functional specialization of these two membranes has now been underscored by the identification of multiple proteins that are targeted selectively to each of these domains, and non-membrane proteins have also been identified that are targeted to the internal lumina of these organelles. Investigations on the functions of these organelle-specific proteins should continue to shed light on the unique biological activities of the flagellum and flagellar pocket. In addition, work has begun on identifying signals or modifications of these proteins that direct their targeting to the correct subcellular location. Future endeavors should further refine our knowledge of targeting signals and begin to dissect the molecular machinery involved in transporting and retaining each polypeptide at its designated cellular address.
Collapse
Affiliation(s)
- S M Landfear
- Department of Molecular Microbiology and Immunology, Oregon Health Sciences University, 97201, Portland, OR, USA.
| | | |
Collapse
|